
Meta-Metadata: A Metadata Semantics Language for
Collection Representation Applications

Andruid Kerne, Yin Qu, Andrew Webb, Sashikanth Damaraju, Nic Lupfer, Abhinav Mathur
Interface Ecology Lab

Department of Computer Science and Engineering
Texas A&M University, College Station, TX 77843, USA

{andruid, yin, andrew, damaraju, nic, abhinav}@ecologylab.net

ABSTRACT

Collecting, organizing, and thinking about diverse information
resources is the keystone of meaningful digital information
experiences, from research to education to leisure. Metadata
semantics are crucial for organizing collections, yet their
structural diversity exacerbates problems of obtaining and
manipulating them, strewing end users and application developers
amidst the shadows of a proverbial tower of Babel. We introduce
meta-metadata, a language and software architecture addressing a
metadata semantics lifecycle: (1) data structures for representation
of metadata in programs; (2) metadata extraction from
information resources; (3) semantic actions that connect metadata
to collection representation applications; and (4) rules for
presentation to users. The language enables power users to author
metadata semantics wrappers that generalize template-based
information sources. The architecture supports development of
independent collection representation applications that reuse
wrappers. The initial meta-metadata repository of information
source wrappers includes Google, Flickr, Yahoo, IMDb,
Wikipedia, and the ACM Portal. Case studies validate the
approach.
Categories and Subject Descriptors
M.4. [Knowledge Modeling].

General Terms
Design, Human Factors, Algorithms, Languages, Reliability.

Keywords
metadata, digital libraries, collections, berrypicking, languages

1. INTRODUCTION
Collecting, organizing, and thinking about diverse information
resources is the keystone of meaningful digital information
experiences, from research to education to leisure. Formally, by
an information resource, we mean a document, addressed by a
Uniform Resource Locator (URL), conjoined with metadata,
providing users with an object to peruse supplemented with data
for contextualization and organization. We operationalize this
crucial conjunction as metadata semantics to define an
information resource’s data structures and supported operations,
spanning extraction, use, and presentation. Metadata semantics

differ for different kinds of resources. For example, in the
ARTstor collection [1], the document for the painting “City
Phantasy” by Mark Rothko is a JPEG image; metadata includes
fields such as creator, material, and source. In the ACM Digital
Library, the document for the scholarly article “Faceted Metadata
for Image Search and Browsing” [27] is a PDF; metadata includes
fields such as authors, keywords, abstract, references, and
citations. In both cases, an end user may wish to find related work,
but the procedures will differ. In the case of the “Phantasy”, the
creator, material, and source fields could be traversed as indices to
discover alternatives, while for the “Faceted” article, reference
and citation sets are provided directly by the DL.

Metadata semantics are crucial for organizing collections, yet
their structural diversity exacerbates the problems of obtaining
and manipulating them, strewing end users and application
developers amidst the shadows of a proverbial tower of Babel. In
response, some efforts work to standardize metadata itself [9].
The present research alternatively takes the heterogeneity of
metadata semantics as a given, unifying another level. Semantic
web researchers address ambitious problems, like how to support
reasoning through ontologies [23]; we instead find sufficient
complexity in developing software infrastructure to help developers
build collection representation applications supporting information
sources as diverse as ARTStor, the ACM DL, Google, Wikipedia,
and Flickr – without custom code. We define information source
as a type of information resource, generalized by template-driven
publishing by a particular web site and repository.

As metadata is data that describes data, we define meta-metadata,
a formal language for authoring enhanced wrappers, each
specifying the metadata semantics for an information source. We
develop a meta-metadata software architecture addressing a
metadata semantics lifecycle for tasks involving information
collections: (1) data structures for representation of metadata inside
programs; (2) extraction from information resources; (3) semantic
actions that use control structures such as loops to invoke bridge
functions to pass metadata to particular methods in collection
representation applications; and (4) rules for presentation to users.
We present an open source suite of tools and libraries to support
the meta-metadata language and architecture for the development
of collection representation applications [13]. Meta-metadata
information source wrappers shepherd metadata through the
lifecycle, maximizing its value. We develop use cases for meta-
metadata: Rake, a multi-touch information kiosk,
combinFormation, an information discovery and collection
visualization application, and a Wikipedia concept parser.

Most current approaches to programming metadata semantics are
cumbersome, requiring custom application code to collect and
represent metadata from each heterogeneous information source.
As far as we are aware, no other general tools integrate

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists.
Conference’04, Month 1–2, 2004, City, State, Country.
Copyright 2004 ACM 1-58113-000-0/00/0004…$5.00.

2

specification of data structures, extraction of metadata from
heterogeneous sources into instances, and presentation to users.

The meta-metadata scripting language for metadata semantics
wrappers promotes code reuse through extensibility, separation of
concerns, and application independence. New meta-metadata
information source wrappers can extend the definitions of prior
ones. Meta-metadata wrapper declarations that define information
sources are cleanly separated from application source code, so
power user authors do not need access. Likewise, the support
libraries for manipulating meta-metadata and the metadata that it
is used to generate are application independent, and distributed as
open source [13]. Wrappers can be shared across applications.

Meta-metadata semantic actions include call sites for bridge
functions, through which a meta-metadata script invokes
application-specific routines. Different applications implement the
same bridge function differently. Examples of bridge functions
include parsing a document, which can be used in crawlers, and
forming a surrogate [14] to represent a document to users.

