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Performing robust detection with resource limitations such as
low-power requirements or limited communication bandwidth is
becoming increasingly important in contexts involving distributed
signal processing. One way to address these constraints consists
of reducing the amount of data used by the detection algorithms.
Intelligent data selection in detection can be highly dependent on
a priori information about the signal and noise. In this paper, we
explore detection strategies based on randomized data selection
and analyze the resulting algorithms’ performance. Randomized
data selection is a viable approach in the absence of reliable and
detailed a priori information, and it provides a reasonable lower
bound on signal processing performance as more a priori infor-
mation is incorporated. The randomized selection procedure has
the added benefits of simple implementation in a distributed envi-
ronment and limited communication overhead. As an example of
detection algorithms based upon randomized selection, we analyze
a binary hypothesis testing problem, and determine several useful
properties of detectors derived from the likelihood ratio test. Addi-
tionally, we suggest an adaptive detector that accounts for fluctu-
ations in the selected data subset. The advantages and disadvan-
tages of this approach in distributed sensor networks applications
are also discussed.
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I. INTRODUCTION

With the recent advances in device and computing tech-
nologies, static as well as dynamic networks such as cellular
systems, the Internet, and sensor networks, are becoming
increasingly ubiquitous. Designing signal processing algo-
rithms that satisfy constraints imposed by these networks is,
therefore, becoming a necessity [1], [2]. Specifically, these
algorithms need to be efficient and robust, and in the case
of battery-powered networks, they need to operate under
power constraints [3], [4]. In addition, there is usually the
added requirement of restricted communication bandwidth
for wireless networks and, therefore, careful management of
the network’s data transmission volume is important [5].

While it may be appropriate to design networks that
densely populate a region with microsensors during sensor
deployment, operation of the network may not require that
all network nodes be operating and communicating at once.
Indeed, for efficient operation, extended network lifetime,
and efficient use of communication bandwidth, it may be
desirable to select a subset of nodes to communicate at
any fixed time [6]. The selected subset changes over time,
varying usage among the nodes to extend their effective
lifetime.

An appropriate algorithm for node subset selection in a
densely populated network can be highly dependent on the
a priori information about the characteristics of both the
signal and noise for a specific task or environment, and,
consequently, it would be unreasonable to attempt to formu-
late a generic optimal procedure. In this paper, we explore
a randomized approach to node selection. Specifically, we
abstract and simplify the problem by considering nodes as
only communicating data for a signal processing task. We
use the average rate at which an individual node is included
in the selected subset as the basic design parameter. The
selection reduces communication bandwidth requirements
by limiting the amount of data transferred between nodes.
Under the assumption that communication dominates the
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energy usage of the nodes, the network lifetime increases as
this average rate decreases. Using this model, we consider
randomized data selection and analyze the network perfor-
mance as a function of this average rate for several classes of
detection algorithms. In addition, this approach can be used
to model intermittent hardware or communication failures
and, therefore, the algorithms presented in this paper offer
ways to compensate for these failures.

In Section II, we consider randomized data selection and
discuss its impact on signal statistics. Section III analyzes
the performance of randomized data selection algorithms in
detection problems, quantifying the performance versus the
average sampling or selection rate. We consider a wide class
of potential target signals, analyze a specific example, and
develop a low-complexity, suboptimal detector for the entire
signal class. Section IV reviews our results and discusses di-
rections for further investigation.

II. RANDOMIZED DATA SELECTION

Distributed networks are composed of interacting hard-
ware and software systems. The energy efficiency of these
networks can be improved by modifying the hardware [7]
or any of the algorithms, such as data routing [8], source
coding [10], [11], or signal processing. In this paper, we
focus on data selection as an algorithmic approach to im-
proving the network’s energy efficiency. Similar strategies
have been used as a design for efficient systems in such di-
verse fields as filter approximation [12], statistical regression
[13], and multiple-input multiple-output (MIMO) wireless
communication [14], [15]. Selection, by reducing the amount
of communication congestion throughout the network and
avoiding the computational burden of processing all avail-
able data, relieves two major sources of energy dissipation.
Since we are concerned primarily with the selection algo-
rithm and its impact upon signal processing performance,
we do not attempt to quantify the energy savings because it
would be highly dependent upon specific algorithm or hard-
ware properties.

While data selection algorithms accounting for many as-
pects of the network’s state can be useful in practice, we
choose a generic approach requiring limiteda priori informa-
tion and communication overhead. Specifically, we consider
a randomized data selection strategy. This approach leads to
useful algorithms in distinct fields such as estimation, hard-
ware failure modeling, low-power design [17], and theoret-
ical computer science [18].

