Ranking Objects Based on Relationships and Fixed

Associations
Albert Angel Surajit Chaudhuri Gautam Das
University of Toronto Microsoft Research University of Texas at Arlington
albert@cs.toronto.edu surajittc@microsoft.com gdas@cse.uta.edu
Nick Koudas

University of Toronto
koudas@cs.toronto.edu

ABSTRACT itories, to name a few, metadata relate (unstructured) textual doc-

Text corpora are often enhanced by additional metadata which re-uments to .the real-worldnntlesd|scussgd in them. For Instance,
late real-world entities, with each document in which such entities " Wikipedia, the well-known c_oIIaboratwe encyclopaedla, the un-

are discussed. Such relationships are typically obtained '[hroughs.t.ruc'[ured document of an artlgle about a person is related. to en-
widely available Information Extraction tools. At the same time, tiies such as the person, a birthplace, past.employment Institu-
interesting known associations typically hold among these entities. tions etc. In other c_iomam;, suc_h as news artlc_les, blog posts_, etc.
For instance, a corpus might contain discussions on hotels, citiesSUCh document-entity relationships can be obtained through widely
and airlines; fixed associations among these entities may include:

available Information Extraction tools ([4], [1]), which automati-
airline A operates a flight to city C, hotel H is located in city C.

cally identify named entities discussed in a document (e.g. Person,
A plethora of applications necessitate the identification of associ- Citys €ompany, Product).
ated entities, each best matching a given set of keywords. Consider

Such entities are related viixed associationgypically known
the sample query: Find a holiday package in a “pet-friendly” hotel among them. For instance, a table in a relational database can asso-
located in a “historical” yet “lively” city, with travel operated by an

ciate neighbourhoods, houses for sale, and schools, via their loca-
“economical” and “safe” airline. These keywords are unlikely to tr:on, thus.ga/tl)ng rrl]se tjqnacrlfagles)f alfsomateg enkt]'t.'e]f (in th.'s case, b
occur in the textual description of entities themselves, (e.g., the ac- "°mMe-neighbourhood-school packages). Such information can be
tual hotel name or the city name or the airline name). Consequently

retrieved from several sources, e.g. from corporate databases, a col-
to answer such queries, one needs to exploit both relationships be-2Porative public knowledge repository such as Freebase [8], etc.
tween entities and documents (e.g., keyword “pet-friendly” occurs

Moreover, it can be eithestatic(e.g. school A is located in neigh-
in a document that contains an entity specifying a hotel name H), Pourhood B) odynamic(e.g. flights X and hotel Y are currently

and the known associations between entities (e.g., hotel H is IocatedOffered asa ghscounted holiday packgge)._ .
in city C). In several instances, the goal is to identify packages whose enti-

ties each best match a given set of keywords. For instance, using

queries outlined above. We demonstrate that existing techniques?ommems“fr.om _rea,!-e“state “St'ngf" blogs, etc., one may W.'Sh o
cannot be efficiently adapted to solve this problem, as the result- !‘dennfy. a V I“CtOI’IEiln - 3 bedroom” house for sale, 'OC?‘QE{' na
ing algorithm relies on estimations with excessive runtime and/or low-crime . sa’1’fe ne|ghb0urhc‘)‘0d,_ that_ has a sc’fhool with "bilin-
storage overheads. We propose an efficient algorithm to processgu'aI educfatlon a.md arenown “swimming team - As anqther ex-
such queries, over large corpora. We devise early pruning and ter_am_ple, using reviews from a travel pla_nnlng site, one “.“'ght W'S.h
mination strategies, in the presence of joins and aggregations (ex-to identify a hqllday packag“e,_ cor1_3|st’!ng of“a_¢ de?tlnatlon that is
ecuted on entities extracted from text), that do not depend on any.geperally consnldered to be “historical” and]l\{ely » & hotel thgt
estimates. Our analysis and experimental evaluation on real and‘Is pet-friendly”, and travel operated by an airline renown for its

synthetic data demonstrates the efficiency and scalability of our ap- ‘economicalj’ apd “safe” flights. Lgt us examine this motivating.
proach. example of finding personalized holiday packages in greater detail.

Consider a corpus of reviews taken from a travel-planning site,
shown in fig. 1. We assume that entities, such as hotels, cities and

1. INTRODUCTION airlines, have been automatically identified in individual reviews,
In many application domains, such as e-commerce, social net- using a Named Entity Extraction tool. Moreover, we assume a rela-

working sites, digital libraries and collaborative knowledge repos- tion containing known associations between entities, e.g. that hotel
H is located in city C, or that airline A flies to city C. This relation
can be available as a database table in the travel-planning site’s in-
frastructure, or it can be retrieved from some external source (e.g.

Permission to copy without fee all or part of this material is granted pro- [8D). Furthermor.e, some part§ of it might change very rarely, 'f,at
vided that the copies are not made or distributed for direct commercial ad- all (€.9. hotel H is located in city C), whereas others can be subject
vantage, the ACM copyright notice and the title of the publication and its t0 frequent updates (e.g. a discount holiday package containing a
date appear, and notice is given that copying is by permission of the ACM. flight by airline A, and a stay at hotel H, is currently being offered).
To copy otherwise, or to republish, to post on servers or to redistribute to Qur database thus consistsdoicumentsrepresenting reviews, and
lists, requires a fee and/or special permissions from the publisher, ACM. entities of threetypes Hotels, Cities and AirlinesRelationships

EDBT 2009 March 24-26, 2009, Saint Petersburg, Russia. .
Copyright 2009 ACM 978-1-60558-422-5/09/0003 ...$5.00 between documents and entities are represented by three tables of

In this work, we focus on the class of “entity package finder”

910

Reviews (Documents) Hotels (Entities)

Document-Entity

the number of documents matching the keywords, that are related

ment Tex Relationships elld me)
pocta PocumentText M, el noreiname to the entity, as well as on the strength of the match between each
Doci votad . Entity Associations such document and the given keywords. Thus, the score of the en-
[d .. i a relaxed, } N T \ ®) tity will be an aggregate of the scores of all documents matching
2 seaside resort” d, €. Cities (Entities) ' | Hotelld| Cityld | Airlineld
4w : : en Ten | e the given keywords that are related to it. For example, in fig. 1, the
* landscapes...” Moies e cyName | ey ey | ey score ofe12 (Hotel Supremo) wrt. keyword query “relaxed” will be
- ~[oocalcuya | |2 Lo 9 S S an aggregate of the scores of documehtsds wrt. the keyword
*reputable,)| _fa—-on] Cea Mericocy Jqi 1% L% | 5 “relaxed”. Finally, to capture the notion that relevant packages are
f’°‘:em f'efe‘-t--bl a .. Airlines (Entities) "'/ ' those that contain, overall, relevant entities, packages are scored
safe,comfortable| |_ .. _ i
% fight..stunning. | T m,, Airlineld AirtineName |, based on an aggregate of their entities’ scores (e.g. in fig. 1, the
Docid [cityia |~ | (21 Aeromexico score of the holiday packagei1, e21, e31) wrt. some query will
Zs e |~ ~|[®2 United Airines)- be an aggregate of the scoreseef, e21 andes; wrt. the query).
6 Ezl

In this work we use a scoring framework that encompasses a wide
) class of scoring semantics.

Figure 1. Data model The essence of the entity package finder problem is to find the
top-k packages with the highest scores, that result from sapre
gregationsover documents matching a given query, and subsequent
joins between entities of different types, according to a set of fixed
associations. The techniques we propose are applicable for gen-
eral entity finder queries, on any domain where documents can be

a topic %f discourse from the tt)EXt a. Moreg\{er, knoyvrassfo- searched by keywords (e.g. textual corpora, multimedia databases,
ciationsbetween entities can be represented in a variety of Ways, meica| databases etc.). In the following, solely for clarity of pre-

e.g. three tables denoting pairwise associations, etc. We abstractenation, we will restrict ourselves to the case of text corpora.

their representation by assuming a viéhover them. R contains Whereas this problem can be solved using standard RDBMS
(e1, €2, es) package tuplessignifying that hotet,, city ez and air- technology, the resulting solution would be highly inefficient. This
"Fe es are associated, € hgteﬂ IS }ocated In citye, alrllne €3 is due to the fact that, in such a scenario, the precise scores of ev-
flle_s to city ez, and_ a flight with a'r“ne@S_ can be comb_med ina ery entity and package would need to be calculated, followed by
holiday packag_e W't.h _astay at hotal In_flg. 1.’ auser ”_"ght War_'t a selection of the top-k packages. Instead, early termination and
to poll the public opinions, expressed in reviews, to find a holiday .\ ing techniques can be used, to drastically reduce the necessary
package in a city that is “historical”, yet “lively”, with a stay at a processing effort.

hote! th?t IS “E)et-fr!’en.dly ", and with travgl qperated by an “?CO' Adapting existing such techniques to this problem also leads to
nomical” and “safe” airline. These descriptive terms are unlikely j,eficient algorithms, as they require estimations with impracti-

LO occuawithin :]he “ﬁ”?es of cities, ht())tels, %r airlines; thus srt]anda(d cal runtime and/or storage overhead (see sec 3). To overcome this
eyword search techniques cannot be used to answer such queriesyigicy ity we utilize the following intuition: Top scoring packages

