
Ranking Objects Based on Relationships and Fixed
Associations

Albert Angel
University of Toronto

albert@cs.toronto.edu

Surajit Chaudhuri
Microsoft Research

surajitc@microsoft.com

Gautam Das
University of Texas at Arlington

gdas@cse.uta.edu

Nick Koudas
University of Toronto

koudas@cs.toronto.edu

ABSTRACT
Text corpora are often enhanced by additional metadata which re-
late real-world entities, with each document in which such entities
are discussed. Such relationships are typically obtained through
widely available Information Extraction tools. At the same time,
interesting known associations typically hold among these entities.
For instance, a corpus might contain discussions on hotels, cities
and airlines; fixed associations among these entities may include:
airline A operates a flight to city C, hotel H is located in city C.

A plethora of applications necessitate the identification of associ-
ated entities, each best matching a given set of keywords. Consider
the sample query: Find a holiday package in a “pet-friendly” hotel,
located in a “historical” yet “lively” city, with travel operated by an
“economical” and “safe” airline. These keywords are unlikely to
occur in the textual description of entities themselves, (e.g., the ac-
tual hotel name or the city name or the airline name). Consequently
to answer such queries, one needs to exploit both relationships be-
tween entities and documents (e.g., keyword “pet-friendly” occurs
in a document that contains an entity specifying a hotel name H),
and the known associations between entities (e.g., hotel H is located
in city C).

In this work, we focus on the class of “entity package finder”
queries outlined above. We demonstrate that existing techniques
cannot be efficiently adapted to solve this problem, as the result-
ing algorithm relies on estimations with excessive runtime and/or
storage overheads. We propose an efficient algorithm to process
such queries, over large corpora. We devise early pruning and ter-
mination strategies, in the presence of joins and aggregations (ex-
ecuted on entities extracted from text), that do not depend on any
estimates. Our analysis and experimental evaluation on real and
synthetic data demonstrates the efficiency and scalability of our ap-
proach.

1. INTRODUCTION
In many application domains, such as e-commerce, social net-

working sites, digital libraries and collaborative knowledge repos-

Permission to copy without fee all or part of this material is granted pro-
vided that the copies are not made or distributed for direct commercial ad-
vantage, the ACM copyright notice and the title of the publication and its
date appear, and notice is given that copying is by permission of the ACM.
To copy otherwise, or to republish, to post on servers or to redistribute to
lists, requires a fee and/or special permissions from the publisher, ACM.
EDBT 2009, March 24–26, 2009, Saint Petersburg, Russia.
Copyright 2009 ACM 978-1-60558-422-5/09/0003 ...$5.00

itories, to name a few, metadata relate (unstructured) textual doc-
uments to the real-worldentitiesdiscussed in them. For instance,
in Wikipedia, the well-known collaborative encyclopædia, the un-
structured document of an article about a person is related to en-
tities such as the person, a birthplace, past employment institu-
tions etc. In other domains, such as news articles, blog posts, etc.
such document-entity relationships can be obtained through widely
available Information Extraction tools ([4], [1]), which automati-
cally identify named entities discussed in a document (e.g. Person,
City, Company, Product).

Such entities are related viafixed associationstypically known
among them. For instance, a table in a relational database can asso-
ciate neighbourhoods, houses for sale, and schools, via their loca-
tion, thus giving rise topackagesof associated entities (in this case,
home-neighbourhood-school packages). Such information can be
retrieved from several sources, e.g. from corporate databases, a col-
laborative public knowledge repository such as Freebase [8], etc.
Moreover, it can be eitherstatic(e.g. school A is located in neigh-
bourhood B) ordynamic(e.g. flights X and hotel Y are currently
offered as a discounted holiday package).

In several instances, the goal is to identify packages whose enti-
ties each best match a given set of keywords. For instance, using
comments from real-estate listings, blogs, etc., one may wish to
identify a “Victorian”, “3 bedroom” house for sale, located in a
“low-crime”, “safe” neighbourhood, that has a school with “bilin-
gual education” and a renown “swimming team”. As another ex-
ample, using reviews from a travel planning site, one might wish
to identify a holiday package, consisting of a destination that is
generally considered to be “historical” and “lively”, a hotel that
is “pet-friendly”, and travel operated by an airline renown for its
“economical” and “safe” flights. Let us examine this motivating
example of finding personalized holiday packages in greater detail.

Consider a corpus of reviews taken from a travel-planning site,
shown in fig. 1. We assume that entities, such as hotels, cities and
airlines, have been automatically identified in individual reviews,
using a Named Entity Extraction tool. Moreover, we assume a rela-
tion containing known associations between entities, e.g. that hotel
H is located in city C, or that airline A flies to city C. This relation
can be available as a database table in the travel-planning site’s in-
frastructure, or it can be retrieved from some external source (e.g.
[8]). Furthermore, some parts of it might change very rarely, if at
all (e.g. hotel H is located in city C), whereas others can be subject
to frequent updates (e.g. a discount holiday package containing a
flight by airline A, and a stay at hotel H, is currently being offered).
Our database thus consists ofdocuments, representing reviews, and
entities of threetypes, Hotels, Cities and Airlines.Relationships
between documents and entities are represented by three tables of

910

Figure 1: Data model

(DocId ,EntId) tuples, one table for each entity type. (For in-
stance, a tuple(d, e) in table Hotels signifies that the review with
id d discusses the hotel with ide - i.e. e has been extracted as
a topic of discourse from the text ofd). Moreover, knownasso-
ciationsbetween entities can be represented in a variety of ways,
e.g. three tables denoting pairwise associations, etc. We abstract
their representation by assuming a viewR over them.R contains
(e1, e2, e3) package tuples, signifying that hotele1, city e2 and air-
line e3 are associated, i.e. hotele1 is located in citye2, airline e3

flies to city e2, and a flight with airlinee3 can be combined in a
holiday package with a stay at hotele1. In fig. 1, a user might want
to poll the public opinions, expressed in reviews, to find a holiday
package in a city that is “historical”, yet “lively”, with a stay at a
hotel that is “pet-friendly”, and with travel operated by an “eco-
nomical” and “safe” airline. These descriptive terms are unlikely
to occur within the names of cities, hotels, or airlines; thus standard
keyword search techniques cannot be used to answer such queries.
Moreover, a user is not likely to be interested in all possible an-
swers to their queries, but would prefer to be presented only with
a small number of the most relevant results. We term this type of
queries asEntity Package Finderqueries (EPF). The necessary data
to support such queries is a collection of:

1. Documents, which are searched by keywords;

2. Entities, each having a Type attribute (e.g. in fig. 1 Hotel
Presidente is an entity of type Hotel);

3. Relationshipsbetween documents and entities, expressed as
document-entity pairs, and denoting that a document refers
to an entity; they can be static or dynamic; and

4. Associationsamong entities of different types, expressed as
a relation containing tuples of entities; we refer to such tuples
aspackages

The aim in entity package finder queries is to identify the k most
relevant packages of entities, with respect to each entity best match-
ing a given set of keywords. This gives rise to the need to score
packages, entities and documents with respect to the given key-
word query. The score of a document wrt. a keyword query can be
assessed using standard Information Retrieval techniques, such as
textual similarity [17]. Note that entities are typically not directly
related to keywords; for instance, named entity extraction from a
document is typically based on more complex features than the sim-
ple presence of certain keywords [4]. For this reason, we will say
that an entity matches a keyword query if it is related to documents
that match the query. The quality of this match will depend both on

the number of documents matching the keywords, that are related
to the entity, as well as on the strength of the match between each
such document and the given keywords. Thus, the score of the en-
tity will be an aggregate of the scores of all documents matching
the given keywords that are related to it. For example, in fig. 1, the
score ofe12 (Hotel Supremo) wrt. keyword query “relaxed” will be
an aggregate of the scores of documentsd2, d4 wrt. the keyword
“relaxed”. Finally, to capture the notion that relevant packages are
those that contain, overall, relevant entities, packages are scored
based on an aggregate of their entities’ scores (e.g. in fig. 1, the
score of the holiday package(e11, e21, e31) wrt. some query will
be an aggregate of the scores ofe11, e21 ande31 wrt. the query).
In this work we use a scoring framework that encompasses a wide
class of scoring semantics.

The essence of the entity package finder problem is to find the
top-k packages with the highest scores, that result from scoreag-
gregationsover documents matching a given query, and subsequent
joins between entities of different types, according to a set of fixed
associations. The techniques we propose are applicable for gen-
eral entity finder queries, on any domain where documents can be
searched by keywords (e.g. textual corpora, multimedia databases,
medical databases etc.). In the following, solely for clarity of pre-
sentation, we will restrict ourselves to the case of text corpora.

Whereas this problem can be solved using standard RDBMS
technology, the resulting solution would be highly inefficient. This
is due to the fact that, in such a scenario, the precise scores of ev-
ery entity and package would need to be calculated, followed by
a selection of the top-k packages. Instead, early termination and
pruning techniques can be used, to drastically reduce the necessary
processing effort.