This paper begins by surveying prior work. Then, we develop the
meta-metadata architecture, which is subdivided into compile-
time and run-time components. We follow with a presentation of
the meta-metadata language. Through these two sections, initial
examples are developed. We develop use cases, and finish with a
discussion of implications, addressing the key mechanisms of
meta-metadata, and the scope of collection representation
applications that it can support.

2. PRIOR WORK
The prior work includes precedents that best resemble the present
research and ingredients from which this work is made. Previous
research has focused on particular aspects of metadata handling
for collection presentation applications, developing HTML
presentations. Exhibit [11] provides a general means for
publishing metadata, but does not use strong typing or address
information extraction. Instead of providing semantic actions,
Exhibit assumes HTML is the medium of publication. MarMite, a
web browser plug-in, extracts information from web pages, and
enables authoring of custom presentations, again using HTML
[25]. Dontcheva et al. present a system for collecting, viewing and
sharing information from the web [8]. The researchers authored
wrappers with XPath-like expressions for information extraction,
and used the extracted information to present collections to the
user with DHTML. Zotero is a browser plug-in that supports
development of wrappers for scholarly article metadata extraction
[4]. We appreciate that these systems address the extraction and
presentation of metadata, but need more than HTML-based
publishing. Further, most of the above shoehorn source metadata
into a single target form. Meta-metadata embraces metadata
heterogeneity, and so can support diverse application contexts. It
is essential to build a framework that supports the reuse of
wrappers and extracted metadata across applications, independent
of the presentation technology. Freebase [3] takes an alternative
approach, using a shallow ontology without strong types for
metadata, and authoring of knowledge, rather than wrappers. They
do not integrate presentation rules with knowledge representation.
It will be interesting to compare the results of these approaches,
over time.

Systems that automate metadata extraction from information
sources are either domain specific; such as Cui et al. who develop

machine learning techniques for semantic markup for biodiversity
digital libraries [6], or designed for a particular context, such as
[5] and [10]. Such research systems can benefit from using meta-
metadata as a representation for their output. This will enable
application developers to easily use the products of such research.

Collection visualization applications such as spatial hypertext
tools can benefit from meta-metadata. VKB focuses on spatial
presentation of structured information to the user, allowing direct
manipulations on user generated content [20]. TinderBox enables
the user to add notes while also adding semantic markup to
describe relationships in the form of maps and charts [2]. By
integrating with the meta-metadata architecture, applications like
these can benefit from the growing collection of meta-metadata
wrappers to expand the set of information resources they can
operate on, while unifying the underlying metadata semantics.

The underlying ingredient of meta-metadata is S.IM.PL (Support
for Information Mapping in Programming Languages)
serialization, a generalized form of ecologylab.xml [16]
object-oriented XML binding. This multi-platform framework
connects programming language objects with serialized
representations. The core of the framework is a succinct
annotation meta-language, embedded in source code, that
specifies which fields are serialized and how. A contribution of
the framework is the translation scope, which succinctly encodes
a set of bindings. One translation scope is used for unmarshalling
meta-metadata, while another unmarshalls metadata. The
translation scope is a foundation of meta-metadata because it

Figure 1: Meta-metadata architecture.

3

automates binding XML that represents a type of metadata with a
matching metadata subclass. The present implementation is based
in Java, with the ability to cross-compile equivalent objects and
serialization to Objective C and C# source, facilitating cross-
platform distributed programming, including iPhone clients.

3. ARCHITECTURE
The meta-metadata architecture connects sets of compile time and
run time modules (Figure 1) to address the lifecycle of metadata
utilization in collection representation applications by specifying
strongly typed data structures, extraction rules, semantic actions,
and presentation rules. Meta-metadata definitions are used first at
compile-time by the meta-metadata compiler to generate strongly
typed metadata subclass declarations in Java, which in turn are
compiled by the Java compiler. S.IM.PL serialization also enables
these class definitions to be cross-compiled to C# and Objective C.
The resulting classes remain bound to their corresponding meta-
metadata. The runtime lifecycle begins with selection of meta-
metadata that matches an information resource’s URL, and then
proceeds through information extraction, which populates the
appropriate metadata subclass instance, semantic actions that
connect the metadata to the collection representation application,

and then presentation.

3.1 Compile-Time
The compile-time phase consists of two stages: authoring and
compilation. Power users author meta-metadata wrappers for
particular information sources. In the present implementation,
these are stored as XML files and installed on the user’s machine.
The current meta-metadata repository includes declarations for
search engines, such as Google, Bing, and Yahoo, and for
collections including Flickr, the ACM Portal, CiteSeer, Wikipedia,
and IMDb. Information sources are distinctly specified with mime
type and URL patterns, with text/html as the default mime
type. These patterns are matched at runtime to retrieve
information source specific meta-metadata.

Figure 2 shows the beginning of a simple example. We declare
data structures to support typical search engines. Using the
inheritance capabilities of the Metadata Definition Language
(Section 4.2), we extend the basic metadata type document to
define a new type, search. The search type consists of a
collection of search_results, each of which consists of a
heading, a snippet, and a link.