Moreover, a user i_s not likely to be interested in all possible an- are expected to receive most of their score from top scoring en-
swers to their queries, but would prefer to be presented only with e “\yhich, in turn, are expected to receive most of their score
a small number of the mo_st releva_nt results. We term this type of from’top sco’ring doc;uments. In our approach, documents are pro-
queries agntity Package Findegueries (EPF). The necessary data ;eggeq in descending score order, with respect to the given keyword
to support such queries is a collection of: query. Using document-entity relationships and entity associations,
the aggregate scores of entities and packages are computed, incre-
mentally, and in a rank-aware fashion. Periodictiiint boundson
2. Entities each having a Type attribute (e.g. in fig. 1 Hotel these scores are computed, and used to prune entities and packages
Presidente is an entity of type Hotel); that cannot rank among the final top-k. Thus, our algorithm is able
frequently to terminate after processing only a small fraction of the
3. Relationshipsbetween documents and entities, expressed as input.
document-entity pairs, and denoting that a document refers ~ Our main contributions in this paper can be summarized as fol-

(Docld, Entld) tuples, one table for each entity type. (For in-
stance, a tupléd, e) in table Hotels signifies that the review with
id d discusses the hotel with id - i.e. e has been extracted as

1. Documents, which are searched by keywords;

to an entity; they can be static or dynamic; and lows:

4. Associationsamong entities of different types, expressed as e We introduce the Entity Package Finder type of queries, able
arelation containing tuples of entities; we refer to such tuples to answer useful questions with intuitive semantics.
aspackages e We formalize the EPF problem in a threshold algorithm frame-

The aim in entity package finder queries is to identify the k most work, and demonstrate that existing techniques cannot be ef-
relevant packages of entities, with respect to each entity best match- ficiently adapted to solve this problem, as the resulting algo-
ing a given set of keywords. This gives rise to the need to score r!thm relies on estimations with impractical overhead (run-
packages, entities and documents with respect to the given key- time, storage).

word query. The score of a document wrt. a keyword query can be
assessed using standard Information Retrieval techniques, such as
textual similarity [17]. Note that entities are typically not directly
related to keywords; for instance, named entity extraction from a
document is typically based on more complex features than the sim-
ple presence of certain keywords [4]. For this reason, we will say
that an entity matches a keyword query if it is related to documents
that match the query. The quality of this match will depend both on e \We analytically and experimentally evaluate the performance

e We propose a complementary early pruning/stopping approach,
which interleaves rank-join and aggregation, and overcomes
the need for such estimates. Our approach exploits all avail-
able knowledge regarding possible entity packages to pro-
vide tight bounding on package scores, leading to increased
pruning efficiency.

911

of our algorithm, on both real and synthetic data, and demon-
strate its efficiency and scalability.

The rest of the paper is organized as follows: We formalize the
EPF problem, and provide a threshold algorithm framework for it
in section 2. We demonstrate the inapplicability of existing tech-
nigues (section 3), and propose an efficient algorithm in section 4.
We discuss extensions to our algorithm and problem in section 4.2.
The efficiency and scalability of our algorithm is demonstrated by

analysis (section 5.1), as well as thorough experimental evaluation

(section 5.2), on both real and synthetic data. We review other re-
lated work in section 6, and conclude in section 7.

2. AFRAMEWORK FOR EPF

Given the entity package finder class of queries introduced above,

2.2 Query and Result M odel

An entity package findegueryis ann-ary tuple containing sets
of search terms, i.e. a tuple of the fornfi¥y, Wa,--- , W,),

where every; is of the formW; = {w1, w2, - - - }. For example,

in the holiday package case, a query could fpdt-friendly”},
{“historical”, “lively” }, {“safe"}), meaning that the user would
like to find a package with a “pet-friendly” hotel, a “historical”
and “lively” city, and a “safe” airline.

An answer to such a query is a valid package, such that each
of its entities,, is related to at least one documehtcontain-
ing some keyword in/;. More formally, an answer is a tuple
(e1,e2,--+ ,en) € R such that, for alk € {1,2,---,n}, there
exists a document containing a termw € W, such thatd, e;) €
Mr,. For instance, in fig. 1(e11, e22, e31) is a valid answer to the
query {“elegant’},{“stunning”},{"safe”}). Of course, the more

we subsequently formalize our problem, and describe a thresholdkeywords fromi¥; d contains, and the more such documents each

algorithm framework for processing such queries.

2.1 Data modd

Every document(e.g. review, blog post, etc.) in the corpus, is
associated with a documentdd Every document contairsearch
terms(keywords) (e.gds in fig.1 contains keywords “very”, “ele-
gant” and “hotel”, among others), and every document-term pair is

entity e; is related to, the higher the relevance of the answer to the
query. Additionally, since users are typically interested only in see-
ing a small numberk, of the most relevant answers to a query, the
need to score answers arises.

2.3 Scoring Answers

Answer scoring proceeds in two levels: Firstly, entities of the

associated with a score. These scores capture the importance of theame type need to be scored, based on the degree to which the

term in the document, and can be derived using standard IR mea-

sures [17]. We assume the availability of Ewerted indexover

documents that are related to them, match the given search terms.
Thereafter, packages need to be scored, based on the scores of the

the document corpus, i.e., for every search term, there exists an ef-entities they consist f

ficient way to retrieve all documents containing it, in descending
score order.

Additionally, real-worldentitiesare represented in our corpus.
Every entity has an entity id, and belongs to one of a number of
typesTi,Ts,--- ,Tn. Forinstance in fig.1 Hotel Presidente is an
entity of type Hotel. In additionn relational tables\/z, contain
the relationshipsholding between documents and entities of type
T;. For example, in fig.1, tablé&/y,..;; contains tuples of the form
(d, e), signifying that documeni mentions hotet.

Finally, fixedassociationdetween entities are available. Asso-
ciations can be stored in a variety of ways (e.g. one or more rela-
tional tables), and can be either static, or dynamic (i.e. frequently
updated). In either case, we assume the existence of aliewer
this data. R is ann-ary relation, with domairil; x --- x Ty,
and describes the union of all valid query answers: every tuple
(e1,- -+ ,en) € R, termed goackage contains associated entities.
E.g.,infig.1, entitieg11, e21 andes; form a valid holiday package.
As R might not be materialized in its entirety, we only require that
it be accessible through a restricted API, able to efficiently return
the packages containing a given entitin a given typeT'.

In the following, we assume that alllr, tables, as well as the
information necessary to provide acces&tdit into main memory,

Entities are scored using two functior8, g and Feoms. Faggr
is used to aggregate the scores of multiple documents that contain
a specific search term and that are related to an enfity,., is
then used to combine the aggregated scores of an entity for all
search terms. For example, in fig. 1 assume that docunigniig
contain the term “stunning”, with associated scofess., respec-
tively, and documendls contains the term “safe”, with associated
scoress. Since both these documents are related to entity Mex-
ico City, its score wrt. keywords “stunning” and“safe” will be
Feomb (Faggr(sh 32), Faggr(SS))-

In the following, we assume thdf,,,, is distributive over ap-

pend (i.e. Fuggr (51,52, ,8n) = Faggr(Faggr (1,82, ,8i),
Foggr(Sit1,- -+ ,8n))) and subset monotonic (i.€s1, -+ ,s:} C
{8/17 T 783} = F“QQ"(817 o 78’i) < Fagg"(slla c 783))! and
that Fo.mp is monotonic (i.eVis; < s; = Feoms (51,82, , Sn)

< Foomb(sh,8h, -+ ,sn)). These properties are by no means re-
strictive, as they hold for most scoring functions used in practice
(e.g. sum, weighted sum, max, etc.).

We note that scoring can also proceed with, being applied
on the results off.,.»; this can be efficiently reduced to query
processing in the framework initially described, by utilizing the
TA-NRA algorithm ([10]). Using these frameworks, we are able

noting that our algorithms can be extended to handle cases whergl0 capture most interesting and practical semantics for scoring en-

these assumptions do not hhld

tities; for instance, we can require that each query keyword occurs
in at least one document matching an entity, or that all such docu-

1 FP H . .
This is a reasonable assumption, even for large-scale corpora. Aments be considered as a single pseudo-document for the purpose

typical document discusses a small number of entities, and for ev-

ery such relationship we only need to maintain a document id and
an entity id. Thus, the total memory overheadidf, tables will
be a small multiple of the number of documents. This is consistent

of scoring the entity.
For the second task, of scoring packages based on their enti-
ties’ scores, following common practice, we employ a monotonic

with our empirical observations on a large scale corpus of real data function F;,. For instance, if for a given query the score of en-

(see sec 5.2REAL corpus), where the memory overheaddf,

tables was, on average, under 10 bytes per document. Moreover, wePackages are only scored based on the scores of their comprising

expect the base information behiftito fit in main memory, due

to the semantics of the entity package finder problem. This,too,
is consistent with our empirical observations; tR&A L corpus,

for instance, contained 110K associations, requiring under 1MB of
main memory.

912

entities, because, in the EPF setting, packages have been defined
as embodyingertainknowledge. Although our setting can be ex-
tended to “fuzzy packages” with an attached confidence value, and
corresponding changes to the scoring framework, we do not further
discuss such extensions in this work.