Adapting existing such techniques to this problem also leads to
inefficient algorithms, as they require estimations with impracti-
cal runtime and/or storage overhead (see sec 3). To overcome this
difficulty, we utilize the following intuition: Top scoring packages
are expected to receive most of their score from top scoring en-
tities, which, in turn, are expected to receive most of their score
from top scoring documents. In our approach, documents are pro-
cessed in descending score order, with respect to the given keyword
query. Using document-entity relationships and entity associations,
the aggregate scores of entities and packages are computed, incre-
mentally, and in a rank-aware fashion. Periodicallytight boundson
these scores are computed, and used to prune entities and packages
that cannot rank among the final top-k. Thus, our algorithm is able
frequently to terminate after processing only a small fraction of the
input.

Our main contributions in this paper can be summarized as fol-
lows:

• We introduce the Entity Package Finder type of queries, able
to answer useful questions with intuitive semantics.

• We formalize the EPF problem in a threshold algorithm frame-
work, and demonstrate that existing techniques cannot be ef-
ficiently adapted to solve this problem, as the resulting algo-
rithm relies on estimations with impractical overhead (run-
time, storage).

• We propose a complementary early pruning/stopping approach,
which interleaves rank-join and aggregation, and overcomes
the need for such estimates. Our approach exploits all avail-
able knowledge regarding possible entity packages to pro-
vide tight bounding on package scores, leading to increased
pruning efficiency.

• We analytically and experimentally evaluate the performance

911

of our algorithm, on both real and synthetic data, and demon-
strate its efficiency and scalability.

The rest of the paper is organized as follows: We formalize the
EPF problem, and provide a threshold algorithm framework for it
in section 2. We demonstrate the inapplicability of existing tech-
niques (section 3), and propose an efficient algorithm in section 4.
We discuss extensions to our algorithm and problem in section 4.2.
The efficiency and scalability of our algorithm is demonstrated by
analysis (section 5.1), as well as thorough experimental evaluation
(section 5.2), on both real and synthetic data. We review other re-
lated work in section 6, and conclude in section 7.

2. A FRAMEWORK FOR EPF
Given the entity package finder class of queries introduced above,

we subsequently formalize our problem, and describe a threshold
algorithm framework for processing such queries.

2.1 Data model
Every document(e.g. review, blog post, etc.) in the corpus, is

associated with a document idd. Every document containssearch
terms(keywords) (e.g.d1 in fig.1 contains keywords “very”, “ele-
gant” and “hotel”, among others), and every document-term pair is
associated with a score. These scores capture the importance of the
term in the document, and can be derived using standard IR mea-
sures [17]. We assume the availability of aninverted indexover
the document corpus, i.e., for every search term, there exists an ef-
ficient way to retrieve all documents containing it, in descending
score order.

Additionally, real-worldentitiesare represented in our corpus.
Every entity has an entity ide, and belongs to one of a number of
typesT1, T2, · · · , Tn. For instance in fig.1 Hotel Presidente is an
entity of type Hotel. In addition,n relational tablesMTi

contain
the relationshipsholding between documents and entities of type
Ti. For example, in fig.1, tableMHotels contains tuples of the form
(d, e), signifying that documentd mentions hotele.

Finally, fixedassociationsbetween entities are available. Asso-
ciations can be stored in a variety of ways (e.g. one or more rela-
tional tables), and can be either static, or dynamic (i.e. frequently
updated). In either case, we assume the existence of a view,R over
this data. R is an n-ary relation, with domainT1 × · · · × Tn,
and describes the union of all valid query answers: every tuple
(e1, · · · , en) ∈ R, termed apackage, contains associated entities.
E.g., in fig.1, entitiese11, e21 ande31 form a valid holiday package.
As R might not be materialized in its entirety, we only require that
it be accessible through a restricted API, able to efficiently return
the packages containing a given entitye in a given typeT .

In the following, we assume that allMTi
tables, as well as the

information necessary to provide access toR, fit into main memory,
noting that our algorithms can be extended to handle cases where
these assumptions do not hold1.

1This is a reasonable assumption, even for large-scale corpora. A
typical document discusses a small number of entities, and for ev-
ery such relationship we only need to maintain a document id and
an entity id. Thus, the total memory overhead ofMTi

tables will
be a small multiple of the number of documents. This is consistent
with our empirical observations on a large scale corpus of real data
(see sec 5.2,REAL corpus), where the memory overhead ofMTi

tables was, on average, under 10 bytes per document. Moreover, we
expect the base information behindR to fit in main memory, due
to the semantics of the entity package finder problem. This,too,
is consistent with our empirical observations; theREAL corpus,
for instance, contained 110K associations, requiring under 1MB of
main memory.

2.2 Query and Result Model
An entity package finderqueryis ann-ary tuple containing sets

of search terms, i.e. a tuple of the form:(W1, W2, · · · , Wn),
where everyWi is of the formWi = {w1, w2, · · · }. For example,
in the holiday package case, a query could be ({“pet-friendly”},
{“historical”, “lively” }, {“safe”}), meaning that the user would
like to find a package with a “pet-friendly” hotel, a “historical”
and “lively” city, and a “safe” airline.

An answer to such a query is a valid package, such that each
of its entities,i, is related to at least one documentd, contain-
ing some keyword inWi. More formally, an answer is a tuple
(e1, e2, · · · , en) ∈ R such that, for alli ∈ {1, 2, · · · , n}, there
exists a documentd containing a termw ∈ Wi, such that(d, ei) ∈
MTi

. For instance, in fig. 1,(e11, e22, e31) is a valid answer to the
query ({“elegant”},{“stunning”},{“safe”}). Of course, the more
keywords fromWi d contains, and the more such documents each
entity ei is related to, the higher the relevance of the answer to the
query. Additionally, since users are typically interested only in see-
ing a small number,k, of the most relevant answers to a query, the
need to score answers arises.

2.3 Scoring Answers
Answer scoring proceeds in two levels: Firstly, entities of the

same type need to be scored, based on the degree to which the
documents that are related to them, match the given search terms.
Thereafter, packages need to be scored, based on the scores of the
entities they consist of2.

Entities are scored using two functions,Faggr andFcomb . Faggr

is used to aggregate the scores of multiple documents that contain
a specific search term and that are related to an entity.Fcomb is
then used to combine the aggregated scores of an entity for all
search terms. For example, in fig. 1 assume that documentsd3, d6

contain the term “stunning”, with associated scoress1, s2, respec-
tively, and documentd6 contains the term “safe”, with associated
scores3. Since both these documents are related to entity Mex-
ico City, its score wrt. keywords “stunning” and“safe” will be
Fcomb(Faggr (s1, s2), Faggr (s3)).

In the following, we assume thatFaggr is distributive over ap-
pend (i.e. Faggr (s1, s2, · · · , sn) = Faggr (Faggr (s1, s2, · · · , si),
Faggr (si+1, · · · , sn))) and subset monotonic (i.e.{s1, · · · , si} ⊆
{s′1, · · · , s′j} =⇒ Faggr (s1, · · · , si) ≤ Faggr (s

′

1, · · · , s′j)), and
thatFcomb is monotonic (i.e.∀isi ≤ s′i =⇒ Fcomb(s1, s2, · · · , sn)
≤ Fcomb(s

′

1, s
′

2, · · · , s′n)). These properties are by no means re-
strictive, as they hold for most scoring functions used in practice
(e.g. sum, weighted sum, max, etc.).

We note that scoring can also proceed withFaggr being applied
on the results ofFcomb ; this can be efficiently reduced to query
processing in the framework initially described, by utilizing the
TA-NRA algorithm ([10]). Using these frameworks, we are able
to capture most interesting and practical semantics for scoring en-
tities; for instance, we can require that each query keyword occurs
in at least one document matching an entity, or that all such docu-
ments be considered as a single pseudo-document for the purpose
of scoring the entity.

For the second task, of scoring packages based on their enti-
ties’ scores, following common practice, we employ a monotonic
function Fpkg . For instance, if for a given query the score of en-

2Packages are only scored based on the scores of their comprising
entities, because, in the EPF setting, packages have been defined
as embodyingcertainknowledge. Although our setting can be ex-
tended to “fuzzy packages” with an attached confidence value, and
corresponding changes to the scoring framework, we do not further
discuss such extensions in this work.

912

Figure 2: Execution Framework

tity Hotel Presidente iss1, the one of Cancun iss2, and that of
Aeromexico iss3, the score of the resulting holiday package will
beFpkg(s1, s2, s3).

2.4 A Threshold Algorithm Framework
We now present a general framework for processing entity pack-

age finder queries (fig.2).
As seen in fig. 2, processing is driven by sequential accesses

on inverted lists, one for every keyword in the query. A list cor-
responding, e.g. to keyword “safe”, consists of document ids for
every document containing the word “safe”, along with scores that
denote their relevance to “safe”, in descending score order. Every
document id encountered is used to probe in-memorydocument-
entity relationshiptables (cf.MAirline in fig. 2), so as to retrieve
the entities related to the document. The document score and re-
lated entities are used to update the current known bounds on entity
scores. Such information is maintained in the Aggregation Partial
Result Tables, termedSeenEnts for brevity (cf. SeenAirlines in
fig. 2); we describe their functionality shortly.

