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Abstract—In this brief, adaptive robust output-feedback force/
motion control strategies are presented for mobile manipulators
under both holonomic and nonholonomic constraints in the pres-
ence of uncertainties and disturbances. The controls are developed
on structural knowledge of the dynamics of the robot and actuators
and in conjunction with a linear observer. The proposed controls
are robust not only to parametric uncertainty such as mass vari-
ations but also to external ones such as disturbances. The system
stability and the boundedness of tracking and observation errors
are proven using Lyapunov stability synthesis. Simulation results
validate that the states of the system converge to the desired trajec-
tory, while the constraint force converges to the desired force.

Index Terms—Actuators dynamics, motion/force control, non-
holonomic mobile manipulators, output feedback.

I. INTRODUCTION

T HE MOBILE manipulator possesses a complex and
strongly coupled dynamics of the mobile platform and

the robotic arm. Tracking control of mobile manipulators in
practical applications requires both the motion and constraint
forces converge to their desired trajectories and constraint
forces, respectively, in the presence of parametric uncertainty
[3], [6].

With the assumption of known dynamics, much research has
been carried out. In [1], nonlinear feedback control for the mo-
bile manipulator was developed to compensate for the dynamic
interaction between the mobile platform and the arm to achieve
tracking performance. In [2], coordination and control of mobile
manipulators were presented with two basic task-oriented con-
trols: end-effector task control and platform self posture control.
In [6], force/position control of the end-effector for mobile ma-
nipulators was developed using nonlinear feedback linearization
and decoupling dynamics.

To solve for the unknown parameters, adaptive schemes were
investigated to deal with mobile manipulators with unknown in-
ertia parameters and disturbances. In [3], adaptive trajectory/

Manuscript received July 24, 2007. Manuscript received in final form De-
cember 10, 2007. First published June 10, 2008; current version published Oc-
tober 22, 2008. Recommended by Associate Editor L. Villani.

Z. Li was with the Department of Electrical and Computer Engineering, Na-
tional University of Singapore, 117576 Singapore. He is now with the Depart-
ment of Automation, Shanghai Jiao Tong University, 200240 Shanghai (e-mail:
zjli@ieee.org).

S. S. Ge is with the Social Robotics Lab, Interactive Digital Media Institute,
and the Department of Electrical and Computer Engineering, National Univer-
sity of Singapore, 117576 Singapore (e-mail: samge@nus.edu.sg).

M. Adams and W. S. Wijesomais are with School of Electrical and Elec-
tronics Engineering, Nanyang Technological University, 639798 Singapore
(e-mail: eadams@ntu.edu.sg; eswwijesoma@ntu.edu.sg).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCST.2008.917228

force tracking controls were investigated for mobile manipula-
tors with unknown inertia parameters and disturbances. With the
difficulty in dynamic modeling, adaptive neural network con-
trols, a non-model-based approach [4], were developed for the
motion control of mobile manipulators subject to kinematic con-
straints in [5].

In these schemes, the controls are designed at kinematic level
with velocity as input or dynamic level with torque as input,
but the actuator dynamics are ignored. As demonstrated in [7],
actuator dynamics constitute an important component of the
complete robot dynamics, especially in the case of high-velocity
movement and highly varying loads. Many control methods
have therefore been developed to take into account the effects
of actuator dynamics (see, for instance, [7]–[9]). However, most
literature assumes that the actuator velocities are measurable
[3], [5], which may deteriorate the control performance of these
methods, since velocity measurements are often contaminated
by a considerable amount of noise. Therefore, it is desired to
achieve good control performance by using only joint position
measurement. Moreover, in most research conducted on control
of mobile manipulators, joint torques are the control inputs,
while in reality the joints are driven by actuators (e.g., DC
motors). Therefore, using actuator input voltages as control
inputs and designing observer-controller structure for mobile
manipulators with only the positions and the driving currents
of actuators are more realistic. As such, actuator dynamics is
combined with the mobile manipulator’s dynamics in this brief.

This brief addresses adaptive robust output-feedback control
of force/motion for a class of mobile manipulator systems elec-
trically driven by DC motors with both holonomic and non-
holonomic constraints in the parameter uncertainties and ex-
ternal disturbances. Simulation results are described in detail
that show the effectiveness of the proposed control.