A. Notation

Throughout this paper, we use the following notation to
describe the data selection and signal processing algorithms
used by the distributed system. Our analysis focuses on
signal processing procedures using data collected in a single
time slot. We assume that each measurement is assigned
an identifier index , arbitrarily chosen between 1 and,

where is the total number of network nodes. Subject to
this model, the total data available in time slotis denoted

...
(1)

In our randomized selection rule, the decision to select
measurement depends on the outcome of an indicator
random variable denoted . The random variable is in-
dependent of all other indicator random variables and from
other physically measurable quantities available to the de-
tector. In our model, each measurement in the current time
slot is selected with probability , i.e. 1 has the prob-
ability mass function

(2)

This selection rule reduces the expected complexity of the
detector implementation by a factor of.

The randomly selected data vector, , can be repre-
sented by the equation

(3)

Here, is the data vector defined in (1), and
is an N N diagonal matrix with the th entry given
by . Consequently, the vector is
N-dimensional with each entry being either zero or a data
measurement. In each time slot, the number of nonzero
entries of is a random variable, which we denote by

. Prior to discussing the specific detection problems,
we examine the signal statistics for .

Since the detector only receives a portion of the data, we
must base our algorithms upon the conditional density for

given . To establish the notation for the
conditional density, let the set

(4)

denote the selected measurements in time slot. If a
particular realization of this set is ,
the conditional density for is the joint density for

. The indicator random vari-
ables are independent of , so no useful information
about the signal is gained by observing .

For notational convenience, we will denote the conditional
density of given by the expression

(5)

with the dependence on understood.

B. Application to Distributed Signal Processing

The properties of a sensor network strongly influence
the choice of appropriate distributed signal processing
algorithms. Important variables influencing this choice
include the number and density of sensor nodes, the area

1Throughout this paper, random variables will be denoted with a time slot
index, such asg [m]. Scalars or vectors, such asg org, are denoted without
the indexes.
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covered by the network, available information about external
environment, and the communication capabilities of the
network.

Randomized data selection may be an attractive approach
to distributed signal processing in a variety of situations. For
example, many simple sensor nodes may be densely dis-
tributed throughout the extent of the network. Additionally,
no a priori information about where targets are likely to ap-
pear may be available to aid the sensor selection algorithm.
Due to the high node density, data from neighboring nodes
can be highly redundant. In this situation, random selection
with a small value of can lead to acceptable detector per-
formance, while limiting the energy dissipated by commu-
nication of sensor data through the network. Additionally,
the randomized selection procedure avoids computational or
communication overhead that may be incurred from more
complicated iterative selection procedures [16], or from cen-
tralized coordination of sensor selection.

Randomized selection is compatible with common ar-
chitectures for ad hoc wireless networking. Many networks
use a combination local clustering (where a group of nodes
communicate with a base-station node) and multihop routing
in their networking protocols. Clustering can be combined
with randomized data selection; in every time slot, each
node in the cluster randomly determines whether to transmit
its sensor measurement to the base station. The selection
procedure limits the expected amount of data processed by
each local base-station node. In multihop routing, each of
the selected sensor measurements follows a path through
several nodes in the network. Any node in the network sees
a random number of packets from an individual time slot.
Thus, if necessary, any node in the network can use the
detection algorithms we describe.

Finally, note that the techniques we use to adapt the de-
tector to fluctuations in the size of can be applied to
situations where unreliable sensor or communication hard-
ware lead to intermittent loss of data in the network.

III. RANDOMIZED SELECTION IN DETECTION

In this section, we analyze the interaction of randomized
selection and signal detection in a background of additive
white Gaussian noise. The canonical detector from a binary
hypothesis testing model is the likelihood ratio test [19]. The
test compares the likelihood ratio , defined as the ratio
between the conditional densities for , with a fixed
threshold . If the detector observesin a region of sample
space where , it makes the decision .
Otherwise, it decides . We denote decision rules of
this form with the notation

(6)

Our analysis of the likelihood ratio test highlights two key is-
sues inherent to randomized data selection. First, we discuss
the binary hypothesis test, and account for random selection
in its statistical model. Second, we suggest low-complexity
detectors that adapt to fluctuation in the amount of selected

data. Additionally, we consider the robustness of the detector
to inaccuracies or unknown parameters in thea priori model
for the target signal’s probability density. While this issue
is not directly related to random sampling, it illustrates the
challenging signal processing environment in which detec-
tors often operate.