The meta-metadata compiler takes meta-metadata XML
declaration as input. Where new data types are declared, it
generates strongly typed metadata object class definitions in Java
(Figure 3), with S.IM.PL annotations that direct serialization. It is
invoked as a standalone utility or through Eclipse Ant scripts.
This compilation of authored meta-metadata definitions (search
and search_result in Figure 2) to produce Metadata
subclass declarations (Search and SearchResult in Figure
3) is a necessary precursor for information extraction. Primitive
metadata field classes, such as MetadataString, add
functionality such as term vectors to the basic scalar types, such as
String. The compiler generates a translation scope for all
generated metadata classes, which serves as the basis for binding
Java metadata subclasses to XML elements for direct binding
information extraction (Section 0), and while loading saved
collections. The compiler uses comments from the source meta-
metadata XML to generate Java Doc comments for each output
class to enhance readability in the implementation. Omitted from
Figure 3 to save space are getter and setter methods that are also

Figure 2: Reusable meta-metadata wrapper declaration for search engine results.

Figure 3: Metadata subclass declarations generated by the

compiler for the search meta-metadata declared in Figure 2.

Figure 4: Partial instance of results of a Google search for ‘metadata’ uses Metadata sub-classes of Fig. 3; automatically populated

using extraction rules declared in Figure 5, which in turn reuse search and search_results types declared in Figure 2.

4

automatically generated by the meta-metadata compiler.

3.2 Runtime
At runtime, the collection representation application uses meta-
metadata and metadata to represent, operate on, and present
information resources (Figure 1). The process begins with
selection of appropriate meta-metadata from the repository,
identification of the metadata subclass associated with the meta-
metadata, and instantiation of a matching empty metadata instance,
a strongly typed generalized data structure that can have nesting.
When a match is found through meta-metadata selection (Section
3.2.1), the appropriate parser is invoked to populate the metadata.
For HTML and XML documents, extraction rules, specified as
XPath and regular expressions, are used by the parser to extract
information from a document, populating the metadata instance.
For XML, the metadata instance can alternatively be populated by
a “direct binding” parser, using a translation scope to look-up the
appropriate metadata and meta-metadata using the XML
document’s root element tag as key. With either parser, next,
semantic actions are carried out. The semantic actions language
includes bridge functions that pass populated metadata instances
and intermediate results to methods in the collection
representation application, variable declaration statements, and
basic control structures, such as loops and conditionals. The
bridge functions are terminals of this part of the runtime cycle;
they pass metadata instances to appropriate application functions,
given the structure of the particular information source, as
specified by the meta-metadata author. Meta-metadata can be
used subsequently by the application to efficiently iterate over the
fields of a metadata instance or access a field by name.

When the application wants to present the populated metadata
instance to the user, rules specified in the meta-metadata wrapper,
for the information source, are used to guide presentation. They
enable hiding fields, ordering them, and formatting them. This
reduces the metadata noise effect. It is easy to bombard users with
many fields of data that are not meaningful to them. Part of
curating an information source is to choose which fields to
emphasize in the presentation to users, and which to hide.

In this section, we detail the runtime mechanisms of meta-
metadata selection, and the associated algorithms, because their
generality and efficiency are crucial to the meta-metadata
architecture’s practical usability. The subsequent section develops
further explanation of how data structures are declared,
information extraction performed, and semantic actions specified.

3.2.1 Meta-Metadata Selectors
Meta-metadata selection must be efficient, because this lookup
must be performed for every information resource an applications
encounters. Selectors are two-level, beginning with mime type,
and then URL matching. Mime type lookup is easily implemented
with a hash table. URL selection is more complex. Our experience
of information sources in the wild has led us to develop three
mechanisms: url_stripped, url_path_tree, and
url_regex. The meta-metadata author should use the one with
minimum computational complexity that will work for the
information source at hand. The choice is determined by structure
of the URL a website uses to publish an information source.
Factors include how arguments are represented as path elements,
and whether server farms dispatch requests to multiple hosts.

The simplest selector, url_stripped, removes formal

arguments (query and hash) from the URL, and uses this as a hash
key. This works for sources such as search engines, in which
queries are passed as such. The computational complexity is O(1).

As a result of published URL formats, some information sources
require more general selectors. A Flickr image page URL format
is http://www.flickr.com/photos/AUTHOR_ID/IMAGE_ID.
The query is not in the URL arguments, but in the path. Stripping
the query (here the last 2 subdirectories) from this URL yields
http://www.flickr.com/photos. However, another Flickr
information source URL form, for all photos by an author, is
http://www.flickr.com/photos/AUTHOR/. Stripping the
arguments from the path yields the same result, so this is not an
unambiguous selector. Thus, we define the url_path_tree
selector, using subdirectory wild cards to define the URL key for
meta-metadata. With this mechanism, the selector key for Flickr
image result page is http://www.flickr.com/photos/*/*/,
and for Flickr author page,
http://www.flickr.com/photos/*/. We use ‘*’ as a wild
card that matches one or more characters. To represent selectors
like these, the runtime infrastructure uses an efficient path tree
data structure, reminiscent of radix sort, which separates URL
patterns into path components, representing each as a nested hash
map of subsequent components, or a terminal. The root phrase is
the domain. If no more components exist with the same domain,
the corresponding value for this key will be the meta-metadata
object itself. If there are multiple path components with the same
domain, the corresponding value for this key will be a nested hash
table. This 2nd level hash map will contain as keys the next
component of the URL pattern. The computational complexity of
path tree’s nested hash tables is O(n), where n is the number of
path components needed to uniquely represent the pattern.
Typically n ranges from 2-4 in practice.

