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ABSTRACT

Traditional color appearance modeling has recently matured to the point that available, internationally-recommended
models such as CIECAM02 are capable of making a wide range of predictions to within the observer variability in color
matching and color scaling of stimuli in somewhat simplified viewing conditions.  It is proposed that the next significant
advances in the field of color appearance modeling will not come from evolutionary revisions of these models.  Instead,
a more revolutionary approach will be required to make appearance predictions for more complex stimuli in a wider
array of viewing conditions.  Such an approach can be considered image appearance modeling since it extends the
concepts of color appearance modeling to stimuli and viewing environments that are spatially and temporally at the level
of complexity of real natural and man-made scenes.  This paper reviews the concepts of image appearance modeling,
presents iCAM as one example of such a model, and provides a number of examples of the use of iCAM in still and
moving image reproduction.
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1. INTRODUCTION
The fundamental theme of this research can be considered image measurement and the application of those
measurements to image rendering and image quality evaluation.  Consideration of the history of image measurement
helps set the context for the formulation and application of image appearance models, a somewhat natural evolution of
color appearance, spatial vision, and temporal vision models.  Early imaging systems were either not scientifically
measured at all, or measured with systems designed to specify the variables of the imaging system itself.  For example,
densitometers were developed for measuring photographic materials with the intent of specifying the amounts of dye or
silver produced in the film.  In printing, similar measurements would be made for the printing inks as well as measures
of the dot area coverage for halftone systems.  In electronic systems like television, system measurements such as signal
voltages were used to quantify the imaging system.  As imaging systems evolved in complexity and openness, the need
for device-independent image measures became clear.

1.1 Image Colorimetry
Electronic imaging systems, specifically the development of color television, prompted the first application of device-
independent color measurements of images.  Device-independent color measurements are based on the internationally-
standardized CIE system of colorimetry first developed in 1931.  CIE colorimetry specifies a color stimulus with
numbers proportional to the stimulation of the human visual system independent of how the color stimulus was
produced.  The CIE system was used very successfully in the design and standardization of color television systems
(including recent digital television systems).

Application of CIE colorimetry to imaging systems became much more prevalent with the advent of digital imaging
systems and, in particular, the use of computer systems to generate and proof content ultimately destined for other media
such as print.  As color-capable digital imaging systems (from scanners and cameras, through displays, to various
hardcopy output technologies) became commercially available in the last two decades, it was quickly recognized that
device-dependent color coordinates (such as monitor RGB and printer CMYK) could not be used to specify and
reproduce color images with accuracy and precision.  An additional factor was the open-systems nature of digital
imaging in which the input, display, and output devices might be produced by different manufacturers and one source
could not control color through the entire process.  The use of CIE colorimetry to specify images across the various
devices promised to solve some of the new color reproduction problems created by open, digital systems.  The flexibility
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of digital systems also made it possible and practical to perform colorimetric transformations on image data in attempts
to match the colors across disparate devices and media.

Research on imaging device calibration and characterization has spanned the range from fundamental color
measurement techniques to the specification of a variety of devices including CRT, LCD, and projection displays,
scanners and digital cameras, and various film recording and print media.  Some of the concepts and results of this
research have been summarized by Berns.1  Such capabilities are a fundamental requirement for research and
development in color and image appearance.  Research on device characterization and calibration provides a means to
tackle more fundamental problems in device-independent color imaging.  For example, conceptual research on design
and implementation of device-independent color imaging,2 gamut mapping algorithms to deal with the reproduction of
desired colors that fall outside the range that can be obtained with a given imaging device,3 and computer graphics
rendering of high-quality spectral images that significantly improve the potential for accurate color in rendered scenes.4

This type of research built upon, and contributed to, research on the development and testing of color appearance models
for cross-media image reproduction.