A. General Signal Model

In order to derive useful properties of the likelihood ratio
test in the presence of random selection, we impose restric-
tions on the statistical model for the target signature. To bal-
ance the generality of the signal model with its special sta-
tistical structure, we assume that the probability density of
the target signal is symmetric about the origin of the sample
space. We shall refer to random vectors that satisfy this con-
dition as even random vectors or even-symmetric signals.
The precise definition of an even random vector is given in
Definition 1.

Definition 1: An -dimensional random vector is
referred to as even if, for every , its probability
density function satisfies .

This signal model establishes a useful structure on the
probability density of the signal, enabling us to determine
key properties of the likelihood ratio test. Additionally, the
signal model is broad enough to model many interesting
target signatures. For example, a sinusoid with an unknown,
uniformly distributed phase satisfies the condition in Defi-
nition 1, as does a zero-mean, Gaussian random vector with
a known covariance matrix.

The general binary hypothesis test for signals in additive
Gaussian noise obeys the following statistical model:

(7)

Here, we assume that , is an -dimensional, zero-mean,
white Gaussian random vector with covariance .
The signal vector has an even-symmetric probability
density. Finally, we assume that and are indepen-
dent random vectors. This model describes the statistics of
the data without randomized selection.

In the presence of randomized data selection, the detector
has access to the indicator random variables in and
processes the subset of the available data contained in .
The likelihood ratio for detectors with randomized selection
can be expressed as

(8)

The simplification in the likelihood occurs because the in-
dicator random variables are independent of the hypotheses

.
Since conditioning upon does not affect the selected

data in , the detection problem based upon and
reduces to an unconditional detection problem for the
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data associated with the nonzero indicator random variables.
For example, if three pieces of data are available, there are
eight possible arrangements of the indicator random vari-
ables. If measurements 1 and 2 are selected in time slot,
the detector must make a decisionbased upon the joint
densities

(9)

Likewise, if measurements 2 and 3 are selected, the de-
cision is determined from and

.
Based upon (8), the likelihood ratio test for

and reduces to the comparison of to
a fixed threshold. While the test is optimal under the
Neyman–Pearson detection criteria, it poses some practical
problems. First, determining the threshold can become
computationally complex when there is a large amount of
data available for selection. The threshold that achieves a
desired false alarm rate is determined by inverting the
equation

(10)

If samples of data are available, there are terms in
the summation. Although it may be possible to approx-
imate this function well by discarding terms with low

, determining the functional form of such
an approximation may be troublesome. The functions of
the threshold given by may not
be easily parameterized. Second, since the thresholdis
constant while fluctuates, the conditional false alarm rate

fluctuates as well. In
a situation where actions taken following a false alarm are
costly, however, this fluctuation may not be desirable, since
it is induced by the random data selection rather than an
information-bearing signal.

Faced with the practical difficulties of solving (10) for,
a suboptimal yet tractable alternative seems desirable. A rea-
sonable approach fixes the conditional false alarm rate

(11)

for each realization of . Similar procedures have been dis-
cussed in [22] in a two-sensor situation. This constraint elim-
inates the fluctuations in the conditional false alarm rate and
may simplify the implementation of the resulting detector,
since the constraint has a constant rather than exponential
number of terms. It does, however, require the detector to
adapt the test threshold to the arrangement of . In the
remainder of the paper, we will focus on detectors designed
with randomized data selection and the constraint imposed
by (11).

In the remainder of this section, we discuss detector adap-
tation from several perspectives. First, we analyze the ex-
ample problem of detecting a sinusoidal signal, a familiar
target signature that satisfies the condition in Definition 1.
Second, we demonstrate some properties of the likelihood

ratio test for the general detection problem. Finally, we dis-
cuss nonparametric detection for any signal with an even-
symmetric density.

B. Example—Detecting a Sinusoidal Signal

We consider detection of a sinusoidal signal in the pres-
ence of randomized data selection. Our analysis illustrates
the difficulties associated with detection in the presence of
uncertainty in the target signal and the challenges imposed
by the fixed false alarm requirement from (11).

Consider a set of data generated by sampling a signal at
several locations, denoted by, . We shall
assume that these locations can be modeled by a set of
independent, identically distributed uniform random vari-
ables over an interval significantly larger than the sinusoid’s
wavelength.

Let denote the state in which the sinusoid is absent, and
denote the state when it is present. Theth measurement

under each hypothesis is given by

(12)

The random variable is a zero-mean Gaussian random
variable with variance . The probability density for ,
conditioned upon and is white Gaussian. In order
to determine the likelihood ratio and the resulting receiver
operating characteristic, we also need the probability density
for conditioned upon and . This conditional
density depends, in turn, on the joint density of

(13)

for the selected data in . The probability density for the
signal is a function of the joint density of the phase random
variables. Since the signal and noise are independent under

, the overall conditional density for is the convolu-
tion of the signal density and the noise density. The determi-
nation of the joint density for the phase random variables is
a key step in this calculation.