A more powerful meta-metadata selector, url_regex, uses
regular expressions to increase generality, at the cost of higher
computational complexity. Some URLs, like the source of a Flickr
image, can be served from multiple hosts, requiring matching
URL patterns such as
http://farm3.static.flickr.com/2020/2118178242_27f
b91853a_m.jpg. A regular expression selector is
http://farm[0-9].static.flickr.com. Since regular
expressions are expensive to evaluate, for each domain we
maintain a hash table of lists of compiled regular expressions.
The computational complexity for matching a string to a regular
expression, once the expression has been compiled into a discrete
finite automata (and this compilation need be performed only
once) is O(m), where m is the string length. Computational
complexity is O(l * m), where l is the length of the list of patterns
that must be matched for a domain. This selector is slower, but as
long as the number of url_regex wrappers authored per
domain is not large, performance is fine.

4. META-METADATA LANGUAGE
We present fundamental components of the meta-metadata
language. Further details and examples are online [13]. We begin
with the structure of inheritance and types that underlies meta-
metadata declaration.

Object-oriented treatment of data structures, including inheritance
enables us to build reusable types, such as search and
scholarly_article, to represent species of metadata that

5

can be generalized across sources, in consideration of situated
tasks and activities that users need to perform. The Metadata
Definition Language (MDL) is used to specify data structures,
corresponding to types of information sources. These structures,
whether generalizable, or specific to a particular source, are
populated at runtime (Figure 1) with data from particular
documents to form metadata instances, based on specifications
authored by curator / power users using the information extraction
components of the meta-metadata language. The formation of
instances is followed by semantic actions, which consist of
runtime script used to process each metadata instance and bridge
to the application. Finally, presentation rules give the application
guidelines on how to meaningfully present metadata to the user.

4.1 Inheritance and Types
An inheritance system promotes reuse of metadata classes through
meta-metadata declarations. All meta-metadata element
declarations either extend previous meta-metadata declarations,
adding fields, or reuse existing data structures without adding
fields. Whenever a meta-metadata declaration adds new fields, the
meta-metadata compiler must be invoked to generate a
corresponding Metadata subclass. The extends attribute of
the meta_metadata element is used to specify the previously
declared Metadata subclass that will be extended in the new
subclass’s declaration, with Metadata itself as the default base
class. The name attribute specifies, with automatic camel case
conversion, this newly generated subclass’s name. Going back to
Figures 2 and 3, we see how the meta-metadata element declared
with name=”search” and extends=”document” results in
generation of a new Search class, from Document, while the
SearchResult class inherits directly from Metadata.

4.2 Metadata Definition Language (MDL)
The MDL is the component of the meta-metadata language used
for specifying internal data structures for representing types of
metadata. Metadata definition language (MDL) allows power
users to author structured and strongly typed declarations for
heterogeneous information sources. Each information source is
declared with an initial meta_metadata element with any
number of nested meta-metadata field children (see example,
Figure 2). The name attribute of every meta_metadata
element declaration must be unique. Each child meta-metadata
field is either a scalar field, a composite field, or a collection field.
Scalar fields declare a scalar_type attribute. Composite fields
declare a type attribute, reusing a previously declared type, or an
extends attribute, subclassing a previously defined type.
Collection fields set the child_type attribute which either
specifies a previously defined type for collection elements, or a
subsequent inline definition.

We present BNF to describe the key productions of the grammar
for type and inheritance declarations. SN refers to a symbolic
name, which must begin with a letter.

meta_metadata ::=
‘<meta_metadata ’ name type extends ‘>’
meta_metadata_field *
selector
semantic_action *
‘</meta_metadata>’

meta_metadata_field ::=

scalar | composite | collection

scalar ::=
‘<scalar ’ name scalar_type ‘/>’

composite ::=
‘<composite ’ name type extends ‘>’
meta_metadata_field *
‘</composite>’

collection ::=
‘<collection ’ name child_type ‘>’
meta_metadata_field *
‘</collection>’

name ::= ‘name=”’SN‘”’

extends ::= ‘extends=”’SN‘”’ | ‘’

type ::= ‘type=”’SN‘”’ | ‘’

child_type ::= ‘child_type=”’SN‘”’

scalar_type ::= ‘scalar_type=”’s_type‘”’

s_type ::=
‘int’ | ‘boolean’ | ‘long | ‘float’ | ‘double’
| ‘String’ | ‘ParsedURL’ | ‘Color’ | ‘Date’…

4.3 Information Extraction
While MDL enables specification of optimized metadata data
structures for heterogeneous information sources, information
extraction components of the meta-metadata language enable us to
translate HTML and XML documents as information resources
into instances of these data structures. Figure 5 presents a simple
example. The search type has previously been declared (Figure
2). We reuse the data structure definition, while specifying how to
perform information extraction for a specific information source,
Google web search.

