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Abstract— In order to improve the processor performance, the 

response of the industry has been to increase the number of cores 

on the die. One salient feature of multi-core architectures is that 

they have a varying degree of sharing of caches at different levels. 

With the advent of multi-core architectures, we are facing the 

problem that is new to parallel computing, namely, the 

management of hierarchical caches.  Data locality features need 

to be considered in order to reduce the variance in the 

performance for different data sizes.  In this paper, we propose a 

programming approach for the algorithms running on  shared 

memory multi-core systems by using blocking, which is a well-

known optimization technique coupled with parallel 

programming paradigm, OpenMP.  We have chosen the sizes of 

various problems based on the architectural parameters of the 

system like cache level, cache size, cache line size. We studied the 

cache optimization scheme on commonly used linear algebra 

applications – matrix multiplication (MM), Gauss-Elimination 

(GE) and LU Decomposition (LUD) algorithm.   

Keywords- multi-core architecture; parallel programming; cache 

miss; blocking; OpenMP; linear algebra. 

I.  INTRODUCTION  

While microprocessor technology has delivered significant 
improvements in clock speed over the past decade, it has also 
exposed a variety of other performance bottlenecks.  To 
alleviate these bottlenecks, microprocessor designers have 
explored alternate routes to cost effective performance gains.  
This has led to use of multiple cores on a die.  The design of 
contemporary multi-core architecture has progressively 
diversified from more conventional architectures.  An 
important feature of these new architectures is the integration 
of large number of simple cores with software managed cache 
hierarchy with local storage.  Offering these new architectures 
as general-purpose computation platforms creates number of 
problems, the most obvious one being programmability. Cache 
based architectures have been studied thoroughly for years 
leading to development of well-known programming 
methodologies for these systems, allowing a programmer to 
easily optimize code for them. However, multi-core 
architectures are relatively new and such general directions for 

application development do not exist yet. 

Multi-core processors have several levels of memory 
hierarchy.  An important factor for software developers is how 
to achieve the best performance when the data is spread across 
local and global storage.  Emergence of cache based multi-

core systems has created a “cache aware” programming 
consensus.  Algorithms and applications implicitly assume the 
existence of a cache. The typical example is linear algebra 
algorithms.   To achieve good performance, it is essential that 
algorithms be designed to maximize data locality so as to best 
exploit the hierarchical cache structures. The algorithms must 
be transformed to exploit the fact that a cache miss will move 
a whole cache-line from main memory. It is also necessary to 
design algorithms that minimize I/O traffic to slower 
memories and maximize data locality.  As the memory 
hierarchy gets deeper, it is critical to efficiently manage the 
data.  A significant challenge in programming these 
architectures is to exploit the parallelism available in the 
architecture and manage the fast memories to maximize the 
performance.  In order to avoid the high cost of accessing off-
chip memory, algorithms and scheduling policies must be 
designed to make good use of the shared cache[12].  To 
improve data access performance, one of the well-known  
optimization technique is tiling[3][10].  If this technique is 
used along with parallel programming paradigm like OpenMP, 
considerable performance improvement is achieved.  
However, there is no direct support for cache aware 
programming using OpenMP for shared memory environment.  
Hence, it is suggested to couple OpenMP  with tiling 
technique for required performance gain. 

The rest of the paper is organized as follows.  Section II 
describes the computing problem which we have considered.  
The work done in the related area is described in section III.  
Implementation of the problems is discussed in section IV.  
Experimental setup and results are shown in section V.  The 
performance analysis is carried out in section VI.  