Since are independent and uniform over a large
interval, we can approximate as independent, identi-
cally distributed uniform random variables over the region

. Using this model, we can analyze the form of the
likelihood ratio test for the model suggested in (12). Here,
we assume that the base station knowsexactly. The signal
is , where is a -dimensional random vector.
Each entry takes the form . Based upon
our approximation, the probability density for is

(14)

where denotes the unit step function. This density is
nonzero over the -dimensional hypercube of side. For
fixed , we denote2 the randomly selected data by .

2When applied to a vector, the subscriptK indicates its dimension. This
does not contradict our earlier notation, where the subscript of a scalar
random variable indicated the identity of the measurement. The dimension
subscript is always attached to a vector, not a scalar.
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Fig. 1. One-dimensional conditional densities for the signal model defined in (15). The top plot
shows the density forH with a solid line. The densities forH with A = 1; 2; 4; and6
become progressively wider. The second plot shows the corresponding log-likelihood ratios,
L(xjK = 1). In all plots,� = 1.

This random vector lists the selected data contiguously,
rather than with zeros as in . For notational convenience,
we assume that measurements 1 toare selected,3 so

. The resulting signal model is

(15)

Based on these probability density functions, we can
construct the likelihood ratio test for fixed values ofand

. The conditional density under is Gaussian with zero
mean. Under , the conditional density is the convolution
of the Gaussian with the density for given in (14). The
conditional density for under can be written in
terms of a one-dimensional (1-D) convolution, since both
conditional densities are separable. The conditional density
is

(16)

3This notation does not reduce the applicability of the analysis, since our
modeling assumptions make the measurements statistically indistinguish-
able. Their joint statistics depend only onK and not on the measurement
identifiers.

Since under is a white, Gaussian random vector
with variance , the likelihood ratio is

(17)

Analysis of the likelihood ratio test derived from (17) for
and provides useful intuition about the gen-

eral properties of the detector. The 1-D conditional densities,
and , and the associated log-likeli-

hood ratios are shown in Fig. 1. When , is sym-
metric and increasing, so the likelihood ratio test from (6)
simplifies to a threshold test of the form

(18)

Since the detector compares the magnitude of the received
data with a threshold, the implementation is simple.

Typically, the performance of a detector is shown by an
operating characteristic, which plots the detection prob-
ability as a function of the false alarm probability

. Both and can be calculated by integrating,
respectively, the conditional densities
and over the decision
region. Thus, the operating characteristic is generated as
the threshold in (18) ranges over . It can be
shown that the operating characteristic calculated from the
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likelihood ratio test gives the maximum achievable for
each false alarm rate .

For , the detector described by (18) has an important
universality property over the set of binary hypothesis tests
for . The threshold that achieves a certain can be
determined in terms of the function [23] and . Since the
threshold can be determined without knowledge of the wave
amplitude , the test in (18) is a uniformly most powerful
(UMP) test [19]. For such a test, the decision regions that
maximize subject to a constraint on are invariant to
the actual value of the parameter. The actual value of ,
however, does depend on.

The contrast between the likelihood ratio test for
and indicates some implementation challenges in the
presence of uncertain signal models and random data selec-
tion. When , the likelihood ratio test for is not
a function of the received data magnitude , as shown
in Fig. 2. Since the likelihood ratio is increasing in all di-
rections, the likelihood ratio test will declare in a
simply connected region containing the origin. Outside this
region, it will declare . Thus, the two-dimensional
(2-D) test determines a closed curve, expressed in polar coor-
dinates as , that gives the boundary between the decision
regions for and . Since is not constant,
the implementation of the likelihood ratio test is more com-
plicated in two dimensions than in one.

For situations where , there is not a UMP de-
tector. In order to determine properly, we require

, , and the desired value of .
As shown in Fig. 2, the detector requiresto determine the
decision regions in the likelihood ratio test.

Finally, the likelihood ratio test’s decision regions depend
on the value of . The shape of the decision regions varies as

changes, as they did when increased from 1 to 2. Evi-
dently, larger values of lead to more complicated decision
regions. For example, the decision regions for can be
complicated sets in the plane.

The difficulty in determining the decision regions under
uncertainty in and makes the exact likelihood ratio test
on challenging to implement. First, the fluctuation in
means that the detector must be able to quickly adapt the de-
cision regions for each time slot. Second, potential uncer-
tainties in the target signal density prevent the detector from
determining the exact likelihood ratio test. These challenges
in the example detection problem persist for the general even
signal model.