The example begins by defining a new meta_metadata
element, with a unique name. Setting the type attribute to the
previously defined search meta-metadata specifies data
structure reuse, adding no new data fields, directing the meta-
metadata compiler to use the previously declared Metadata
subclass instead of generating a new one. The simplest meta-
metadata selector (Section 3.2.1), url_stripped, is specified,
with the argument-less URL for Google search.

The parser attribute specifies the library class that will be used
to perform translation from an information resource to entities and
operations in the collection representation application. Currently
supported parsers include xpath, for extraction from HTML or
XML by XPath and regular expressions, and direct for
S.IM.PL Serialization XML binding. Another parser processes
PDF documents. Future parsers will handle other types of
documents, such as images, and various formats of audio and
video. For the default document meta-metadata, which is used
when no source specific selector is matched, the present
implementation uses a parser for HTML that implements Koh and
Kerne’s DOM-based algorithm, translating a document into a set
of contextualized image and text surrogates [17]. Developers can
build alternative default parsers by implementing an interface.

4.3.1 XPath
The XPath parser supports combining XPath and regular
expressions for metadata extraction from an information resource.

6

XPath is a standard for specifying the path in the DOM tree to a
specific node [24]. XPath expressions can be specified in a rote
way, with every node starting from a document’s root element, or,
more robustly, using DOM features such as an ID node, which
may be more likely to remain intact when small changes are made
to a document. Line 2 of Figure 5 takes the latter approach, using
XPath to find the div node with @id=’res’, and then
specifying the rest of the expression relative to there. The
expression selects the first div nested inside, then the ol element
in inside that, and then all the li elements nested in there. Note
that for XPath expressions declared in nested meta_metadata field
declarations, this intermediate result functions as the basis for
subsequent simpler relative XPath expressions. Thus, for
heading, snippet, and link, we author simple expressions
that do not repeat the whole ugly XPath.

In some cases, an XPath expression is not sufficiently specific for
extracting the value for a metadata field. Content presenters may
put multiple values in a single table cell, or they may prepend or
append meaningless strings in proximity of meaningful ones. On
these occasions, further extraction can be specified using the
regex attribute of the filter sub-element. All matches will
be replaced by the value of replace attribute. The default is the
empty string, which causes matched text to be eliminated.

4.3.2 Direct Binding for XML-Based Services
Some information sources are available through XML-based
services. In such cases, we can use MDL to define metadata XML
that matches the structure the service provides, and then use
S.IM.PL Serialization to directly bind the XML the service returns
in response to a query to the generated annotated classes, forming
metadata objects. Figure 6 shows the MDL declarations for a
subset (to save space here) of the XML returned by Yahoo Search

Web Services [26]. Here, we see use of the tag attribute, which
is used to override automatic camel case conversion of the
element name, so that the XML tags can be set to directly
correspond to the service’s XML, in which all element tag names
are capitalized. No further authoring is needed to perform
information extraction with direct binding, though in the
repository, semantic actions are provided for the different versions
of the service that correspond to web, image, and news search, all
using the yahoo_result_set type [13].

4.4 Semantic Action Scripting
While all other components of the meta-metadata language are
declarative, semantic actions are imperative, like many scripting
languages. Semantic actions are declared as part of the meta-
metadata template for an information source, in order to enable
power users to procedurally specify how the collection
representation application will operate on metadata objects.
Semantic action statements are specified sequentially as XML
elements, nested in a semantic_actions XML element,
which follows MDL and information extraction statements in a
meta-metadata element declaration. There are three kinds of
semantic actions: variable declarations, control flow statements,
and bridge functions.

4.4.1 Variable Declarations
Variables are declared in get_field, def_var, and loop
statements. They are used to pass values as arguments from
metadata objects to bridge functions, and as intermediate values in
computation, whose presence simplifies subsequent code.
The get_field statement assigns scalar, composite, or
collection metadata field values to a variable. The name attribute
refers both to the metadata field to be accessed, and to the name

Figure 5: XPath information extraction and semantic action declarations for Google search engine results.

Figure 6: MDL declaration for Yahoo Web Service matches their XML. Information extraction by direct binding is automatic.

7

that will be subsequently used to refer to it. We see as an example
the first semantic action declared in Figure 5, which assigns the
search_results metadata, a collection, to a variable. The
next get_field statement specifies a context object, that is, a
previously defined variable. A name is bound to a field within this
object. In the example, a reference to the link field within the
result variable is defined, then passed to the
parse_document bridge function (Section 4.4.3).

The def_var statement enables binding the DOM node result of
an XPath expression to a temporary variable. Figure 7 shows two
examples. In the first, a single DOM node is bound to the variable
photoTD. The xpath attribute is an absolute one, operating on
the whole of the source document. In the next declaration, of
photoTR, the XPath operates relative to the context_node of
the previous declaration. Here, the type is a set, a node_list.

4.4.2 Control Flow Statements
Control flow statements specify the order of execution of
semantic actions. These structures include loops and conditional
statement. We considered using XSL [22] as the semantic action
language, as it enables specification of control structures in XML.
But XSL can only be used for transformation of XML documents.
It cannot be used to invoke bridge functions which can act as call
sites for operations in the collection representation action. To
provide consistency, the control flow structures in the meta-
metadata language are similar to those in XSL.