Using the available score bounds on entities, a partial ordering on
them can be determined (e.g., if entitye1 has a score in[1, 2], and
the score ofe2 is in the interval[2.3, 3.5], then clearlye2 will have
a higher score thane1). Whenever a query processing algorithm
decides that sufficient information wrt. entity scores is available
(e.g. the top-3 Airlines, top-2 Cities and top-5 Hotels, and their
scores are known), it can use this information to try and calculate
the k top-scoring packages. This is done by essentially perform-
ing a multi-way join among the top entities of each type, using
probes to the in-memoryknown associationsview, R, to evaluate
the join condition. To avoid superfluous processing effort, a query
processing algorithm should use a rank-aware join operator ([11]),
allowing for earlier termination, without the need to consider all
top-scoring entities. Such approaches are described in sec. 3 and
sec. 4.

Computing Entity Aggregate Scores: For every entity typeT ,
we maintain a tableSeenEntT (cf. SeenCities in fig. 2), which
captures the current level of knowledge wrt. the most promising
entities inT . Specifically, for every entitye, SeenEntT main-
tains lower and upper bounds on its final score (LB andUB, re-
spectively). These bounds are used as in the Threshold Algorithm
([10]), for pruning entities guaranteed not to be part of the final an-
swer, and for early termination. For reasons of efficiency,SeenEntT
is indexed by entity id.

Computing Lower Bounds: In order to compute lower bound
information,SeenEntT additionally records, for every entitye, the

number of times a document related toe has been encountered on
every inverted listlisti, NumSeen i, and the score thate has re-
ceived up to now from all documents onlisti, AgScore i. Put dif-
ferently,AgScore i is the score thate would obtain from the key-
word corresponding tolisti, if no other documents matchinge are
found onlisti. AgScore i is a lower bound on the final score ofe
wrt. the keyword corresponding tolisti, and the full final score of
e is lower bound byLB = Fcomb(AgScore1,AgScore2, · · ·).

Computing Upper Bounds: In order to calculate an upper bound,
UB, on the score of entitye, we utilize, for every inverted listlisti,
the following items of information. Firstly, the score of the last doc-
ument retrieved fromlisti, maxUnseen i; this is an upper bound on
the score that any document, not yet retrieved fromlisti, can have.
Secondly, we require knowledge of the maximum number of docu-
ments inlisti that can influence the score ofe, which we term the
cardinality of e in list i, card(e, listi); we shortly discuss ways of
calculating it. The maximum further scoree can obtain fromlisti is
maxFurther i = Faggr (maxUnseen i, · · · ,maxUnseen i), where
Faggr is applied oncard(e, listi) variables with valuemaxUnseen i.
The maximum scoree can obtain fromlisti ismaxTotal i = Faggr (
AgScore1,maxFurther 1). Finally, an upper bound on the score of
e is UB = Fcomb(maxTotal1,maxTotal2, · · ·).

Computing Entity Cardinalities: Let us now discuss how the
cardinality of an entitye in a list listi can be calculated, by judi-
ciously materializing information about certain entities. In a pre-
processing phase, we scan all inverted lists, and calculate and store
the ids and scores wrt.listi of theX entities with the highest car-
dinalities in listi, as well as an upper bound,maxCard i, on the
cardinality of all other entities inlisti

3. By using this information
at query time, for every entitye and list listi we have knowledge
of either i) a useful upper bound on the cardinality ofe in listi

(namely,maxCard i), or ii) the precise score ofe wrt. listi (in this
case, we record the score in the relevantSeenEnt table, and set
the relevantNumSeen i to the special value “ALL”). This enables
the calculation of the maximum score,MaxUnseenT , obtainable
by any entitye of typeT that has not yet been seen (exploiting the
the monotonicity properties ofFaggr , Fcomb). MaxUnseenT can
be used to compute an early termination criterion. We note that this
preprocessing has a low overhead4.

2.4.1 Access Primitives
Given the structures above, we define two forms of access that

a query processing algorithm can use to access data: Sequential
Accesses (SA’s), and Batch Accesses (BA’s) (the latter correspond
to standard TA Random Accesses, optimized for the entity package
finder setting).

A SA on an inverted list (alg. 1) essentially retrieves a block5

of document ids from the list (line 1), looks up entities related to
these documents (line 2), and updates bounds on the scores of these
entities (lines 3-8). At some point of time, an algorithm determines
that a superset of all necessary entities of a typeT has been iden-
tified (i.e., any entity that does not have a corresponding entry in
SeenEntT is not needed to identify the query answer). Thus, the

3X is a small number, so that storing these entities and their scores
requires a negligible amount of storage; for instance, in our experi-
ments we materialized1% of all entities, resulting in an additional
storage overhead of less than0.01% the size of inverted lists.
4For instance, on a large, real dataset we used in our experiments
(see sec. 5.2, corpusREAL) this preprocessing requires on average
less than a second per inverted list per entity type; similar trends
were observed on larger synthetic datasets.
5For reasons of efficiency, and following common practice, docu-
ments are retrieved in blocks, as opposed to one-at-a-time.

913

Algorithm 1 Sequential Access
Input: An inverted listlisti, corresponding to search termw, and an entity

typeT
1: Retrieve next block of documents and scores fromlist i

2: Lookup entities related to these documents usingMT (In-memory join
of document ids withMT)

3: for each entity e found, whose related document’s score iss do
4: if an entry fore exists inSeenEntT , with NumSeeni 6=“ALL”

then
5: Incremente’s NumSeeni

6: Updatee’s AgScorei with Faggr (AgScore i, s), and update its
LB usingFcomb

7: else if e has not been pruned fromSeenEntT then
8: Create an entry fore in SeenEntT , with NumSeeni =

1,AgScorei = Faggr (s), and calculate itsLB

Algorithm 2 Batch Access
Input: An inverted listlisti, corresponding to search termw, and an entity

typeT
1: Let M ′

T
= MT ⋉EntId SeenEntT (M ′

T
is not necessarily material-

ized)
2: Retrieve next block of documents (along with their scores) fromlist i

3: Lookup entities related to these documents usingM ′

T
(In-memory join

of document ids withM ′

T)
4: for each entity e found, whose related document’s score iss do
5: if e’s NumSeeni 6=“ALL” then
6: Incremente’s NumSeeni

7: Updatee’s AgScorei with Faggr (AgScore i, s), and update its
LB usingFcomb

only necessary actions are to discover the actual scores of there-
quired top entities, and to prune away the remaining ones.

For this purpose, Random Accesses on the scores of all candidate
entities are needed. However, if one were to perform individual
Random Accesses on the score of an entity,e, one would need to i)
retrieve all documents related toe, and ii) scan them to determine
their score wrt. all query keywords. These operations would en-
tail a large number of disk random seeks. For instance, in a corpus
of real data we used in our experiments (sec 5.2, corpusREAL),
on average 17-40 documents would have been read from disk per
Random Access, depending on the entity’s type. Hence, true Ran-
dom Accesses are not a feasible option in our setting. Due to these
performance considerations, we instead process Random Accesses
in batches, using an access primitive we term Batch Access (BA)
(shown in alg. 2).

A BA on an inverted list follows the steps we outlined above
for SA’s; however, it ignores documents that do not correspond to
entities encountered so far. Thus, the result of a series of BA’s on a
list is precisely the same as that of performing random accesses on
the scores of all entities wrt. the list, at a fraction of the cost.

3. THE LAYERED ALGORITHM
Given the above framework, we present theLayeredalgorithm

(shown in alg. 3), a baseline approach for solving the entity pack-
age finder problem.

We defineDi as the number of top-scoring entities of a typeTi

that are needed to identify the top-scoring packages. Assume that
Di are known, for alli (We will subsequently argue that this is an
unrealistic assumption, and show how to alleviate it.). For instance,
in fig. 2, assume it is known that, given the topD1 Hotels, the top
D2 Cities and the topD3 Airlines, along with their scores, it is
possible to calculate the topk holiday packages. Then, the topk
packages can be calculated by first identifying the topDi entities of
each typeTi, and then using these to compute the topk packages.