C. General Properties of the Likelihood Ratio for Even
Signals

The sinusoid detection example illustrates several
properties of the likelihood ratio in white, Gaussian noise.
This section generalizes these properties to signals with
even-symmetric probability densities. The qualitative be-
havior of the resulting decision regions is illustrated, and the
prospects for practical implementation are discussed.

Following the derivation of (16) and (17), we can calculate
the conditional likelihood ratio for an arbitrary signal with an
even-symmetric probability density. The binary hypothesis

test’s signal model is given by (7). The resulting expression
for the conditional likelihood ratio is

(19)
In the integral, the variable is a -dimensional vector,
and the density denotes the joint density for
the selected signal measurements.

The likelihood ratio is easily expressed in Cartesian coor-
dinates. Its qualitative description, however, is easiest in gen-
eralized, -dimensional spherical coordinates. When
, the spherical coordinates can be determined via induction.

In general, the transformation between spherical and Carte-
sian coordinates is expressed as

...
...

(20)

The domain of the radius is , and the domain of the
angular variables is and for

.
Using spherical coordinates, the boundary between

the decision regions of the likelihood ratio test can be
described. In the 2-D example, the curve dividing the deci-
sion regions is denoted by . In higher dimensions, we
indicate the boundary surface by , where the argument

is a vector containing all the angular
variables.

Without specific knowledge of the signal probability den-
sity , the integral in (19) cannot be evaluated.
The properties of even-symmetric signals, however, enable
us to discover qualitative properties of the likelihood ratio.
In spherical coordinates, we denote the likelihood ratio, con-
ditioned upon , by . In Appendix I,
we prove the following theorem, showing that the likelihood
ratio test for an arbitrary even signal produces decision re-
gions similar to those for the example.

Theorem 1: Consider a detection problem of the class de-
fined in (7). Let and . Then,
the likelihood ratio given by (19) increases mono-
tonically without bound for any fixed .

As a consequence of this theorem, we can describe the
likelihood ratio test in terms of , a closed surface
containing the origin. The interior of the surface is the
decision region , and the remainder of the sample
space is the decision region . In order to determine

, consider a fixed threshold for the likelihood ratio
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Fig. 2. The top plot shows the 2-D likelihood ratio whenA = 1 and� = 1. The bottom plot shows
the decision region boundary curves forP = 10 . In both cases, the noise variance is� = 1. The
solid curve shows the boundary whenA = 1, and the dashed curve shows the boundary whenA = 6.

test. Assuming that the probability densities contain no
point masses, the subset of sample space satisfying the
condition composes the decision region for

. Likewise, the condition determines the
decision region for . For a fixed vector , Theorem 1
implies that the function of given by is strictly

monotonically increasing. Thus, there is a unique solution to
the equation if . The set of
solutions generated as varies defines , the boundary
between the decision regions. Since the absolute minimum
of the likelihood ratio occurs at , the origin of the
sample space is always included in the decision region for
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, if it is nonempty. Hence, the qualitative description of
the likelihood ratio test for the sinusoidal signal generalizes
to any signal with an even-symmetric probability density.

Unfortunately, the implementation difficulties of the like-
lihood ratio test for the sinusoidal signal generalize as well.
The detector must cope with fluctuations in the size of the se-
lected subset and uncertainties in thea priori signal model.
To implement the likelihood ratio test in all cases using ran-
domized data selection, the detector should be able to de-
termine the decision regions for each realization of .
Additionally, for a fixed realization of the indicator random
variables, determining these decision regions depends on the
exact density and the desired false alarm
probability . If, as in the sinusoid detection model, there
are unknown parameters in the signal model, or the signal is
difficult to modela priori, the decision regions that achieve

and maximize are difficult to determine.

D. Nonparametric Detector

Techniques from the theory of nonparametric and robust
statistics have been applied to detector design in situations
without precisea priori models [9], [19], [20]. Application of
two such techniques can combat the challenges identified in
the previous section. One technique introduced to cope with
uncertainty in a signal model is invariance [21]. If a signal
belongs to a class that is closed under some transformation,
it is useful to design the detector so that its performance is
also invariant to the transformation. The second challenge for
the detector is the fluctuation in and the associated task of
rapidly updating the decision regions to satisfy the constraint
in (11). This constraint enforces a constant false alarm rate
(CFAR) condition on the detector: random fluctuations in the
size of the selected data subset do not cause changes in the
false alarm rate.