Hotel CityAirline
e | el e Top-k
Known & T e, Answers
Associations|
(R) Rank-Aware Join

— |

! Aggregation
SeenCities Partial Results
(SeenEnts)

SeenAirlines|

Document-
Entity
Relationships

Airline

Inverted
Lists

“pet—fi’iendly" “historical” “Ii\}ely"

Figure 2: Execution Framework

tity Hotel Presidente is;, the one of Cancun is., and that of
Aeromexico isss, the score of the resulting holiday package will
berkg(Sh S2, 83).

24 A Threshold Algorithm Framework

We now present a general framework for processing entity pack-
age finder queries (fig.2).

As seen in fig. 2, processing is driven by sequential accesses

on inverted lists one for every keyword in the query. A list cor-
responding, e.g. to keyword “safe”, consists of document ids for
every document containing the word “safe”, along with scores that

denote their relevance to “safe”, in descending score order. Every

document id encountered is used to probe in-mengagument-
entity relationshiptables (cf. M 4sriine in fig. 2), SO as to retrieve

the entities related to the document. The document score and re

lated entities are used to update the current known bounds on entit
scores. Such information is maintained in the Aggregation Partial
Result Tables, termefeenEnts for brevity (cf. SeenAirlines in

fig. 2); we describe their functionality shortly.

Using the available score bounds on entities, a partial ordering on

them can be determined (e.qg., if entity has a score iff, 2], and

the score ot; is in the interval[2.3, 3.5], then clearlye; will have

a higher score than;). Whenever a query processing algorithm
decides that sufficient information wrt. entity scores is available

number of times a document relatedethas been encountered on
every inverted listlist;, NumSeen;, and the score that has re-
ceived up to now from all documents @ist;, AgScore,. Put dif-
ferently, AgScore, is the score that¢ would obtain from the key-
word corresponding tést;, if no other documents matchirgare
found onlist;. AgScore, is a lower bound on the final score of
wrt. the keyword corresponding {ést;, and the full final score of
e is lower bound byL.B = Feomi (AgScore,, AgScore,, - -).

Computing Upper Bounds: In order to calculate an upper bound,
U B, on the score of entity, we utilize, for every inverted lidtst;,
the following items of information. Firstly, the score of the last doc-
ument retrieved fronfist;, maxUnseen; this is an upper bound on
the score that any document, not yet retrieved fidsty, can have.
Secondly, we require knowledge of the maximum number of docu-
ments inlist; that can influence the score @fwhich we term the
cardinality of e in list;, card (e, list;); we shortly discuss ways of
calculating it. The maximum further scat&an obtain frondist; is
mazFurther; = Faggr(mazUnseens, - - - , mazUnseen;), where
Faggr is applied orcard (e, list;) variables with valuenazUnseen;;.
The maximum score can obtain frondist; is mazTotal; = Fager(
AgScore,, mazFurther:). Finally, an upper bound on the score of
eiSUB = Feomy(mazTotali, mazTotala, - -+).

Computing Entity Cardinalities: Let us now discuss how the
cardinality of an entitye in a list list; can be calculated, by judi-
ciously materializing information about certain entities. In a pre-
processing phase, we scan all inverted lists, and calculate and store
the ids and scores wrtist; of the X entities with the highest car-
dinalities inlist;, as well as an upper boundyazCard;, on the
cardinality of all other entities ifist; 3. By using this information
at query time, for every entity and listlist; we have knowledge
of either i) a useful upper bound on the cardinalitycoin list;
(namely,mazCard;), or ii) the precise score aefwrt. list; (in this
case, we record the score in the relev8atnFEnt table, and set

the relevantNumSeen; to the special value “ALL”"). This enables

ythe calculation of the maximum scor&/axUnseenr, obtainable

by any entitye of typeT that has not yet been seen (exploiting the
the monotonicity properties QF ggr, Feoms). MazUnseenr can

be used to compute an early termination criterion. We note that this
preprocessing has a low overh&ad

2.4.1 Access Primitives
Given the structures above, we define two forms of access that

(e.g. the top-3 Airlines, top-2 Cities and top-5 Hotels, and their & guery processing algorithm can use to access data: Sequential
scores are known), it can use this information to try and calculate Accesses (SAs), and Batch Accesses (BA') (the latter correspond
the k top-scoring packages. This is done by essentially perform- to standard TA Random Accesses, optimized for the entity package

ing a multi-way join among the top entities of each type, using

probes to the in-memorknown associationsiew, R, to evaluate

the join condition. To avoid superfluous processing effort, a query
processing algorithm should use a rank-aware join operator ([11]),
allowing for earlier termination, without the need to consider all

finder setting).

A SA on an inverted list (alg. 1) essentially retrieves a bock
of document ids from the list (line 1), looks up entities related to
these documents (line 2), and updates bounds on the scores of these
entities (lines 3-8). At some point of time, an algorithm determines

top-scoring entities. Such approaches are described in sec. 3 andhat a superset of all necessary entities of a tfjfeas been iden-

sec. 4.

Computing Entity Aggregate Scores. For every entity typd’,
we maintain a tabl&eenFEntr (cf. SeenCities in fig. 2), which
captures the current level of knowledge wrt. the most promising
entities inT". Specifically, for every entitye, SeenEntr main-
tains lower and upper bounds on its final scakdB(andU B, re-

spectively). These bounds are used as in the Threshold Algorithm

([10]), for pruning entities guaranteed not to be part of the final an-
swer, and for early termination. For reasons of efficie§eyn Entr
is indexed by entity id.

Computing Lower Bounds. In order to compute lower bound
information, SeenEntr additionally records, for every entity the

913

tified (i.e., any entity that does not have a corresponding entry in
SeenEntr is not needed to identify the query answer). Thus, the

%X isa small number, so that storing these entities and their scores
requires a negligible amount of storage; for instance, in our experi-
ments we materializet?% of all entities, resulting in an additional
storage overhead of less thaud1% the size of inverted lists.

4For instance, on a large, real dataset we used in our experiments
(see sec. 5.2, corpusF A L) this preprocessing requires on average
less than a second per inverted list per entity type; similar trends
were observed on larger synthetic datasets.

SFor reasons of efficiency, and following common practice, docu-
ments are retrieved in blocks, as opposed to one-at-a-time.

Algorithm 1 Sequential Access

Algorithm 3 Layered Algorithm

Input: Aninverted listlist;, corresponding to search term and an entity
typeT’

Input: QueryW, Number of desired answeks Necessary number of top
entities per typeD1,- -+, Dy,

1: Retrieve next block of documents and scores figst; Output: The topk packages wrti//
2: Lookup entities related to these documents ugifig (In-memory join 1. for each entity typeT do
of document ids withV/7) 2. performBA = false
3: for each entity e found, whose related document’s score @o 3. while The topD entities of typel” have not been identifiedo
4: if an entry fore exists in SeenEnty, with NumSeen; #“ALL" 4: if performBA then
then 5: Perform a BA on every inverted list for typé
5: Incremente’s NumSeen; 6: dse
6: Updatee’'s AgScore; with Foggr(AgScore;, s), and update its 7 Perform a SA on every inverted list for tyge
LB usingF.omp 8: UpdateU B’s in SeenEnt7, and prune nonviable entities
7. dseif e has not been pruned froSeenEntr then 9: if minKp > MazUnseen then
8: Create an entry fore in SeenEntr, with NumSeen; = 10: performBA = true
1,AgScore; = Faq4q4r(s), and calculate itd. B 11: loop
12: for each entity typeT do
13: Retrievee, the next best entity of type T’
Algorithm 2 Batch Access 14: Retrieve fromR all packages” containinge
Input: Aninverted listlist;, corresponding to search term and an entity 155 for each packagep € P do L
type I ig iF:ftgrtlee;/gotrheeosfcs%r?ﬁse(gnat‘iliyeg:tslerfé?n knownthen
. - ! 1 il .
1 :_ze;td])\/[T = Mt Xpgn1q SeenEntr (M. is not necessarily material 18" Continue with the next package i
2: Retrieve next block of documents (along with their scores) ftii 195 Calculates = the score of
3: Lookup entities related to these documents usiffg (In-memory join 20; if s > minK then ; "
of document ids with\17,) 21: el?\zraﬁg;/;tiueittsogézepackage form the priority queue, and
g forifei?sh;z%i;zljn;&xﬁl?stehgated documents score o 22: if minK > MazUnseenPkg (see eqgn. 1)hen
6: Incremente’s NumSeen; 23: return the current toge packages
7. Updatee’'s AgScore; with Fuggr(AgScore;, s), and update its