1.2 Color Appearance
Unfortunately, fundamental CIE colorimetry does not provide a complete solution.  CIE colorimetry is only strictly
applicable to situations in which the original and reproduction are viewed in identical conditions.  By their very nature,
the images produced or captured by various digital systems are examined in widely disparate viewing conditions, from
the original captured scene, to a computer display in a dim room, to printed media under a variety of light sources.  Thus
color appearance models were developed to extend CIE colorimetry to the prediction of color appearance (not just color
matches) across changes in media and viewing conditions (not just within a single condition).  Color appearance
modeling research applied to digital imaging systems was very active throughout the 1990s culminating with the
recommendation of the CIECAM97s model in 19975 and its revision, CIECAM02, in 2002.6  Details on the evolution,
formulation, and application of color appearance models can be found in Fairchild.7  The development of these models
was also enabled by visual experiments performed to test the performance of published color appearance models in
realistic image reproduction situations.8  Such research on color appearance modeling in imaging applications naturally
highlighted the areas that are not adequately addressed for spatially complex image appearance and image quality
problems.

1.3 Image Appearance and Quality
Color appearance models account for many changes in viewing conditions, but are mainly focused on changes in the
color of the illumination (white point), the illumination level (luminance), and surround relative luminance.  Such
models do not directly incorporate any of the spatial or temporal properties of human vision and the perception of
images.  They essentially treat each pixel of an image (and each frame of a video) as completely independent stimuli.
While color appearance modeling has been successful in facilitating device-independent color imaging and is
incorporated into modern color management systems, there remains significant room for improvement.  To address these
issues with respect to spatial properties of vision and image perception (localized adaptation and spatial filtering) and
image quality, the concept of image appearance models has been recently introduced and implemented.9,10  These models
combine attributes of color appearance models with attributes of spatial vision models that have been previously used for
image quality metrics in an attempt to further extend the capabilities of color appearance models.  Historically color
appearance models largely ignored spatial vision (e.g., CIECAM97s) while spatial vision models for image quality
largely ignored color.11,12  The goal in developing an image appearance model was to bring these research areas together
to create a single model applicable to image appearance, image rendering, and image quality specifications and
evaluations.  One such model for still images, referred to as iCAM, has recently been published by Fairchild and
Johnson11 and this paper includes an initial extension to the temporal domain to examine digital video appearance.  This
model was built upon previous research in uniform color spaces,13  the importance of image surround,14 algorithms for
image difference and image quality measurement,15,16 insights into observers eye movements while performing various
visual imaging tasks and adaptation to natural scenes,17,18 and an earlier model of spatial and color vision applied to color
appearance problems and high-dynamic-range (HDR) imaging.19  The structure of the iCAM model, examples of its
implementation for image appearance, and its extension to video appearance are presented below.



1.4 Still & Moving Image Appearance and Quality
Visual adaptation to scenes and images is not only spatially localized according to some low-pass characteristics, but
also temporally localized in a similar manner.  To predict the appearance of digital video sequences, particularly those of
high-dynamic range, the temporal properties of light and chromatic adaptation must be considered.  To predict the
quality (or image differences) of video sequences, temporal filtering to remove imperceptible high-frequency temporal
modulations (imperceptible “flicker”) must be added to the spatial filtering that removes imperceptible spatial artifacts
(e.g., noise or compression artifacts).  This paper describes a first attempt at spatial adaptation for video sequences.
Future research is planned to enhance this first attempt, to implement spatio-temporal filtering, and to evaluate both
psychophysically.