II. COMPUTING PROBLEM 

As multi-core systems are becoming popular and easily 
available choice, for not only high performance computing 
world but also as desktop machines, the developers are forced 
to tailor the algorithms to take the advantage of this new 
platform. As the gap between CPU and memory performance 
continues to grow, so does the importance of effective 
utilization of the memory hierarchy.  This is especially evident 
in compute intensive algorithms that use very large data sets, 
such as most linear algebra problems. In the context of high 
performance computing world, linear algebra algorithms have 
to be reformulated or new algorithms have to be developed in 
order to take advantage of the new architectural features of 
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these new processors. Matrix factorization plays an important 
role in a large number of applications.   In its most general 
form, matrix factorization involves expressing a given matrix 
as a product of two or more matrices with certain properties.  
A large number of matrix factorization techniques have been 
proposed and researched in the matrix computation literature 
to meet the requirements and needs arising from different 
application domains.  Some of the factorization techniques are 
categorized into separate classes depending on whether the 
original matrix is dense or sparse.  The most commonly used 
matrix factorization techniques are LU, Cholesky, QR and 
singular value decomposition (SVD).  

The problem of dense matrix multiplication (MM) is a 
classical benchmark for demonstrating the effectiveness of 
techniques that aim at improving memory utilization. One 
approach towards the cache effective algorithm is to 
restructure the matrices into sequence of tiles.  The copying 
operation is then carried out during multiplication.  Also, for a 
system AX=B, there are several different methods to obtain  a 
solution.  If a unique solution is known to exist, and the 
coefficient matrix is full, a direct method such as Gaussian 
Elimination(GE) is usually selected. 

LU decomposition (LUD) algorithm is  used as the 
primary means to characterize the performance of high-end 
parallel systems and determine its rank in the Top 500 list[11].  
LU Factorization or LU decomposition is perhaps the most 
primitive and the most popular matrix factorization techniques 
finding applications in direct solvers of linear systems such as 
Gaussian Elimination.  LU factorization involves expressing a 
given matrix as product of a lower triangular matrix and an 
upper triangular matrix.  Once the factorization is 
accomplished, simple forward and backward substitution 
methods can be applied to solve a linear system.  LU 
factorization also turns out to be extremely useful when 
computing the inverse or determinant of a matrix because 
computing the inverse or the determinant of a lower or an 
upper triangular matrix is relatively easy.   

III. RELATED WORK 

Since multi-core architectures are now becoming 
mainstream, to effectively tap the potential of these multiple 
units  is the major challenge.  Performance and power 
characteristics of scientific algorithms on multi-core 
architectures have been thoroughly tested by many 
researchers[7].    Basic linear algebra operations on matrices 
and vectors serve as building blocks in many algorithms and 
software packages. Loop tiling is an effective optimization 
technique to boost the memory performance of a program. The 
tile size selection using cache organization and data layout, 
mainly for single core systems is discussed by Stephanie 
Coleman and Kathryn S. Mckinley [10].   

LU decomposition algorithm decomposes the matrix that 
describes  a linear system into a product of a lower and an 
upper triangular matrix.  Due to its importance into scientific 
computing,  it is well studied algorithm and many variations to 
it have been proposed, both for uni and multi-processor 
systems.  LU algorithm is implemented using recursive 
methods [5], pipelining and hyperplane solutions [6].  It is also 
implemented using blocking algorithms on Cyclops 64 

architecture [8].   Dimitrios S. Nikolopoulos, in his paper [4] 
implemented dynamic blocking  algorithm.  Multi-core 
architectures with alternative memory subsystems are evolving 
and it is becoming essential to find out programming and 
compiling methods that are effective on these platforms. The 
issues like diversity of these platforms, local and shared 
storage, movement of data between local and global storage, 
how to effectively program these architectures; are discussed 
in length by Ioannis E. Venetis and Guang R. Gao [8]. The 
algorithm is implemented using block recursive matrix scheme 
by Alexander Heinecke and Michael Bader [1].  Jay 
Hoeflinger, Prasad Allavilli, Thomas Jackson and Bob Kuhn 
have studied scalability issues using OpenMP for CFD 
applications[9].  OpenMP issues in the development of 
parallel BLAS and LAPACK libraries have also been 
studied[2].  However, the issues, challenges related with 
programming and effective exploitation of shared memory 
multi-core systems with respect to cache parameters have not 
been considered. 

