



Abstract—Operating systems and computer architecture and

organization course are fundamental topics underlying many

disciplines, including computer, electrical and electronics

engineering departments. These courses involve both a

theoretical and practical part for the effective learning process.

A FPGA-based micro computer architecture design named

BZK.SAU.FPGA10.1 was proposed to reinforce computer

architecture and organization fundamentals in 2011. Also we

developed an educational operating system named BZK.SAUOS

from scratch on BZK.SAU.FPGA10.1 architecture. The

program written using the user interface of this operating

system was saved to main memory of this microcomputer

architecture since it does not have a nonvolatile memory unit. So

the process of editing on a file previously written is not

impossible. This paper addresses an effective learning approach

that permits one to work on real computer architecture and

original operating system while supporting easily to save and

edit their program using flash memory instead of main memory.

The flash memory controller in this work have been designed

completely hardware. So this controller allows the students to

examine the internal structure of this controller while improving

the motivation in the control of storage units like flash memory,

hard disk etc. Overall, this work helps the students to improve

controller design experience of storage units in low-level in

addition to an increase in their learning process in the computer

architecture and operating systems topics.

Index Terms—BZK.SAU.FPGA, educational tool, memory

controller, microcomputer architecture design, operating

system.

I. INTRODUCTION

Operating systems and Computer architecture and

organization courses are some of the main courses in the

computer engineering and computer science. The effective

learning process in these courses involves both a theoretical

and practical part. There are several of designs and simulators

in the open literature to improve the motivation in these

courses. We also developed two FPGA-based microcomputer

architecture designs named BZK.SAU.FPGA10.0 and

BZK.SAU.FPGA10.1 in addition to literature. Then we

designed an educational operating system named

Manuscript received April 30, 2012; revised June 10, 2012. This work

was supported in The Scientific and Technological Research Council of

Turkey (TUBITAK) project no. 110E069.

Oztekin Halit and Temurtas Feyzullah are with the Department of

Electrical and Electronics at Bozok University, Turkey (e-mail:

oztekinhalit@ gmail.com, temurtas@gmail.com).

Olmez Emre is with the Department of Mechatronical Engineering at

Bozok University, Turkey (e-mail: olmezemre@gmail.com).

Gulbag Ali is with the Department of Computer Engineering at Sakarya

University, Turkey (e-mail: agulbag@sakarya.edu.tr).

BZK.SAUOS on our microcomputer architecture from

scratch. To save a program written using the user interface of

our operating system was used the main memory of our

microcomputer architecture since it does not have a

nonvolatile memory. In other words it does not have a

controller of flash memory with 8MB on Altera De2-70

FPGA development board that we used. So the editing

process on a file previously written was impossible. We

developed a flash memory controller to save a file and edit the

saved file for this reason. This controller can be only done 3

processes on flash memory for now: reading, sector-based

writing and chip erasing. It is also completely designed at

logic gate level in order to examine all units of this controller

in detail since our microcomputer architecture and operating

system designs have an educational nature.

This controller can be realized using FPGA (field

programmable gate array) development board, which is the

popular technology widely, with a low cost and high

flexibility. FPGAs offer a design platform that allows students

to implement more meaningful projects with tens of

thousands of gates on actual hardware [1-2].

The main goal in designing of this controller is to facilitate

saving a program written using the user interface of

BZK.SAUOS operating system on nonvolatile storage

environment and hence the ability to allow for editing the

saved file. The other goal is to improve controller design

experience of storage at logic gate level.

This paper introduces a flash memory controller design for

BZK.SAU.FPGA10.1 microcomputer architecture and

BZK.SAUOS operating system. The rest of this paper is

organized as followed. Section 2 presents the general

information about BZK.SAU.FPGA10.1 and BZK.SAUOS

system designs. Section 3 introduces the proposed approach

to flash memory controller design while section 5 concludes

some achievement of this work.

