
Meta-Metadata: A Metadata Semantics Language for 
Collection Representation Applications 

Andruid Kerne, Yin Qu, Andrew Webb, Sashikanth Damaraju, Nic Lupfer, Abhinav Mathur 
Interface Ecology Lab 

Department of Computer Science and Engineering 
Texas A&M University, College Station, TX 77843, USA 

{andruid, yin, andrew, damaraju, nic, abhinav}@ecologylab.net 

ABSTRACT 

Collecting, organizing, and thinking about diverse information 
resources is the keystone of meaningful digital information 
experiences, from research to education to leisure. Metadata 
semantics are crucial for organizing collections, yet their 
structural diversity exacerbates problems of obtaining and 
manipulating them, strewing end users and application developers 
amidst the shadows of a proverbial tower of Babel. We introduce 
meta-metadata, a language and software architecture addressing a 
metadata semantics lifecycle: (1) data structures for representation 
of metadata in programs; (2) metadata extraction from 
information resources; (3) semantic actions that connect metadata 
to collection representation applications; and (4) rules for 
presentation to users. The language enables power users to author 
metadata semantics wrappers that generalize template-based 
information sources. The architecture supports development of 
independent collection representation applications that reuse 
wrappers. The initial meta-metadata repository of information 
source wrappers includes Google, Flickr, Yahoo, IMDb, 
Wikipedia, and the ACM Portal. Case studies validate the 
approach.  
Categories and Subject Descriptors 
M.4. [Knowledge Modeling]. 

General Terms 
Design, Human Factors, Algorithms, Languages, Reliability. 
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1. INTRODUCTION 
Collecting, organizing, and thinking about diverse information 
resources is the keystone of meaningful digital information 
experiences, from research to education to leisure. Formally, by 
an information resource, we mean a document, addressed by a 
Uniform Resource Locator (URL), conjoined with metadata, 
providing users with an object to peruse supplemented with data 
for contextualization and organization. We operationalize this 
crucial conjunction as metadata semantics to define an 
information resource’s data structures and supported operations, 
spanning extraction, use, and presentation. Metadata semantics 

differ for different kinds of resources. For example, in the 
ARTstor collection [1], the document for the painting “City 
Phantasy” by Mark Rothko is a JPEG image; metadata includes 
fields such as creator, material, and source. In the ACM Digital 
Library, the document for the scholarly article “Faceted Metadata 
for Image Search and Browsing” [27] is a PDF; metadata includes 
fields such as authors, keywords, abstract, references, and 
citations. In both cases, an end user may wish to find related work, 
but the procedures will differ. In the case of the “Phantasy”, the 
creator, material, and source fields could be traversed as indices to 
discover alternatives, while for the “Faceted” article, reference 
and citation sets are provided directly by the DL. 

Metadata semantics are crucial for organizing collections, yet 
their structural diversity exacerbates the problems of obtaining 
and manipulating them, strewing end users and application 
developers amidst the shadows of a proverbial tower of Babel. In 
response, some efforts work to standardize metadata itself [9]. 
The present research alternatively takes the heterogeneity of 
metadata semantics as a given, unifying another level. Semantic 
web researchers address ambitious problems, like how to support 
reasoning through ontologies [23]; we instead find sufficient 
complexity in developing software infrastructure to help developers 
build collection representation applications supporting information 
sources as diverse as ARTStor, the ACM DL, Google, Wikipedia, 
and Flickr – without custom code. We define information source 
as a type of information resource, generalized by template-driven 
publishing by a particular web site and repository. 

As metadata is data that describes data, we define meta-metadata, 
a formal language for authoring enhanced wrappers, each 
specifying the metadata semantics for an information source. We 
develop a meta-metadata software architecture addressing a 
metadata semantics lifecycle for tasks involving information 
collections: (1) data structures for representation of metadata inside 
programs; (2) extraction from information resources; (3) semantic 
actions that use control structures such as loops to invoke bridge 
functions to pass metadata to particular methods in collection 
representation applications; and (4) rules for presentation to users. 
We present an open source suite of tools and libraries to support 
the meta-metadata language and architecture for the development 
of collection representation applications [13]. Meta-metadata 
information source wrappers shepherd metadata through the 
lifecycle, maximizing its value. We develop use cases for meta-
metadata: Rake, a multi-touch information kiosk, 
combinFormation, an information discovery and collection 
visualization application, and a Wikipedia concept parser. 

Most current approaches to programming metadata semantics are 
cumbersome, requiring custom application code to collect and 
represent metadata from each heterogeneous information source. 
As far as we are aware, no other general tools integrate 
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specification of data structures, extraction of metadata from 
heterogeneous sources into instances, and presentation to users. 

The meta-metadata scripting language for metadata semantics 
wrappers promotes code reuse through extensibility, separation of 
concerns, and application independence. New meta-metadata 
information source wrappers can extend the definitions of prior 
ones. Meta-metadata wrapper declarations that define information 
sources are cleanly separated from application source code, so 
power user authors do not need access. Likewise, the support 
libraries for manipulating meta-metadata and the metadata that it 
is used to generate are application independent, and distributed as 
open source [13]. Wrappers can be shared across applications. 