In this section, we propose a low-complexity, nonpara-
metric detector addressing the implementation challenges of
the exact likelihood ratio test. The detector is invariant to ro-
tation of the target signal probability density, and maintains
the CFAR property.

The intuition behind our nonparametric detector arises
from the sinusoidal signal example when . In this
case, the 1-D sample space simplifies the decision region
and leads to a UMP detector. Even though we cannot
find a UMP detector for , we can determine a test
that has a weaker universality property over the class of
even-symmetric random vectors. In this case, it is possible
to determine a scalar-valued function of so that there
is a UMP test for the resulting random variable.

In this section, we use a detector based upon the scalar
test statistic . Note that this statistic is rotationally
invariant. We analyze the properties of the likelihood ratio
for , and show that this statistic leads to a nonparametric
detector resembling the detector derived for earlier.

Based upon knowledge of the Gaussian conditional density
, we design a threshold test

(21)

where is chosen to achieve a desired. We show that this
test has the maximum possible for any set of decision
regions based onthat achieve the false alarm rate . Ad-
ditionally, we show a method to calculatethat accounts for
fluctuations in the selected subset and maintains the CFAR
property.

1) Properties of the Likelihood Ratio for : In order
for the intuition based on the scalar detector to work, two
conditions must be satisfied. First, the likelihood ratio test
for given must reduce to a threshold test de-
scribed in (21). This condition guarantees that the operating
point of the test maximizes over all decision regions that
achieve the desired , regardless of the target signal’s den-
sity. Second, there ought to be an easy way to determine the
proper threshold based upon a desired false alarm probability

. This allows the detector to be implemented with the re-
quired false alarm rate in real time. This subsection generates
exact results for both these conditions, and the following sub-
section describes an approximate technique to calculate the
test threshold.

In order to justify the simple threshold detector structure,
we first verify that the likelihood ratio test simplifies to the
form shown in (21). The likelihood ratio for given
is

(22)

Rather than calculate the ratio by direct computation of the
densities and , we can
show the necessary result using the properties of
established in the proof of Theorem 1. The following
theorem, proved in Appendix II, establishes the validity of
the threshold test on.

Theorem 2: For the statistical model established in (12),
and a fixed value of , let . If the conditional
densities for , 1 are continuous
and positive, the likelihood ratio for increases
monotonically without bound.

In order to determine an appropriate CFAR detector, we
require a rule for selecting a thresholdas a function of
and . For a fixed , the false alarm probability is

(23)

The density is a multivariate Gaussian,
so the integral (23) can be reduced the complementary dis-
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Fig. 3. Normalized radial densities forK = 10; 50; and101. Each radial density arises
from a Gaussian density forx [m] with covariance matrixI. The plotted curves are
((p (rjK;H ))=(max(p (rjK;H )))). Each appears similar to a Gaussian with
standard deviation near(1=2).

tribution function (CDF) of a central random variable of
degree [24]. In the case where , is

(24)

This integral can be expressed using the incomplete gamma
function denoted by . The false alarm rate in
this situation is

(25)

An exact determination of the test threshold that achieves a
desired false alarm rate requires inversion of (25). In sit-
uations where the false alarm rate is always fixed to a single
value, a lookup table for versus may be appropriate. If
the application scenario requires that vary over time, the
detector must be able to calculate the threshold numerically.
Techniques to perform this calculation are described in [25].

2) Low-Complexity Algorithm to Calculate the Detector
Threshold: In this subsection, we propose a threshold
calculation based on an approximation of the conditional
density for under as a Gaussian with its parameters
chosen as functions of and . The algorithm then uses
the Gaussian approximation to calculate the threshold that
would achieve . This section argues for the plausibility
of this approximation procedure, and evaluates its accuracy
in determining .

The algorithms for inverting (25) are iterative in nature.
They may be computationally expensive to execute fre-
quently. This section proposes an approximation appropriate
for low false alarm rates that is based on the inverse of
the function. This can be accomplished without iterative
algorithms using a rational approximation [26], and is less
expensive to compute.

As shown in (24), the conditional density forunder
is proportional to the term . For large
values of , the exponential decay dominates the behavior of
this function. For values of near zero, however, the
term dominates. The overall behavior is that of a sharply
peaked function cresting at . Fig. 3 shows
the normalized density for several values of. Each peak re-
sembles a Gaussian. Examining the logarithm of the function
yields further insight on the resemblance. Taking the loga-
rithm of separates the terms in the function as

(26)

The function is shown in Fig. 4. Since the
term grows slowly for large, the apparent drop of the func-
tion near resembles the quadratic . Specifically,
the second derivative for all values of . Con-
sequently, the Gaussian with approximates the
behavior of well near its peak at .

