
*Corresponding author.
E-mail addresses: peng@iplab.ece.ucsb.edu (P. Wu), manj@ip-

lab.ece.ucsb.edu (B.S. Manjunath), snewsam@iplab.ece.ucsb.edu
(S. Newsam), hdshin@iplab.ece.ucsb.edu (H.D. Shin).

1Dr. Shin is currently a visiting researcher at UCSB, on leave
from Samsung Electronics.

Signal Processing: Image Communication 16 (2000) 33}43
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Abstract

Image texture is useful in image browsing, search and retrieval. A texture descriptor based on a multiresolution
decomposition using Gabor wavelets is proposed. The descriptor consists of two parts: a perceptual browsing component
(PBC) and a similarity retrieval component (SRC). The extraction methods of both PBC and SRC are based on
a multiresolution decomposition using Gabor wavelets. PBC provides a quantitative characterization of the texture's
structuredness and directionality for browsing application, and the SRC characterizes the distribution of texture energy
in di!erent subbands, and supports similarity retrieval. This representation is quite robust to illumination variations and
compares favorably with other texture descriptors for similarity retrieval. Experimental results are provided. ( 2000
Elsevier Science B.V. All rights reserved.
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1. Introduction

The recent advances in digital imaging and com-
puting technology have resulted in a rapid accumu-
lation of digital media in the personal computing
and entertainment industry. In addition, large col-
lections of such data already exist in many scienti"c
application domains such as the geographic in-
formation systems (GIS) and medical imaging.
Managing large collections of multimedia data
requires development of new tools and technolo-
gies. This is evident in the current MPEG-7 stan-
dardization e!ort whose objective is to provide a set

of standardized tools to describe the multimedia
content [9,15,16].

At the core of the MPEG-7 is a set of descriptors
for audio-visual content. In [16] a descriptor is
de"ned as a representation of a feature. A descrip-
tor de"nes the syntax and semantics of the feature
representation. Examples of low-level visual fea-
tures include color, shape, motion and texture.
This paper describes a texture feature descriptor
that is being proposed to the MPEG-7 standard
[18]. Key functionalities supported by this descrip-
tor include image browsing and similarity-based
retrieval.

Image texture has emerged as an important vis-
ual primitive to search and browse through large
collections of similar looking patterns. An image
can be considered as a mosaic of textures and
texture features associated with the regions can be
used to index the image data. For instance, a user
browsing an aerial image database may want to
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identify all parking lots in the image collection.
A parking lot with cars parked at regular intervals
is an excellent example of a textured pattern when
viewed from a distance, such as in an airphoto.
Similarly, agricultural areas and vegetation patches
are other examples of textures commonly found in
aerial and satellite imagery. Examples of queries
that could be supported in this context could in-
clude `Retrieve all Landsat images of Santa Bar-
bara which have less than 20% cloud covera or
`Find a vegetation patch that looks like this re-
giona. To support image retrieval or browsing, an
e!ective representation of textures is required.

One of the widely used representations of tex-
tures is the texture feature proposed in [17] and its
improved version in [6]. The texture feature used in
[17,6] is based, to some extent, on models of human
texture perception. More recently, several random-
"eld-based texture models [10,14] and multiscale
"ltering methods [3,7,13] have been studied. Use of
texture for content-based retrieval has been ex-
plored by several researchers [6,11,12]. Among
these, features computed from Gabor "ltered
images appear quite promising. A comprehensive
evaluation of using Gabor features can be found in
[11,13]. More recent evaluation and comparison
using other texture features also support the obser-
vation that the orientation and scale-selective Gabor
"ltered images capture relevant texture properties
for applications such as image retrieval [8].

The proposed texture descriptor is based on
Gabor "ltering [11,13]. The descriptor has two
parts. The "rst part relates to a perceptual charac-
terization of texture in terms of structuredness,
directionality and coarseness (scale). This repres-
entation is useful for browsing type applications
and coarse classi"cation of textures. We call this
part the perceptual browsing component (PBC).
The second part provides a quantitative description
that can be used for accurate search and retrieval.
This is referred to as the similarity retrieval com-
ponent (SRC). The SRC component is described in
detail in an earlier paper [13]. Both of the compo-
nents are derived from a multiresolution Gabor
"ltering. Key features of this descriptor are:
f It captures both the high-level perceptual

characterization (in terms of directionality,
structuredness, and coarseness of a texture), as

well as a robust quantitative characterization at
multiple scales and orientations.

f Feature extraction is simple, involving image
convolutions with a set of masks. The "lters are
based on a 2-D Gabor wavelet decomposition.
Image convolutions can be e$ciently imple-
mented in hardware and software.

f Multiple applications can be supported by the
descriptor. For example, by using PBC, brows-
ing of image database could be performed (e.g.,
show textures that are structured and are oriented
at 903). The SRC can be used for query by
example type applications wherein similarity re-
trieval is needed.