It is easy to illustrate that adaptation has a significant temporal low-pass characteristic.  For example, if one suddenly
turns on the lights in a darkened room (as upon first awakening in the morning), the increased illumination level is at
first dazzling to the visual system, essentially overexposing it.  After a short period of time, the visual system adapts to
the new, higher level of illumination and normal visual perception becomes possible.  The same is true when going from
high levels of illumination to low levels (imagine driving into a tunnel in the daytime).  Fairchild and Reniff20 and
Rinner and Gegenfurtner21 have made detailed measurements of the time-course of chromatic adaptation.  The Fairchild
and Reniff results were used to create a temporal integration function to be applied to the XYZ adaptation image in the
iCAM model.  Briefly, the adaptation image depends not only on a spatially low-pass version of the current image
frame, but a temporally low-pass version of the frames viewed in the previous ten seconds (enough time to capture most
of the temporal effect).  Thus a bright frame viewed immediately after a series of dark frames will appear (and be
rendered) significantly brighter than the same frame viewed after a period of adaptation to similarly illuminated frames.
There are two advantages to such processing.  One is that the appearance of the rendered video mimics that of human
perception and the second is that HDR video or cinema sequences can be rendered on low-dynamic-range displays (such
as streaming video to an LCD on a laptop).

There has been significant research on video quality and video quality metrics, often aimed at the creation and
optimization of encoding/compression/decoding algorithms such as MPEG2 and MPEG4.  This research is relevant to
the extension of iCAM to measure video differences, but has been undertaken with a very different objective.  By
analogy, the still-image visible differences predictor of Daly11 is quite applicable to the prediction of the visibility of
artifacts introduced into still images by JPEG image compression.  The Daly model was designed to predict the
probability of detecting an artifact (i.e., is the artifact above the visual threshold).  The iCAM work summarized
above10,16 has had a different objective with respect to image quality.  Instead of focusing on threshold differences in
quality, the focus has been on the prediction of image quality scales (e.g., scales of sharpness, contrast, graininess) for
images with changes well above threshold.  Such suprathreshold image differences are a different domain of image
quality research based on image appearance that separate the iCAM model from previous image quality models.

Likewise, a similar situation exists in the area of video quality metrics.  Metrics have been published to examine the
probability of detection of artifacts in video (i.e., threshold metrics), but there appears to be no models of video image
appearance designed for rendering video and predicting the magnitudes of perceived differences in video sequences.
The latter is the goal of the extension of iCAM.  Two well-known video image quality models, the Sarnoff JND model
and the NASA DVQ model, are briefly described below to contrast their capabilities with the proposed extensions to the
iCAM model.

The Sarnoff JND model is the basis of the JNDmetrix software package <www.jndmetrix.com> and related video
quality hardware.  The model is briefly described in a technical report published by Sarnoff22 and more fully disclosed in
other publications.23  It is based on the multi-scale model of spatial vision published by Lubin12,24 with some extensions
for color processing and temporal variation.  The Lubin model is similar in nature to the Daly model mentioned above in
that it is designed to predict the probability of detection of artifacts in images.  These are threshold changes in images
often referred to as just-noticeable differences, or JNDs.  The Sarnoff JND model has no mechanisms of chromatic and
luminance adaptation as are included in the iCAM model.  The input to the Sarnoff model must first be normalized
(which can be considered a very rudimentary form of adaptation).  The temporal aspects of the Sarnoff model are also
not aimed at predicting the appearance of video sequences, but rather at predicting the detectability of temporal artifacts.
As such, the model only uses two frames (four fields) in its temporal processing.  Thus, while it is capable of predicting



the perceptibility of relatively high frequency temporal variation in the video (flicker) it cannot predict the visibility of
low frequency variations that would require an appearance-oriented, rather than JND-oriented, model.  The Sarnoff
model also is not designed for rendering video.  This is not a criticism of the model formulation, but an illustration of
how the objective of the Sarnoff JND model is significantly different from that of the iCAM model.  While it is well-
accepted in the vision science literature that JND predictions are not linearly related to suprathreshold appearance
differences, it is certainly possible to use a JND model to try to predict suprathreshold image differences and the Sarnoff
JND model has been applied with some success to such data.