Conditionals include if and choose. Loops are defined with the
for_each statement. The attributes are collection, defining
the source of elements to loop over, and as, defining the symbolic
name for referencing the collection element value inside the loop.
The example of Figure 5 loops through the results of a Google
search, referring to each as result. It calls the
parse_document bridge function with the link field of each
result.

4.4.3 Bridge Function Statements
A crucial family of semantic action script statements specifies
calls to bridge functions. These semantic actions are call sites for
methods inside the collection representation application, enabling
metadata to flow from the meta-metadata template into a specific
application function. Their terminals are defined in the meta-
metadata library source code using constructs such as Java’s
interface structure, so that different applications can define
them in different ways.

The following bridge functions have been defined in the context
of the use cases described in Section 5. The generality or
specificity of their calling structure will be the subject of further
research. It is possible that different classes of applications will
need different bridge functions, not just to provide different
implementations of these functions, which will impact the extent
to which semantic action elements of wrappers can be reused
across applications. One bridge function, for crawlers, is invoked

to handle a hyperlink, perhaps parsing the destination document:
parse_document. The now argument can help a focused
crawler [7] decide the priority of links. Other bridge functions
include handle_image and handle_text. These can be used by
applications to directly create interactive elements and add them
to collection visualizations. Before and after semantic actions are
invoked automatically for application-specific initialization and
clean-up.

4.5 Presentation Rules
An important part of curating an information source is specifying
aspects of how it will be presented and visualized by interactive
applications. Metadata can be very long, while human cognition is
limited. The curation role is to help the application help the user
focus attention on what is expected to be significant. Presentation
rules tell the collection representation application how particular
fields in a metadata object should be shown to users, if at all. For
example, fields can be hidden in the present implementation by
setting the hide attribute in a meta-metadata field declaration.
This is important, because some fields may be used internally, but
not be directly meaningful to the user. Complementary with
hiding fields, is specifying the navigates_to attribute. This
can be used by the application, for example, to afford hypertextual
navigation to a document’s location by clicking the name of a
field like title. Other presentation rules specify layers and the
use of text styles, with characteristics such as bold and font size.
In the right API environment, these could be specified with full
CSS [21]. A full set of examples can be found in the meta-
metadata repository distributed with the library, and the tutorials
[13]. The authors believe that as we and others have more time to
use the meta-metadata language for the foundation of collection
visualization applications, our vocabulary of presentation rules
will grow, with the applications, in complexity and abstraction.

5. USE CASES
We develop three real world use cases of the meta-metadata
language and architecture: the Rake multitouch information kiosk,
the combinFormation creativity support tool, and a Wikipedia
concept parser. It should be noted that except in the last case, the
use case applications are information source independent. When
developers from one team enhanced the repository of meta-
metadata wrappers, the other application also benefited.

5.1 Rake Multitouch Kiosk
A team of four computer science undergraduate students elected
to use meta-metadata for a class project. They developed Rake, an
information kiosk that connects multi-touch interaction with
collecting and filtering information. The application enables users
to query information sources, such as Urban Spoon, Flickr,
Wikipedia, IMDb, and Yahoo. The search results are presented
visually as "information elements," using images with metadata.
Users can filter, sort and organize the elements using multi-touch
interactions (See Figure 8).

Figure 7: def_var variable declaration statements, taken from a Flickr example.

8

The students reported that they chose to use the meta-metadata
framework because meaningful interaction with the information
elements required detailed metadata. When the user activates a
metadata field value in an information element, fluid interaction
attracts matching elements.

For the project the students utilized the meta-metadata repository
already developed by the combinFormation project. They also
authored new meta-metadata wrappers. The new wrapper code
was merged into the repository.

On the application side of the framework the students defined an
application-specific Metadata subclass. They implemented the
bridge function handle_image translate each metadata image
object into an instance of the subclass, InformationElement,
which performs display and interaction.

The students said that overall, using the meta-metadata framework
expanded project. They reported that first, they did not have to
implement functionality to represent documents for each
information source. This reduced the work required to support
diverse information sources, allowing them to focus on their
primary goal, creating interactions. Second, they reported
appreciating the ability to generalize their application across
information sources without custom code.

5.2 combinFormation
The meta-metadata language and architecture were recently
integrated into the creativity support tool, combinFormation
[12][14]. combinFormation connects searching, browsing,
organizing, modeling, and visualizing information.
combinFormation uses the integrative visual representation of
information composition to represent collections, instead of lists
or grids of separate elements. The composition is formed using
image and text surrogates, derived from clippings from documents,
to represent important ideas from the documents. Representing
collections as information compositions of image and text
surrogates has been shown to promote creativity in laboratory [15]
and field [14] studies. In prior versions of combinFormation, the
metadata for surrogates and documents was comparatively lacking

in detail. The metadata plays a key role in the user experience of
the information composition.

We used combinFormation integrated with meta-metadata to
author an information composition about metadata presentation
and user experience using some of the information resources cited
in this paper. We made particular use of meta-metadata wrapper
declarations for acm_portal, which in turn, extend a reusable
scholarly_article meta-metadata base type. The resulting
composition is seen in Figure 9. The composition has been
composed to concisely convey important issues and ideas related
to this paper, in a form that provokes thinking. The user is holding
her cursor over a text surrogate from the classic faceted metadata
paper [27] mentioned in the introduction. The program displays
in-context metadata details on demand.