Meta-metadata semantic actions include call sites for bridge 
functions, through which a meta-metadata script invokes 
application-specific routines. Different applications implement the 
same bridge function differently. Examples of bridge functions 
include parsing a document, which can be used in crawlers, and 
forming a surrogate [14] to represent a document to users. 

This paper begins by surveying prior work. Then, we develop the 
meta-metadata architecture, which is subdivided into compile-
time and run-time components. We follow with a presentation of 
the meta-metadata language. Through these two sections, initial 
examples are developed. We develop use cases, and finish with a 
discussion of implications, addressing the key mechanisms of 
meta-metadata, and the scope of collection representation 
applications that it can support. 

2. PRIOR WORK 
The prior work includes precedents that best resemble the present 
research and ingredients from which this work is made.  Previous 
research has focused on particular aspects of metadata handling 
for collection presentation applications, developing HTML 
presentations. Exhibit [11] provides a general means for 
publishing metadata, but does not use strong typing or address 
information extraction.  Instead of providing semantic actions, 
Exhibit assumes HTML is the medium of publication. MarMite, a 
web browser plug-in, extracts information from web pages, and 
enables authoring of custom presentations, again using HTML 
[25]. Dontcheva et al. present a system for collecting, viewing and 
sharing information from the web [8]. The researchers authored 
wrappers with XPath-like expressions for information extraction, 
and used the extracted information to present collections to the 
user with DHTML. Zotero is a browser plug-in that supports 
development of wrappers for scholarly article metadata extraction 
[4]. We appreciate that these systems address the extraction and 
presentation of metadata, but need more than HTML-based 
publishing. Further, most of the above shoehorn source metadata 
into a single target form. Meta-metadata embraces metadata 
heterogeneity, and so can support diverse application contexts. It 
is essential to build a framework that supports the reuse of 
wrappers and extracted metadata across applications, independent 
of the presentation technology. Freebase [3] takes an alternative 
approach, using a shallow ontology without strong types for 
metadata, and authoring of knowledge, rather than wrappers. They 
do not integrate presentation rules with knowledge representation. 
It will be interesting to compare the results of these approaches, 
over time. 

Systems that automate metadata extraction from information 
sources are either domain specific; such as Cui et al. who develop 

machine learning techniques for semantic markup for biodiversity 
digital libraries [6], or designed for a particular context, such as 
[5] and [10]. Such research systems can benefit from using meta-
metadata as a representation for their output. This will enable 
application developers to easily use the products of such research. 

Collection visualization applications such as spatial hypertext 
tools can benefit from meta-metadata. VKB focuses on spatial 
presentation of structured information to the user, allowing direct 
manipulations on user generated content [20]. TinderBox enables 
the user to add notes while also adding semantic markup to 
describe relationships in the form of maps and charts [2]. By 
integrating with the meta-metadata architecture, applications like 
these can benefit from the growing collection of meta-metadata 
wrappers to expand the set of information resources they can 
operate on, while unifying the underlying metadata semantics. 

The underlying ingredient of meta-metadata is S.IM.PL (Support 
for Information Mapping in Programming Languages) 
serialization, a generalized form of ecologylab.xml [16] 
object-oriented XML binding.  This multi-platform framework 
connects programming language objects with serialized 
representations. The core of the framework is a succinct 
annotation meta-language, embedded in source code, that 
specifies which fields are serialized and how. A contribution of 
the framework is the translation scope, which succinctly encodes 
a set of bindings. One translation scope is used for unmarshalling 
meta-metadata, while another unmarshalls metadata. The 
translation scope is a foundation of meta-metadata because it 

 
Figure 1: Meta-metadata architecture. 
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automates binding XML that represents a type of metadata with a 
matching metadata subclass. The present implementation is based 
in Java, with the ability to cross-compile equivalent objects and 
serialization to Objective C and C# source, facilitating cross-
platform distributed programming, including iPhone clients. 

3. ARCHITECTURE 
The meta-metadata architecture connects sets of compile time and 
run time modules (Figure 1) to address the lifecycle of metadata 
utilization in collection representation applications by specifying 
strongly typed data structures, extraction rules, semantic actions, 
and presentation rules. Meta-metadata definitions are used first at 
compile-time by the meta-metadata compiler to generate strongly 
typed metadata subclass declarations in Java, which in turn are 
compiled by the Java compiler. S.IM.PL serialization also enables 
these class definitions to be cross-compiled to C# and Objective C. 
The resulting classes remain bound to their corresponding meta-
metadata. The runtime lifecycle begins with selection of meta-
metadata that matches an information resource’s URL, and then 
proceeds through information extraction, which populates the 
appropriate metadata subclass instance, semantic actions that 
connect the metadata to the collection representation application, 

and then presentation.  