A similar model, the DVQ (Digital Video Quality) metric has been published by Watson25 and Watson et al.26 of NASA.
The DVQ metric is similar in concept to the Sarnoff JND model, but significantly different in implementation.  Its
spatial decomposition is based on the coefficients of a discrete cosine transformation (DCT) making it amenable to
hardware implementation and likely making it particularly good at detecting artifacts introduced by DCT-based video
compression algorithms.  It also has a more robust temporal filter that should be capable of predicting a wider array of
temporal artifacts.  Like the Sarnoff model, the DVQ metric is aimed at predicting the probability of detection of
threshold image differences.  The DVQ model also includes no explicit appearance processing through spatial or
temporal adaptation, or correlates of appearance attributes and therefore also cannot be used for video rendering.  Again,
this is not a shortcoming, but rather a property of the design objectives for the DVQ model.

In summary, while there is significant literature available on the visual modeling of digital video quality, it remains
sparse and the available models were designed with objectives that differ significantly from those of this research.  The
extensions of the iCAM model for digital video applications will include temporal aspects of image adaptation and
appearance in addition to suprathreshold video image difference metrics.  Such extensions will enable new types of
video rendering, artistic and visually veridical re-rendering of video and cinema content into different media, and
prediction of perceived differences in video sequences at suprathreshold levels in both the spatial and temporal domain.

2. THE iCAM FRAMEWORK
Figure 1 presents a flow chart of the general framework for the iCAM image appearance model as applied to still images
originally presented by Fairchild and Johnson.10  A description of the model along with example images and code can be
found at <www.cis.rit.edu/mcsl/iCAM>.  For input, the model requires colorimetrically characterized data for the image
(or scene) and surround in absolute luminance units.  The image is specified in terms of relative CIE XYZ tristimulus
values.  The adapting stimulus is a low-pass filtered version of the CIE XYZ image that is also tagged with absolute
luminance information necessary to predict the degree of chromatic adaptation.  The absolute luminances (Y) of the
image data are also used as a second low-pass image to control various luminance-dependant aspects of the model
intended to predict the Hunt effect (increase in perceived colorfulness with luminance) and the Stevens effect (increase
in perceived image contrast with luminance).  Lastly, a low-pass, luminance (Y) image of significantly greater spatial
extent is used to control the prediction of image contrast that is well-established to be a function of the relative
luminance of the surrounding conditions (Bartleson and Breneman equations).  Refer to Fairchild7 for a full discussion
of the various image appearance effects mentioned above and detailed specifications of the data required.  The specific
low-pass filters used for the adapting images depend on viewing distance and application.  Additionally, in some image
rendering circumstances it might be desirable to have different low-pass adapting images for luminance and chromatic
information to avoid desaturation of the rendered images due to local chromatic adaptation (decrease in visual sensitivity
to the color of the stimulus).  This is one example of application dependence.  Local chromatic adaptation might be
appropriate for image-difference or image-quality measurements, but inappropriate for image-rendering situations.

The first stage of processing in iCAM is to account for chromatic adaptation.  The chromatic adaptation embedded in the
recently-published CIECAM02 model6 has been adopted in iCAM since it was well researched and established to have
excellent performance with all available visual data.  It is also a relatively simple chromatic adaptation model amenable
to image-processing applications.  The chromatic adaptation model is a linear von Kries normalization of RGB image
signals to the RGB adaptation signals derived from the low-pass adaptation image at each pixel location.  The RGB
signals are computed using a linear transformation from XYZ to RGB derived by CIE TC8-01 in the formulation of
CIECAM02.  This matrix transformation has come to be called the MCAT02 matrix, where CAT stands for chromatic
adaptation transform.  The von Kries normalization is further modulated with a degree-of-adaptation factor, D, that can
vary from 0.0 for no adaptation to 1.0 for complete chromatic adaptation.  An equation is provided in the CIECAM02



formulation, and used in iCAM, for computation of D for various viewing conditions.  Alternatively the D factor can be
established manually.  It should be noted that, while the adaptation transformation is identical to that in CIECAM02, the
iCAM model is already significantly different since it uses spatially-modulated image data as input rather than single
color stimuli and adaptation points.  It also differs completely in the remainder of the formulation although using
CIECAM02 equations where appropriate.  One example of this is the modulation of the absolute-luminance image and
surround luminance image using the FL function from CIECAM02. This function, slowly varying with luminance, has
been established to predict a variety of luminance-dependent appearance effects in CIECAM02 and earlier models.
Since the function has been established and understood, it was also adopted for the early stages of iCAM.  However, the
manner in which the FL factor is used in CIECAM02 and iCAM are quite different.