Multi-core systems have  hierarchical cache structure.  
Depending upon the architecture, there can be two or three 
layers, with private and shared caches.  When implementing 
the algorithm, on shared memory systems, cache parameters 
must be considered. The tile size selection for any particular 
thread running on a core is function of size of L1 cache, which 
is private to that core as well as of  L2 cache which is a shared 
cache. If cache parameters like, cache level, cache size, cache 
line size are  considered, then substantial performance 
improvement can be obtained.  In this paper, we present the 
parallelization of MM, GE and LUD algorithm on  shared 
memory systems using OpenMP. 

IV. IMPLEMENTATION 

In this paper we have implemented parallelization of most  
widely used linear algebra algorithms, matrix multiplication, 
gauss elimination and LU decomposition, on multi-core 
systems. Parallelization of algorithms can also be implemented 
using message passing interface (MPI). Pure MPI model 
assumes that, message passing is the correct paradigm to use 
for all levels of parallelism available in the application and 
that the application “topology” can be mapped efficiently to 
the hardware topology.  However, this may not be true in all 
cases.  For matrix multiplication problem, the data can be 
decomposed into domains and these domains can be 
independently passed to and processed by various cores. 
While, in case of LU decomposition or GE problem, task 
dependency prevents to distribute the work load independently 
to all other processors.  Since the distributed processors do not 
share a common memory subsystem, the computing to 
communication ratio for this problem is very low.  
Communication between the processors on the same node 
goes through the MPI software layers, which adds to 
overhead.  Hence, pure MPI implementation approach is 
useful when domain decomposition can be used; such that, the 
total data space can be separated into fixed regions of data or 
domains, to be worked on separately by each processor.  

For GE and LUD problems, we used the approach of 1D 
partitioning of the matrix among the cores and then used 
OpenMP paradigm for distributing the work among number of 



(IJACSA) International Journal of Advanced Computer Science and Applications,  

Vol. 2, No. 6, 2011 

107 | P a g e  

www.ijacsa.thesai.org 

threads to be executed on various cores. The approach of 2 D 
partitioning of data among cores is more suitable for array 
processors. For a shared memory platform, all the cores on a 
single die share the same memory subsystem, and there is no 
direct support for binding the threads to the core using 
OpeMP. So, we restricted our experiments with 1D 
partitioning technique and applied parallelization for achieving 
speedup using OpenMP.   

A. Architecture Aware Parallelization 

To cope up with memory latency, all data required during 
any phase of the algorithm are made available in the cache.  
The data sets so chosen, are  accommodated into the cache.  
Considering the cache hierarchy, the tile size selection 
depends upon cache size, cache line size to eliminate self 
interference misses. Now depending upon the architecture of 
the underlying machine, the computation work is split into 
number of cores available.  One dimensional partitioning of 
data is done, so that, every core receives specific number of 
rows (or columns), such that, the data fits in the shared cache. 
The blocking technique is then used which ensures that the 
maximum block size is equal to the size of private cache 
belonging to the core.  Parallel computation is carried out 
using OpenMP pragmas by individual cores. 

B. Determining Block  Size 

In order to exploit cache affinity, the block size is chosen 
such that, the data can be accommodated into the cache.  The 
experiments were carried out on square matrix of size N. Let 
„s‟ be the size of each element of matrix and „Cs‟ be the size of 
shared cache. Let the block size be    . 