3.1 Compile-Time 
The compile-time phase consists of two stages: authoring and 
compilation. Power users author meta-metadata wrappers for 
particular information sources. In the present implementation, 
these are stored as XML files and installed on the user’s machine. 
The current meta-metadata repository includes declarations for 
search engines, such as Google, Bing, and Yahoo, and for 
collections including Flickr, the ACM Portal, CiteSeer, Wikipedia, 
and IMDb. Information sources are distinctly specified with mime 
type and URL patterns, with text/html as the default mime 
type. These patterns are matched at runtime to retrieve 
information source specific meta-metadata. 

Figure 2 shows the beginning of a simple example. We declare 
data structures to support typical search engines. Using the 
inheritance capabilities of the Metadata Definition Language 
(Section 4.2), we extend the basic metadata type document to 
define a new type, search. The search type consists of a 
collection of search_results, each of which consists of a 
heading, a snippet, and a link.  

The meta-metadata compiler takes meta-metadata XML 
declaration as input. Where new data types are declared, it 
generates strongly typed metadata object class definitions in Java 
(Figure 3), with S.IM.PL annotations that direct serialization. It is 
invoked as a standalone utility or through Eclipse Ant scripts. 
This compilation of authored meta-metadata definitions (search 
and search_result in Figure 2) to produce Metadata 
subclass declarations (Search and SearchResult in Figure 
3) is a necessary precursor for information extraction. Primitive 
metadata field classes, such as MetadataString, add 
functionality such as term vectors to the basic scalar types, such as 
String. The compiler generates a translation scope for all 
generated metadata classes, which serves as the basis for binding 
Java metadata subclasses to XML elements for direct binding 
information extraction (Section 0), and while loading saved 
collections. The compiler uses comments from the source meta-
metadata XML to generate Java Doc comments for each output 
class to enhance readability in the implementation. Omitted from 
Figure 3 to save space are getter and setter methods that are also 

 
Figure 2: Reusable meta-metadata wrapper declaration for search engine results. 

 
Figure 3: Metadata subclass declarations generated by the 

compiler for the search meta-metadata declared in Figure 2. 

 
Figure 4: Partial instance of results of a Google search for ‘metadata’ uses Metadata sub-classes of Fig. 3; automatically populated 

using extraction rules declared in Figure 5, which in turn reuse search and search_results types declared in Figure 2. 
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automatically generated by the meta-metadata compiler. 

3.2 Runtime 
At runtime, the collection representation application uses meta-
metadata and metadata to represent, operate on, and present 
information resources (Figure 1). The process begins with 
selection of appropriate meta-metadata from the repository, 
identification of the metadata subclass associated with the meta-
metadata, and instantiation of a matching empty metadata instance, 
a strongly typed generalized data structure that can have nesting. 
When a match is found through meta-metadata selection (Section 
3.2.1), the appropriate parser is invoked to populate the metadata. 
For HTML and XML documents, extraction rules, specified as 
XPath and regular expressions, are used by the parser to extract 
information from a document, populating the metadata instance. 
For XML, the metadata instance can alternatively be populated by 
a “direct binding” parser, using a translation scope to look-up the 
appropriate metadata and meta-metadata using the XML 
document’s root element tag as key. With either parser, next, 
semantic actions are carried out. The semantic actions language 
includes bridge functions that pass populated metadata instances 
and intermediate results to methods in the collection 
representation application, variable declaration statements, and 
basic control structures, such as loops and conditionals. The 
bridge functions are terminals of this part of the runtime cycle; 
they pass metadata instances to appropriate application functions, 
given the structure of the particular information source, as 
specified by the meta-metadata author. Meta-metadata can be 
used subsequently by the application to efficiently iterate over the 
fields of a metadata instance or access a field by name. 

When the application wants to present the populated metadata 
instance to the user, rules specified in the meta-metadata wrapper, 
for the information source, are used to guide presentation. They 
enable hiding fields, ordering them, and formatting them. This 
reduces the metadata noise effect. It is easy to bombard users with 
many fields of data that are not meaningful to them. Part of 
curating an information source is to choose which fields to 
emphasize in the presentation to users, and which to hide. 

In this section, we detail the runtime mechanisms of meta-
metadata selection, and the associated algorithms, because their 
generality and efficiency are crucial to the meta-metadata 
architecture’s practical usability. The subsequent section develops 
further explanation of how data structures are declared, 
information extraction performed, and semantic actions specified. 

3.2.1 Meta-Metadata Selectors 
Meta-metadata selection must be efficient, because this lookup 
must be performed for every information resource an applications 
encounters. Selectors are two-level, beginning with mime type, 
and then URL matching. Mime type lookup is easily implemented 
with a hash table. URL selection is more complex. Our experience 
of information sources in the wild has led us to develop three 
mechanisms: url_stripped, url_path_tree, and 
url_regex. The meta-metadata author should use the one with 
minimum computational complexity that will work for the 
information source at hand. The choice is determined by structure 
of the URL a website uses to publish an information source. 
Factors include how arguments are represented as path elements, 
and whether server farms dispatch requests to multiple hosts. 