5.3 Wikipedia Concept Parser
A graduate student not previously involved in the development of
meta-metadata used it as the basis for an implementation of the
Wikipedia concept labeling algorithm developed by Mihalcea and
Mihalcea and Csomai [18], and refined by Milne and Witten [19].
The product of the concept parser is a database of structures
enabling labeling text with an ontology of concepts derived from
the relationship semantics in Wikipedia.

The student reused the meta-metadata type wikipedia_page
in the repository to enable information extraction of titles, images,
paragraphs, semantic links and categories. In his application, he
re-defined the link handling semantic action, parse_document
as the call site into his own semantic link processing procedure,
which filters link information, and stores it in an external database.
Before and after semantic action hooks were defined to customize
initialization and termination.

According to the student, meta-metadata relieved him from
writing code addressing information extraction, concurrency,
network connections, and error handling. Reusable semantic
actions allowed him to work at a high level of abstraction, with
flexibility for customizing details.

The meta-metadata library was found to perform well. The
parsing was carried out on a workstation with an Intel Q6600
2.4GHz CPU and 4GB RAM. A total of 5,352,582 Wikipedia
articles were processed. One hundred concurrent threads were
used to saturate the network. The parsing was finished in about 20
hours, with a CPU cost of less than a core and RAM cost of less
than 200MB. On average, the meta-metadata library took 0.013
seconds to parse a page, generate a metadata object, and carry out
the semantic actions. The products include 6.5GB of link structure
records, and 795MB of category records.

6. DISCUSSION
Meta-metadata is designed to support a wide variety of collection
representation applications. We have shown a knowledge
management application that derives a concept-based ontology,
and two personal collection visualization applications, one of
which was built by undergraduate students as a course project.
The language and architecture are also suitable for supporting
applications such as mash-up authoring systems, structured data
repositories, semantic web tools, and digital libraries. Meta-
metadata provides a unified layer that generalizes and abstracts
the diverse metadata semantics of heterogeneous information
sources. Application developers are freed from this tower of Babel

Figure 8: The Rake multitouch information kiosk.

9

of details. Conversely, inasmuch as the functionality of the
application itself is general, a power user can extend it, without
accessing source code, to utilize a new information source by
authoring a new meta-metadata wrapper. Application developers
and power users can share meta-metadata wrapper code,
leveraging each others’ ongoing efforts. Research projects that use
pattern recognition techniques to learn wrappers can use meta-
metadata as a representation for their output, enabling this output
to be used by diverse application developers.

As collection representation application developers, for us meta-
metadata is a holy grail that we have sought for years. On the one
hand, the language and architecture let us invest in authoring
wrappers for information sources and perform complex operations
through a unified structure of information semantics without
pinning this work to a specific application. At the same time, we
can develop applications of varying complexity that use and reuse
the wrappers and particular metadata instances that we collect
with them. Meta-metadata enables us to draw our line in the sand,
with the information source metadata semantics wrappers
repository and information resources collection on one side, and
application code on the other. Our Meta-Metadata Guide web site

[13] includes a tutorial application that uses less than 20 lines of
new application code to collect weather data across Texas. It
would be simple to change this to collect beach or skiing weather,
and publish this information to the web.

Underlying the meta-metadata language and architecture is a
practical and philosophical position. The world is a diverse,
heterogeneous poly-lingual place of rich experiences whose
formal specification requires many dimensions. Thus, our
metadata must also be poly-lingual and multidimensional.
Diversity of metadata dialects makes life rich, yet complicated.
Meta-metadata seeks a role inspired by Adrienne Rich’s Dream of
a Common Language, and Startrek’s universal translator, but
without collapsing the world of metadata languages into a dry
Esperanto or hegemonic lingua franca.

This paper reports on first steps in the ambitious long term project
of developing cyberinfrastructure embracing metadata diversity,
and seeking to define a basis of unity on a meta- level. Translation
and mapping among dialects is difficult, yet important for
meaning-making. The translation scope mechanism is
foundational in its ability to enable us to unmarshal poly-lingual
metadata to into related classes of objects. The extensibility of

Figure 9: Information composition about metadata semantics and user experience authored with the combinFormation
creativity support tool, integrated with the meta-metadata architecture. The program derives visual surrogates by clipping

images and text passages from information resources, and augments them with metadata. Using papers found in the references
section (below), this composition has been composed to concisely convey important issues and ideas related to this paper, in a

form that provokes thinking. The user is holding her cursor over a text surrogate from the classic faceted metadata paper [27].
The program displays in-context metadata details on demand.

10

meta-metadata enables us to create a hierarchy of metadata
subclasses, and operate on them using the polymorphism
capabilities of programming languages. The structure of the
evolving hierarchy itself, as defined through the inheritance
mechanisms of meta-metadata repository entries, defines
relationships between dialects. Semantic actions script enables the
specification of dialect-specific operations, while providing the
means for defining these operations using unified and platform-
independent semantics. These constructs provide the foundation
for continuing development of meta-metadata cyberinfrastructure.

The development of meta-metadata is a long term investment in
cyberinfrastructure. The language and architecture as currently
defined are useful enough to support multiple applications, and
simple enough to support development by undergraduate students.
Meta-metadata wrappers are reusable across applications, except
perhaps for the semantic action bridge functions. While we
provide a mechanism for different applications to specify different
implementations, it is not clear that this level of generality is
sufficient. As meta-metadata is integrated into more applications
we will learn more about how to best specify this language
component.