LB USinchomb

More specifically, the Layered algorithm (a high-level owglivf
which is shown in alg. 3), maintains a priority queue for every en-
only necessary actions are to discover the actual scores ogthe tity type 7}, containing theD; entities with the currently largest
quired top entities, and to prune away the remaining ones. LB’s. LetminKr, be the smallesL B among these. Every en-
For this purpose, Random Accesses on the scores of all candidatdgity of type T; with UB < minKr, can safely be pruned from
entities are needed. However, if one were to perform individual SeenEntr,, as it is certainly not among the tdp; entities of its
Random Accesses on the score of an entitgne would need to i) type (line 8). Using this pruning criterion, Layered performs SA's
retrieve all documents related ¢pand ii) scan them to determine on every inverted list until a superset of the tbp entities of each
their score wrt. all query keywords. These operations would en- type T; have been identified (line 9); thereafter it performs BAs
tail a large number of disk random seeks. For instance, in a corpusinstead (line 10), until the top; entities are identified.
of real data we used in our experiments (sec 5.2, CofpH4 L), Subsequently, a rank-join ([11]) algorithm is used to calculate
on average 17-40 documents would have been read from disk perthe top packages (lines 11- 23). Layered iterates over every entity
Random Access, depending on the entity’s type. Hence, true Ran-type T, selecting the next best enti¢yof type T" (line 13). It then
dom Accesses are not a feasible option in our setting. Due to theseusese to probe the known associations table, and retrieve the
performance considerations, we instead process Random Accessegackages containing(line 14). For every such packaggsif the
in batches, using an access primitive we term Batch Access (BA) scores of all entities ip are known, Layered calculates the exact
(shown in alg. 2). score ofp (using Fyi,) (lines 16-19). Layered also maintains the
A BA on an inverted list follows the steps we outlined above current topk packages in a priority queue, and the score of the
for SA's; however, it ignores documents that do not correspond to current topk’th package mink .
entities encountered so far. Thus, the result of a series of BAsona At any point of time, in order to decide whether the priority
list is precisely the same as that of performing random accesses orgueue contains the true tdppackages, and thus it is safe to ter-
the scores of all entities wrt. the list, at a fraction of the cost. minate processing, Layered utilizes the following observation, due
to the monotonicity ofF,.,. Let s;(b) be the score of the tolith
entity of typeT;. After having examined the tadf entities of type
T;, the best score obtainable by a package that has not yet been
encountered is

3. THELAYERED ALGORITHM

Given the above framework, we present theyeredalgorithm
(shown in alg. 3), a baseline approach for solving the entity pack-

age finder problem. MazUnseenPkg = maz{Fpig(s1(b1), s2(1), s3(1), -+, sn(1)),
We defineD; as the number of top-scoring entities of a tyfie Fpig(s1(1), s2(b2),s3(1),- -+ ,sn(1)),
that are needed to identify the top-scoring packages. Assume that Forg(s1(1), -+, $n-1(1), 50 (bn))} 1)

D; are known, for alk (We will subsequently argue that this is an
unrealistic assumption, and show how to alleviate it.). For instance,
in fig. 2, assume it is known that, given the tbp Hotels, the top

Layered terminates wheminK > MaxUnseenPkg (line 22).

D, Cities and the topDs Airlines, along with their scores, it is
possible to calculate the tdpholiday packages. Then, the tép
packages can be calculated by first identifying thelpntities of
each typer;, and then using these to compute the kqeackages.

914

3.1 Execution example

To better illustrate the workings of Layered, we present the fol-
lowing execution example. We will utilize the sample corpus shown
in table 3.1, and the following scoring functionB; ¢ (z1, - - - ,z;) =

(@) Inverted List (b) Inverted List (c) Inverted List

for keywordw; for keywordws for keywordws
Docld Score Docld Score Docld Score

ds 1.0 dy 1.0 di3 0.7

ds 0.8 dr 0.9 dig 0.5

de 0.5 da 0.6 dis 0.2

ds 0.2 da 0.2 dis 0.1

d7 0.2 do 0.1 dio 0.1

(e) Doc - Entity

(d) Doc - Entity relationshipgglationships, (f) Known as-

M, T, sciations, R
Docld Entld| Docld Entid| | Docld Entid| | Entity type
(cont'd) dio « T 1>
d1 b da & d10 vy b «
ds b dr a di3 « a 0%
ds a dr c dis v b B
d4 a dg b d16 (0 e ﬂ
d5 a dg C dlg ﬂ
d5 b dg C
ds C dg e
(9) Layered execution exampl8¢enEntr,
Step| Entld NumSeen AgScore NumSeen AgScore LB UB
w1 w1 w2 w2
1 a 1 1 0 0 0 3
b 1 1 1 1 1 3
a 2 18 1 0.9 0.9 2.6
2 b 1 1 1 1 1 26
c 0 0 1 0.9 0 24
a 2 18 2 15 15 2.1
3 b 1 1 1 1 1 2
c 1 0.5 1 0.9 0.5 1.5
e 1 0.5 0 0 0 15
a 2 18 2 15 15 1.7
4 b 2 12 2 1.2 1.2 1.4
c 2 0.7 1 0.9 0.7 0.9
e 1 0.5 0 0 0 06

Table 1. Sample corpusand Layered execution example

ZCCL, Fcamb(Ih tee 756]') = min(ml): Fpkg(Ih tee mrn) = Zml

if min(x;) > 0, and0 otherwise. For the sake of clarity, we assume

that, during preprocessing, no entity scores were materialized, an
the bound computed on the maximum cardinality of all entities wrt.
any listis 3 (i.e., in this corpus, the score of every entity can be in-

fluenced by at most 3 documents). Moreover, we assume that SA's
access inverted lists one document id at a time, even though in prac-
tice, for performance considerations, document id’s are retrieved in

larger batches.
Assume we want to identify the top 1 package wrt. qugry,
ws}, {ws}); i.e., the top package where the first entity (of tyaé
is most relevant to keywords; andws, and the second entity (of
type T») is most relevant tavs. Moreover, assume Layered has
somehow determined tha&l; = 3 andD» = 2 top entities of each
type,T1 andTx, are needed in order to determine the top 1 package.
Layered will first identify the topD; = 3 entities of typeT:
(lines 3-10). A SA is performed on both inverted listswf and
wz (line 7). This results in documents andd; being retrieved.
By probing Mr,, Layered discovers that they are related to en-
tities a, b and b, respectively. Entries fos andb are created in

915

SeenEnt, ; information regarding how many times they have been
encountered on every list, and their aggregate score wrt. every list,
is recorded.q initially has lower boundL.B = F.,,(1,0) = 0,
since, at this point, it is possible that its score witz will be 0
(recall Feormp = min). Upper bounds for all entries ifleenEntr,

are then calculated, (line 8) using their currétScore’s, and ev-

ery mazUnseen; (which is currently 1, for both lists). The state

of SeenEntr, after these operations is shown in table 0(g), step 1.
This procedure is repeated another three times (tab. 0(g), steps 2-
4). Moreover, after step 4, the best score that ewtitgn possibly
obtain /B = 0.6) is less than the worst possible score that any of
the top-3 entities, b or ¢ can obtain; as only 3 top entities need to
be calculatedg is pruned (line 8). Independently, since no further
entity yet unseen can become part of the top-3 (line 9), Layered
proceeds by performing BA's on all lists, until the final scores of
a,bandc (1.5, 1.2 and0.9, respectively) are discovered. Similarly,
Layered identifies that the tap, = 2 entities of typel, area and

3, with scored).9 and0.5, respectively.

Layered then proceeds by joining the identified top entities of
typesT; andT>, using known associations talie in a rank-aware
fashion (lines 11-23). Using, after processing entitias, b and
«, Layered determines that« is the currently top package, with
score2.1. Moreover, the next best entities of each type have scores
0.9 and 0.5, respectively. Thus, assuming they were associated
with the top entities of the other type, the resulting packages would
have score$’,14(0.9,0,9) = 1.8 and Fpi,(1.5,0,5) = 2, respec-
tively. Since none of these is better than the score of the package
b, a, Layered concludes that it is the top 1 package, and terminates
processing (line 22).

3.2 Estimating p;

The Layered algorithm crucially depends on knowing the pre-
cise value of allD; (the number of entities of every tygg that
are needed, in order to identify the tbpackages). Clearly, this is
an unrealistic assumption, as in general one would need to execute
the entity package finder query in its entirety in order to determine
these values. Thus, a realization of the Layered algorithm would
call for anestimationD; of D;. Let us now examine the implica-
tions on query processing, by showing how fhgestimation can
be performed using state-of-the art techniques.

This estimation problem is strongly related to the Depth Estima-
tion problem in the context of a rank-join algorithm ([16]). Indeed,
[16] proposes techniques that could be readily adapted for estimat-
ing D}. However, this adaptation necessitates a strong assumption;
namely that sufficient statistics are known about the distribution of

dthe scores of packages wrt. any given query. The statistics should

be detailed enough to provide the following information, as accu-
rately as possible:
Given a tuple of entity scorgs1, s2, -+ , Sn),

e How many valid package&:, ez, - - ,en) exist, such that
the score of each; is preciselys;? and

e For everyi, what is the largest numbet such thats; <
si, and there exists at least one valid package with score
('517 crt s Si-1, S{L: Sitly" - 7871)?