The simplest selector, url_stripped, removes formal 

arguments (query and hash) from the URL, and uses this as a hash 
key. This works for sources such as search engines, in which 
queries are passed as such. The computational complexity is O(1). 

As a result of published URL formats, some information sources 
require more general selectors. A Flickr image page URL format 
is http://www.flickr.com/photos/AUTHOR_ID/IMAGE_ID. 
The query is not in the URL arguments, but in the path. Stripping 
the query (here the last 2 subdirectories) from this URL yields 
http://www.flickr.com/photos. However, another Flickr 
information source URL form, for all photos by an author, is  
http://www.flickr.com/photos/AUTHOR/. Stripping the 
arguments from the path yields the same result, so this is not an 
unambiguous selector. Thus, we define the url_path_tree 
selector, using subdirectory wild cards to define the URL key for 
meta-metadata. With this mechanism, the selector key for Flickr 
image result page is http://www.flickr.com/photos/*/*/, 
and for Flickr author page, 
http://www.flickr.com/photos/*/. We use ‘*’ as a wild 
card that matches one or more characters. To represent selectors 
like these, the runtime infrastructure uses an efficient path tree 
data structure, reminiscent of radix sort, which separates URL 
patterns into path components, representing each as a nested hash 
map of subsequent components, or a terminal. The root phrase is 
the domain. If no more components exist with the same domain, 
the corresponding value for this key will be the meta-metadata 
object itself. If there are multiple path components with the same 
domain, the corresponding value for this key will be a nested hash 
table. This 2nd level hash map will contain as keys the next 
component of the URL pattern. The computational complexity of 
path tree’s nested hash tables is O(n), where n is the number of 
path components needed to uniquely represent the pattern. 
Typically n ranges from 2-4 in practice. 

A more powerful meta-metadata selector, url_regex, uses 
regular expressions to increase generality, at the cost of higher 
computational complexity. Some URLs, like the source of a Flickr 
image, can be served from multiple hosts, requiring matching 
URL patterns such as 
http://farm3.static.flickr.com/2020/2118178242_27f
b91853a_m.jpg. A regular expression selector is 
http://farm[0-9].static.flickr.com. Since regular 
expressions are expensive to evaluate, for each domain we 
maintain a hash table of lists of compiled regular expressions.  
The computational complexity for matching a string to a regular 
expression, once the expression has been compiled into a discrete 
finite automata (and this compilation need be performed only 
once) is O(m), where m is the string length. Computational 
complexity is O(l * m), where l is the length of the list of patterns 
that must be matched for a domain. This selector is slower, but as 
long as the number of url_regex wrappers authored per 
domain is not large, performance is fine. 

4. META-METADATA LANGUAGE 
We present fundamental components of the meta-metadata 
language. Further details and examples are online [13]. We begin 
with the structure of inheritance and types that underlies meta-
metadata declaration.  

Object-oriented treatment of data structures, including inheritance 
enables us to build reusable types, such as search and 
scholarly_article, to represent species of metadata that 
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can be generalized across sources, in consideration of situated 
tasks and activities that users need to perform. The Metadata 
Definition Language (MDL) is used to specify data structures, 
corresponding to types of information sources. These structures, 
whether generalizable, or specific to a particular source, are 
populated at runtime (Figure 1) with data from particular 
documents to form metadata instances, based on specifications 
authored by curator / power users using the information extraction 
components of the meta-metadata language. The formation of 
instances is followed by semantic actions, which consist of 
runtime script used to process each metadata instance and bridge 
to the application. Finally, presentation rules give the application 
guidelines on how to meaningfully present metadata to the user. 

4.1 Inheritance and Types 
An inheritance system promotes reuse of metadata classes through 
meta-metadata declarations. All meta-metadata element 
declarations either extend previous meta-metadata declarations, 
adding fields, or reuse existing data structures without adding 
fields. Whenever a meta-metadata declaration adds new fields, the 
meta-metadata compiler must be invoked to generate a 
corresponding Metadata subclass. The extends attribute of 
the meta_metadata element is used to specify the previously 
declared Metadata subclass that will be extended in the new 
subclass’s declaration, with Metadata itself as the default base 
class. The name attribute specifies, with automatic camel case 
conversion, this newly generated subclass’s name. Going back to 
Figures 2 and 3, we see how the meta-metadata element declared 
with name=”search” and extends=”document” results in 
generation of a new Search class, from Document, while the 
SearchResult class inherits directly from Metadata. 

4.2 Metadata Definition Language (MDL) 
The MDL is the component of the meta-metadata language used 
for specifying internal data structures for representing types of 
metadata. Metadata definition language (MDL) allows power 
users to author structured and strongly typed declarations for 
heterogeneous information sources. Each information source is 
declared with an initial meta_metadata element with any 
number of nested meta-metadata field  children (see example, 
Figure 2). The name attribute of every meta_metadata 
element declaration must be unique. Each child meta-metadata 
field is either a scalar field, a composite field, or a collection field. 
Scalar fields declare a scalar_type attribute. Composite fields 
declare a type attribute, reusing a previously declared type, or an 
extends attribute, subclassing a previously defined type. 
Collection fields set the child_type attribute which either 
specifies a previously defined type for collection elements, or a 
subsequent inline definition. 