Algorithm 3 Layered Algorithm
Input: QueryW , Number of desired answersk, Necessary number of top

entities per type,D1, · · · , Dn

Output: The topk packages wrt.W
1: for each entity typeT do
2: performBA = false
3: while The topD entities of typeT have not been identifieddo
4: if performBA then
5: Perform a BA on every inverted list for typeT
6: else
7: Perform a SA on every inverted list for typeT
8: UpdateUB’s in SeenEntT , and prune nonviable entities
9: if minKT ≥ MaxUnseenT then

10: performBA = true
11: loop
12: for each entity typeT do
13: Retrievee, the next best entitye of typeT
14: Retrieve fromR all packagesP containinge
15: for each packagep ∈ P do
16: Retrieve the scores of all entities inp.
17: if the score of some entity inp is not knownthen
18: Continue with the next package inP
19: Calculates = the score ofp
20: if s > minK then
21: Remove the topk’th package form the priority queue, and

enqueuep in its place
22: if minK ≥ MaxUnseenPkg (see eqn. 1)then
23: return the current topk packages

More specifically, the Layered algorithm (a high-level outline of
which is shown in alg. 3), maintains a priority queue for every en-
tity type Ti, containing theDi entities with the currently largest
LB’s. Let minKTi

be the smallestLB among these. Every en-
tity of type Ti with UB < minKTi

can safely be pruned from
SeenEntTi

, as it is certainly not among the topDi entities of its
type (line 8). Using this pruning criterion, Layered performs SA’s
on every inverted list until a superset of the topDi entities of each
type Ti have been identified (line 9); thereafter it performs BA’s
instead (line 10), until the topDi entities are identified.

Subsequently, a rank-join ([11]) algorithm is used to calculate
the top packages (lines 11- 23). Layered iterates over every entity
typeT , selecting the next best entitye of typeT (line 13). It then
usese to probe the known associations table,R, and retrieve the
packages containinge(line 14). For every such packagesp, if the
scores of all entities inp are known, Layered calculates the exact
score ofp (usingFpkg) (lines 16-19). Layered also maintains the
current topk packages in a priority queue, and the score of the
current top-k’th package,minK .

At any point of time, in order to decide whether the priority
queue contains the true topk packages, and thus it is safe to ter-
minate processing, Layered utilizes the following observation, due
to the monotonicity ofFpkg . Let si(b) be the score of the topb’th
entity of typeTi. After having examined the topbi entities of type
Ti, the best score obtainable by a package that has not yet been
encountered is

MaxUnseenPkg = max{Fpkg(s1(b1), s2(1), s3(1), · · · , sn(1)),

Fpkg(s1(1), s2(b2), s3(1), · · · , sn(1)),

Fpkg(s1(1), · · · , sn−1(1), sn(bn))} (1)

Layered terminates whenminK ≥ MaxUnseenPkg (line 22).

3.1 Execution example
To better illustrate the workings of Layered, we present the fol-

lowing execution example. We will utilize the sample corpus shown
in table 3.1, and the following scoring functions:Faggr (x1, · · · , xj) =

914

(a) Inverted List
for keywordw1

DocId Score
d5 1.0
d3 0.8
d6 0.5
d8 0.2
d7 0.2

(b) Inverted List
for keywordw2

DocId Score
d1 1.0
d7 0.9
d4 0.6
d2 0.2
d9 0.1

(c) Inverted List
for keywordw3

DocId Score
d13 0.7
d18 0.5
d15 0.2
d16 0.1
d10 0.1

(d) Doc - Entity relationships,
MT1

DocId EntId DocId EntId
(cont’d)

d1 b d6 e
d2 b d7 a
d3 a d7 c
d4 a d8 b
d5 a d8 c
d5 b d9 c
d6 c d9 e

(e) Doc - Entity
relationships,
MT2

DocId EntId
d10 α
d10 γ
d13 α
d15 γ
d16 α
d18 β

(f) Known as-
sociations,R

Entity type
T1 T2

b α
a γ
b β
e β

(g) Layered execution example,SeenEntT1

Step EntId NumSeen AgScore NumSeen AgScore LB UB
w1 w1 w2 w2

1
a 1 1 0 0 0 3
b 1 1 1 1 1 3

2
a 2 1.8 1 0.9 0.9 2.6
b 1 1 1 1 1 2.6
c 0 0 1 0.9 0 2.4

3

a 2 1.8 2 1.5 1.5 2.1
b 1 1 1 1 1 2
c 1 0.5 1 0.9 0.5 1.5
e 1 0.5 0 0 0 1.5

4

a 2 1.8 2 1.5 1.5 1.7
b 2 1.2 2 1.2 1.2 1.4
c 2 0.7 1 0.9 0.7 0.9
e 1 0.5 0 0 0 0.6

Table 1: Sample corpus and Layered execution example

P

xl, Fcomb(x1, · · · , xj) = min(xl), Fpkg(x1, · · · , xn) =
P

xl

if min(xl) > 0, and0 otherwise. For the sake of clarity, we assume
that, during preprocessing, no entity scores were materialized, and
the bound computed on the maximum cardinality of all entities wrt.
any list is 3 (i.e., in this corpus, the score of every entity can be in-
fluenced by at most 3 documents). Moreover, we assume that SA’s
access inverted lists one document id at a time, even though in prac-
tice, for performance considerations, document id’s are retrieved in
larger batches.

Assume we want to identify the top 1 package wrt. query({w1,
w2}, {w3}); i.e., the top package where the first entity (of typeT1)
is most relevant to keywordsw1 andw2, and the second entity (of
type T2) is most relevant tow3. Moreover, assume Layered has
somehow determined thatD1 = 3 andD2 = 2 top entities of each
type,T1 andT2, are needed in order to determine the top 1 package.

Layered will first identify the topD1 = 3 entities of typeT1

(lines 3-10). A SA is performed on both inverted lists ofw1 and
w2 (line 7). This results in documentsd5 andd1 being retrieved.
By probing MT1 , Layered discovers that they are related to en-
tities a, b and b, respectively. Entries fora and b are created in

SeenEntT1 ; information regarding how many times they have been
encountered on every list, and their aggregate score wrt. every list,
is recorded.a initially has lower boundLB = Fcomb(1, 0) = 0,
since, at this point, it is possible that its score wrt.w2 will be 0
(recallFcomb = min). Upper bounds for all entries inSeenEntT1

are then calculated, (line 8) using their currentAgScore ’s, and ev-
ery maxUnseen i (which is currently 1, for both lists). The state
of SeenEntT1 after these operations is shown in table 0(g), step 1.
This procedure is repeated another three times (tab. 0(g), steps 2-
4). Moreover, after step 4, the best score that entitye can possibly
obtain (UB = 0.6) is less than the worst possible score that any of
the top-3 entitiesa, b or c can obtain; as only 3 top entities need to
be calculated,e is pruned (line 8). Independently, since no further
entity yet unseen can become part of the top-3 (line 9), Layered
proceeds by performing BA’s on all lists, until the final scores of
a, b andc (1.5, 1.2 and0.9, respectively) are discovered. Similarly,
Layered identifies that the topD2 = 2 entities of typeT2 areα and
β, with scores0.9 and0.5, respectively.

Layered then proceeds by joining the identified top entities of
typesT1 andT2, using known associations tableR, in a rank-aware
fashion (lines 11-23). UsingR, after processing entitiesa, b and
α, Layered determines thatb, α is the currently top package, with
score2.1. Moreover, the next best entities of each type have scores
0.9 and 0.5, respectively. Thus, assuming they were associated
with the top entities of the other type, the resulting packages would
have scoresFpkg(0.9, 0, 9) = 1.8 andFpkg(1.5, 0, 5) = 2, respec-
tively. Since none of these is better than the score of the package
b, α, Layered concludes that it is the top 1 package, and terminates
processing (line 22).

3.2 Estimating Di

The Layered algorithm crucially depends on knowing the pre-
cise value of allDi (the number of entities of every typeTi that
are needed, in order to identify the topk packages). Clearly, this is
an unrealistic assumption, as in general one would need to execute
the entity package finder query in its entirety in order to determine
these values. Thus, a realization of the Layered algorithm would
call for anestimationD′

i of Di. Let us now examine the implica-
tions on query processing, by showing how theD′

i estimation can
be performed using state-of-the art techniques.

This estimation problem is strongly related to the Depth Estima-
tion problem in the context of a rank-join algorithm ([16]). Indeed,
[16] proposes techniques that could be readily adapted for estimat-
ing D′

i. However, this adaptation necessitates a strong assumption;
namely that sufficient statistics are known about the distribution of
the scores of packages wrt. any given query. The statistics should
be detailed enough to provide the following information, as accu-
rately as possible:

Given a tuple of entity scores(s1, s2, · · · , sn),

• How many valid packages(e1, e2, · · · , en) exist, such that
the score of eachei is preciselysi? and

• For everyi, what is the largest numbers′i such thats′i <
si, and there exists at least one valid package with score
(s1, · · · , si−1, s

′

i, si+1, · · · , sn)?

In order to provide such statistics, one has essentially two op-
tions. Firstly, one can materialize in a preprocessing phase, for
every entity of every type, the precise distribution of the scores of
its related documents wrt. every inverted list. These distributions
can then be used, in conjunction with the known associations table,
to estimate the score distribution of packages at runtime. However,
materializing all this information has an enormous space overhead,

915

on the order of the corpus size itself6.
The second option, is to estimate the score distribution of pack-

ages by sampling (assuming the API available onR enables such an
operation, e.g. in the case of dynamic known associations). Specif-
ically, at runtime, one can select some packages at random, and cal-
culate exactly the scores of all their entities, wrt. the given query.
Unfortunately, these calculations have a very high runtime over-
head, as they requireRandom Accesseson the scores of a number
of entities, which are unfeasibly expensive operations in our set-
ting7). Moreover, in order to ensure that the sampling produces a
reasonably small estimation error, a sizeable fraction of entities’
scores would need to be calculated. Hence, the runtime overhead
of this option is clearly too high to be used in practice.