In order to estimate the density farther from the peak
of , we extend the Gaussian approximation. Since
the term in (26) varies slowly, it is possible to
approximate over several standard deviations by
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Fig. 4. Approximation oflog a (r) by a parabola. The plot displays a case whenK = 5. The
parabolic approximation is designed to fit well enough to determine thresholds necessary to
achieveP = 10 .

a quadratic with properly chosen peak and curvature. Essen-
tially, the approximation of resembles a Gaussian
with its mean and variance adjusted to account forand .
Fig. 4 shows an example of approximating with a
parabola given by .
For properly chosen values of , , and , the
approximation can fit closely over a particular
interval. Since the conditional density decays quickly for
large values of , the interval where the approximation is
accurate only needs to be a few standard deviations wide.

There are many possible ways to approximate in
order to determine an appropriate detector threshold. Our
Gaussian approximation is designed to be accurate for small
values of , less than . We suspect that this is a rea-
sonable range of operation for many detectors, since false
alarms will initiate subsequent processing, expending power
and communication resources. Detectors designed to operate
efficiently would typically avoid a high false alarm rate.

In order to have a low false alarm rate, the detector
threshold should at least be greater than , the peak
location of . Our approximation is based upon
determining a parabola that accurately fits over
an interval of sufficiently large to suggest that the exact

is near .
The Gaussian approximation has three free parameters,

the mean , variance , and the amplitude . In our ap-
proximate fitting procedure, we assign , which
guarantees that the peak of the approximate density coin-
cides with the peak of . Additionally, we
will choose and so that the approximation inter-

sects the true conditional density in two locations, denoted
and . These fit points are chosen so that the interval [,

] is likely to contain the value of that produces .
The values and are determined by making an edu-

cated guess of the true threshold, and centering the fit points
around it. The curvature of at its peak is the same
as a Gaussian with standard deviation . Thus,
we generate an initial guess for the threshold using a crude
Gaussian approximation. The initial guess is

(27)

Given this guess, the fit points are chosen with

(28)

The choice of and is ad hoc. In general, however, it
provides a close fit between and the approximation
on an interval extending several standard deviations past the
true threshold. Since the true density is dominated by the

term past its peak, the false alarm probability
(24) is concentrated in the first several standard deviations
past the threshold. The approximation does not fit accurately
far from , however, this will not have a significant impact
on the approximation accuracy for thresholds nearor .

The parameters of depend on the fit points and
. The fitting error between and is

(29)
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Fig. 5. Approximation accuracy. The ratio of the actual false alarm rate,P , to the desired
value ~P is shown forK = 5; 10; 20; 50; 100; 150;and200. The desired false alarm rate
varies from ~P = 10 to ~P = 10 .

The parameters are determined by requiring ,
, and . Solving for and yields

(30)

The coefficients produce the approximation
. In practice, this function fits

well over a range of near . Fig. 4 shows an
example of the curves for and .

The approximation gives a technique for determining the
threshold to achieve a small for a given . Adjusting for
the constant factors in the integrals (24), the threshold is

(31)

In order to verify the approximation accuracy, we compare
the actual versus over a range of exponentially spaced
values from to . Each is one-tenth the pre-
vious value. Fig. 5 shows the behavior of the approximation
for several values of . In general, the approximation ap-
pears to produce values slightly smaller than . The
error increases with . In general, the approximation is ac-
curate to within a factor of 1.5 for desired false alarm rates
between 0.01 and and between 5 and 200.

The actual performance of the threshold detector for the si-
nusoid detection problem described in Section III-B is shown

in Fig. 6. The figure shows the performance of the detector
for several values of . In all cases the noise variance is

, and the wave’s amplitude is . The simulations
shown in Fig. 6 indicate that the performance of the detection
algorithm improves as or the ratio increase. These re-
sults are not particularly surprising, since increasinggives
the detector more raw data, and increasing improves the
signal-to-noise ratio of each individual measurement. The re-
sults are useful primarily as a low-complexity baseline for the
performance of detection schemes based upon more restric-
tive statistical models or data selection algorithms based on
the details of such models.

IV. CONCLUSION

In this paper, we propose randomized data selection as
a technique to cope with limited communication and com-
putation resources in distributed networks. To illustrate the
impact of randomized selection on signal processing per-
formed by the network, we focus on a binary hypothesis
testing problem: detection of a random vector with an even-
symmetric probability density in white, Gaussian noise.