The paper is organized as follows. The next section
provides a brief introduction to Gabor "lters.
Computing the PBC is described in Section 3 and
Section 4 details SRC computation. Experimental
results are provided in Section 5. Section 6 con-
cludes with discussions.

2. Gabor 5lter bank [13]

The use of Gabor "lters in extracting texture
descriptors is motivated by several factors. The
Gabor representation has been shown to be opti-
mal in the sense of minimizing the joint two-dimen-
sional uncertainty in space and frequency [4].
These "lters can be considered as orientation and
scale tunable edge and line detectors, and the statis-
tics of these micro features can be used to charac-
terize the underlying texture.

A two-dimensional Gabor function and its
Fourier transform can be written as
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self-similar functions, refered to as the Gabor
wavelets, is now considered. Let g(x, y) be the
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Fig. 1. The contours indicate the half-peak magnitude of the
"lter responses in the Gabor "lter dictionary. The "lter para-
meters used are ;

)
"0.04, ;

-
"0.05, K"6 and S"4 [13].

mother wavelet. Then a self-similar "lter dictionary
can be obtained by appropriate dilations and trans-
lations of g(x, y) through the generation function
[13]:

g
mn

(x, y)"a~mg(x@, y@), a'1, m, n"integer,

x@"a~m(x cos h#y sin h),

y@"a~m(!x sin h#y cos h), (3)

where h"np/K and K is the total number of ori-
entations. The scale factor a~m in (3) is meant to
ensure that the energy is independent of m. This set
of functions forms a non-orthogonal basis of func-
tions for the multiresolution decomposition [13].

The non-orthogonality of the Gabor wavelets
implies that there is redundant information in the
"ltered images, and the following strategy is used to
reduce this redundancy. Let ;

-
and ;

)
denote the

lower and upper center frequencies of interest. Let
K be the number of orientations and S be the
number of scales in the multiresolution decomposi-
tion. Then the design strategy is to ensure that the
half-peak magnitude supports of the "lter re-
sponses in the frequency spectrum touch each other
as shown in Fig. 1. This results in the following
formulas for computing the "lter parameters p
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and m"0, 1,2, S!1. In order to
eliminate sensitivity of the "lter response to abso-
lute intensity values, the real (even) components of
the 2-D Gabor "lters are biased by adding a con-
stant to make them zero mean (This can also be
done by setting G(0, 0) in (2) to zero.) Filtering the
image I(x, y) with g

mn
(x, y) results in
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where * indicates the complex conjugate.

3. Perceptual browsing component (PBC)

From the multiresolution decomposition, a given
image is decomposed into a set of "ltered images.
Each of these images represents the image informa-
tion at a certain scale and at a certain orientation.
The PBC captures the regularity (or the lack of it)
in the texture pattern. Its computation is based on
the following observations:
f Structured textures usually consist of dominant

periodic patterns.
f A periodic or repetitive pattern, if it exists, could

be captured by the "ltered images. This behavior
is usually captured in more than one "ltered
output.

f The dominant scale and orientation information
can also be captured by analyzing projections of
the "ltered images.

Based on the above observations, we propose the
following format for the PBC:

PBC"[v
1

v
2

v
3

v
4

v
5
]. (6)

f Regularity (v
1
). v

1
represents the degree of regu-

larity or structuredness of the texture. A larger
value of v

1
indicates a more regular pattern.