II. SYSTEM DESCRIPTION

Consider an -degree-of-freedom (DOF) mobile manipulator
mounted on a nonholonomic mobile base, the dynamics can be
described as

(1)

where with denoting the general-
ized coordinates for the mobile platform and denoting
the coordinates of the manipulator, and . The sym-
metric positive definite inertia matrix , the Cen-
tripetal and Coriolis torques , the gravitational
torque vector , the external disturbances ,
the known full rank input transformation matrix ,
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the control inputs , and the generalized constraint forces
could be represented as, respectively

where and describe the inertia matrices for the mobile
platform and the robot manipulator, respectively, and
are the coupling inertia matrices of the mobile platform and the
robot manipulator, and denote the Centripetal and Cori-
olis torques for the mobile platform and the robot manipulator,
respectively, and and are the coupling Centripetal and
Coriolis torques of the mobile platform and the robot manip-
ulator. and are the gravitational torque vectors for the
mobile platform and the robot manipulator, respectively, and

are the control input vectors for the mobile platform and the
robot manipulator, and denote the external distur-
bances on the mobile platform and the robot manipulator, re-
spectively, and and are the associated Lagrangian multi-
pliers with the generalized nonholonomic and holonomic con-
straints, respectively.

Assume that the non-integrable and independent velocity
constraints on the mobile platform

(2)

which can be viewed as restricting the dynamics on
the manifold , where

is the kine-
matic constraint matrix which is assumed to have full rank .
The effect of the nonholonomic constraints can be viewed as
the generalized constraint forces given by . It is
always possible to find an rank matrix
formed by a set of smooth and linearly independent vector
fields spanning the null space of , where

(3)

The constraints (2) and (3) imply that

(4)

Remark 2.1: It should be noted that the -vector rep-
resent the internal states, so that is sufficient to describe
the constrained motion of the mobile platform [13].

Combining the non-holonomic constraints (2) and the trans-
formation (4) and their derivatives, the dynamics of a mobile
manipulator can be expressed as

(5)

Property 2.1: Matrices , are uniformly
bounded and uniformly continuous if is uniformly bounded
and continuous, respectively. Matrix is uniformly
bounded and uniformly continuous if and are uniformly
bounded and continuous, respectively.

When the system (5) is subjected to holonomic constraints,
the independent holonomic constraints can be expressed as

(6)

where is of full rank, and one has
and . The effect of the holonomic constraints can be
viewed as the generalized constraint forces in the joint space
as . Hence, the holonomic constraint on the robot’s
end-effector can be viewed as restricting only the dynamics on
the constraint manifold defined by

. Assume that the mobile manipulator is a
series-chain multilink manipulator with holonomic constraints
(i.e., geometric constraints). According to [12], the vector
can be properly rearranged and partitioned into the form

, describes the constrained motion of
the manipulator, denotes the remaining joint variable.
Then, . Moreover, by
the partition of , is uniquely determined by ,
there is a unique function such that the is expressed explic-
itly as the function of , that is, , and one has

, where , , and ,
satisfies the relationship .

The dynamics (5), restricted to the constraint surface, can be
transformed into the reduced-order model

(7)

where ,
, , , .
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Multiplying on both sides of (7), one has

(8)

where , ,
, .

The force multiplier can be obtained by (7)

(9)

where .
Property 2.2: The matrix is symmetric and positive

definite.
Property 2.3: The matrix is skew-sym-

metric, and the satisfies and
, and is

scalar.
Property 2.4: For holonomic systems, matrices ,

are uniformly bounded and uniformly continuous if is uni-
formly bounded and continuous, respectively.

Remark 2.2: The matrix is uniformly bounded and uni-
formly continuous since and are uniformly
bounded and uniformly continuous.

Property 2.5: There exist some finite positive constants
and finite non-negative constant

such that ,
, , , and

.

III. ACTUATOR DYNAMICS

The joints of the mobile manipulators are assumed to be
driven by DC motors. Consider the following notations used to
model a DC motor: represents the control input voltage
vector; denotes an -element vector of motor armature cur-
rent; is a positive definite diagonal matrix which
characterizes the electromechanical conversion between cur-
rent and torque; ,

,
,

represent the equivalent armature inductances, resistances,
back EMF constants, angular velocities of the driving motors,
respectively; denotes the gear
ratio for joints; are the torque exerted by the motor. In
order to apply the DC servomotors for actuating an -DOF
mobile manipulator, assume without energy loss, a relationship
between the th joint velocity and the motor shaft velocity

can be presented as , where
is the gear ratio of the th joint, is the th motor shaft
torque, and is the th joint torque. The motor shaft torque
is proportional to the motor current as . The back
EMF is proportional to the angular velocity of the motor shaft,
then one has

(10)

In the actuator dynamics (10), the relationship between and
is dependent on the type of mechanical system and can be

generally expressed as

(11)

Fig. 1. Two-DOF mobile manipulator.