Figure 1.  Flow chart of the iCAM image appearance model.

The next stage of the model is to convert from RGB signals (roughly analogous to cone signals in the human visual
system) to opponent-color signals (light-dark, red-green, and yellow-blue; analogous to higher-level encoding in the
human visual system) that are necessary for constructing a uniform perceptual color space and correlates of various
appearance attributes.  In choosing this transformation, simplicity, accuracy, and applicability to image processing were
the main considerations.  The color space chosen was the IPT space previously published by Ebner and Fairchild.13  The
IPT space was derived specifically for image processing applications to have a relatively simple formulation and
specifically to have a hue-angle component with good prediction of constant perceived hue (important in gamut-mapping
applications).  More recent work on perceived hue has validated the applicability of the IPT space.  The transformation
from RGB to the IPT opponent space is far simpler than the transformations used in CIECAM02.  The process involves
a linear transformation to a different cone-response space (a different RGB), application of power-function



nonlinearities, and then a final linear transformation to the IPT opponent space (I: light-dark; P: red-green, T: yellow-
blue).

The power-function nonlinearities in the IPT transformation are a critical aspect of the iCAM model.  First, they are
necessary to predict response compression that is prevalent in most human sensory systems.  This response compression
helps to convert from signals that are linear in physical metrics (e.g., luminance) to signals that are linear in perceptual
dimensions (e.g., lightness).  The CIECAM02 model uses a hyperbolic nonlinearity for this purpose.  The behavior of
which is that of a power function over the practical ranges of luminance levels encountered. Secondly, and a key
component of iCAM, the exponents are modulated according to the luminance of the image (low-pass filtered) and the
surround.  This is essentially accomplished by multiplying the base exponent in the IPT formulation by the image-wise
computed FL factors with appropriate normalization.  These modulations of the IPT exponents allow the iCAM model to
be used for predictions of the Hunt, Stevens, and Bartleson/Breneman effects mentioned above.  They also happen to
enable the tone mapping of high-dynamic-range images into low-dynamic range display systems in a visually
meaningful way (see example in Fig. 4).

For image-difference and image-quality predictions, it is also necessary to apply spatial filtering to the image data to
eliminate any image variations at spatial frequencies too high to be perceived.  For example, the dots in a printed half-
tone image are not visible if the viewing distance is sufficiently large.  This computation is dependent on viewing
distance and based on filters derived from human contrast sensitivity functions.  Since the human contrast-sensitivity
functions vary for luminance (band-pass with sensitivity to high frequencies) and chromatic (low pass) information, it is
appropriate to apply these filters in an opponent space.  Thus in image-quality applications of iCAM, spatial filters are
applied in the IPT space.  Since it is appropriate to apply spatial filters in a linear-signal space, they are applied in a
linear version of IPT prior to conversion into the non-linear version of IPT for appearance predictions.  Johnson and
Fairchild have recently discussed some of the important considerations for this type of filtering in image-difference
applications and specified the filters used based on available visual data.16  Since the spatial filtering effectively blurs the
image data, it is not desirable for image rendering applications in which observers might view the images more closely
than the specified viewing distance.  The result would be a blurrier image than the original.  It is only appropriate to
apply these spatial filters when the goal is to compute perceived image differences (and ultimately image quality).  This
is an important distinction between spatially-localized adaptation (good for rendering and image quality metrics) and
spatial filtering (good for image quality metrics, bad for rendering).  In image-quality applications, the spatial filtering is
typically broken down into multiple channels for various spatial frequencies and orientations.  For example, Daly,11