II. RELATED WORKS

Tang Lei and Zhou Xuan [3] designed a Nand Flash

controller for fpga application. Controller has its own

instruction set to manage a flash memory chip. Users can

operate the controller without caring about the strict timing

sequences of the memory chip. Lin and Dung [4] designed a

NAND flash memory controller for SD/MMC flash memory

card. They designed a t-EC w-bit parallel BCH ECC code for

correcting the random bit errors of the flash memory chip.

And they presented a code-banking mechanism to support

various kinds of NAND flash memory. Jin Hyuk Yoon [5]

FPGA-Based Flash Memory Controller for

BZK.SAU.FPGA10.1 Microcomputer Architecture

Design as an Educational Tool

H. Oztekin, F. Temurtas, E. Olmez, and A. Gulbag, Member, IACSIT

International Journal of Computer and Communication Engineering, Vol. 1, No. 3, September 2012

241

mailto:olmezemre@gmail.com

proposed a high-performance Flash/FRAM hybrid SSD

architecture that cures the inefficiency of flash memory in

handling small random writes by using a small amount of

FRAM. Seong [6] presented a new flash memory SSD

architecture called Hydra that exploits multichip parallelism

effectively. And the other controller O3 [7] executes multiple

flash operations out of order.

III. BZK.SAU.FPGA10.1 AND BZK.SAUOS SYSTEM

ARCHITECTURE

If The BZK.SAU.FPGA10.1 is the new version of

BZK.SAU.FPGA10.0 [8]. BZK and SAU words are the

acronym of Bozok and Sakarya University. We have adopted

the modular approach to the second FPGA version of the

BZK.SAU [9] named BZK.SAU.FPGA10.1 [10]. [8] and [9]

have the same architecture. The only difference between them

the development environments. While the development

environment of [8] is FPGA, other is an emulator program.

Modular design approach is an important factor for the

educational training of topics in computer architecture and

organization course since this approach allows to students to

be able to integrate seamlessly into existing system. In this

approach, the learning process takes place in stages since

system is divided into parts. We took the approach of

modularization in order to avoid having students be

overwhelmed by the complexity of a complete computer

system design. So the students do not have to develop a

microcomputer architecture design from scratch. It is quite

simple to include their own designs like adding unit,

subtraction unit etc. to our system in this approach. So they

can see the operation of their own designs on our system

without affecting the operation of our system. In other words,

our modular approach is plug and see. Therefore, teachers can

teach more productive course by applying this approach to

their teaching methods since our approach aims to learn piece

by piece rather than complete system. All units in

BZK.SAU.FPGA10.1 microcomputer architecture are our

own specific designs and we built these units using only

schematic design at logic level. A detailed block diagram that

shows the components of the BZK.SAU.FPGA10.1 design is

shown in Fig. 1.

The common features of both versions are listed as the

following:

1) Support six addressing modes: immediate, direct,

indirect, index, relative and inherent mode.

2) They have eight general and special registers: Address

Register(AR), Data Register(DR), Accumulator(AC),

Program Counter(PC), Stack Pointer(SP), Index

Register(IX) and Temporary Register(TR) are 16-bit

width while Instruction Register(IR), Output

Register(OUTR) and Input Register(INPR) are 8-bit

width.

Fig. 1. The block diagram of BZK.SAU.FPGA10.1[10].

3) 16-bit bus for data and address information.

4) The effective address calculating unit for instructions

which have relative and index addressing modes

5) Their instruction set consists of 51 instructions: memory

and accumulator-based 21 instructions, 8 instructions on

index and stack registers, 22 instructions to change the

flow direct of program execution.

6) 64 KB main memory for running programs and 8 MB

flash memory for storing files.

7) The output pixel size of display screen on VGA monitor

is 320x384 pixels and screen area has 40 columns x 24

rows since every character is 8x16 pixels.[11]

Instructions occupy one or two bytes according to

addressing modes. While instructions with inherent

addressing mode occupy one byte in the main memory, other

instructions occupy two bytes. In order to provide readers

with the detailed features of instructions and instruction

structures, more data are given [8-10].