Summarily, using state-of-the art techniques for estimatingD′

i

in the context of the Layered algorithm, will either have an exces-
sive storage and/or runtime overhead, or will entail sizeable and
unpredictable estimation errors. These errors will largely affect the
performance of the Layered algorithm. If, for somei, D′

i > Di,
Layered will be forced to perform more processing than necessary.
Even worse, if for somei, D′

i < Di, Layered will not be able to
identify the topk packages; thus it will need to perform some addi-
tional processing (including re-doing some processing previously
performed), to first identify a numberD′′

i > D′

i of top entities of
typeTi, and then resume the rank-join process.

It should thus be clear that an efficient realization of Layered
is not possible, due to the significant overheads imposed by the
estimation procedure. To address this issue, we subsequently in-
troduce Interleaved, an efficient algorithm for the entity package
finder problem, thatdoes not relyon knowledge or estimations of
Di. Despite not using such estimates, we show that Interleaved is
as efficient as a hypothetical, idealized instantiation of the Layered
algorithm, that would have freely available accurate knowledge of
all Di.

4. THE INTERLEAVED ALGORITHM
The essense of the Interleaved algorithm is to incrementally main-

tain score information on the package level. To do so, while scan-
ning inverted lists, Interleaved keeps updating the score bounds of
both entities, as well as packages (by interleving the operations of
rank-aware aggregation and rank-join). Using this knowledge, it
is able to prune non-promising entities and packages, and thus to
terminate early. The high efficiency of Interleaved originates prin-
cipally from two novel features: theinterleaved pruningof enti-
ties, and thetight boundingof package scores. Both these features
are designed to exploit the distribution of fixed associations, and

6In a large-scale, real dataset utilized in our experiments (see sec.
5.2, corpusREAL), storing such information incurs an additional
average space overhead of 15% per entity type. The corpus con-
tains 9 entity types, so these statistics require more storage than the
corpus itself. A similar space blowup was observed in the synthetic
corpora we utilized in our experiments.
7With respect to the cost of Random Accesses, note that, in order
to calculate the score of a single entity, one would need to retrieve
all documents in the corpus that are related to the entity, and scan
them to determine their score wrt. all query keywords. Thus, this
calculation entails a number of diskrandom seeksequal to the car-
dinality of the entity (i.e. the number of documents related to it);
in a corpus of real data we used in our experiments (sec 5.2, corpus
REAL), this was on average 17-40 documents per entity (depend-
ing on the type of the entity). Note also that such Random Accesses
cannot be performed in batches - i.e. using Batch Accesses- as this
would result in redundantly executing a large part of the query it-
self in a preprocessing phase, solely for the purpose of obtaining
estimates.

Algorithm 4 Interleaved Algorithm
Input: QueryW , Number of desired answersk
Output: The topk packages wrt.W
1: while the topk packages have not been identifieddo
2: performBA = false
3: for each entity typeT do
4: if performBA then
5: Perform a BA on every inverted list for typeT
6: else
7: Perform a (modified) SA on every list for typeT
8: UpdateUB’s in SeenEntT

9: for each entity typeT do
10: UpdateUB’s in Cand , using information fromSeenEntT

11: Prune packages withUB < minK , and decrement the
refCounts of all their entities

12: UpdateLB’s in Cand in packages with entities whoseLB’s
have been updated

13: Prune entities withrefCount = 0
14: if minK ≥ MaxUnseenPkg (see eqn. 2)then
15: performBA = true

are subsequently explained in detail. Through careful engineering,
this added functionality is achieved with only moderate extra book-
keeping effort.

Interleaved maintains a few additional data structures, besides
those detailed in section 2.4. Firstly, aCandidate Packagetable,
Cand , which contains all promising packages (i.e. those that might
rank among the final top-k). Entries inCand are of the form
(e1, e2, · · · , en, UB, LB), whereei denote pointers to the entry
of entity ei in the respectiveSeenEntTi

table; UB andLB are
bounds (upper and lower, respectively) on the final score of the
package. Interleaved also maintains a priority queue containing
the k most promising packages (based on theirLB’s), as well as
minK , theLB of thek’th top package. Finally, entries inSeenEnt
tables are augmented with areference countfield, refCount (this
field is used for interleaved pruning, and is described shortly).

Let us now examine the operation of Interleaved (pictured in alg.
4) in detail. Until the top-k packages have been identified, Inter-
leaved does the following (line 1). First, it performs some SA’s
on every inverted list, for every entity type (line 7). The algorithm
for SA’s it uses is slightly modified from the alg. 1. Specifically,
whenever an entitye is first encountered (line 7 in alg. 1), entries in
Cand are created for all the packagese participates in. This is done
by probing the known associations table,R, for packages contain-
ing e, and creatingCand entries for every such package. If needed,
placeholder entries are created inSeenEnt tables for other entities
in these packages; subsequently, therefCounts of all entities in
these packages are incremented.

Having performed these modified SA’s, Interleaved updates up-
per bound information inSeenEnt tables (line 8). Using this in-
formation, it then updates upper bounds in the Candidate Package
table (line 10). Interleaved prunes packages that are certain to not
rank among the final top-k, based on their score upper bound, and
decrements their entities’refCounts (line 11). Interleaved also up-
dates lower bound information inCand (line 12); for the sake of ef-
ficiency, it only updates packages containing entities with recently
updatedLB’s (this is recorded in a separate flag).

In line 13, the feature of interleaved pruning manifests itself. En-
tities that do not participate in any promising package are pruned.
In this manner, a large number of entities can be pruned, indepen-
dently of how high their score is, just by exploiting the distribu-
tion of known associations. This leads to a significant decrease in
processing effort, as there are fewer entities to keep track of, and
to earlier termination. Moreover, by keeping track of the number

916

of packages an entity participates in (through itsrefCount), inter-
leaved pruning is very efficient, and imposes but a minimal storage
overhead.

Finally, in line 14, Interleaved decides whether a superset of the
final topk answers has been identified, and SA’s can therefore be
replaced by BA’s. Another significant feature of Interleaved is an
improved condition for making this decision. Adapting standard
rank-join techniques ([11]), as in the case of Layered, results in an
overly conservative bound on the maximum score of a package not
yet encountered. Specifically, letsi(bi) be the best score obtain-
able by an entity of typeTi that has not yet been encountered, and
let si(1) be the overall best score obtainable by an entity of type
Ti. Then, the bound on the best score obtainable by a package that
has not yet been encountered is given by eqn. 1. This bound cor-
responds to assuming that a package may exist, containing the top
entity of each type but one, and an entity yet unseen on that type.
Interleaved, on the other hand, by maintaining bounds on the scores
of all packages that contain at least one seen entity, has access to
more information; namely that any package not inCand can only
consist of entities not yet encountered. Hence, Interleaved uses the
following upper bound on the score of a package not inCand in
line 14:

MaxUnseenPkg = Fpkg(MaxUnseenT1 , · · · ,MaxUnseenTn
)

(2)

This bound, which exploits known associations, is in fact atight
boundingscheme on package scores (in the spirit of [15]); in a
sense, this is the tightest possible bound that can be provided. More
formally, there always exists a set of documents that could appear
later on some inverted lists, and a set of their relationships to en-
tities in the corpus, such that the most promising package not cur-
rently inCand obtains a final score equal toMaxUnseenPkg . This
is in contrast to the bound employed by Layered and by rank-join
algorithms, which can be significantly looser. The tight bounding
scheme significantly boosts the pruning power of Interleaved.

To summarize, in Interleaved we have effectuated an early prun-
ing and termination strategy, that is entirely independent of any
estimates, and has a very moderate bookkeeping overhead. Enti-
ties are now pruned based on whether they might be part of some
top package, rather than their current score alone, by dint of anin-
terleaved pruningpolicy that exploits the distribution of packages.
Moreover, in contrast with standard rank-join algorithms, package
scores aretightly bounded, based on the best score they can actu-
ally achieve. These features offer the Interleaved algorithm addi-
tional opportunities for improved performance, compared to Lay-
ered, without relying on potentially erroneous and expensive esti-
mations.

4.1 Execution example
To illustrate the workings of Interleaved, we show how it pro-

cesses the scenario previously discussed in sec. 3.1; we refer to
table 3.1 for the corpus used. In table 4.1 we provide a trace of the
contents of theCand table at every execution step (i.e., at every
iteration of line 1). Moreover, as the functionality ofSeenEnt ta-
bles has been demonstrated in sec 3.1, we only provide a summary
thereof, containingLB’s andUB’s for every entry. In step 1, a SA
is performed on every inverted list (line 7), andSeenEnt tables are
populated. Moreover, entries concerning all packages that contain
an entity in someSeenEnt table are inserted inCand . Finally,
empty entries are inserted inSeenEnt tables, concerning entities
that are mentioned in some package inCand , but do not have a
SeenEnt entry (e.g. β, γ). This procedure is repeated in step 2.