Lubin,12 and Pattanaik et al.19 describe such models.  More recent results suggest that while such multi-scale and multi-
orientation filtering might be critical for some threshold metrics, it is often not necessary for data derived from complex
images and for supra-threshold predictions of perceived image differences (one of the main goals of iCAM).  Thus, to
preserve the simplicity and ease of use of the iCAM model, single-scale spatial filtering with anisotropic filters was
adopted.

Once the IPT coordinates are computed for the image data, a simple coordinate transformation from rectangular to
cylindrical coordinates is applied to obtain image-wise predictors of lightness (J), chroma (C), and hue angle (h).
Differences in these dimensions can be used to compute image difference statistics and those used to derive image
quality metrics.  In some instances, correlates of the absolute appearance attributes of brightness (Q) and colorfulness
(M) are required.  These are obtained by scaling the relative attributes of lightness and chroma with the appropriate
function of FL derived from the image-wise luminance map.

For image rendering applications, the main focus of this paper, it is necessary to take the computed appearance correlates
(JCh) and then render them to the viewing conditions of a given display.  The display viewing conditions set the
parameters for the inversion of the IPT model and the chromatic adaptation transform (all for an assumed spatially
uniform display adaptation typical of low-dynamic-range output media).  This inversion allows the appearance of
original scenes or images from disparate viewing conditions to be rendered for the observer viewing a given display.
One important application of such rendering is the display of high-dynamic-range (HDR) image data on typical displays.



3. IMAGE APPEARANCE APPLICATIONS (RENDERING)

Figure 2.  Implementation of iCAM for tone mapping of HDR images.

Figure 2 illustrates the extensions to the basic iCAM model required to complete an image rendering process necessary
for HDR image tone mapping.  The components essential in this process are the inversion of the IPT model for a single
set of spatially constant viewing conditions (the display) and the establishment of spatial filters for the adapting stimuli
used for local luminance adaptation and modulation of the IPT exponential nonlinearity.  While the derivation of optimal
model settings for HDR image rendering is still underway, quite satisfactory results have been obtained using the
settings described below.

4. IMAGE QUALITY APPLICATIONS (DIFFERENCE PERCEPTIBILITY)

Figure 3.  Implementation of iCAM for image difference and image quality metrics.



A slightly different implementation of iCAM is required for image quality applications in order to produce image maps
representing the magnitude of perceived differences between a pair of images.  In these applications, viewing-distance-
dependent spatial filtering is applied in a linear IPT space and then differences are computed in the normal nonlinear IPT
space.  Euclidean summations of these differences can be used as an overall color difference map and then various
summary statistics can be used to predict different attributes of image difference and quality.  This process is outlined in
Fig. 3 and described more fully in Johnson and Fairchild.27

5. IMAGE RENDERING EXAMPLES
The iCAM model has been successfully applied to prediction of a variety of color appearance phenomena such as
chromatic adaptation (corresponding colors), color appearance scales, constant hue perceptions, simultaneous contrast,
crispening, spreading, and image rendering.10  One of the most interesting and promising applications of iCAM is to the
rendering of high-dynamic-range (HDR) images to low-dynamic-range display systems.  HDR image data are quickly
becoming more prevalent.  Historically HDR images were obtained through computer graphics simulations computed
with global-illumination algorithms (e.g., ray tracing or radiosity algorithms) or through the calibration and registration
of images obtained through multiple exposures.  Real scenes, especially those with visible light sources, often have
luminance ranges of up to six orders of magnitude.  More recently, industrial digital imaging systems have become
commercially available that can more easily capture HDR image data.  It is also apparent that consumer digital cameras
will soon be capable of capturing greater dynamic ranges.  Unfortunately display and use of such data are difficult and
will remain so since even the highest-quality displays are generally limited in dynamic range to about two orders of
magnitude.  One approach is to interactively view the image and select areas of interest to be viewed optimally within
the display dynamic range.  This is only applicable to computer displays and not appropriate for pictorial imaging and
printed output.  Another limitation is the need for capability to work with greater than 24-bit (and often floating point)
image data.  It is desirable to render HDR pictorial images onto a display that can be viewed directly (no interactive
manipulation) by the observer and appear similar to what the observer would perceive if the original scene was viewed.
For printed images, it is not just desirable, but necessary.  Pattanaik et al.19 review several such HDR rendering
algorithms and it is worth noting that several papers were presented on the topic at the most recent SIGGRAPH meeting,
illustrating continued interest in the topic.