BZK.SAUOS is an educational operating system for

BZK.SAU.FPGA10.1 microcomputer architecture design. It

has the two operation mode, system and user modes, and

“Esc” key in the keyboard is used to switch between them. OS

is initially at system mode and the user interface like MS-DOS

command prompt is active. This user interface is shown in Fig.

2. BZK.SAUOS implements four commands at command line.

These are given in Table I.

Fig. 2. The command prompt of BZK.SAUOS.

TABLE I: THE COMMAND LIST IN BZK.SAUOS.

Name Description Writing format

new Creates a file new

save Save the current file save filename.ext

edit Open to edit a file edit filename.ext

run Compileandrun the current file run

International Journal of Computer and Communication Engineering, Vol. 1, No. 3, September 2012

242

IV. THE PROPOSED APPROACH: FLASH MEMORY

CONTROLLER

Flash memory is a non-volatile memory that can be

electrically erased and reprogrammed. It was developed from

EEPROM (electrically erasable programmable read-only

memory). It is used in mobile devices and other digital

products because of low power consumption, fast random

access and high shock resistance.

Flash memory must be erased in large sectors before these

can be rewritten data. The difference between EEPROM and

FLASH Memory is EEPROM erasable in small blocks,

typically bytes, but the flash memory is erasable in large block

sizes. The large block sizes give FLASH Memory a

significant speed advantage over old-style EEPROM when

writing large amounts of data.

Flash memory now costs far less than byte-programmable

EEPROM and has become the dominant memory type

wherever a significant amount of non-volatile, solid state

storage is needed.

The most popular Flash types are NOR and NAND types.

The high density NAND type must also be programmed and

read in (smaller) blocks, or pages, while the NOR type allows

a single machine word (byte) to be written or read

independently. NAND Flash memory is used for storage

applications. NOR Flash has long erase and write times, but

provides full address and data buses and allowing random

access to any memory location. This makes it particularly

suitable for code storage which requires high-speed random

access.

Fig. 3. The logic symbol of flash memory on Altera DE2-70 FPGA

development board [12].

TABLE II: THE PIN DESCRIPTIONS OF FLASH MEMORY

Pin Description

A21-A0 22 Address Input

DQ15-DQ0 15 Data Input/Output

CE# Chip Enable Input

OE# Output Enable Input

WE# Write Enable Input

WP#/ACC Hardware Write Protect/Programming Acceleration

Input

ACC Acceleration Input

WP# Hardware Write Protect Input

RESET# Hardware Reset Pin Input

RY/BY# Ready/Busy Output

BYTE# Select 8-bit or 16-bit mode

Vıo Output Buffer Power

In this study we use SPANSION S29GL064N NOR flash,

that is 8 Mb on Altera DE2-70 FPGA development board.

The instruction set of flash memory consists of 21 commands.

But we used only 3 commands of it: reading, programming

and chip erasing for now. Flash Memory has an internal

command register. The command register itself does not

occupy any addressable memory location. The register is a

latch used to store the commands, along with the address and

data information needed to execute the command. Flash

memory has 22 address pins and 16 data pins. Pin descriptions

and the logic symbol of its shown in Fig. 3 and Table II

respectively.

A. Configuration and Programming of Flash Memory

The BYTE# pin controls whether the device data I/O pins

operate in the byte or word configuration. If the BYTE# pin is

set at logic 1, the device is in word configuration, DQ0–DQ15

is active and controlled by CE# and OE#. If the BYTE# pin is

set at logic 0, the device is in byte configuration, and only data

I/O pins DQ0–DQ7 are active and controlled by CE# and

OE#. The data I/O pins DQ8–DQ14 are tri-stated, and the

DQ15 pin is used as an input for the LSB (A-1) address

function.