To make it easier for power users to author and share meta-
metadata, future research must develop new tools for authoring
and services for distribution. Authoring tools will need to address
all phases of the metadata life cycle, not just information
extraction. Services will be based on a centralized or distributed
repository. They will support dynamic compilation of metadata
subclasses and dynamic class loading in applications. A service-
based repository will help support a social network of authors to
share their meta-metadata definitions. At the same time, the plan
to develop a service raises community software issues, such as
how versioning will work, and how, as with software
development repositories, to enable users to share sometimes, and
at other times be mutually insulated.

7. CONCLUSION
We have developed an extensible architecture and framework for
managing the metadata lifecycle in collection representation
applications. The unity of metadata semantics gained through the
use of meta-metadata will enable developers of collection
representation tools to focus on the next level of human-centered
research issues, such as search, data mining, machine learning,
digital libraries, information visualization, and supporting
creativity and information discovery. First steps have been taken
in the long term cyberinfrastructure development project of
providing a foundation for integration of diverse, heterogeneous,
poly-lingual metadata.

8. REFERENCES
[1] ArtStor, http://www.artstor.org.

[2] Bernstein, M., Collage, composites, construction. Proc
Hypertext 2003, 122-123.

[3] Bollacker, K., Evans, C., Paritosh, P., Sturge, T., Taylor, J.,
Freebase: a collaboratively created graph database for
structuring human knowledge, Proc SIGMOD 2008, 1247-50.

[4] Center for History and New Media at George Mason, Zotero,
http://www.zotero.org

[5] Cortez, E., Silva, A., Gonçalves, M., Mesquita, F., Moura,
E., FLUX-CIM: flexible unsupervised extraction of citation
metadata, Proc JCDL 2007. 215-224.

[6] Cui, H., Unsupervised semantic markup of literature for
biodiversity digital libraries, Proc JCDL 2008. 25-28.

[7] Diligenti, M., Coetzee, F., Lawrence, S., Giles, C. L., and
Gori, M. Focused Crawling Using Context Graphs, Proc
ACM VLDB 2000, 527-534.

[8] Dontcheva, M., Drucker. S., Wade, G., Salesin, D., Cohen,
M., Summarizing personal web browsing sessions. Proc
UIST 2006, 115-224.

[9] Dublin Core Metadata Initiative, DCMI Specifications,
http://dublincore.org/specifications/

[10] Hetzner, E., A simple method for citation metadata
extraction using hidden markov models, Proc JCDL 2008.

[11] Huynh, D.F., Karger, D.R., Miller, R.C. Exhibit: lightweight
structured data publishing, Proc WWW 2007, 737-746.

[12] Interface Ecology Lab (2005-10), combinFormation,
http://ecologylab.net/combinFormation/

[13] Interface Ecology Lab (2010), Meta-Metadata resources and
tutorial, http://ecologylab.net/metametadata

[14] Kerne, A., Koh, E., Smith, S. M., Webb, A., Dworaczyk, B.,
combinFormation: Mixed-Initiative Composition of Image
and Text Surrogates Promotes Information Discovery , ACM
Trans Information Systems (TOIS), 27(1), Dec. 2008, 5:1-45,

[15] Kerne, A., Smith, S.M., Koh, E., Choi, H., Graeber, R., An
Experimental Method for Measuring the Emergence of New
Ideas in Information Discovery, Intl Journal of Human-
Computer Interaction (IJHCI), 24 (5) July 2008, 460-477.

[16] Kerne A., Toups Z., Dworaczyk B., Khandelwal M., A
concise XML binding framework facilitates practical object-
oriented document engineering, Proc DocEng 2008, 62-65.

[17] Koh, E., Kerne, A., Deriving image-text document surrogates
to optimize cognition, Proc DocEng 2009, 84-93.

[18] Mihalcea, R., Csomai, A., Wikify!: linking documents to
encyclopedic knowledge, Proc CIKM 2007.

[19] Milne, D., Witten, I.H. 2008. Learning to link with
wikipedia, Proc CIKM 2008, 509-518.

[20] Shipman, F., Hsieh, H., Airhart, R., Maloor, P. and Moore,
J.M., The Visual Knowledge Builder: A Second Generation
Spatial Hypertext, Proc. ACM Hypertext 2001. 113-122.

[21] W3C, Cascading Style Sheets Level 2 Revision 1 (CSS 2.1)
Specification, http://www.w3.org/TR/CSS21/.

[22] W3C, Extensible Stylesheet Language (XSL) Version 1.1,
http://www.w3.org/TR/xsl/.

[23] W3C, Web Ontology Language, http://w3.org/2004/OWL/
[24] W3C, XML Path Language, http://www.w3.org/TR/xpath/

[25] Wong, J., Hong, J. Making mashups with marmite: towards
end-user programming for the web, Proc CHI 2007.

[26] Yahoo, Web Documentation for Yahoo! Search,
http://www.yahooapis.com/search/web/V1/webSearch.html

[27] Yee, K., Swearingen, K., Li, K., Hearst, M. Faceted metadata
for image search and browsing. Proc CHI 2003.