In order to provide such statistics, one has essentially two op-
tions. Firstly, one can materialize in a preprocessing phase, for
every entity of every type, the precise distribution of the scores of
its related documents wrt. every inverted list. These distributions
can then be used, in conjunction with the known associations table,
to estimate the score distribution of packages at runtime. However,
materializing all this information has an enormous space overhead,

on the order of the corpus size itelf Algorithm 4 Interleaved Algorithm
The second option, is to estimate the score distribution of pack- Input: Query, Number of desired answeks
ages by sampling (assuming the API availabldbenables suchan ~ Output: The topk packages wrtiV’
operation, e.g. in the case of dynamic known associations). Specif- 1 whilethe topk packages have not been identifial

; ; 2. performBA = false
ically, at runtime, one can select some packages at random, and cal-5: for each entity typeT’ do

culate exactly the scores of all their entities, wrt. the given query. 4. i performBA then

Unfortunately, these calculations have a very high runtime over- 5- Perform a BA on every inverted list for typ
head, as they requifRandom Accessem the scores of a number 6: else

of entities, which are unfeasibly expensive operations in our set- 7: Perform a (modified) SA on every list for tyj3e
ting’). Moreover, in order to ensure that the sampling produces a 8 UpdateU B's in SeenBntr

9: for each entity typeT do
C£}O: UpdateU B's in Cand, using information fromSeenEnt
1 Prune packages witUB < minK, and decrement the

reasonably small estimation error, a sizeable fraction of entities’
scores would need to be calculated. Hence, the runtime overhea

of this option is clearly too high to be used in practice. refCounts of all their entities

Summarily, using state-of-the art techniques for estimafirig 12: Update LB’s in Cand in packages with entities whoseB's
in the context of the Layered algorithm, will either have an exces- have been updated
sive storage and/or runtime overhead, or will entail sizeable and 13: Prune entities withrefCount = 0

unpredictable estimation errors. These errors will largely affect the 13; if mink Zé\i‘”_Ut"see"Pkg (see eqn. Zhen
performance of the Layered algorithm. If, for someD; > D;, i performBA = true

Layered will be forced to perform more processing than necessary.
Even worse, if for some, D, < D;, Layered will not be able to
identify the topk packages; thus it will need to perform some addi-
tional processing (including re-doing some processing previously
performed), to first identify a numbdp; > D; of top entities of
typeT;, and then resume the rank-join process.

. It should.thus be clear thgt an efficient real|zat!on of Layered those detailed in section 2.4. FirstlyGandidate Packagéable,
is not possible, due to the significant overheads imposed by the

estimation procedure. To address this issue, we subsequently in-Cand’ which contains all promising packages (i.e. those that might

-) ; rank among the final top-k). Entries i@'and are of the form
troduce Interleaved, an efficient algorithm for the entity package (1,2, ,en, UB, LB), wheree; denote pointers to the entr
finder problem, thatioes not relyon knowledge or estimations of AN ’ - : p. y
D,. Despite not using such estimates, we show that Interleaved isOf entity ¢, in the respectiveecnfintr, table; U'B and LB are
as efficient as a hypothetical, idealized instantiation of the Layered bounds (upper and lower, respectively) on the final score of the

. . package. Interleaved also maintains a priority queue containing
Z:lgoDr.lthm, that would have freely available accurate knowledge of the k most promising packages (based on tHel's), as well as

minK , the L B of thek’th top package. Finally, entries SeenFEnt
tables are augmented withreference countield, refCount (this

4. THE INTERLEAVED ALGORITHM field is used for interleaved pruning, and is described shortly).

. S . Let us now examine the operation of Interleaved (pictured in alg.
The essense of the Interleaved algorithm is to incrementally maln-4) in detail. Until the topk packages have been identified, Inter-
tain score information on the package level. To do so, while scan- : P 9 !

P : - leaved does the following (line 1). First, it performs some SAs
ning inverted lists, Interleaved keeps updating the score bounds ofon every inverted list, for every entity type (line 7). The algorithm
both entities, as well as packages (by interleving the operations of for S A’syit uses is sli ' hl mogifie d f)r/o%pthe al 1 S ec?ficall
rank-aware aggregation and rank-join). Using this knowledge, it S SIghtly . vg. L. Speciically,

whenever an entity is first encountered (line 7 in alg. 1), entries in

is able to prune non-promising entities and packages, and thus toC J are created for all the packagesarticioates in. This is done
terminate early. The high efficiency of Interleaved originates prin- ana ar packagep P : .
by probing the known associations tahke, for packages contain-

cipally from two novel features: thiaterleaved pruningof enti- ing e, and creating”and entries for every such package. If needed
ties, and thight boundingof package scores. Both these features placeholder entries are createdSeenFEnt tables for other entities

are designed to exploit the distribution of fixed associations, and in these packages; subsequently, thCounts of all entities in

%In a large-scale, real dataset utilized in our experiments (see sec.these packages are incremented.

5.2, corpusREAL), storing such information incurs an additional Having performed these modified SAs, Interleaved updates up-
average space overhead of 15% per entity type. The corpus con-er bound information irfeenEnt tables (line 8). Using this in-
tains 9 entity types, so these statistics require more storage than thdormation, it then updates upper bounds in the Candidate Package
corpus itself. A similar space blowup was observed in the synthetic table (line 10). Interleaved prunes packages that are certain to not

gorPOfa we utilized in our experiments. , rank among the final top-k, based on their score upper bound, and
With respect to the cost of Random Accesses, note that, in order yecrements their entitiestfCounts (line 11). Interleaved also up-

to calculate the score of a single entity, one would need to retrieve : L ; . :
all documents in the corpus that are related to the entity, and scandates lower bound information ifland (line 12); for the sake of ef

them to determine their score wrt. all query keywords. Thus, this ficiency, it only updates packages containing entities with recently
calculation entails a number of diskndom seekequal to the car- ~ updatedL B’s (this is recorded in a separate flag).

dinality of the entity (i.e. the number of documents related to it); Inline 13, the feature of interleaved pruning manifests itself. En-
in a corpus of real data we used in our experiments (sec 5.2, corpustities that do not participate in any promising package are pruned.

ﬁchL)lrﬂhfahtls Véaosf ?hneae"ri.r?ge’\}g{gglgg?#;?g”fhpsgﬁé‘gg'&%igesgg'sln this manner, a large number of entities can be pruned, indepen-
::agnnot be ggrformed in tlagtc':hes -i.e. using Elsjatch Accesses- as thisd.emIy of how high t.he.ir score .is' just by exploi'Fing the distribu-.
would result in redundantly executing a large part of the query it- tion of known associations. This leads to a significant decrease in
self in a preprocessing phase, solely for the purpose of obtaining Processing effort, as there are fewer entities to keep track of, and
estimates. to earlier termination. Moreover, by keeping track of the number

are subsequently explained in detail. Through careful eeging,
this added functionality is achieved with only moderate extra book-
keeping effort.

Interleaved maintains a few additional data structures, besides

916

of packages an entity participates in (throughrit8Count), inter- SeenEntr, SeenEntr, Cand

leaved pruning is very efficient, and imposes but a minimal storage | Step| Entld LB UB | Entld LB UB | Entld, Entld, LB UB
overhead. 1 a 0 3 «@ 0.7 211b «@ 17 51

Finally, in line 14, Interleaved decides whether a superset of the b 1 3 (B 0 21| B 0 51
final top k answers has been identified, and SA's can therefore be v 0 21lja Y 0 51
replaced by BA's. Another significant feature of Interleaved is an | 2 a 09 26|« 07 171b o 17 43
improved condition for making this decision. Adapting standard b 1 268 05 15|b B 15 41
rank-join techniques ([11]), as in the case of Layered, results in an c - - vy 0 15|a 04 0 41
overly conservative bound on the maximum score of a package not e 0 24 e B 0 39
yet encountered. Specifically, let(b;) be the best score obtain- 3 a 15 21|« 07 13|b a 17 33
able by an entity of typ&; that has not yet been encountered, and b 1 2 B 05 09 (b 8 15 29
let s;(1) be the overall best score obtainable by an entity of type e 0 15|« 02 06 |a y 17 27
T;. Then, the bound on the best score obtainable by a package that e 164 0 24
has not yet been encountered is given by eqn. 1. This bound cor- 4 a 15 17|« 08 09 (b e 2 2.3
responds to assuming that a package may exist, containing the top b 12 14|p 05 0.7 (b 16} 17 21
entity of each type but one, and an entity yet unseen on that type. e 0 0.6 [~ 0.2 04 |a ~ 17 21
Interleaved, on the other hand, by maintaining bounds on the scoreg e I6] 0 15

of all packages that contain at least one seen entity, has access to
more information; namely that any package notand can only
consist of entities not yet encountered. Hence, Interleaved uses the
following upper bound on the score of a package no€imd in

Table 2: Interleaved Execution example

line 14: Note that entityc was pruned (line 13), as it does not participate in
any package. After 2 more steps, in step 4, packagkis ascer-
MazUnseenPkg = Foiy(MazUnseent, , - - , MazUnseent,) taine_d to not b_e the top package, a_md itis pruned. This results in the
@) pruning of entltye.as wgll. In the final step (nolt shown),.package
scores are fully disambiguated, and package is determined to
This bound, which exploits known associations, is in fatight be the top package with score 2.1.