The device is automatically set to reading data after device

power-up. No commands are required to retrieve data. To

read data from the outputs, the system must drive the CE# and

OE# pins to Logic Low. CE# is the power control and selects

the device. OE# is the output control and gates array data to

the output pins. WE# should remain at Logic High. Table III

summarizes this situation. After setting the situation shown in

table for read, we can instantly read data that corresponds to

the address we entered from address inputs.

Writing specific data to specific address by defined

sequences into the command register initiates device

operations. Table IV defines the valid register command

sequences of read, program and chip erase commands. Read

command is one-cycle command, but the other commands we

use program and chip erase commands are multi cycle

commands.

TABLE III: THE COMMANDS USED IN THIS STUDY[12].

Operation CE# OE# WE# RESET#

Read L L H H

Write(Program/Erase) L H L H

Reset X X X L

For writing data to flash memory we should process

program command consists of four cycle shown in Table IV.

After processing the first three cycle the device is ready for

writing data. In the fourth cycle we write data that we want to

corresponding address. The other command we use, chip

erase is six-cycle command. For erasing the whole memory

we should implement the required command sequence of chip

erase command. After the sixth cycle chip erase operation

begins and it takes approximately a few minutes. The main

information we need for processing a command is how to

process a cycle. Processing a cycle operation is as follows;

firstly corresponding address and data information attach to

the data and address pins of the flash memory. Secondly latch

the address and data. All addresses are latched on the falling

edge of WE# or CE#, whichever happens later. All data is

latched on the rising edge of WE# or CE#, whichever happens

first. In our design we keep CE# always at logic 0. We latch

the address and data by switching the WE#. So the addresses

are latched on the falling edge of WE# and data is latched on

16 or 8

CE#

A21-A0

RESET#

DQ15-DQ0

22

OE#

WE#

WP#/ACC

VIO

BYTE#

RY/BY#

International Journal of Computer and Communication Engineering, Vol. 1, No. 3, September 2012

243

http://en.wikipedia.org/wiki/Solid_state_(electronics)
http://en.wikipedia.org/wiki/Machine_word

the rising edge of WE#.

Writing incorrect address and data values or writing them

in the improper sequence may place the device in an unknown

state. A reset command is then required to return the device to

reading array data.

TABLE IV: THE REQUIRED COMMANDS SEQUENCES[12].

C
o

m
m

an
d

S
eq

u
en

ce

#
C

y
cl

e

First Second Third Fourth Fifth Sixth

A
d

re
ss

D
at

a

A
d

re
ss

D
at

a

A
d

re
ss

D
at

a

A
d

re
ss

D
at

a

A
d

re
ss

D
at

a

A
d

re
ss

D
at

a

Read 1 RA RD

Program 4 555 AA 2AA 55 555 A0 PA PD

Chip Erase 6 555 AA 2AA 55 555 80 555 AA 2AA 55 555 10

PA: Program Adress, PD: Pogram Data

B. The Controller Structure of Flash Memory

This controller fundamentally consists of Mod-2 counters.

The signals come from BZK.SAU.FPGA10.1 microcomputer

enable these counters in this controller for the required

process. The structure is shown in Fig. 4. This controller

implements three commands on flash memory. These are

programming(writing), chip erasing and reading. Program

command consists of four cycles works as follows:

Fig. 4. The block diagram of controller between BZK.SAU.FPGA and flash

memory.

Fig. 5. The cycles of program command on flash memory.

With the falling edge of PRG input signal from BZK.SAU

Counter1 starts to count from 00 to 10 (00-01-10). So the first

cycle of the program command is on the process. In the first

cycle 555h address information attached to the address pins

and AAh data information attached to the data pins of flash

memory. The valid command sequences are shown in Table

IV. The least significant bit of the each counter is connected

to the WE pin of the flash memory. WE pin latches the

address and data which we attached to the address and data

pins of the flash memory. Falling edge of WE (LSB of

Counter1) latches the address and the rising edge of WE

latches the data. With the rising edge of WE Counter1 reaches

at 10 so first cycle of the program command is finished and

the most significant bit of the counter1 triggers the counter2

so the second cycle of the program command is on the process.