The structure of depends on the mechanical systems to be
controlled. For instance, in the simulation example, a two-wheel
differential drive 2-DOF mobile manipulator is used to illus-
trate the control design. From [11], one has ,

, , , where and are
the angular velocities of the two wheels, respectively, and is
the linear velocity of the mobile platform, as shown in Fig. 1.
Since , one has ,

, ,
, , , where

and are shown in Fig. 1.
Eliminating from the actuator dynamics (10) by substi-

tuting (11) and considering (8), one obtains

(12)

(13)

(14)

Assumption 3.1: The unknown actuator parameters , ,
and are bounded and satisfy ; ;

where , are finite positive con-
stants.

Remark 3.1: In reality, these constants and
cannot be obtained easily. Although any fixed

large and can guarantee good performance, it is not rec-
ommended in practice as large and imply, in general, high
noise amplification and high cost of control. Therefore, it is
necessary to develop a control law which does not require the
knowledge of and .

IV. OUTPUT-FEEDBACK CONTROL DESIGN

Given a desired motion trajectory and a de-
sired constraint force , or, equivalently, a desired multiplier

, the trajectory and force tracking control is to determine a
control law such that for any , , , converge
to a manifold .

The controller design will consist of two stages: 1) a virtual
adaptive control input is designed so that the subsystems (12)
and (13) converge to the desired values and 2) the actual control
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input is designed in such a way that . In turn, this
allows and to be stabilized to the origin.

Assumption 4.1: The desired reference trajectory is
assumed to be bounded and uniformly continuous, and has
bounded and uniformly continuous derivatives up to the second
order. The desired Lagrangian multiplier is also bounded
and uniformly continuous.

Lemma 4.1: For and , one has
.

Proof: If , one has
. Therefore,

with . Let
, one has

. From the mean value the-
orem [15], one has . Since

and , for all , one has ,
that is, , then, one has

.
Remark 4.1: Lemma 4.1 is used to facilitate the control de-

sign.
Definition 4.1: Consider time varying positive functions

for converges to zero as and satisfies
with a finite constant . There

are many choices for that satisfy the previous condition,
for example, .

A. Kinematic and Dynamic Subsystems

Consider the following signals defined as:

(15)

(16)

(17)

(18)

(19)

(20)

where , with denoting the estimate of
, and is diagonal positive.
The linear observer [10] for velocity estimation is introduced

to the system

(21)

(22)

where is a positive constant.
A decoupling control scheme is introduced to control gener-

alized position and constraint force, separatively. Consider the
control in the following form:

(23)

where ,
, ,

, and , .
Then, (8) and (9) can be rewritten as

(24)

(25)

Consider the following control laws:

(26)

(27)

where , , ,

, ; , ,
are diagonal positive; if , , else ;

is constant; ; is a diagonal
matrix whose each element satisfies Definition 4.1, i.e.,

with the finite constant ,

; with
, will be defined in the

following section.

B. Control Design at the Actuator Level

Till now, tends to can be guaranteed, if the actual input
control signal of the dynamic system be of the form which
can be realized from the actuator dynamics by the design of the
actual control input . On the basis of the previous statements,
it is concluded that if is designed in such a way that tends to

then and .
Define , and , ,

and with . Substituting and of (14),
one gets

(28)

where .
Remark 4.2: Since is partitioned into and , one has cor-

responding partitions , ,
, , , ,

with the corresponding
and , and ,

and ,
and , , and

.
Consider the adaptive robust control law for and , re-

spectively

(29)

(30)

where , ,
and for and
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, respectively, and and are diagonal positive,
, is a diagonal matrix whose each element satisfies

Definition 4.1, i.e., with the
finite constant , .

C. Stability Analysis for the System

Theorem 4.1: Consider the mechanical system described by
(1), (2), and (6), using the control law (26), (27), (29), and (30),
the following hold for any : 1) and
converge to a set containing the origin as ; 2) and
converge to 0 as ; and 3) converges to a set containing
the origin as , and and are bounded for all .

Proof: 1) By combining (12) with (16) and considering
Property 2.3, the closed-loop system dynamics is given by

(31)

where . Differentiating

(21) and considering (22), one has ,
which leads to

(32)

Substitute (26) and (32) into (31), and consider Property 2.3,
the closed-loop dynamic equation is obtained

(33)

Consider the Lyapunov function candidate

(34)

where and
, , , and

, . Differen-
tiating with respect to time, one has

. From Property 2.2 and Property 2.3, the
time derivative of along the trajectory of (33) is

Considering Lemma 4.1, one has , and
, and ,

from (16) and (18), one has

Since ,
,

, and
,

and From Property 2.5, one has these valid relation-
ships , ,

, where , and are known
constants, therefore

(35)

Differentiating with respect to time, considering
joints, using (28) for , one has

(36)

Substituting into (36) by the control law (29)
for , one has

. As similar as
, one has . By

noting , therefore, one has

(37)

Since the last term in (35),

, and in (37),

, integrating (35) and (37) and
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considering the previous two inequalities, can be expressed
as

(38)

where
,

,
,

.
From (38), one can choose , , , , and such that
the matrices , , , and are all positive definite. Therefore,
one has

(39)

Noting as be-
cause of Definition 4.1.