SeenEntT1 SeenEntT2 Cand
Step EntId LB UB EntId LB UB EntId1 EntId2 LB UB
1 a 0 3 α 0.7 2.1 b α 1.7 5.1

b 1 3 β 0 2.1 b β 0 5.1
γ 0 2.1 a γ 0 5.1

2 a 0.9 2.6 α 0.7 1.7 b α 1.7 4.3
b 1 2.6 β 0.5 1.5 b β 1.5 4.1
c - - γ 0 1.5 a γ 0 4.1
e 0 2.4 e β 0 3.9

3 a 1.5 2.1 α 0.7 1.3 b α 1.7 3.3
b 1 2 β 0.5 0.9 b β 1.5 2.9
e 0 1.5 γ 0.2 0.6 a γ 1.7 2.7

e β 0 2.4
4 a 1.5 1.7 α 0.8 0.9 b α 2 2.3

b 1.2 1.4 β 0.5 0.7 b β 1.7 2.1
e 0 0.6 γ 0.2 0.4 a γ 1.7 2.1

e β 0 1.5

Table 2: Interleaved Execution example

Note that entityc was pruned (line 13), as it does not participate in
any package. After 2 more steps, in step 4, packagee, β is ascer-
tained to not be the top package, and it is pruned. This results in the
pruning of entitye as well. In the final step (not shown), package
scores are fully disambiguated, and packageb, α is determined to
be the top package with score 2.1.

4.2 Extensions
Informed Access Scheduling: The Interleaved algorithm de-

scribed above is very efficient, without requiring any estimations.
However, it is still not optimal. Consider a problem instance where,
in order to identify the top 5 packages, 500 SA’s are required on one
inverted list, and only 10 on all the others. Since Interleaved per-
forms SA’s in a round robin fashion, 500 SA’s will be performed
on all lists before the algorithm terminates. It could thus help per-
formance if accesses were scheduled taking properties of the un-
derlying data distribution into account, so that fewer accesses are
performed till termination.

Techniques for scheduling accesses in an informed manner have
been proposed in [7], in the context of standard top-k query pro-
cessing. It is only natural to investigate the extent to which such
methods may be beneficial to our setting as well. Utilizing such
techniques, one could try to effectively allocate SA’s to inverted
lists, so as to reduce the total number of required accesses. Using
statistics on i) the score distribution of every inverted list and ii)
the distribution of documents on every inverted list matching ev-
ery entity, one may try to adapt the KBA framework from [7] to
the entity package finder setting. Periodically, the adapted KBA
framework can be used to estimate the “Benefit” that some number
of SA’s on a given list will have on processing, and select the most
“beneficial” allocation of SA’s to inverted lists (“Benefit” here is a
quantity highly correlated with the remaining processing effort, i.e.
highly “beneficial” SA’s lead to shorter expected processing times).

Optimizing the schedule of SA’s requires posing a number of
queries over the materialized statistics. Due to our setting involving
aggregation, compared to the setting in [7], informed scheduling re-
quires that orders of magnitude more such queries be posed. More-
over, it requires that additional independence assumptions be made,
leading to lower accuracy; hence it is expected to be less useful in
reducing processing overhead. These expectations are consistent
with our empirical observations, on our adaptation of KBA. On av-
erage, more than half of query time was spent on informed schedul-

917

ing, as opposed to actual query processing; moreover, the amount
of query processing effort was not significantly reduced. For these
two reasons, we do not further pursue an informed scheduling ap-
proach in this work. Further details on our adaptation of KBA can
be found in [3].

Further extensions: More generally, we note that Interleaved
is amenable to further extensions of the entity package finder prob-
lem, such as taking into account individual user preferences; we
discuss such extensions in [3].

5. EVALUATION

5.1 Analysis
As introduced, the Interleaved algorithm has two potential sources

of performance benefits:interleaved pruningof entities andtight
boundingof package scores. In this section, we propose two mod-
els that capture the intuition behind these sources, and help in com-
paring Interleaved with Layered. To effectuate this comparison, we
use a hypothetical, idealized instantiation of the Layered algorithm,
by providing it with an oracle for the exact values of allDi for the
query being processed. To highlight this fact, we refer to this oracle
instantiation of Layered as LayeredDi .

5.1.1 Benefits of interleaved pruning
To capture the benefits of interleaved pruning, we introduce the

notion of anentity-package ranking coefficientof a dataset. Most
top-k query processing approaches (recast in entity package finder
terms) assume that top packages tend to be composed of top enti-
ties. The entity-package ranking coefficient embodies, in a sense,
the quantitative relationship between these; i.e. how many top en-
tities are needed for every top package. As we will shortly see, this
relationship strongly affects the effectiveness of interleaved prun-
ing.

Whereas top packages tend to be composed of top entities, the
converse is clearly not true; an entitye with a mediocre score can
be part of a top package, and an entitye′ of the same type, with
a higher score thane, might not be part of any. LetEi denote the
set of all entities of the latter kind wrt. a query (i.e. top entities of
typeTi, which nevertheless do not participate in any top package).
LayeredDi expends unnecessary effort to fully process entities in
Ei , by computing the topDi entities of each typeindependently
of the resulting packages. Interleaved pruning, however, provides
Interleaved the ability to avoid this overhead. We therefore expect
that, the more entities in allEi that exist wrt. a query, the greater
the performance improvements due to interleaved pruning. Ob-
serve that the number of such entities is strongly correlated with
the total number of top entities,Di, that need to be examined, as
only a fraction of all entities examined will participate in some top
package. Finally, note that allDi are positively correlated with the
number of top packages required, since the more top packages that
need to be identified, the more entities will have to be examined.
Thus, we can quantify the effects of interleaved pruning by exam-
ining the expected number of entities that need to be examined per
answer package identified, i.e. the expected value ofDi

k
.

We quantify this value as follows: For a given corpus, and for
every entity package finder queryW , let k be the number of top
packages requested byW . As per definition, the rank of the lowest
scoring entity of typeTi that needs to be computed, in order to iden-
tify the topk packages, isDi. We define the entity-package ranking
coefficient for this case,ci(Ti, W, k), asci(Ti, W, k) = Di

k
. Es-

sentially,ci provides a measure of the number of entities of type
Ti that need to be calculated, in order to identify an additional top
package; in other words, a measure of the necessary amount of pro-

cessing per result package. In generalci will depend on many fac-
tors, such as the corpus, the query being processed, and the number
of top packages requested.

Let P (W, k) be the probability that queryW is issued, request-
ing a numberk of top packages (this probability may be derived
from a known querylog, or via a uniformity assumption). We de-
fine theentity-package ranking coefficientof our entire datasetC,
as a random variable, distributed according to the following distri-
bution:

Prob(C = x) =
1

n

X

∀Ti,W,k

P (W,k) · [|ci(Ti, W, k) = x|]

where [|A|] = 1 if A is true, and0 otherwise

Given the discussion presented above wrt. interleaved pruning,
we expect that in every dataset, the relative performance of Inter-
leaved versus LayeredDi to be positively correlated with the ex-
pected value ofC. That is, for larger expected values ofC, we
expect the performance gains of Interleaved versus the idealized
LayeredDi to increase, due to the effects of interleaved pruning.
We validate this trend in sec. 5.2, usingmicro-experimentswhich
measure local expected values ofC in a dataset.

5.1.2 Benefits of tight bounding
We subsequently introduce the notion ofentity association prob-

ability, that illuminates the performance benefits due to tight bound-
ing. Entity association probability embodies a notion of known as-
sociation “density”, i.e. what fraction of possible associations in
fact hold. We shortly discuss how this measure captures the perfor-
mance benefits of tight bounding.

Recall that Interleaved utilizes known associations to provide
tight bounds on the maximum score a package not yet encountered
can have,MaxUnseenPkg . Tight bounding results from ensuring
that the best package not yet encountered only consists of entities
not yet encountered. Thus its score will be an aggregate of the
scores,MaxUnseenTi

, of these entities (eqn. 2), as opposed to
an aggregate of the scores of thebest entities of each typeand one
of MaxUnseenTi

(eqn. 1). The tightness of these bounds, and
hence the effectiveness of the tight bounding scheme, depend on
the probability,Passoc , that n arbitrary entities of different types
are associated (i.e. form a valid package). As this likelihood in-
creases, the value of information obtainable by known associations
decreases, and tight bounding approaches the bounding scheme
used by LayeredDi . To illustrate this point, observe that knowing
which packages are valid is not very useful for bounding if a large
fraction of possible packages are valid. Note that, by definition,
Passoc = {# of known associations}/Πi{# of entities of typeTi}

On the other hand, LayeredDi boundsMaxUnseenPkg in a con-
servative manner, as it cannot exploit known associations. More-
over, the number of top entities it calculates per type,Di, is not de-
pendent on the resulting packages. Thus, by increasingPassoc , the
only component affected in LayeredDi is the rank-aware join oper-
ation. The latter is expected to terminate earlier for largerPassoc ,
asPassoc corresponds to the join selectivity.