1. For blocked matrix multiplication, C = A x B,  block of 

matrix A & B, and one row of matrix C should be 

accommodated into the cache.  Then the required block 

size can be calculated using : 

               

For large cache size,  we get, 

                                 √  
  ⁄                                   (1) 

2. For GE problem, the size of input matrix is [ ] [  
 ]. The required block size can be calculated with the 

following equation:       

                                                                 

So, the optimal block size, 

                         √   ⁄                                             (2) 

3. For LU decomposition algorithm with same matrix used 

for storing lower and upper triangular matrix, the optimal 

block size comes out to be    

                         √                                                   (3) 
 

C. Effect of Cache Line Size 

Let cache line size be Cls    Without the loss of generality, 
we assume that the first element of input array falls in the first 
position of cache.  The number of rows that completely fit in 
the cache can be calculated as :   

                           Rows = Cs/Cls                                              (4) 
For every memory access, the entire cache line is fetched. 

So block size         will lead to self interference misses. 
Also if        , system will fetch additional cache lines, 
which may in turn lead to capacity misses; as less number of 
rows can be accommodated in the cache. So to take the 
advantage of spatial locality, the block sizes chosen were 
integral multiple of cache line size Cls. We assumed that, every 
row in the selected tile is aligned on a cache line boundary. 
After finding the row size, block size can be calculated. 

Block Size B =  k x Cls   

                  if               (k is integer) 

        Or         ⌊
    

   
⌋         

Maximum Speed up is achieved when -     

                                     or   

                when   B is multiple of number of Rows      
The algorithm for block size selection is presented in Fig. 

1. 

Further improvement in the performance is achieved by 
using the technique of register caching for the array elements, 
that are outside the purview of the “for”  loop (like value 
a[i][j] shown in Fig. 3). This value is cached, which is then 
shared by all the threads executing the “for” loop   The 
OpenMP implementation of matrix multiplication and GE 
problem is given in Fig. 2 and Fig. 3 respectively. 

D. LU Decomposition 

The main concept is to partition the matrix into smaller 
blocks with a fixed size.  The diagonal entry in each block is 
processed by master thread on a single core. Then for 
calculating the entries in the upper triangular matrix, each row 
is partitioned into number of groups equal to number of cores; 
so that each group is processed by each core. Similarly, for 
calculating the entries in the lower  triangular matrix, each 
column is partitioned into number of groups equal to number 
of cores; so that each group  is processed by each core. The 
implementation divides the matrix into fixed sized blocks, that 
fit into the L1 data cache of the core creating first level of 
memory locality.  On the shared memory architecture, the 
whole matrix is assumed to be in the globally accessible 
memory address space. The algorithm starts by processing the 
diagonal block on one processor, while all other processors 
wait for the barrier. When this block finishes, the blocks on 
the same row are processed by various cores in parallel. Then 
the blocks on same column are processed by various cores in 
parallel. In turn, each processor waits for the barrier again for 

the next diagonal block.   

The storage space can further be reduced by storing lower 
and upper triangular matrices in a single matrix. The diagonal 
elements of lower triangular matrix are made 1, hence, they 
need not be stored.  But this method suffers from the problem 
of load imbalance, if number of elements processed in each 
row or column by each core is not divisible by number of 
cores available. Also, the active portion of the matrix is 
reduced after each iteration and hence, load allocation after 

each iteration is not constant.     
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void forwardSubstitution()  // GaussElimination loop//  
// Matrix size (n x n) 
{  int i, j, k, max, kk, p, q; float t; 
     for (i = 0; i < n; ++i) 
   {  max = i; 
      for (j = i + 1; j < n; ++j) 
     if (a[j][i] > a[max][i])  max = j; 
      for (j = 0; j < n + 1; ++j) 
     {   t = a[max][j]; a[max][j] = a[i][j]; 
          a[i][j] = t; 
     } 
    for (j = n; j >= i; --j) 
   {   for (k=i+1; k<n; k=k+B) 
      { x=a[i][i];   // Register Caching // 
       #pragma omp parallel for shared(i,j,k) private(kk) 
schedule (static) 
       for (kk=k; kk<(min(k+B, n)); ++kk) 
               a[kk][j] -= a[kk][i]/x * a[i][j]; 
      } 
  } 
} 

1) LUD computation:  
Let A be an         matrix with rows and columns  

numbered from 0 to (n-1).  The factorization consists of n 
major steps.  Each  step consisting of an iteration of the outer 
loop starting at line 3 of Fig. 5.  In step k, first the partial 
column  [       ] us divided by  [   ].  Then the outer 
product  [       ]   x   [       ]   is subtracted 
from the       x       sub matrix   [             
 ].  For each iteration of the outer loop             , the 
next nested loop in the algorithm goes from             .   