The second and third cycle work same as the first cycle. When

the third counter finished to count flash memory is ready for

writing data. In the fourth cycle we write the data into the flash

memory. The WRT signal comes from BZK.SAU performs

the fourth cycle of program command.. After attaching the

address and data information with the falling edge of WRT

signal from BZK.SAU.FPGA corresponding data is written to

the corresponding address.

Counters provide the flow in the proposed design and the

Least Significant Bits of the counters trigger the WE pin of

Flash memory for attaching address and data. Each counter is

used to implement for each command cycle. PRG command

signal from BZK.SAU.FPGA triggers the counter1 then it

starts to count from 00 to 10. When the counter1 reaches at 10

it stays at this value and the MSB of the counter1 triggers the

counter2. Counter2 and the next counters work at the same

way when the counter2 reaches at 10 it stays at this value and

the MSB of the counter2 triggers the counter3. Program

command process is finished with the counter3 of the program

command reaches at 10 and counter3 resets all counters in the

circuit, so the device is ready for another command input.

The second command is chip erasing. Chip erase command

operates like as program command. Chip erasing command

lasts six cycles. So we used six counters for designing chip

erase command. Chip erase command starts with the falling

edge of ERS signal which comes from BZK.SAU.FPGA

microcomputer architecture. After the sixth cycle of the

command, flash memory starts to erase the whole memory.

After chip erase command, all cells in the flash memory

become logic 1. The command sequence of chip erase is

shown in Table IV.

V. CONCLUSION

This article presented a controller design of flash memory

on Altera DE2-70 FPGA development board to save a file

written using the user interface of BZK.SAUOS operating

system. Thus it allows the students improving the motivation

on our educational operating system since the editing process

on the saved file is available. This controller is entirely

realized using schematic structure at logic gate level to be able

to examine the internal structure of this controller while

improving the motivation in the control of storage units like

flash memory, hard disk etc. Overall, this work helps the

students to improve controller design experience of storage

units in low-level in addition to an increase in their learning

process in the computer architecture and operating systems

topics. In the future work, we will improve the other

commands of this controller in addition to three commands;

reading, writing and chip erasing designed in this work.

REFERENCES

[1] M. A. Soderstrand, “Role of FPGA’s undergraduate project courses,”

Proc. IEEE Conf. Microelectronics System Education(MSE 97), July

1997, pp. 109-110, doi: 10.1109/MSE.1997.612570

Counter1

Q1

Q0 Clk

E

WE#

Counter2

Q1

Q0 Clk

E

WE# WE#

Mod2 Counter

PRG Command

Cycle1

Counter3

Mod2 Counter

PRG Command

Cycle2

Mod2 Counter

PRG Command

Cycle3

E

Clk Q0

Q1

Clk

E

ERS

CLK

PRG
ERS

PRG

WE#

Controller

Flash Memory

15

6

15

6

Adr[14..0]

WE#

7 7

Data [15..0]

Adr[21..0]

Flash Memory

(Altera DE2-70)
BZK.SAU.FPGA

WE# WRT WRT

Sector Adr[21..15]

International Journal of Computer and Communication Engineering, Vol. 1, No. 3, September 2012

244

http://dx.doi.org/10.1109/MSE.1997.612570

[2] M. S. Nixon, “On a programmable approach to introducing digital

design,” IEEE Trans. Educ., vol. 40, pp. 195-206, 1997.

[3] T. Lei, Z. Xuan, W. Yao, and L. Jincheng “Flash controller design for

FPGA application,” ICEEE 2010 International conference, pp. 1-4,

Nov. 2010.

[4] C. S. Lin and L. R. Dung, “A NAND Flash memory controller for

SD/MMC flash memory card,” IEEE Trans. On Magnetics, vol. 43, no.