We present BNF to describe the key productions of the grammar 
for type and inheritance declarations. SN refers to a symbolic 
name, which must begin with a letter. 

meta_metadata ::= 
‘<meta_metadata ’ name type extends  ‘>’ 
meta_metadata_field  *  
selector 
semantic_action * 
‘</meta_metadata>’ 

meta_metadata_field ::= 

scalar | composite | collection 

scalar ::= 
‘<scalar ’ name scalar_type  ‘/>’ 

composite ::= 
‘<composite ’ name type extends  ‘>’ 
meta_metadata_field  * 
‘</composite>’ 

collection ::= 
‘<collection ’ name  child_type  ‘>’ 
meta_metadata_field  * 
‘</collection>’ 

name ::= ‘name=”’SN‘”’ 

extends ::= ‘extends=”’SN‘”’ | ‘’ 

type ::= ‘type=”’SN‘”’ | ‘’ 

child_type ::= ‘child_type=”’SN‘”’ 

scalar_type ::= ‘scalar_type=”’s_type‘”’ 

s_type ::= 
‘int’ | ‘boolean’ | ‘long | ‘float’ | ‘double’ 
| ‘String’ | ‘ParsedURL’ | ‘Color’ | ‘Date’… 

4.3 Information Extraction 
While MDL enables specification of optimized metadata data 
structures for heterogeneous information sources, information 
extraction components of the meta-metadata language enable us to 
translate HTML and XML documents as information resources 
into instances of these data structures. Figure 5 presents a simple 
example. The search type has previously been declared (Figure 
2). We reuse the data structure definition, while specifying how to 
perform information extraction for a specific information source, 
Google web search.  

The example begins by defining a new meta_metadata 
element, with a unique name. Setting the type attribute to the 
previously defined search meta-metadata specifies data 
structure reuse, adding no new data fields, directing the meta-
metadata compiler to use the previously declared Metadata 
subclass instead of generating a new one. The simplest meta-
metadata selector (Section 3.2.1), url_stripped, is specified, 
with the argument-less URL for Google search. 

The parser attribute specifies the library class that will be used 
to perform translation from an information resource to entities and 
operations in the collection representation application. Currently 
supported parsers include xpath, for extraction from HTML or 
XML by XPath and regular expressions, and direct for 
S.IM.PL Serialization XML binding. Another parser processes 
PDF documents. Future parsers will handle other types of 
documents, such as images, and various formats of audio and 
video. For the default document meta-metadata, which is used 
when no source specific selector is matched, the present 
implementation uses a parser for HTML that implements Koh and 
Kerne’s DOM-based algorithm, translating a document into a set 
of contextualized image and text surrogates [17]. Developers can 
build alternative default parsers by implementing an interface. 

4.3.1 XPath 
The XPath parser supports combining XPath and regular 
expressions for metadata extraction from an information resource. 
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XPath is a standard for specifying the path in the DOM tree to a 
specific node [24]. XPath expressions can be specified in a rote 
way, with every node starting from a document’s root element, or, 
more robustly, using DOM features such as an ID node, which 
may be more likely to remain intact when small changes are made 
to a document. Line 2 of Figure 5 takes the latter approach, using 
XPath to find the div node with @id=’res’, and then 
specifying the rest of the expression relative to there. The 
expression selects the first div nested inside, then the ol element 
in inside that, and then all the li elements nested in there. Note 
that for XPath expressions declared in nested meta_metadata field 
declarations, this intermediate result functions as the basis for 
subsequent simpler relative XPath expressions. Thus, for 
heading, snippet, and link, we author simple expressions 
that do not repeat the whole ugly XPath. 

In some cases, an XPath expression is not sufficiently specific for 
extracting the value for a metadata field. Content presenters may 
put multiple values in a single table cell, or they may prepend or 
append meaningless strings in proximity of meaningful ones. On 
these occasions, further extraction can be specified using the 
regex attribute of the filter sub-element.  All matches will 
be replaced by the value of replace attribute. The default is the 
empty string, which causes matched text to be eliminated. 

4.3.2 Direct Binding for XML-Based Services 
Some information sources are available through XML-based 
services. In such cases, we can use MDL to define metadata XML 
that matches the structure the service provides, and then use 
S.IM.PL Serialization to directly bind the XML the service returns 
in response to a query to the generated annotated classes, forming 
metadata objects. Figure 6 shows the MDL declarations for a 
subset (to save space here) of the XML returned by Yahoo Search 

Web Services [26]. Here, we see use of the tag attribute, which 
is used to override automatic camel case conversion of the 
element name, so that the XML tags can be set to directly 
correspond to the service’s XML, in which all element tag names 
are capitalized. No further authoring is needed to perform 
information extraction with direct binding, though in the 
repository, semantic actions are provided for the different versions 
of the service that correspond to web, image, and news search, all 
using the yahoo_result_set type [13]. 