boundingscheme on package scores (in the spirit of [15]); in a .
sense, this is the tightest possible bound that can be provided. More4.2 EXtensions
formally, there always exists a set of documents that could appear |nformed Access Scheduling: The Interleaved algorithm de-
later on some inverted lists, and a set of their relationships to en- scribed above is very efficient, without requiring any estimations.
tities in the corpus, such that the most promising package not cur- However, it s still not optimal. Consider a problem instance where,
rently in Cand obtains a final score equal Mdaz UnseenPkg. This in order to identify the top 5 packages, 500 SA’s are required on one
is in contrast to the bound employed by Layered and by rank-join inverted list, and only 10 on all the others. Since Interleaved per-
algorithms, which can be significantly looser. The tight bounding forms SA’s in a round robin fashion, 500 SAs will be performed
scheme significantly boosts the pruning power of Interleaved. on all lists before the algorithm terminates. It could thus help per-
To summarize, in Interleaved we have effectuated an early prun- formance if accesses were scheduled taking properties of the un-
ing and termination strategy, that is entirely independent of any derlying data distribution into account, so that fewer accesses are
estimates, and has a very moderate bookkeeping overhead. Entiperformed till termination.
ties are now pruned based on whether they might be part of some Techniques for scheduling accesses in an informed manner have
top package, rather than their current score alone, by dint of-an been proposed in [7], in the context of standard top-k query pro-
terleaved pruningoolicy that exploits the distribution of packages. cessing. It is only natural to investigate the extent to which such
Moreover, in contrast with standard rank-join algorithms, package methods may be beneficial to our setting as well. Utilizing such
scores argightly boundedbased on the best score they can actu- techniques, one could try to effectively allocate SA's to inverted
ally achieve. These features offer the Interleaved algorithm addi- |ists, so as to reduce the total number of required accesses. Using
tional opportunities for improved performance, compared to Lay- statistics on i) the score distribution of every inverted list and ii)
ered, without relying on potentially erroneous and expensive esti- the distribution of documents on every inverted list matching ev-

mations. ery entity, one may try to adapt the KBA framework from [7] to
. the entity package finder setting. Periodically, the adapted KBA
4.1 Execution example framework can be used to estimate the “Benefit” that some number

To illustrate the workings of Interleaved, we show how it pro- of SA's on a given list will have on processing, and select the most
cesses the scenario previously discussed in sec. 3.1; we refer tdbeneficial” allocation of SA's to inverted lists (“Benefit” here is a
table 3.1 for the corpus used. In table 4.1 we provide a trace of the quantity highly correlated with the remaining processing effort, i.e.
contents of theCand table at every execution step (i.e., at every highly “beneficial” SA's lead to shorter expected processing times).
iteration of line 1). Moreover, as the functionality SéenEnt ta- Optimizing the schedule of SA's requires posing a number of
bles has been demonstrated in sec 3.1, we only provide a summaryqueries over the materialized statistics. Due to our setting involving
thereof, containind. B’s andU B’s for every entry. Instep 1,a SA aggregation, compared to the setting in [7], informed scheduling re-
is performed on every inverted list (line 7), afeenEnt tables are quires that orders of magnitude more such queries be posed. More-
populated. Moreover, entries concerning all packages that containover, it requires that additional independence assumptions be made,
an entity in someSeenEnt table are inserted iCand. Finally, leading to lower accuracy; hence it is expected to be less useful in
empty entries are inserted SeenEnt tables, concerning entities reducing processing overhead. These expectations are consistent
that are mentioned in some packageGnnd, but do not have a with our empirical observations, on our adaptation of KBA. On av-
SeenEnt entry (e.g.3,~). This procedure is repeated in step 2. erage, more than half of query time was spent on informed schedul-

917

ing, as opposed to actual query processing; moreover, therdmou cessing per result package. In generalill depend on many fac-

of query processing effort was not significantly reduced. For these tors, such as the corpus, the query being processed, and the number

two reasons, we do not further pursue an informed scheduling ap- of top packages requested.

proach in this work. Further details on our adaptation of KBA can Let P(W, k) be the probability that querly is issued, request-

be found in [3]. ing a numberk of top packages (this probability may be derived
Further extensions. More generally, we note that Interleaved from a known querylog, or via a uniformity assumption). We de-

is amenable to further extensions of the entity package finder prob-fine theentity-package ranking coefficieat our entire dataset’,

lem, such as taking into account individual user preferences; we as a random variable, distributed according to the following distri-

discuss such extensions in [3]. bution:

1
5. EVALUATION Prob(C =) = — S P(Wk) - [|ei(Ti, W, k) =]
51 Analysis R _
As introduced, the Interleaved algorithm has two potential sources where[|A] = 1if Ais true, and0 otherwise
of performance benefitdnterleaved pruningdf entities andight Given the discussion presented above wrt. interleaved pruning,
boundingof package scores. In this section, we propose two mod- we expect that in every dataset, the relative performance of Inter-
els that capture the intuition behind these sources, and help in com-leaved versus Layer&d to be positively correlated with the ex-

paring Interleaved with Layered. To effectuate this comparison, we pected value of”. That is, for larger expected values 6f we
use a hypothetical, idealized instantiation of the Layered algorithm, expect the performance gains of Interleaved versus the idealized

by providing it with an oracle for the exact values of Bl for the Layered to increase, due to the effects of interleaved pruning.
query being processed. To highlight this fact, we refer to this oracle We validate this trend in sec. 5.2, usingcro-experimentsvhich
instantiation of Layered as Layergd measure local expected valueg(dfn a dataset.

5.1.1 Benefits of interleaved pruning 5.1.2 Benefits of tight bounding

To capture the benefits of interleaved pruning, we introduce the We subsequently introduce the notioresitity association prob-
notion of anentity-package ranking coefficieaf a dataset. Most ability, that illuminates the performance benefits due to tight bound-
top-k query processing approaches (recast in entity package findering. Entity association probability embodies a notion of known as-
terms) assume that top packages tend to be composed of top entisociation “density”, i.e. what fraction of possible associations in
ties. The entity-package ranking coefficient embodies, in a sense,fact hold. We shortly discuss how this measure captures the perfor-
the quantitative relationship between these; i.e. how many top en- mance benefits of tight bounding.
tities are needed for every top package. As we will shortly see, this Recall that Interleaved utilizes known associations to provide
relationship strongly affects the effectiveness of interleaved prun- tight bounds on the maximum score a package not yet encountered
ing. can have MazUnseenPkg. Tight bounding results from ensuring

Whereas top packages tend to be composed of top entities, thethat the best package not yet encountered only consists of entities
converse is clearly not true; an entitywith a mediocre score can not yet encountered. Thus its score will be an aggregate of the
be part of a top package, and an entityof the same type, with scores,MaxUnseent,, of these entities (eqn. 2), as opposed to
a higher score thaa, might not be part of any. Lef; denote the an aggregate of the scores of thest entities of each ty@ad one
set of all entities of the latter kind wrt. a query (i.e. top entities of of MazUnseent, (eqn. 1). The tightness of these bounds, and
typeT;, which nevertheless do not participate in any top package). hence the effectiveness of the tight bounding scheme, depend on
Layered’ expends unnecessary effort to fully process entities in the probability, Pussoc, thatn arbitrary entities of different types
E; , by computing the tofD; entities of each typéndependently are associated (i.e. form a valid package). As this likelihood in-
of the resulting packages. Interleaved pruning, however, provides creases, the value of information obtainable by known associations
Interleaved the ability to avoid this overhead. We therefore expect decreases, and tight bounding approaches the bounding scheme
that, the more entities in alt; that exist wrt. a query, the greater used by Layered:. To illustrate this point, observe that knowing
the performance improvements due to interleaved pruning. Ob- which packages are valid is not very useful for bounding if a large
serve that the number of such entities is strongly correlated with fraction of possible packages are valid. Note that, by definition,
the total number of top entitied);, that need to be examined, as P, = {# of known associatiolgTI; {# of entities of typeT’; }
only a fraction of all entities examined will participate in some top On the other hand, Layer&d boundsMaz UnseenPkg in a con-
package. Finally, note that al); are positively correlated with the servative manner, as it cannot exploit known associations. More-
number of top packages required, since the more top packages thabver, the number of top entities it calculates per typg,is not de-
need to be identified, the more entities will have to be examined. pendent on the resulting packages. Thus, by increaBing., the
Thus, we can quantify the effects of interleaved pruning by exam- only component affected in Layerdis the rank-aware join oper-
ining the expected number of entities that need to be examined peration. The latter is expected to terminate earlier for lamggt,.,
answer package identified, i.e. the expected valu%’of as P,ssoc COrresponds to the join selectivity.