 

 

 

 

 

 

 

 

Figure 1.  Block Size Selection 

 

 

 

 

 

 

 

 

Figure 2. Parallel  Matrix Multiplication 

A typical computation of LU factorization procedure in the 

kth iteration of the outer loop is shown in Fig.  4.   The kth  

iteration of the outer loop does not involve any computation 

on  rows  1 to  (k-1)   or columns 1 to (k-1). Thus at this stage, 

only the lower right  (n-k) x (n-k) sub matrix of A is 

computationally active.  So the active part of the matrix 

shrinks towards the bottom right corner of the matrix as the 

computation proceeds.  

The amount of computation increases from top left to 

bottom right of the matrix. Thus the amount of work done 

differs for different elements of matrix. The work done by the 

processes assigned to the beginning rows and columns would 

be far less than those assigned to the later rows and columns.  

Hence, static scheme of block partitioning can potentially lead 

to load imbalance. Secondly, the process working on a block 

may idle even when there are unfinished tasks associated with 

that block.   

 

Figure 3. OpenMP parallelization of GE loop 

This idling can occur if the constraints imposed by the 
task-dependency graph do not allow the remaining tasks on 
this process to proceed until one or more tasks mapped onto 
other processes are completed.   

2) LUD OpenMP parallelization:  
For parallelization of LU decomposition problem on 

shared memory, we used tiling technique with OpenMP 
paradigm.  The block size B is selected such that, the matrix 
size is accommodated in a shared cache.  The actual data block 
used by each core is less than the size of private cache so that 
locality of memory access for each thread is maintained.  

For LUD algorithm, due to the task dependency at each 
iteration level, the computation cannot be started 
simultaneously on every core. So, algorithm starts on one core. 
Diagonal element is executed by master core. After the 
synchronization barrier, the computation part of non-diagonal 
elements is split over the available cores.  

After computing a row and column of result matrix, again 
the barrier is applied to synchronize the operations for the next 
loop. The size of data computed by each core is determined by 
block size.   

The size of data dealt by each core after each iteration is 
not the same. With static scheduling, the chunk is divided 
exactly into the available multiple threads and every thread 
works on the same amount of data.  

Fig. 5  illustrates the OpenMP parallelization. The size of 
input matrix „a‟ is „N‟  

     

     

     

     

     

     

Procedure BS(CS, CLS,N,B) 
Input: CS: Cache Size 
CLS: Cache Line Size 
s: Size of each element in input 
N: Input Matrix Rows 
Output : B : Block Size(square) 
Total cache lines = CS / CLS 
No of rows (NR) from input problem size that can be 
accommodated in cache 
NR  = ( ) 
The optimal block size B 
If (NR > CLS) 
          B= k xCLS      // Where k is integer constant 
Else (B = CLS) 

 

void mat-mult()  // matrix multiplication // 

{ for (i=0; i<N; i=i+B) 

 {  Read block of a & c;   

    Read block ofbB; 

    omp_set_num_threads(Omp_get_num_proc()); 

    #pragma omp parallel for shared(a,b,c,i)  

            private(r,i1,j) schedule (static) 

    for (r=i; r<(min(i+B, N)); r++)  

     for (i1=i; i1<(min(i+B,N)); i1++)   

         {  for(j=0; j<N; j++)  

               c[r][i1] += a[r][j] * b[j][i1];  