4.4 Semantic Action Scripting 
While all other components of the meta-metadata language are 
declarative, semantic actions are imperative, like many scripting 
languages. Semantic actions are declared as part of the meta-
metadata template for an information source, in order to enable 
power users to procedurally specify how the collection 
representation application will operate on metadata objects. 
Semantic action statements are specified sequentially as XML 
elements, nested in a semantic_actions XML element, 
which follows MDL and information extraction statements in a 
meta-metadata element declaration. There are three kinds of 
semantic actions: variable declarations, control flow statements, 
and bridge functions. 

4.4.1 Variable Declarations 
Variables are declared in get_field, def_var, and loop 
statements. They are used to pass values as arguments from 
metadata objects to bridge functions, and as intermediate values in 
computation, whose presence simplifies subsequent code. 
The get_field statement assigns scalar, composite, or 
collection metadata field values to a variable. The name attribute 
refers both to the metadata field to be accessed, and to the name 

 
Figure 5: XPath information extraction and semantic action declarations for Google search engine results. 

 
Figure 6: MDL declaration for Yahoo Web Service matches their XML. Information extraction by direct binding is automatic. 
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that will be subsequently used to refer to it. We see as an example 
the first semantic action declared in Figure 5, which assigns the 
search_results metadata, a collection, to a variable. The 
next get_field statement specifies a context object, that is, a 
previously defined variable. A name is bound to a field within this 
object. In the example, a reference to the link field within the 
result variable is defined, then passed to the 
parse_document bridge function (Section 4.4.3).  

The def_var statement enables binding the DOM node result of 
an XPath expression to a temporary variable. Figure 7 shows two 
examples. In the first, a single DOM node is bound to the variable 
photoTD. The xpath attribute is an absolute one, operating on 
the whole of the source document. In the next declaration, of 
photoTR, the XPath operates relative to the context_node of 
the previous declaration. Here, the type is a set, a node_list. 

4.4.2 Control Flow Statements 
Control flow statements specify the order of execution of 
semantic actions. These structures include loops and conditional 
statement. We considered using XSL [22] as the semantic action 
language, as it enables specification of control structures in XML. 
But XSL can only be used for transformation of XML documents. 
It cannot be used to invoke bridge functions which can act as call 
sites for operations in the collection representation action. To 
provide consistency, the control flow structures in the meta-
metadata language are similar to those in XSL.  

Conditionals include if and choose. Loops are defined with the 
for_each statement. The attributes are collection, defining 
the source of elements to loop over, and as, defining the symbolic 
name for referencing the collection element value inside the loop. 
The example of Figure 5 loops through the results of a Google 
search, referring to each as result. It calls the 
parse_document bridge function with the link field of each 
result. 

4.4.3 Bridge Function Statements 
A crucial family of semantic action script statements specifies 
calls to bridge functions. These semantic actions are call sites for 
methods inside the collection representation application, enabling 
metadata to flow from the meta-metadata template into a specific 
application function. Their terminals are defined in the meta-
metadata library source code using constructs such as Java’s 
interface structure, so that different applications can define 
them in different ways.  

The following bridge functions have been defined in the context 
of the use cases described in Section 5. The generality or 
specificity of their calling structure will be the subject of further 
research. It is possible that different classes of applications will 
need different bridge functions, not just to provide different 
implementations of these functions, which will impact the extent 
to which semantic action elements of wrappers can be reused 
across applications. One bridge function, for crawlers, is invoked 

to handle a hyperlink, perhaps parsing the destination document: 
parse_document. The now argument can help a focused 
crawler [7] decide the priority of links. Other bridge functions 
include handle_image and handle_text. These can be used by 
applications to directly create interactive elements and add them 
to collection visualizations. Before and after semantic actions are 
invoked automatically for application-specific initialization and 
clean-up. 

4.5 Presentation Rules 
An important part of curating an information source is specifying 
aspects of how it will be presented and visualized by interactive 
applications. Metadata can be very long, while human cognition is 
limited. The curation role is to help the application help the user 
focus attention on what is expected to be significant. Presentation 
rules tell the collection representation application how particular 
fields in a metadata object should be shown to users, if at all. For 
example, fields can be hidden in the present implementation by 
setting the hide attribute in a meta-metadata field declaration. 
This is important, because some fields may be used internally, but 
not be directly meaningful to the user. Complementary with 
hiding fields, is specifying the navigates_to attribute. This 
can be used by the application, for example, to afford hypertextual 
navigation to a document’s location by clicking the name of a 
field like title. Other presentation rules specify layers and the 
use of text styles, with characteristics such as bold and font size. 
In the right API environment, these could be specified with full 
CSS [21]. A full set of examples can be found in the meta-
metadata repository distributed with the library, and the tutorials 
[13]. The authors believe that as we and others have more time to 
use the meta-metadata language for the foundation of collection 
visualization applications, our vocabulary of presentation rules 
will grow, with the applications, in complexity and abstraction. 