We quantify this value as follows: For a given corpus, and for Thus, we expect the relative performance of Interleaved versus
every entity package finder quetly, let k¥ be the number of top Layered’ to be negatively correlated WitR,...; i.e. for smaller
packages requested by . As per definition, the rank of the lowest values of P.ss0c, we expect the performance gains of Interleaved
scoring entity of typd; that needs to be computed, in order toiden- versus the idealized LayerBd to increase, in part due to tight
tify the topk packages, i®;. We define the entity-package ranking bounding. We validate this trend in sec. 5.2.
coefficient for this case;; (T3, W, k), asc; (T, W, k) = %. Es- . .
sentially, c; provides a measure of the number of entities of type 9-2 EXperimental Evaluation
T; that need to be calculated, in order to identify an additional top ~ The Interleaved algorithm processes entity package finder queries
package; in other words, a measure of the necessary amount of prowithout relying on knowledge or estimatesof. Layered requires

918

o) 120) 60-
87 g T 110{ % 8
Eg g 100 \v\ o 584
38 55 v 90 ~ £
i3 3 7~ E 80 > JLayered 2 56-
57 f > 70 N]
£g 05 3 60 - - S 544
© C 3 O
o5 & 50 °
23 q) Interleaved 52+
£5 o 40 =2
F3 -45 g 30 ©
&% - g 20 g 50 ‘ ‘ ‘ :
g€ 200 450 700 950 < 200 400 600 < 1 2 3 4 5
< Average C Probability of association (ppm) Number of Relationships (M)
(a) Comparison to Layeréd overC (b) Comparison to Layerétt over Passoc (c) Scalability vs # document-entity rela-
tionships
T 2754 S 300+ 800
b $ 275 S 7001
> 250 o 250 8
€ £ 2254 > 600
5 2254 2, 200+ £ 500
> 5 1754 =
g 200+ 3 igg, % 400
o Py : © 300
g 175 & 1004 $
o o 754 = 200;
g 150 ‘ ‘ ‘ 3 50 ; ; \ 100 ; ; ; \
- 2 4 6 8 50 100 150 200 2 4 6 8 10
Number of keywords in query Number of documents (M) Number of Entity Types
(d) Scalability vs # keywords (e) Scalability vs # documents (f) Scalability vs # entity types

Figure 3: Experimental Evaluation

these values, and their estimation, as shown in sec. 3.2, incursinlanguages other than English), resulting in over 3.7M documents.
an unreasonably high runtime and/or storage overhead. To effec-From these documents, we extracted 600K Named Entities of 9
tuate a comparison between the two algorithms, and demonstratedifferent types, using an Information Extraction tool developed in-
the performance benefits of our proposed techniques, we comparechouse at the University of Toronto. In this way we extracted over
Interleaved with Layerdd, an idealized instantiation of Layered 4.1M document-entity relationships. Entity associations were de-

(i.e. Layered with an oracle for the exact values offaj). In order termined to hold between pairs of entities with statistically signifi-
to implement the latter, the exact values/af for every query were cant co-occurences in these blog posts, for a total of 110K associa-
precalculated in a brute force manner. tions. WhereaR EAL represents only a 10 day sample of discus-

Our experiments, on large-scale synthetic datasets show that In-sions in the blogosphere, it serves to demonstrate that our approach
terleaved is about as efficient, and in practical cases even more effi-can be efficiently applied on real-world, large-scale corpora.
cient, than this idealized instantiation of Layered, thus manifesting We implemented both Layer®d and Interleaved in Java 1.6.
the effectiveness of our techniques. Moreover, they validate the As scoring functions (sec. 2.3) we usédy,, = >, Feomp =
trends predicted in sec. 5.1. Further experiments demonstrate themin, F,,, = >, this choice of scoring functions favors pack-
efficiency and scalability of our approach, on both real and syn- ages with entities that are, on average, most relevant to all query

thetic datasets. keywords. We note that other choices of scoring functions, em-
In order to stress our algorithm on large-scale datasets, we generbodying different semantics, are possible (subject to the loose con-
ated large-scale synthetic corpora, denat&dVT'H. Unless oth- straints detailed in sec. 2.3); experiments with different scoring

erwise noted, alf YNTH corpora contained 50M documents, two functions yielded similar performance trends. Our implementation
types of entities, 10K entities of each type and 5M document-entity maintained document-entity relationships and known associations
relationships per entity type. Every keyword appeared in a varying in main memory; as discussed in sec 2.1 this is a reasonable as-
fraction of all documents, ranging in 0.5-0.05. The queryload used, sumption, even for very large corpora. All our experiments were
unless otherwise noted, consisted of 50 queries with 1-3 keywords executed on a machine with an Intel Core2 Duo CPU, operating at
per entity type, requesting the top 1-10 answers. For generating2.93GHz, and 4GB of memory; our experiments utilized only one
these corpora, all data distributions (document scores, document-CPU core. In all experiments we report query running time, mea-
entity relationships, entity associations, query sizes, etc.) were uni- sured from the moment a query is issued until answers are reported
form. Our experiments used static entity associations, however weto the user. We do not take into account the small runtime over-
note that using dynamic associations, as described in sec.2.1 doe$fiead of system initialization, as it occurs only once, regardless of
not affect our results; this is due to entity associations being ac- the number of queries processed.

cessed via the same API, regardless of whether they are static or For validation purposes, we also compared our algorithms with

dynamic. an approach that used only RDBMS technology. Specifically, we
To demonstrate the applicability and efficiency of our approach, stored theSYNTH corpus as indexed tables in a relational database
we also experimented on a large corpus of real dRAAL. We (MySQL 5.5), and wrote our entity-package finder queries in SQL.

utilized data from BlogScope ([6]), an analysis and visualization We expect this approach to be highly inefficient, as it needs to cal-

tool for the blogosphere, currently monitoring over 28M blogs and culate precise scores of every entity and package, followed by a
over 400M blog posts. We used all indexed posts made in the 10- selection of the top-k packages. Indeed, when executing our test
day period between June 11th and 21st (excluding spam, and postgjueries, this approach had average query execution time up to an

919

order of magnitude larger than our proposed Interleaved itthgoy Having shown significant performance benefits of our proposed
depending on query parameters. For this reason, we do not furtheralgorithm, Interleaved, over the oracle baseline LayBredie next

consider such RDBMS-based approaches, but focus instead on apevaluate its scalability and efficiency, using large-scale synthetic
proaches with early termination and pruning properties (Interleaved corpora. Note that these are significantly larger, wrt. all operating

and Layereff?). parameters, than corpora one would expect in practice; as we sub-
)] sequently demonstrate, using a real dataset, performance in practice
5.2.1 Comparison with Layeréd is orders of magnitude better (sub-second average query time - cf.

We first present an evaluation of the relative performance of In- S€C. 5.2.3). . o
terleaved and an instantiation of Layered utilizing an oracle to ob- ~ Number of document-entity relationships: The number of doc-
tain preciseD; values, termed Layer&d. We stress that this al- ~ Ument - entity relationships in a corpus is an important factor affect-
gorithm (Layere®) is provided as a point of comparison, and is iNg query processing performance, as it influences the early prun-
not practically realizable (in practice, obtaining precise values of ing/termination capabilities of Interleaved, wrt. document score
D; is not possible, and estimating them incurs unreasonable stor-2ggregation. To test the scalability of our approach, in this experi-
age and/or runtime overheads, see sec.3.2). In our first compar-ment we varied the number of document-entity relationships in the
ative experiment, we varied the number of known associations in Y NTH corpus, from 1M to 5M per entity type, and executed our
the SYNTH corpus, from 2.5K to 500K, corresponding Rassoc typical query workload using Interleaved. We show average query
of 25-10° t0 500 - 10~°, and executed a queryload of 50 queries, ©xecution time in fig. 3(c), and observe that Interleaved gracefully
each with 1-5 keywords per entity type, using both Interleaved, and Scales to a large number of document-entity relationships.
Layered’: (Recall thatP,.s.. denotes the probability that arbi- Number of keywordsin query: In this experiment we used the
trary entities of different types are associated. Due to its semantics, S YVTH corpus, and executed four query workloads of 50 queries
we expect it to have very low values in practice. To provide a sense €ach, using Interleaved. We varied the number of keywords in each
of perspective with respect to the valuesif.... tested, we note query from 1 to 4 keywords per entity type (i.e. between 2 to 8
that observed values faP,.... in REAL, the real-world corpus ~ Keywords per query). Average query execution time, shown in fig.
we used, ranged from.2 - 107° to 21 - 10~%. Thus, this experi- 3(d), demonstrates that Interleaved scales gracefully with respect to
ment stresses Interleaved well beyond the operational parameterdhe number of keywords in a query. We note that, typical user key-
we typically expect to encounter.). In fig. 3(b) we show aver- word queries involve a small number of keywords, a trend that we
age query time for both Layer8d and Interleaved. As one can ©Xpect carries across to entity-package finder queries; in practice,
see, Interleaved outperforms LayePedor all practical values of ~ We expect a typical workload to involve fewer keywords per query
Passoc, With performance gains of up to 76%. Moreover, one can than in this experiment. o
observe the trends predicted in sec. 5.1.2, namely that the perfor- Number of documents: The number of documents contained in
mance of Interleaved increases, and that of Lay@ratecreases, a corpus naturally affects performance, but is less crucial to perfor-
for lower values ofP,...., due to the effects of tight bounding. Fi- Mance than other parameters. Observe that, all other things being
nally, we observe a roughly equal performance (Interleaved being €dual, scaling the number of documents in a corpus will increase
0.18% slower than Layeréd), for Pu... = 500 - 10°%. Even I/G overhead, and the number of probes to document-entity rela-
though this is an unreasonably high value (in view of the observed tionship tables, but will not significantly affect other query process-
Passoc € [4.2-107%,21 - 107 in REAL, as discussed above), iNg components (e.g. rank-aware aggregation or join). We verify
we subsequently focus on it, to evaluate the performance benefitsthis trend by varying the number of documents in $ieN'TH cor-
of interleaved pruning. pus, from 50M to 200M per entity type, and executing our typical

In our second comparative experiment, we evaluate the perfor- duery workload using Interleaved. Fig. 3(e) shows average query
mance benefits of interleaved pruning. We expect Interleaved to rel- Processing time, demonstrating a graceful, near-linear scaleup trend
atively outperform Layereéd due to interleaved pruning, in cases With respect to the number of documents in the corpus. This trend
with higher entity-package ranking coefficiert, i.e. when top validates our expectations thqt Interleaved can efficiently scale up
packages also require entities that are not among the top (see sed© Very large document collections.