2, Feb. 2007.

[5] J. H. Yoon, E. H. Nam, Y. J. Seong, H. Kim, B. S. Kim, S. L. Min, and

Y. Cho, “Chameleon: A High Performance Flash/FRAM Hybrid Solid

State Disk Architecture,” IEEE Computer Architecture Letters, vol. 7,

pp. 17, Jan. 2008.

[6] Y. J. Seong, E. H. Nam, J. H. Yoon, H. Kim, J. Y. Choi, S. Lee, Y. H.

Bae, J. Lee, Y. Cho, and S. L. Min, “Hydra: a block-mapped parallel

flash memory solid-state disk architecture,” IEEE Trans. On

Computers, vol. 59, no. 7, pp. 905-921, 2010.

[7] E. H. Nam, B. S. J. Kim, H. Eom, and S. L. Min, “Ozone (O3): An

Out-of-Order Flash Memory Controller Architeture,” IEEE Trans. on

Computers, vol. 60, no. 5 , pp. 653-666, May 2011.

[8] H. Oztekin, F. Temurtas, and A. Gulbag, “BZK.SAU.FPGA10.0:

Microprocessor architecture design on reconfigurable hardware as an

educational tool,” Int. Conf. ComputersandInformatics (ISCI 11), pp.

385-389, doi: 10.1109/ISCI.2011.5958946), March 2011.

[9] H. Oztekin, F. Temurtas, and A. Gulbag, “BZK.SAU: Implementing a

hardware and software-based Computer Architecture simulator for

educational purpose,” Int. Conf. Computer Design and Applications

(ICCDA 10), vol. 4, pp. V4-90-V4-97, doi:

10.1109/ICCDA.2010.5541476), June 2010

[10] H. Oztekin, F. Temurtas, and A. Gulbag, “BZK.SAU.FPGA10.1: A

modular approach to FPGA-based micro computer architecture design

for educational purpose,” Comput. Appl. Eng. Educ.

doi: 10.1002/cae.20553, in press.

[11] H. Oztekin, F. Temurtas, and A. Gulbag, “A modular approach to VGA

Monitor Controller for BZK.SAU.FPGA10.1 microcomputer

architecture design,” Int. Proc. Computer Science and Information

Technology (ICICA 12), vol. 24, pp. 27-31, February 2012.

[12] S29GL-N MirrorBit® Flash Family. [Online]. Available:

http://www.spansion.com/Support/Datasheets/s29gl-n_01.pdf

Halit Oztekin received his B.Sc., M.Sc. and Ph.D

degrees in Computer Engineering at Sakarya

University. He has been working as a lecturer in

Department of Electrical and Electronics at Bozok

University. His research interests are in computer

architecture, microprocessors, FPGAs, operating

systems.

Feyzullah Temurtas received his B.Sc. degree in

Electrical and Electronic Engineering at Middle East

Technical University, M.Sc. degree in Electrical and

Electronic Engineering at Dumlupinar University and

Ph.D. degree in Electrical and Electronic Engineering

at Sakarya University. He has substantial experience of

data processing techniques for sensor arrays used in

electronic nose formats, computer architecture, neural

network and fuzzy logic discriminators.

Ali Gulbag received his B.Sc., M.Sc. and Ph.D.

degrees in Electrical and Electronic Engineering at

Sakarya University. He has been working as an

assistant professor in Department of Computer

Engineering at Sakarya University. His research

interests are in artificial intelligence and pattern

recognition, computer architecture.

Emre Olmez received his B.Sc., degree in Electrical

and Electronic Engineering at Kırıkkale University.

He has been studying as an M.Sc. student in

department of Mechatronical Engineering at Bozok

University. His research interests are microprocessors,

FPGAs and automation

.

International Journal of Computer and Communication Engineering, Vol. 1, No. 3, September 2012

245