5. USE CASES 
We develop three real world use cases of the meta-metadata 
language and architecture: the Rake multitouch information kiosk, 
the combinFormation creativity support tool, and a Wikipedia 
concept parser. It should be noted that except in the last case, the 
use case applications are information source independent. When 
developers from one team enhanced the repository of meta-
metadata wrappers, the other application also benefited. 

5.1 Rake Multitouch Kiosk 
A team of four computer science undergraduate students elected 
to use meta-metadata for a class project. They developed Rake, an 
information kiosk that connects multi-touch interaction with 
collecting and filtering information. The application enables users 
to query information sources, such as Urban Spoon, Flickr, 
Wikipedia, IMDb, and Yahoo. The search results are presented 
visually as "information elements," using images with metadata. 
Users can filter, sort and organize the elements using multi-touch 
interactions (See Figure 8). 

 
Figure 7: def_var variable declaration statements, taken from a Flickr example. 
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The students reported that they chose to use the meta-metadata 
framework because meaningful interaction with the information 
elements required detailed metadata. When the user activates a 
metadata field value in an information element, fluid interaction 
attracts matching elements. 

For the project the students utilized the meta-metadata repository 
already developed by the combinFormation project. They also 
authored new meta-metadata wrappers. The new wrapper code 
was merged into the repository. 

On the application side of the framework the students defined an 
application-specific Metadata subclass. They implemented the 
bridge function handle_image translate each metadata image 
object into an instance of the subclass, InformationElement, 
which performs display and interaction. 

The students said that overall, using the meta-metadata framework 
expanded project. They reported that first, they did not have to 
implement functionality to represent documents for each 
information source. This reduced the work required to support 
diverse information sources, allowing them to focus on their 
primary goal, creating interactions. Second, they reported 
appreciating the ability to generalize their application across 
information sources without custom code. 

5.2 combinFormation 
The meta-metadata language and architecture were recently 
integrated into the creativity support tool, combinFormation 
[12][14]. combinFormation connects searching, browsing, 
organizing, modeling, and visualizing information. 
combinFormation uses the integrative visual representation of 
information composition to represent collections, instead of lists 
or grids of separate elements. The composition is formed using 
image and text surrogates, derived from clippings from documents, 
to represent important ideas from the documents. Representing 
collections as information compositions of image and text 
surrogates has been shown to promote creativity in laboratory [15] 
and field [14] studies. In prior versions of combinFormation, the 
metadata for surrogates and documents was comparatively lacking 

in detail. The metadata plays a key role in the user experience of 
the information composition. 

We used combinFormation integrated with meta-metadata to 
author an information composition about metadata presentation 
and user experience using some of the information resources cited 
in this paper. We made particular use of meta-metadata wrapper 
declarations for acm_portal, which in turn, extend a reusable 
scholarly_article meta-metadata base type. The resulting 
composition is seen in Figure 9. The composition has been 
composed to concisely convey important issues and ideas related 
to this paper, in a form that provokes thinking. The user is holding 
her cursor over a text surrogate from the classic faceted metadata 
paper [27] mentioned in the introduction. The program displays 
in-context metadata details on demand. 

5.3 Wikipedia Concept Parser 
A graduate student not previously involved in the development of 
meta-metadata used it as the basis for an implementation of the 
Wikipedia concept labeling algorithm developed by Mihalcea and 
Mihalcea and Csomai [18], and refined by Milne and Witten [19]. 
The product of the concept parser is a database of structures 
enabling labeling text with an ontology of concepts derived from 
the relationship semantics in Wikipedia.  

The student reused the meta-metadata type wikipedia_page 
in the repository to enable information extraction of titles, images, 
paragraphs, semantic links and categories. In his application, he 
re-defined the link handling semantic action, parse_document 
as the call site into his own semantic link processing procedure, 
which filters link information, and stores it in an external database. 
Before and after semantic action hooks were defined to customize 
initialization and termination.  

According to the student, meta-metadata relieved him from 
writing code addressing information extraction, concurrency, 
network connections, and error handling. Reusable semantic 
actions allowed him to work at a high level of abstraction, with 
flexibility for customizing details.  

The meta-metadata library was found to perform well. The 
parsing was carried out on a workstation with an Intel Q6600 
2.4GHz CPU and 4GB RAM. A total of 5,352,582 Wikipedia 
articles were processed. One hundred concurrent threads were 
used to saturate the network. The parsing was finished in about 20 
hours, with a CPU cost of less than a core and RAM cost of less 
than 200MB. On average, the meta-metadata library took 0.013 
seconds to parse a page, generate a metadata object, and carry out 
the semantic actions. The products include 6.5GB of link structure 
records, and 795MB of category records. 