5.1.1). To validate this expectation, we utilized H&NTH cor- Number of entity types: In this experiment we varied the num-
pus, and executed a queryload of 500 queries, each with 1-5 key-Per of entity types in the§YNTH corpus, from 2 to 10, and exe-
words per entity type, using both Interleaved, and LayBredhs cuted our typical query workload using Interleaved. We observed a

previously noted, the parametB,... was chosen to ensure a roughly near-linear scale_up in average query execution time (shown in fig.
equal performance, on average, of Interleaved and Laferégach 3(f)), demonstrating the scalability of our approach wrt. the number
query execution is micro-experimentwhere local expected values ~ Of entity types involved in a query. Note that, intuitively, an actual
of C'in the dataset can be measureddas, (%) where averages ~ USer queryis expected to mv_olve on_Iy asmall r_lumber of types, and
are computed over all entity typds, for the given query). We certainly fewer ’Fhan 19; as in previous experlme.nts.,.we chose to
measured the performance benefits of interleaved pruning as TimeStress our algorithm with operating parameters significantly larger
Gained, which we define g®xecution time using Interleavid- than in practice, to observe its trends wrt. scalability.

{execution time using Layer&d}. We grouped our observations

using an equi-depth histogram on the local measured valués of 5.2.3 Experiments with real data

and report average Time Gained per query in fig. 3(a). We observe 1o demonstrate the applicability of our techniques on real data,
the trend predicted in sec. 5.1.1, thus validating our previous anal- e also utilize thek EA L corpus described above. For every differ-
ysis. As a note, recall that we sel;.. to a “break-even” point ent kind of pairwise entity associations (e.g. Person A is associated
between Interleavgd and LayeR?'d had we setitto a lower value, jith Company C, e.g.2 Band B is associated with Person D), we
such as observed in real data, fig. 3(a) would be completely favor- executed a query workload containing 200 queries, each with 1-5

able towards Interleaved. keywords per entity type, using both Layefedand Interleaved.
- Query keywords were randomly chosen from a list of adjectives
5.2.2 Scalability most commonly used in English.

920

The relative performance of Layerédand Interleaved on real depend on any estimates. We demonstrate the efficiency and scala-
data validates our expectations from synthetic data (fig. 3(b)). Specibility of our approach analytically and by experiments, on both real
ically, given that theR EA L corpus exhibits values d?,.... signif- and synthetic large-scale data.
icantly lower than those shown in fig. 3(b), we expect Interleaved
to outperform Layered: by a large margin. Indeed, when exe- 8. REFERENCES
cuted on theREAL corpus, Interleaved was more than one order
of magnitude faster than Layerdd Moreover, Interleaved pro-
cessed each query in under 1.5 sec; average execution time ranged
from 0.25 sec to 0.5 sec per query, depending on the scenario of [2] ; ; :
pairwise associations being tested. Overall, average query process- 90in Synopses for approximate query answeringIBMOD
ing time using Interleaved was under 0.34 sec. We observe that _ Conferencepages 275-286, 1999. .
our proposed algorithm is able to efficiently answer entity package [3] A.Angel, S. Chaudhuri, G. Das, and N. Koudas. Ranking
finder queries on large, real-world corpora, validating our observa- objects based on relationships and fixed associations.

tions obtained from experimentation on synthetic corpora. Tech.report, 2008. Available at
http://www.cs.toronto.edu/ albert/docs/acdk-edbt09.pdf.

[4] D. E. Appelt and D. Israel. Introduction to information

[1] Opencalais. http://www.opencalais.com. Retrieved on June
23, 2008.
S. Acharya, P. B. Gibbons, V. Poosala, and S. Ramaswamy.

6. RE'_-ATED W_ORK o extraction. InlJCAI Tutorial, 1999.
The entity package finder problem, presented in this work, be- [5] N. Bansal, S. Guha, and N. Koudas. Ad-hoc aggregations of
longs to the general area of top-k query processing. However, stan- ranked lists in the presence of hierarchiesSIGMOD

dard top-k techniques (e.g. [10]) do not apply, due to the document Conference2008.

score aggregation that needs to take place. [9] and [5] proposed [6] N.Bansal and N. Koudas. Blogscope: A system for online
algorithms for calculating top-k over aggregation; however, these analysis of high volume text streams \i.DB, pages

do not consider joins, and hence cannot be used for solving the en- 1410-1413, 2007.

tity package finder problem. Moreover, the techniques presented [7] H. Bast, D. Majumdar, R. Schenkel, M. Theobald, and
therein cannot be efficiently adapted to our problem, as the result- G. Weikum. lo-top-k: index-access’optimized top’-k query
ing algorithm would rely on estimations with very high runtime processing. IVLDB, pages 475-486, 2006.

and/or storage overhead. Such estimation problems, albeit in much [8] K. D. Bollacker, C. Evans, P. Paritosh, T. Sturge, and

simpler settings, are discussed in [16]. The techniques proposed in J. Taylor. Freebase: a collaboratively created graph database

g;tst.\r’]vo_”:hcs?gggﬁ .fft'ﬁ;nggcaeﬁgﬁgég;?: :ntlg pz;?(l(r?gr?t:gédires for structuring human knowledge. BIGMOD Conference
Ing; : u ggregation introdu pages 1247-1250, 2008.

an added complexity for providing the requisite statistics for esti-
mation. Another related work is [2], which discusses methods for [9] K. _Chakrabartl, v Gan_tl, J. Han, and D. Xin. Ranking
efficiently estimating properties of joins. However, these methods objects based on relationships.3tGMOD Conference
only apply to primary key-foreign key joins, and cannot thus be pages ,371_382' 2006. . .
applied to our estimation problem, which involves a more general [10] R. Fagin, A. Lotem, and M. Naor. Optimal aggregation
kind of joins. algorithms for middleware. IRODS 2001.

Another related line of works deals with rank-aware join algo- [11] I- F. llyas, W. G. Aref, and A. K. EImagarmid. Supporting
rithms (e.g. [11], [15]), that efficiently compute top-k over joins. top-k join queries in relational databasesVInDB, pages
Our approach extends the scope of these frameworks, to include ~ 754-765, 2003.
rank-aware aggregation. General rank-aware query processing sysf12] I. F. llyas, W. G. Aref, A. K. ElImagarmid, H. G. EImongui,
tems have been extensively studied in the literature (e.g. [14], and R. Shah, and J. S. Vitter. Adaptive rank-aware query
its extensions [12], [18]). These works, however, do not discuss ag- optimization in relational databasesCM Trans. Database
gregation, and cannot thus be applied in the entity-package finder Syst, 31(4):1257-1304, 2006.
setting. A rank-aware query processing system capable of top-k [13] C. Li, K. C.-C. Chang, and I. F. llyas. Supporting ad-hoc
guery processing over joins and aggregation is proposed in [13], but ranking aggregates. IBIGMOD '06: Proceedings of the
the techniques it presents assume that joins occur before aggrega- 2006 ACM SIGMOD international conference on
tion (e.g. as is typically the case in SQL queries). These semantics Management of datgages 61-72, New York, NY, USA,

are not compatible with the entity package finder problem (where 2006. ACM.

joins need to be performed on top of aggregated results), and the[14] C. Li, K. C.-C. Chang, |. F. llyas, and S. Song. Ranksql:
techniques proposed in this work cannot be efficiently applied to Query algebra and optimization for relational top-k queries.
our setting. In SIGMOD Conferengepages 131-142, 2005.

Scheduling accesses in an informed, data-adaptive manner, for15] K. Schnaitter and N. Polyzotis. Evaluating rank joins with
increased performance, has been investigated in [7], in the context optimal cost. IPODS pages 43-52, 2008.

of the Threshold Algorithm ([10]). An adaptation of such tech- [16] K. Schnaitter, J. Spiegel, and N. Polyzotis. Depth estimation

niques to our setting.is not practicgl, as it has a large runtime over- for ranking query optimization. INLDB, pages 902-913,
head, due to properties of our setting. 2007.

[17] A. Singhal. Modern information retrieval: A brief overview.
7. CONCLUSIONS IEEE Data Eng. Bull.24(4):35-43, 2001.

In this work, we introduced the class of entity package finder [18] M. A. Soliman, I. F. llyas, and K. C.-C. Chang. Top-k query
queries. We examined algorithms resulting from adaptations of processing in uncertain databasesiGDE, pages 896-905,
previous work, and we proposed Interleaved, an efficient algorithm 2007.
to process such queries, by devising early pruning and termination
strategies, in the presence of joins and aggregations, that do not

921