Integrating both sides of the previous equation gives

(40)

with , and ,
.

2) From (40), one has
, therefore, is bounded, which implies that

. From the definitions of and and
, it can be obtained that . As it has

established that , from Assumption 4.1, it
concludes that ,
and .

Therefore, all the signals on the right-hand side of (33) are
bounded and it is concluded that , , and and, therefore,

and are bounded. Thus, , as can be
obtained. Consequently, one has , as

. It follows that as .
3) Substituting the control (26) and (27) into the reduced-

order dynamic system model (25) yields

(41)

For the joints in the force space, , , (14) could
be rewritten as , therefore, could
be rewritten as , and the
time derivative of is as similar as (37), one has

(42)

Noting as because of satisfying
Definition 4.1.

Integrating both sides of the previous equation gives

Since is bounded,
, therefore, is bounded, one

has is bounded for the joints in the force space and then
as . The proof is completed by noticing that

since , , , and are bounded. Moreover, ,
, and the right side of (41) is bounded, the size of can

be adjusted by choosing the proper gain matrices .
Since , , , , , , , and are all bounded, it is easy

to conclude that is bounded from (23).

V. SIMULATIONS

Consider the mobile manipulator system shown in Fig. 1
[3] with the non-holonomic constraint ,
where , , , and

, , .
The matrix is chosen as ,

, ,
, , and

. Given the desired trajectories and
the geometric constraint that end-effector is subject to as fol-
lows: , , ,

, and .
Remark 5.1: The existence of sign-function in the control

(26), (29), and (30) may inevitably lead to chattering in control
torques. To avoid such a phenomenon, in actual implementation,
it can be replaced by the sat-function defined as: if ,

, else, , where or [14].
In the simulation, we assume the parameters

1.0 kg, 1.0 kg m ,
1.0 kg m , 0.5 kg m ,

1.0 m, 1.0 m, 0.6 m,
, m/s,

N m/A, ,
mH, , and

Vs/rad. The disturbances on
the mobile base are introduced into the simulation model as

and . By Theorem 4.1, the observer gain
is selected as , the control gains are selected
as , ,

, , and
, , ,

, , ,
, , . The

simulation results for motion/force are shown in Figs. 2 and 3.
The input voltages on the motors are shown in Fig. 3. In order
to validate the better performance of the proposed control, in
the same conditions, we compare: 1) the model based control,
which assume 40% model uncertainty; 2) robust control by state
feedback under the conditions that the constants
and , , can be obtained easily, therefore,
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Fig. 2. Positions of the joints.

Fig. 3. Input voltages.

Fig. 4. Comparison of tracking y.

the adaptive update laws in (26) and
and in

(29) and (30) are not included in the implemented control,
moreover, the velocity of states is assumed to be accurately
measured; and 3) the proposed control without the conditions
of 2). In the robust control by state feedback, we choose

, and , ,
and . The comparison of state variables , , ,
and the contact force are shown in Figs. 4–7, respectively. The
tracking performance of the three controls are illustrated in
Figs. 4–6, with the proposed control scheme achieving better
tracking performance compared with the model-based control
and robust state feedback control. The better tracking perfor-
mances is largely due to the “adaptive” mechanism. Although

Fig. 5. Comparison of tracking �.

Fig. 6. Comparison of tracking � .

Fig. 7. Constraint force.

the parametric uncertainties and the external disturbances are
both introduced into the simulation model, the force/motion
control performance of system, under the proposed control,
is not degraded. The simulation results demonstrate the ef-
fectiveness of the proposed adaptive control in the presence
of unknown nonlinear dynamic system and environments.
Different motion/force tracking performance can be achieved
by adjusting parameter adaptation gains and control gains.

VI. CONCLUSION

In this brief, adaptive robust controls integrating an observer
have been presented to control the holonomic constrained
non-holonomic mobile manipulators in the presence of uncer-
tainties and disturbances and actuator dynamics are considered
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in the controls. The proposed controls are non-regressor-based
and require no information on the system dynamics. Simulation
studies have verified the effectiveness of the proposed controls.
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