6. DISCUSSION 
Meta-metadata is designed to support a wide variety of collection 
representation applications. We have shown a knowledge 
management application that derives a concept-based ontology, 
and two personal collection visualization applications, one of 
which was built by undergraduate students as a course project. 
The language and architecture are also suitable for supporting 
applications such as mash-up authoring systems, structured data 
repositories, semantic web tools, and digital libraries. Meta-
metadata provides a unified layer that generalizes and abstracts 
the diverse metadata semantics of heterogeneous information 
sources. Application developers are freed from this tower of Babel 

 
Figure 8: The Rake multitouch information kiosk. 
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of details. Conversely, inasmuch as the functionality of the 
application itself is general, a power user can extend it, without 
accessing source code, to utilize a new information source by 
authoring a new meta-metadata wrapper. Application developers 
and power users can share meta-metadata wrapper code, 
leveraging each others’ ongoing efforts. Research projects that use 
pattern recognition techniques to learn wrappers can use meta-
metadata as a representation for their output, enabling this output 
to be used by diverse application developers. 

As collection representation application developers, for us meta-
metadata is a holy grail that we have sought for years. On the one 
hand, the language and architecture let us invest in authoring 
wrappers for information sources and perform complex operations 
through a unified structure of information semantics without 
pinning this work to a specific application. At the same time, we 
can develop applications of varying complexity that use and reuse 
the wrappers and particular metadata instances that we collect 
with them. Meta-metadata enables us to draw our line in the sand, 
with the information source metadata semantics wrappers 
repository and information resources collection on one side, and 
application code on the other. Our Meta-Metadata Guide web site 

[13] includes a tutorial application that uses less than 20 lines of 
new application code to collect weather data across Texas. It 
would be simple to change this to collect beach or skiing weather, 
and publish this information to the web. 

Underlying the meta-metadata language and architecture is a 
practical and philosophical position. The world is a diverse, 
heterogeneous poly-lingual place of rich experiences whose 
formal specification requires many dimensions. Thus, our 
metadata must also be poly-lingual and multidimensional. 
Diversity of metadata dialects makes life rich, yet complicated. 
Meta-metadata seeks a role inspired by Adrienne Rich’s Dream of 
a Common Language, and Startrek’s universal translator, but 
without collapsing the world of metadata languages into a dry 
Esperanto or hegemonic lingua franca. 

This paper reports on first steps in the ambitious long term project 
of developing cyberinfrastructure embracing metadata diversity, 
and seeking to define a basis of unity on a meta- level. Translation 
and mapping among dialects is difficult, yet important for 
meaning-making. The translation scope mechanism is 
foundational in its ability to enable us to unmarshal poly-lingual 
metadata to into related classes of objects. The extensibility of 

 

Figure 9: Information composition about metadata semantics and user experience authored with the combinFormation 
creativity support tool, integrated with the meta-metadata architecture. The program derives visual surrogates by clipping 

images and text passages from information resources, and augments them with metadata. Using papers found in the references 
section (below), this composition has been composed to concisely convey important issues and ideas related to this paper, in a 

form that provokes thinking. The user is holding her cursor over a text surrogate from the classic faceted metadata paper [27].  
The program displays in-context metadata details on demand. 
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meta-metadata enables us to create a hierarchy of metadata 
subclasses, and operate on them using the polymorphism 
capabilities of programming languages.  The structure of the 
evolving hierarchy itself, as defined through the inheritance 
mechanisms of meta-metadata repository entries, defines 
relationships between dialects. Semantic actions script enables the 
specification of dialect-specific operations, while providing the 
means for defining these operations using unified and platform-
independent semantics. These constructs provide the foundation 
for continuing development of meta-metadata cyberinfrastructure. 

The development of meta-metadata is a long term investment in 
cyberinfrastructure. The language and architecture as currently 
defined are useful enough to support multiple applications, and 
simple enough to support development by undergraduate students. 
Meta-metadata wrappers are reusable across applications, except 
perhaps for the semantic action bridge functions. While we 
provide a mechanism for different applications to specify different 
implementations, it is not clear that this level of generality is 
sufficient. As meta-metadata is integrated into more applications 
we will learn more about how to best specify this language 
component. 

To make it easier for power users to author and share meta-
metadata, future research must develop new tools for authoring 
and services for distribution. Authoring tools will need to address 
all phases of the metadata life cycle, not just information 
extraction. Services will be based on a centralized or distributed 
repository. They will support dynamic compilation of metadata 
subclasses and dynamic class loading in applications. A service-
based repository will help support a social network of authors to 
share their meta-metadata definitions. At the same time, the plan 
to develop a service raises community software issues, such as 
how versioning will work, and how, as with software 
development repositories, to enable users to share sometimes, and 
at other times be mutually insulated. 

7. CONCLUSION 
We have developed an extensible architecture and framework for 
managing the metadata lifecycle in collection representation 
applications. The unity of metadata semantics gained through the 
use of meta-metadata will enable developers of collection 
representation tools to focus on the next level of human-centered 
research issues, such as search, data mining, machine learning, 
digital libraries, information visualization, and supporting 
creativity and information discovery. First steps have been taken 
in the long term cyberinfrastructure development project of 
providing a foundation for integration of diverse, heterogeneous, 
poly-lingual metadata. 
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