Figure 4.  Three HDR images from <www.debevec.org>.  The leftmost column illustrates linear
rendering of the image data, the middle column illustrates manually-optimized power-function
transformations, and the rightmost column represents the automated output of the iCAM model
implemented for HDR rendering (see Fig. 2).



Since iCAM includes spatially-localized adaptation and spatially-localized contrast control, it can be applied to the
problem of HDR image rendering.  This is not surprising since the fundamental problem in HDR rendering is to
reproduce the appearance of an HDR image or scene on a low-dynamic-range display.  Since the encoding in our visual
system is of a rather low dynamic range, this is essentially a replication of the image appearance processing that goes on
in the human observer and is being modeled by iCAM.  Figure 4 illustrates application of the iCAM model to HDR
images obtained from Debevec <www.debevec.org>.  The images in the left column of Fig. 4 are linear renderings of the
original HDR data normalized to the maximum presented simply to illustrate how the range of the original data exceeds
a typical 24-bit (8-bits per RGB channel) image display.  For example, the memorial image data (top row) have a
dynamic range covering about six orders of magnitude since the sun was behind one of the stained-glass windows.  The
middle column of images represents a typical image-processing solution to rendering the data.  One might consider a
logarithmic transformation of the data, but that would do little to change the rendering in the first column.  Instead the
middle column was generated interactively by finding the optimum power-function transformation (also sometimes
referred to as gamma correction; note that the linear images in the first column are already gamma corrected).  For these
images, transformations with exponents, or gammas, of approximately 1/6 (as opposed to 1/1.8 to 1/2.2 for typical
displays) were required to make the image data in the shadow areas visible.  While these power-function transformations
do make more of the image-data visible, they required user interaction, tend to wash out the images in a way not
consistent with the visual impression of the scenes, and introduce potentially-severe quantization artifacts in shadow
regions.  The rightmost column of images shows the output of the iCAM model with spatially-localized adaptation and
contrast control (as shown in Fig. 2).  These images both render the dynamic range of the scene to make shadow areas
visible and retain the colorfulness of the scene.  The resulting iCAM images are quite acceptable as reproductions of the
HDR scenes (equivalent to the result of dodging and burning historically done in photographic printing).  It is also
noteworthy that the iCAM-rendered images were all computed with an automated algorithm mimicking human
perception with no user interaction.

6. DIGTAL VIDEO RENDERING

Figure 5.  Implementation of iCAM for tone mapping of HDR video sequences.  The temporal
integrator is given in Eq. 1.

The extension of iCAM to digital video applications requires implementation of a temporally low-pass function to model
the time-course of chromatic and light adaptation for rendering applications and the extension of the spatial filters to