Thus, we expect the relative performance of Interleaved versus
LayeredDi to be negatively correlated withPassoc ; i.e. for smaller
values ofPassoc , we expect the performance gains of Interleaved
versus the idealized LayeredDi to increase, in part due to tight
bounding. We validate this trend in sec. 5.2.

5.2 Experimental Evaluation
The Interleaved algorithm processes entity package finder queries

without relying on knowledge or estimates ofDi. Layered requires

918

(a) Comparison to LayeredDi overC (b) Comparison to LayeredDi overPassoc (c) Scalability vs # document-entity rela-
tionships

(d) Scalability vs # keywords (e) Scalability vs # documents (f) Scalability vs # entity types

Figure 3: Experimental Evaluation

these values, and their estimation, as shown in sec. 3.2, incurs
an unreasonably high runtime and/or storage overhead. To effec-
tuate a comparison between the two algorithms, and demonstrate
the performance benefits of our proposed techniques, we compared
Interleaved with LayeredDi , an idealized instantiation of Layered
(i.e. Layered with an oracle for the exact values of allDi). In order
to implement the latter, the exact values ofDi for every query were
precalculated in a brute force manner.

Our experiments, on large-scale synthetic datasets show that In-
terleaved is about as efficient, and in practical cases even more effi-
cient, than this idealized instantiation of Layered, thus manifesting
the effectiveness of our techniques. Moreover, they validate the
trends predicted in sec. 5.1. Further experiments demonstrate the
efficiency and scalability of our approach, on both real and syn-
thetic datasets.

In order to stress our algorithm on large-scale datasets, we gener-
ated large-scale synthetic corpora, denotedSYNTH . Unless oth-
erwise noted, allSYNTH corpora contained 50M documents, two
types of entities, 10K entities of each type and 5M document-entity
relationships per entity type. Every keyword appeared in a varying
fraction of all documents, ranging in 0.5-0.05. The queryload used,
unless otherwise noted, consisted of 50 queries with 1-3 keywords
per entity type, requesting the top 1-10 answers. For generating
these corpora, all data distributions (document scores, document-
entity relationships, entity associations, query sizes, etc.) were uni-
form. Our experiments used static entity associations, however we
note that using dynamic associations, as described in sec.2.1 does
not affect our results; this is due to entity associations being ac-
cessed via the same API, regardless of whether they are static or
dynamic.

To demonstrate the applicability and efficiency of our approach,
we also experimented on a large corpus of real data,REAL. We
utilized data from BlogScope ([6]), an analysis and visualization
tool for the blogosphere, currently monitoring over 28M blogs and
over 400M blog posts. We used all indexed posts made in the 10-
day period between June 11th and 21st (excluding spam, and posts

in languages other than English), resulting in over 3.7M documents.
From these documents, we extracted 600K Named Entities of 9
different types, using an Information Extraction tool developed in-
house at the University of Toronto. In this way we extracted over
4.1M document-entity relationships. Entity associations were de-
termined to hold between pairs of entities with statistically signifi-
cant co-occurences in these blog posts, for a total of 110K associa-
tions. WhereasREAL represents only a 10 day sample of discus-
sions in the blogosphere, it serves to demonstrate that our approach
can be efficiently applied on real-world, large-scale corpora.

We implemented both LayeredDi and Interleaved in Java 1.6.
As scoring functions (sec. 2.3) we usedFagg =

P

, Fcomb =
min, Fpkg =

P

; this choice of scoring functions favors pack-
ages with entities that are, on average, most relevant to all query
keywords. We note that other choices of scoring functions, em-
bodying different semantics, are possible (subject to the loose con-
straints detailed in sec. 2.3); experiments with different scoring
functions yielded similar performance trends. Our implementation
maintained document-entity relationships and known associations
in main memory; as discussed in sec 2.1 this is a reasonable as-
sumption, even for very large corpora. All our experiments were
executed on a machine with an Intel Core2 Duo CPU, operating at
2.93GHz, and 4GB of memory; our experiments utilized only one
CPU core. In all experiments we report query running time, mea-
sured from the moment a query is issued until answers are reported
to the user. We do not take into account the small runtime over-
head of system initialization, as it occurs only once, regardless of
the number of queries processed.

For validation purposes, we also compared our algorithms with
an approach that used only RDBMS technology. Specifically, we
stored theSYNTH corpus as indexed tables in a relational database
(MySQL 5.5), and wrote our entity-package finder queries in SQL.
We expect this approach to be highly inefficient, as it needs to cal-
culate precise scores of every entity and package, followed by a
selection of the top-k packages. Indeed, when executing our test
queries, this approach had average query execution time up to an

919

order of magnitude larger than our proposed Interleaved algorithm,
depending on query parameters. For this reason, we do not further
consider such RDBMS-based approaches, but focus instead on ap-
proaches with early termination and pruning properties (Interleaved
and LayeredDi).

5.2.1 Comparison with LayeredDi

We first present an evaluation of the relative performance of In-
terleaved and an instantiation of Layered utilizing an oracle to ob-
tain preciseDi values, termed LayeredDi . We stress that this al-
gorithm (LayeredDi) is provided as a point of comparison, and is
not practically realizable (in practice, obtaining precise values of
Di is not possible, and estimating them incurs unreasonable stor-
age and/or runtime overheads, see sec.3.2). In our first compar-
ative experiment, we varied the number of known associations in
theSYNTH corpus, from 2.5K to 500K, corresponding toPassoc

of 25 · 10−6 to 500 · 10−6, and executed a queryload of 50 queries,
each with 1-5 keywords per entity type, using both Interleaved, and
LayeredDi (Recall thatPassoc denotes the probability thatn arbi-
trary entities of different types are associated. Due to its semantics,
we expect it to have very low values in practice. To provide a sense
of perspective with respect to the values ofPassoc tested, we note
that observed values forPassoc in REAL, the real-world corpus
we used, ranged from4.2 · 10−6 to 21 · 10−6. Thus, this experi-
ment stresses Interleaved well beyond the operational parameters
we typically expect to encounter.). In fig. 3(b) we show aver-
age query time for both LayeredDi and Interleaved. As one can
see, Interleaved outperforms LayeredDi for all practical values of
Passoc , with performance gains of up to 76%. Moreover, one can
observe the trends predicted in sec. 5.1.2, namely that the perfor-
mance of Interleaved increases, and that of LayeredDi decreases,
for lower values ofPassoc , due to the effects of tight bounding. Fi-
nally, we observe a roughly equal performance (Interleaved being
0.18% slower than LayeredDi), for Passoc = 500 · 10−6. Even
though this is an unreasonably high value (in view of the observed
Passoc ∈ [4.2 · 10−6, 21 · 10−6] in REAL, as discussed above),
we subsequently focus on it, to evaluate the performance benefits
of interleaved pruning.

In our second comparative experiment, we evaluate the perfor-
mance benefits of interleaved pruning. We expect Interleaved to rel-
atively outperform LayeredDi due to interleaved pruning, in cases
with higher entity-package ranking coefficient,C, i.e. when top
packages also require entities that are not among the top (see sec.
5.1.1). To validate this expectation, we utilized theSYNTH cor-
pus, and executed a queryload of 500 queries, each with 1-5 key-
words per entity type, using both Interleaved, and LayeredDi . As
previously noted, the parameterPassoc was chosen to ensure a roughly
equal performance, on average, of Interleaved and LayeredDi . Each
query execution is amicro-experiment, where local expected values
of C in the dataset can be measured (asavg i

`

Di

k

´

, where averages
are computed over all entity typesTi, for the given query). We
measured the performance benefits of interleaved pruning as Time
Gained, which we define as{execution time using Interleaved} −
{execution time using LayeredDi}. We grouped our observations
using an equi-depth histogram on the local measured values ofC,
and report average Time Gained per query in fig. 3(a). We observe
the trend predicted in sec. 5.1.1, thus validating our previous anal-
ysis. As a note, recall that we setPassoc to a “break-even” point
between Interleaved and LayeredDi ; had we set it to a lower value,
such as observed in real data, fig. 3(a) would be completely favor-
able towards Interleaved.

5.2.2 Scalability

Having shown significant performance benefits of our proposed
algorithm, Interleaved, over the oracle baseline LayeredDi , we next
evaluate its scalability and efficiency, using large-scale synthetic
corpora. Note that these are significantly larger, wrt. all operating
parameters, than corpora one would expect in practice; as we sub-
sequently demonstrate, using a real dataset, performance in practice
is orders of magnitude better (sub-second average query time - cf.
sec. 5.2.3).

Number of document-entity relationships: The number of doc-
ument - entity relationships in a corpus is an important factor affect-
ing query processing performance, as it influences the early prun-
ing/termination capabilities of Interleaved, wrt. document score
aggregation. To test the scalability of our approach, in this experi-
ment we varied the number of document-entity relationships in the
SYNTH corpus, from 1M to 5M per entity type, and executed our
typical query workload using Interleaved. We show average query
execution time in fig. 3(c), and observe that Interleaved gracefully
scales to a large number of document-entity relationships.