Consider the two patterns in Fig. 2. Pattern
Fig. 2(a) is intuitively more `regulara than Fig. 2(b),
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Fig. 2. Two examples of regularity of textures: (a) regular pat-
tern; (b) irregular pattern.

and hence should have a larger v
1

compared to
Fig. 2(b).

f Directionality (v
2
, v

3
). These represent the two

dominant orientations of the texture. The accu-
racy of computing these two components often
depends on the level of regularity of the texture
pattern. In our implementation, the orientation
space is divided into 303 intervals.

f Scale (v
4
, v

5
). These represent two dominant

scales of the texture. Similar to directionality, the
more structured the texture, the more robust the
computation of these two components.

The PBC computation is a two step procedure.
The "rst step is the analysis of each "ltered
output. The objective of this step is to determine
the existence of a repetitive pattern. The
second step is performed on all "ltered outputs
that are identi"ed as having some kind of
regularity.

3.1. Analysis of each xltered image and
candidate selection

To identify if a "ltered image is repetitive or not,
the projections of each "ltered image is computed
and analyzed. The regular projections would be
identi"ed and further grouped to "nd dominant
regularity of projections. The detail of the analysis
is given below step by step.

Projection. For each "ltered image, the projec-
tions along horizontal and vertical directions are
computed. For an N]N image, the horizontal
projection P

H
and vertical projection P

V
are

de"ned as
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where l, k"1,2, N, =
mn

(l, k) represents the
(m, n)th "ltered output. For simplicity in notation,
we drop the index (m, n) and the subscripts (H and
V) in the following discussion.

Autocorrelation. Consider now a projection P(l).
The normalized autocorrelation function (NAC) is
de"ned as

NAC(k)"
+N~1

m/k
P(m!k)P(m)

J+N~1
m/k

P2(m!k)+N~1
m/k

P2(m)
. (8)

Fig. 3 shows the horizontal projections of texture
pattern (a) in Fig. 2.

Peak detection. The local peaks and valleys of the
NAC(k) are then identi"ed. For the detected peaks
and valleys, their position and magnitude are
recorded. Let M be the number of peaks and N
be the number of valleys. Let p}posi(i), p}magn(i)
(i"1, 2,2,M) be the positions and magnitudes of
these peak points, respectively, and let v}posi( j),
v}magn( j) ( j"1, 2,2, N) be the positions and
magnitudes of the valley points, respectively. The
contrast of the projection is then de"ned to be

contrast"
1

M

M
+
i/1

p}magn(i)!
1

N

N
+
j/1

v}magn(i). (9)

Peak analysis. Given a peak sequence p}posi(i)
including all the peaks detected form a projection
and the number of peaks is M, the average of the
distances among the successive peaks, dis, and the
square root of the standard deviation of distances,
std are computed. Let

c"
std

dis
. (10)

A lower variance in the distances between peaks
implies a more `consistenta repetitive pattern.
A threshold can then be set to distinguish between
regular and irregular patterns. If c is smaller than
a pre-selected threshold ¹

1
, the corresponding pro-

jection is considered to represent a repetitive or
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Fig. 3. NAC of horizontal projections of all the 4]6 "ltered images from image T001.01. The projections labeled with &*' are the detected
potential candidates and those also labeled with &#' are the "nal candidates after clustering.

regular pattern. Those projections that pass this
threshold are then checked for consistency.
A simple agglomerative clustering [5] in the two-
dimensional std}dis space is then used to remove
the outliers.

Fig. 3 shows the NAC of the 24 horizontal projec-
tions for the image T001.01 (shown in Fig. 2(a)).
The projections marked with `*a are the ones that
pass the threshold test. Fig. 4(a) shows the distribu-
tion of std}dis of these potential candidates.
Fig. 4(b) shows the results after the clustering.
Those projections that pass the consistency check
are marked with a `#a in Fig. 3. A similar

analysis is performed on the vertical projection
as well.

From those projections that passed the consist-
ency check, we identify the ones with the maximum
contrast. Let (mH(H), nH(H)) denote the scale and
orientation indices, respectively, of the horizontal
projection with the maximum contrast. Similarly,
let (mH(<), nH(<)) denote the scale and orientation,
respectively, of the vertical projection with max-
imum contrast. Then, we have

PBC[v
4
]"mH(H) and PBC[v

2
]"nH(H),

PBC[v
5
]"mH(<) and PBC[v

3
]"nH(<).
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Fig. 4. Clustering of potential candidates: the left "gure shows the distribution of potential candidates from the projections shown in
Fig. 3 and the right one shows the "nal candidates after clustering.