         } 

    Write block of c ; 

 }}   
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Figure 6. Matrix Multiplication:  Data fits in L2 Cache   

 
Figure 7.  Gauss Elimination on 12 & 16 core machines,  

Data accommodated in L2 cache 

 

 
Figure 8. Speedup for LU Decomposition  

on Dual core CPU 

 

     

     

     

     

     

     

     

     

     

     

     

 

Figure 4.Processing of blocks of LU Decomposition 

 

 

 

 

 

 

 

 

 

Figure 5.  OpenMP implementation of LU Decomposition algorithm 

V. EXPERIMENTAL SETUP & RESULTS 

We conducted the experiments to test cache aware 
parallelization of MM, GE, LUD algorithms on Intel Dual 
core, 12 core and 16 core machines. Each processor had hyper 
threading technology such that, each processor can execute 
simultaneously instructions from two threads, which appear to 
the operating system as two different processors and can run a 
multi program workload. The configuration of the systems is 
given in Table 1.   

Each processor had 32 KB data cache as L1 cache.  Intel 
Xeon processors (12 & 16 cores) had an eight way set 
associative 256 KB L2 cache and 12 MB L3 cache dynamically 
shared between the threads. The systems run Linux  2.6.x  
Blocked LU decomposition was parallelized at two levels 
using OpenMP.   

We used relatively large data sets, so that the performance 
of the codes becomes more bound to the L2 and L3 cache miss 
latencies.  The programs were compiled with C compiler (gcc 
4.3.2).  Fig. 6 and Fig. 7 show the speed up achieved when the 
block sizes are such that, the data fits in L2 cache for matrix 
multiplication and Gauss elimination algorithm respectively.  
Fig. 8 and Fig. 9 show the results of LU decomposition 
algorithm for various matrix sizes on dual and 16 core system 
respectively 

 

Table 1.   System configuration 

 

Processors 

Intel(R) 

Core™2 

Duo 

CPU 

E7500 

Intel(R) 

Dual 

Core 

CPU 

E5300 

Intel(R) 

Xeon(R) 

CPU 

X5650         

(12 

cores) 

Intel(R) 

Xeon(R) 

CPU 

E5630         

(16 

cores) 

Core 

frequency 
2.93 GHz 2.60 GHz 2.67 GHz 2.53 GHz 

L1 Cache 

size 

32 KB I 

cache,   

32 KB D 

cache 

32 KB I 

cache,   

32 KB D 

cache 

32 KB I 

cache,   

32 KB D 

cache 

32 KB I 

cache,   

32 KB D 

cache 

L2 Cache 

size 

3072 KB, 

shared 

2048 KB, 

Shared 
256 KB 256 KB 

L3 Cache 

size 
   ---    --- 12 MB 12 MB 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.  Lu-Fact (a) 

2.  {    

3.      for (k=0; k<N; k++) 

4.     {    #pragma omp single 

5.           for(j=k+1; j<(N); j++) 

6.                  a[j][k]=a[j][k]/a[k][k]; 

7.         #pragma omp parallel for shared (a,k) 

private(i) schedule static 

8.           for(j=k+1; j<(N); j=j+B) 

9.           for (jj=j; jj<min(jj+B, N), jj++) 

10.          {     v=a[k][jj];          ---  caching the value  

11.                 #pragma omp parallel for shared 

(a,k,jj) private(i) schedule static 

12.                  for(i=k+1; i<(N); i++) 

13.                          a[i][jj]= a[i][jj]- (a[i][k]*v); 

14.         } 

15.      } 

16.   } 
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Figure 9.  Speedup for LU Decomposition on 16 core 

machine  

(Matrix size- NxN) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VI. PERFORMANCE ANALYSIS 