spatio-temporal filters for image difference and quality applications.  Only video rendering, and thus the temporal
properties of adaptation, are addressed in this paper.  Fairchild and Reniff20 collected data on the time-course of
chromatic adaptation to image displays and found that it was essentially complete after about 2 minutes with much of
process complete in a few seconds.  Further analysis of their data suggested that adequate video rendering could be
accomplished by computing the adaptation for each video frame based on the previous 10 sec. of video.  To derive a
temporal integration function, the degree-of-adaptation data as a function of time after a sharp transition of the adapting
stimulus of Fairchild and Reniff20 was examined.  The visual data were described using a sum-of-two-exponentials
function.  An average function was derived for all of the viewing conditions used in the experiments, flipping the
function into the negative-time domain to examine the effect of previous exposures, and then taking the derivative of the
function (since the collected data were effectively a cumulative integral.  Examination of this function shows that the
value at negative 10 sec. is 0.75% of the value at 0 sec. and thus the decision was made that 10 sec. of integration was
satisfactory for practical applications.  Equation 1 is the final temporal integration function, AW(f) for adapting weight,
expressed in terms of numbers of frames with an assumption of 30 frames per second (f = 0 for the current video frame
and f = -300 for the frame that passed 10 sec. ago) and normalized to unit area. The implementation of this temporal
integrator is illustrated in Fig. 5.

† 

AW ( f ) = 0.000261e0.000767 f + 0.0276e0.0297 f (1)

Figure 6.  Frames from a video sequence rendered with iCAM extended as shown in Fig. 5.  See text
for full explanation. (a) First frame of image data after dark adaptation, (b) 10 sec. after the initial
exposure, and (c) final frame of the sequence.  Upper right sub-frames show the spatially and
temporally integrated adapting luminance image and the lower right sub-frames show the iCAM
rendered video frames.

A simple example HDR video sequence was created by scanning a small frame through the Debevec’s HDR memorial
scene.  The sequence begins with 10 sec. of darkness to set the model to dark adaptation.  There is then an abrupt
transition to a view of the round window at the top of the memorial scene.  This view is fixated for 10 sec. to illustrate
the temporal changes in adaptation (applied both to the local luminance adaptation and local contrast adaptation
mechanisms).  The sequence then scans through the scene to show other transitions in appearance.  Figure 6 shows 3
frames extracted from the video sequence.  Each frame is actually a composite of 4 sub-frames.  The upper left sub-
frame is the linearly-rendered HDR image data assuming no frame-by-frame gain control.  The lower left sub-frame is
also linearly-rendered, but includes a frame-by-frame gain control.  This sub-frame illustrates that even small segments
of the original scene often contain HDR image data.  The upper right sub-frame shows the luminance channel of the
temporally-integrated (and spatially low pass) adaptation image.  This is the image used to set the luminance adaptation
and the IPT exponents.  Lastly, the lower right sub-frame shows the fully rendered video processed through the spatial
and temporal iCAM model.  The three frames show (a) the first frame of image data immediately following transition
from the dark frames, (b) 10 sec. later after adaptation to the same view has stabilized, and (c) the final frame of the
sequence showing a typical adaptation state during a scan through the scene.  Note that the rendered sub-frame in (a) is
extremely bright as is typically witnessed upon entering a brightly illuminated scene (or upon opening one’s eye’s after a
period of dark adaptation) while the adaptation stimulus is dark since there is no prior exposure.  Frame (b) shows how
the adaptation stimulus has built up over the previous 10 sec. and it’s effect as witnessed in the rendered sub-frame,
which is similar to a steady-state view of the still image as given in Fig. 4.



7. CONCLUSIONS
Advances in imaging and computing technologies along with increased knowledge of the function and performance of
the human visual system have allowed for the integration of models of color, spatial, and temporal vision to create a new
type of color appearance model, referred to as an image appearance model.  Such models show promise in a variety of
applications ranging from image difference and image quality metrics to the rendering of image data.  This paper
described the framework of one example of an image appearance model referred to as iCAM and illustrated its
applicability to HDR image tone mapping along with initial efforts to extend the model to video appearance and quality
applications.  Future efforts will be directed at completion of the spatio-temporal filters required for video difference
metrics, the collection of more psychophysical data on image and video appearance and differences, and the formulation
of specific iCAM algorithms for various applications.
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