3.2. Computing the structuredness (PCB[v
1
])

The method of measuring the degree of the struc-
turedness is based on the following observations on
the distribution of candidate vectors.
f For strong structured textures, their periodicity

could be captured by multiple projections } the
candidates chosen from the above procedure.
Typically, these candidates are neighbors in the
scale-orientation space.

f If the texture is not structured or only weakly
structured, the distribution of the candidates, if
they exist, is usually sparse and the neighboring
relationship can rarely be detected.

If such a consistency in the neighboring projections
is detected from the projections in the candidate set,
this would result in a larger credit, indicating
a stronger structuredness. Based on these observa-
tions, the candidate projections are further classi-
"ed as follows.

3.2.1. Candidate classixcation
C

1
. For a speci"c candidate, we can "nd at least

one other candidate at its neighboring scale or
orientation. The value associated with this class is
<

1
"1.0.
C

2
. For a speci"c candidate, we can "nd at least

one another candidate distributed at the same scale

or orientation, but no candidate is located at its
neighboring scale or orientation. The value asso-
ciated with this class is <

2
"0.5.

C
3
. The candidate is the only one distributed at

its scale and orientation. The value associated with
this class is <

3
"0.2.

At this stage, each of the candidate projections
has an associated value computed based on the
above classi"cation. Let

M"

3
+
i/1

N
i*
<

i
, (11)

where N
i

is the number of candidate projections
classi"ed as C

i
. M is calculated for the horizontal

(M
H
) and vertical (M

V
) projections. Let

M
*.'

"M
H
#M

V
. (12)

M
*.'

is quantized into N
v

bins by using option
decision tree classixer [2]. The larger the value of
M

*.'
is, the more structured the corresponding

texture is. In our current implementation, N
v
"4.

Consequently, each image is associated with
a number B

*.'
, B

*.'
3M1,2, N

v
N, to indicate which

bin an image belongs to.

PBC[v
1
]"B

*.'
.
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Fig. 5. PBC of some Brodatz textures.

4. Extraction of similarity retrieval component
(SRC)

4.1. Computing the similarity retrieval component
(SRC)

The mean k
mn

and the standard deviation p
mn

of
the magnitude of the transform coe$cients are used
to form the SRC:

k
mn

"PPD=mn
(x, y)D dx dy

and (13)

p
mn

"J::(D=
mn

(x, y)D!k
mn

)2 dx dy.

The similarity retrieval component (SRC) vector is
now constructed using k

mn
and p

mn
. For S scales

and K orientations, this results in a vector

SRC"[k
11

p
11 2 k

SK
p
SK

].

Note the double index on the vector elements. In
the experiment, we use four scales S"4 and six
orientations K"6, resulting in a feature vector

SRC"[k
11

p
11 2 k

46
p
46

]. (14)

4.2. Distance measure for similarity retrieval
component (SRC)

To perform the similarity retrieval, a distance
measure is de"ned on the proposed feature vector.

Consider two image patterns i and j. Then
the distance between the two patterns is de"ned
to be

d(i, j)"+
m

+
n

d
mn

(i, j), (15)

where

d
mn

(i, j)"K
k(i)
mn

!k(j)
mn

a(k
mn

) K#K
p(i)
mn

!p(j)
mn

a(p
mn

) K, (16)

a(k
mn

) and a(p
mn

) are the standard deviations of
the respective features over the entire database,
and are used to normalize the individual feature
components.

5. Experiment results

5.1. Browsing using PBC

The parameters values used in the experiments
are ;

-
"0.04, ;

)
"0.5, S"4, K"6 (in Eqs. (3)

and (4)) and N
v
"4. Thus, the resulting Gabor

"lter set has six orientations (303 intervals) and four
scales.

The PBC vectors for some of the Brodatz texture
images [1] are shown in Figs. 5 and 6. The size of the
images in the original Brodatz album is 512]512.
For evaluation purpose, each 512]512 image is
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Fig. 6. Browsing example: patterns having similar PBC to the query pattern (on the left). The PBC values are shown below each texture.

divided into four 256]256 subimages. Each of the
images shown in Fig. 5 is just one of the four subim-
ages of each texture image. The PBC[v

1
] has values

between 1 and 4 (N
v
"4). It could be observed that

for the structured images, the estimated directions
and scales match the perceived images very well.
But the scale and direction estimates are not very
reliable for textures with low values for PBC[v

1
].