The strategy of parallelization is based on two 
observations.  One is that the ratio computation to 
communication should be very high for implementation on 
shared memory multi-core systems.   And second is that the 
memory hierarchy is an important parameter to be taken into 
account for the algorithm design which affects load and store 
times of the data.  Considering this, we implemented the 
algorithms matrix multiplication and Gauss elimination with a 
blocking scheme that divides the matrices into relatively small 
square tiles.  The optimal block size is selected for each core, 
such that the tile is accommodated in the private cache of each 
core and thus avoids the conflict misses. This approach of 
distributing the data chunks to each core greatly improves the 
performance.  Fig. 6 and Fig. 7 shows the performance 
improvement when block size is multiple of cache line size. 
Whenever block size is greater or less than the cache line size, 
performance suffers. This is due to reloading overheads of 
entire new cache line for the next data chunk.  With this 
strategy, we got the speedup of 2.1 on 12 core machine and 
speed up of 2.4  on 16 core machine.    The sub linear 
speedups in Fig. 6 and 7 for lower block sizes are attributed to 
blocking overheads.   

For Gauss elimination and LU decomposition problem, the 
OpenMP pragma, splits the data among the available cores.  
The size of data dealt by every core, after every iteration is 
different. This leads to load imbalance problem.  The chunk 
scheduling scheme, demands the chunk calculations at every 
iteration and hence affects performance.  However, static 
scheduling ensures equal load to every thread and hence 
reduces the load imbalance. For LU decomposition problem 
with 1D partitioning of data among the cores, we observed a 
speedup of 1.39, & 2.46 for two dual core machines and 
speedup of  3.63  on 16 core machine.  The maximum speedup 
is observed when the number of threads is equal to the number 
of (hardware) threads supported by the architecture.  Fig. 9 
shows the speed up when 16 threads are running on a 16 core 
machine. Speed up is directly proportional to the number of 

threads.  The performance degrades when more software 
threads are in execution than the threads supported by 
architecture. So, for 18 threads, scheduling overhead increases 
and performance is degraded.  However, when number of 
threads is more than 8, performance degrades due to 
communication overheads. This is  because, 16 core Intel 
Xeon machine comprises of  2 quad cores connected via QPI  
link. Fig. 9 shows performance enhancement up to eight 
threads and degradation in the performance when number of 
threads is ten. When the computation is split across all the 
available sixteen threads, speed up is again observed, where 
communication overhead is amortized over all cores.  Further 
enhancement in the performance is achieved when method of 
register caching is used for loop independent  variables in the 
program.  Many tiling implementations do not consider this 
optimal block size considerations with cache attributes.  
However, our implementation considers the hierarchy of 
caches, cache parameters and arrives at optimal block size.  
The block size calculations are governed by the architecture of 
the individual machine and the algorithm under consideration. 
Once the machine parameters and input problem size is 
available, the tailoring of the algorithm accordingly improves 
the performance to a greater extent.  Of course,  there is a 
significant amount of overhead in the OpenMP barriers at the 
end of loops; which means that load imbalance and not data 
locality is the problem.   

VII. CONCLUSION & FUTURE WORK 

We evaluated performance effects of exploiting 
architectural parameters of the underlying platform for 
programming on shared memory multi-core systems. We 
studied the effect of private cache L1, shared cache L2, cache 
line size on execution of compute intensive algorithms.  The 
effect of exploiting L1 cache affinity does not affect the 
performance much, but the effects of exploiting L2 cache 
affinity is considerable, due its sharing among multiple threads 
and high reloading cost for larger volumes. If these factors are 
considered and coupled with parallel programming paradigm 
like OpenMP, performance enhancement is achieved.   We 
conclude that, affinity awareness in compute intensive 
algorithms on multi-core systems  is absolutely essential and 
will improve the performance significantly. We plan to extend 
the optimization techniques for the performance enhancement 
on multi-core systems by considering the blocking technique 
at register level and instruction level.  We also plan to 
investigate and present generic guide lines for compute 
intensive algorithms on various multi-core architectures. 
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