Number of keywords in query: In this experiment we used the
SYNTH corpus, and executed four query workloads of 50 queries
each, using Interleaved. We varied the number of keywords in each
query from 1 to 4 keywords per entity type (i.e. between 2 to 8
keywords per query). Average query execution time, shown in fig.
3(d), demonstrates that Interleaved scales gracefully with respect to
the number of keywords in a query. We note that, typical user key-
word queries involve a small number of keywords, a trend that we
expect carries across to entity-package finder queries; in practice,
we expect a typical workload to involve fewer keywords per query
than in this experiment.

Number of documents: The number of documents contained in
a corpus naturally affects performance, but is less crucial to perfor-
mance than other parameters. Observe that, all other things being
equal, scaling the number of documents in a corpus will increase
I/O overhead, and the number of probes to document-entity rela-
tionship tables, but will not significantly affect other query process-
ing components (e.g. rank-aware aggregation or join). We verify
this trend by varying the number of documents in theSYNTH cor-
pus, from 50M to 200M per entity type, and executing our typical
query workload using Interleaved. Fig. 3(e) shows average query
processing time, demonstrating a graceful, near-linear scaleup trend
with respect to the number of documents in the corpus. This trend
validates our expectations that Interleaved can efficiently scale up
to very large document collections.

Number of entity types: In this experiment we varied the num-
ber of entity types in theSYNTH corpus, from 2 to 10, and exe-
cuted our typical query workload using Interleaved. We observed a
near-linear scaleup in average query execution time (shown in fig.
3(f)), demonstrating the scalability of our approach wrt. the number
of entity types involved in a query. Note that, intuitively, an actual
user query is expected to involve only a small number of types, and
certainly fewer than 10; as in previous experiments, we chose to
stress our algorithm with operating parameters significantly larger
than in practice, to observe its trends wrt. scalability.

5.2.3 Experiments with real data
To demonstrate the applicability of our techniques on real data,

we also utilize theREAL corpus described above. For every differ-
ent kind of pairwise entity associations (e.g. Person A is associated
with Company C, e.g.2 Band B is associated with Person D), we
executed a query workload containing 200 queries, each with 1-5
keywords per entity type, using both LayeredDi and Interleaved.
Query keywords were randomly chosen from a list of adjectives
most commonly used in English.

920

The relative performance of LayeredDi and Interleaved on real
data validates our expectations from synthetic data (fig. 3(b)). Specif-
ically, given that theREAL corpus exhibits values ofPassoc signif-
icantly lower than those shown in fig. 3(b), we expect Interleaved
to outperform LayeredDi by a large margin. Indeed, when exe-
cuted on theREAL corpus, Interleaved was more than one order
of magnitude faster than LayeredDi . Moreover, Interleaved pro-
cessed each query in under 1.5 sec; average execution time ranged
from 0.25 sec to 0.5 sec per query, depending on the scenario of
pairwise associations being tested. Overall, average query process-
ing time using Interleaved was under 0.34 sec. We observe that
our proposed algorithm is able to efficiently answer entity package
finder queries on large, real-world corpora, validating our observa-
tions obtained from experimentation on synthetic corpora.

6. RELATED WORK
The entity package finder problem, presented in this work, be-

longs to the general area of top-k query processing. However, stan-
dard top-k techniques (e.g. [10]) do not apply, due to the document
score aggregation that needs to take place. [9] and [5] proposed
algorithms for calculating top-k over aggregation; however, these
do not consider joins, and hence cannot be used for solving the en-
tity package finder problem. Moreover, the techniques presented
therein cannot be efficiently adapted to our problem, as the result-
ing algorithm would rely on estimations with very high runtime
and/or storage overhead. Such estimation problems, albeit in much
simpler settings, are discussed in [16]. The techniques proposed in
this work cannot be efficiently applied in the entity package finder
setting; the reason is that document score aggregation introduces
an added complexity for providing the requisite statistics for esti-
mation. Another related work is [2], which discusses methods for
efficiently estimating properties of joins. However, these methods
only apply to primary key-foreign key joins, and cannot thus be
applied to our estimation problem, which involves a more general
kind of joins.

Another related line of works deals with rank-aware join algo-
rithms (e.g. [11], [15]), that efficiently compute top-k over joins.
Our approach extends the scope of these frameworks, to include
rank-aware aggregation. General rank-aware query processing sys-
tems have been extensively studied in the literature (e.g. [14], and
its extensions [12], [18]). These works, however, do not discuss ag-
gregation, and cannot thus be applied in the entity-package finder
setting. A rank-aware query processing system capable of top-k
query processing over joins and aggregation is proposed in [13], but
the techniques it presents assume that joins occur before aggrega-
tion (e.g. as is typically the case in SQL queries). These semantics
are not compatible with the entity package finder problem (where
joins need to be performed on top of aggregated results), and the
techniques proposed in this work cannot be efficiently applied to
our setting.

Scheduling accesses in an informed, data-adaptive manner, for
increased performance, has been investigated in [7], in the context
of the Threshold Algorithm ([10]). An adaptation of such tech-
niques to our setting is not practical, as it has a large runtime over-
head, due to properties of our setting.

7. CONCLUSIONS
In this work, we introduced the class of entity package finder

queries. We examined algorithms resulting from adaptations of
previous work, and we proposed Interleaved, an efficient algorithm
to process such queries, by devising early pruning and termination
strategies, in the presence of joins and aggregations, that do not

depend on any estimates. We demonstrate the efficiency and scala-
bility of our approach analytically and by experiments, on both real
and synthetic large-scale data.

8. REFERENCES
[1] Opencalais. http://www.opencalais.com. Retrieved on June

23, 2008.
[2] S. Acharya, P. B. Gibbons, V. Poosala, and S. Ramaswamy.

Join synopses for approximate query answering. InSIGMOD
Conference, pages 275–286, 1999.

[3] A. Angel, S. Chaudhuri, G. Das, and N. Koudas. Ranking
objects based on relationships and fixed associations.
Tech.report, 2008. Available at
http://www.cs.toronto.edu/ albert/docs/acdk-edbt09.pdf.

[4] D. E. Appelt and D. Israel. Introduction to information
extraction. InIJCAI Tutorial, 1999.

[5] N. Bansal, S. Guha, and N. Koudas. Ad-hoc aggregations of
ranked lists in the presence of hierarchies. InSIGMOD
Conference, 2008.

[6] N. Bansal and N. Koudas. Blogscope: A system for online
analysis of high volume text streams. InVLDB, pages
1410–1413, 2007.

[7] H. Bast, D. Majumdar, R. Schenkel, M. Theobald, and
G. Weikum. Io-top-k: Index-access optimized top-k query
processing. InVLDB, pages 475–486, 2006.

[8] K. D. Bollacker, C. Evans, P. Paritosh, T. Sturge, and
J. Taylor. Freebase: a collaboratively created graph database
for structuring human knowledge. InSIGMOD Conference,
pages 1247–1250, 2008.

[9] K. Chakrabarti, V. Ganti, J. Han, and D. Xin. Ranking
objects based on relationships. InSIGMOD Conference,
pages 371–382, 2006.

[10] R. Fagin, A. Lotem, and M. Naor. Optimal aggregation
algorithms for middleware. InPODS, 2001.

[11] I. F. Ilyas, W. G. Aref, and A. K. Elmagarmid. Supporting
top-k join queries in relational databases. InVLDB, pages
754–765, 2003.

[12] I. F. Ilyas, W. G. Aref, A. K. Elmagarmid, H. G. Elmongui,
R. Shah, and J. S. Vitter. Adaptive rank-aware query
optimization in relational databases.ACM Trans. Database
Syst., 31(4):1257–1304, 2006.

[13] C. Li, K. C.-C. Chang, and I. F. Ilyas. Supporting ad-hoc
ranking aggregates. InSIGMOD ’06: Proceedings of the
2006 ACM SIGMOD international conference on
Management of data, pages 61–72, New York, NY, USA,
2006. ACM.

[14] C. Li, K. C.-C. Chang, I. F. Ilyas, and S. Song. Ranksql:
Query algebra and optimization for relational top-k queries.
In SIGMOD Conference, pages 131–142, 2005.

[15] K. Schnaitter and N. Polyzotis. Evaluating rank joins with
optimal cost. InPODS, pages 43–52, 2008.

[16] K. Schnaitter, J. Spiegel, and N. Polyzotis. Depth estimation
for ranking query optimization. InVLDB, pages 902–913,
2007.

[17] A. Singhal. Modern information retrieval: A brief overview.
IEEE Data Eng. Bull., 24(4):35–43, 2001.

[18] M. A. Soliman, I. F. Ilyas, and K. C.-C. Chang. Top-k query
processing in uncertain databases. InICDE, pages 896–905,
2007.

921