The PBC computations are subjectively evalu-
ated as follows. The 30 texture images from Fig. 5
were shown to "ve di!erent individuals. They were
asked to quantify the texture structuredness, direc-
tionality and scale on the same scale as our PBC
computation. The median values of each of the
components are used for comparing with the PBC
values computed by our method. For the com-
puter-generated PBC values, we use the median of
the values from the four sub-images of each texture.

For the structuredness component PBC[v
1
], the

computer and human generated values are within
one value deviation for 28 of 30 images. If we
consider values greater than or equal to 2 as repres-
enting the structured texture, the computed PBC
values result in 17 structured and 13 non-structured
textures. This is in good agreement with the human
observers who agree with 16/17 (structured) and
12/13 (non-structured).

The computed dominant directions are also in
good agreement with the human observers for the
textures rated as structured. In 12 out of 16,
the results are in complete agreement. It is observed

that if a texture has horizontal and vertical pat-
terns, the algorithm would pick up the correspond-
ing diagonals as the directions. For the dominant
scales, the human subjects had di$culty rating the
textures on a scale of 4 and provided only one
dominant scale for each pattern. It would have
been more convenient, perhaps, to use the three
scales } "ne, medium and course } for the subjective
tests. For the structured textures, the subjective and
computed values for the "rst dominant scale were
in agreement within one value deviation. Our pro-
posed method did quite well in identifying scales for
textures that had pattern at two signi"cantly di!er-
ent scales. See, for example, T055 in Fig. 5, which
contain pattern at di!erent scales.

5.2. Similarity retrieval using SRC

In [13] we provided a comprehensive compari-
son with other state-of-art texture descriptors.
The Brodatz texture album [1] is used in
those experiments. This includes two descriptors
based on orthogonal wavelets, SRC and [3],
and one based on multiresolution simultaneous
autoregressive model (MR-SAR) [14]. The
SRC compares quite favorably with those other
texture descriptors. The main observations from
[13] are:
f In general, feature components corresponding to

higher frequencies have better discriminat-
ing performance. However, decomposing the
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Fig. 7. Similarity retrieval using SRC on an airphoto database: (a) the region retrievals from areas containing some buildings; (b) an
example of retrieving a part of the runway of an airport; (c) retrievals containing an image identi"cation number.

high-frequency bands further in the tree-struc-
tured wavelet representation of [3] often leads to
a decrease in performance, indicating that these
features are not very robust.

f Experiments with di!erent orthogonal wavelet
transforms indicate very little variation in perfor-
mance with respect to the choice of "lters.

f The marginal improvement of the tree structured
wavelet features comes at the expense of having

a much larger feature vector, which adds to
the overhead associated with indexing and
searching.

f It is important to explore di!erent sim-
ilarity measures for each of the di!erent sets
of features. For example, using the Mahalanobis
distance instead of the Euclidean distance
improved the performance from 64% to
73% for the MR-SAR features. Normalized
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Euclidean distance worked better for all the
others.

f For Brodatz images, the best results using the
Gabor features were obtained using four scales
and six orientations within each scale.

In [11], we provided an application to search and
retrieve of aerial photographs using the SRC de-
scriptor. Some retrieval examples on the airphoto
database are shown in Fig. 7.

6. Discussions

We have presented a texture descriptor for
browsing and similarity retrieval applications.
A comprehensive evaluation of its performance in
similarity retrieval is given in [13]. The browsing
component extends its functionality, and enables
coarse level classi"cation of the database.

In the UCSB digital library project, the descrip-
tor is used to facilitate query by example in a large
aerial photograph database. The proposed texture
descriptor provides a robust representation of
many geographically salient features such as hous-
ing developments, parking lots, highways, airports,
and agricultural regions. Details of this work can
be found in [11].

The proposed descriptor has been used in other
application domains as well. For example, in [8],
researchers from IBM have reported applying this
texture descriptor to an image database related to
petroleum exploration. They concluded that the
Gabor feature set outperforms other texture fea-
tures (computed using the quadratic-mirror "lter,
the discrete cosine transform, and the orthogonal
wavelet transform) by a wide margin on their
benchmark dataset. This is consistent with our
earlier observation.
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