The detection problem shows several issues inherent in
randomized selection. First, understanding the impact of ran-
domized selection on the signal statistics is required to de-
termine the new detector structure. Our assumptions about
the network’s communication protocols allow us to design
our detectors based upon the conditional densities of the sig-
nals. Second, the fluctuation in the size of the selected sensor
subset presents implementation challenges for the detector. It
needs to perform the likelihood ratio test for a large number
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Fig. 6. The receiver operating characteristic of the example problem is shown for
K = 5; 10; and25.

of potential subsets. Finally, we consider the impact of un-
certainties in thea priori model for the signal’s probability
density on the detector. This issue was independent of ran-
domized selection, but it describes the potential applications
of sensor networks. They may often be used in situations
where the coefficients of the signal’s density are not known
in advance.

In order to deal with the randomized selection environ-
ment, we analyze a nonparametric detector. In lieu of a com-
plex detector based upon a detailed statistical model for the
target signal, we examine a threshold detector on the mag-
nitude of . For any even-symmetric target signature
in white Gaussian noise, the detector’s (, ) operating
point always achieves the maximum for any set of rota-
tionally invariant decision regions that produce a false alarm
rate equal to . In order to integrate the approach with
randomized selection, we show an approximate technique to
calculate the threshold from the desired false alarm rate
and .

The proposed detection algorithm rests upon the statistical
model for the noise. In practice, the noise may not obey
a Gaussian density. The algorithm, however, serves as a
template for designing detectors for use with random sensor
selection. Detectors assuming different noise statistics will
likely require similar approximations for the decision thresh-
olds. Overall, the algorithm serves as a low-complexity
baseline for evaluating the performance of sensor selection
and detection algorithms in sensor networks.

Future work on distributed signal processing and sensor
selection can take many directions. The analysis of random
sensor selection can be expanded to improve the performance

baseline it provides. The selection algorithm can be modified
to account for selection over multiple time slots or selection
in the presence of colored noise. Both cases introduce an ad-
ditional degree of freedom to the basic approach analyzed
here. Additionally, exploring the interaction between selec-
tion and routing or distributed source coding algorithms may
provide another interesting technique for balancing signal
processing performance with communication cost.

Finally, the randomized selection approach may be
useful in practical implementations of sensor networks.
The issues of robustness, complexity, and energy efficiency
are significant in this new environment, and randomized
selection provides a way to balance these performance
criteria. The randomized selection approach suggested in
this paper has several implications for real systems. First,
it gives a performance baseline to algorithms based upon
more detailed state information and statistical models.
Second, it may provide a desirable operating point in the
tradeoff between robustness, complexity, and performance.
Random selection requires no extra communication to
collect the network state, and is robust to a wide class of
signal models. While it will likely produce performance
inferior to algorithms based upon detailed models, it may
be more robust to modeling errors, and may strike a desir-
able balance between performance and complexity. Third,
randomized selection is compatible with the cluster-based
distributed signal processing techniques proposed for sensor
networks. In networks where nodes cooperate in local
clusters, random selection can be applied in each cluster.
Finally, the selection algorithm depends only upon a single
parameter. While we focused on single-shot processing
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in this paper, these detection algorithms will be used over
time. The selection procedure must balance the information
quality in an individual time slot with the longevity of the
sensor network. Since the randomized selection algorithms
depend on a single parameter, it may be possible to illustrate
the tradeoff between performance and network lifetime in
an appealing way through further analysis of this class of
sensor selection algorithms.

APPENDIX I
PROOF OFTHEOREM 1

Theorem 1: Consider a detection problem of the class de-
fined in (7). Let and . Then, the
likelihood ratio given by (19) increases monoton-
ically without bound.

Proof: Using the spherical coordinate system defined
in (20), a vector can be written

(32)

where is a unit vector defined by the angular variables. In
terms of these coordinates, the conditional likelihood ratio is

(33)
Expressed in spherical coordinates, the derivative is

(34)

Each term in the integrand is positive over the region where
; thus, the integrand is positive for every value of

, and the likelihood ratio is always increasing. Similar
analysis shows that the second derivative of the likelihood
ratio is always positive.

Since and for all
positive values of , straightforward calculus shows that

satisfies the inequality

(35)

for every and every pair . Thus, there is
no upper bound on ; the likelihood ratio diverges
along the direction identified by the unit vector .

APPENDIX II
PROOF OFTHEOREM 2

Theorem 2: For the statistical model established in (12),
and a fixed value of , let . If the conditional
densities for are continuous
and positive, the likelihood ratio for increases
monotonically without bound.

Proof: For the random variable , the likelihood
ratio is given by

(36)

We shall derive a monotonically increasing lower bound for
in terms of the likelihood ratio for .

In order to make the argument precise, let

(37)

Under the assumption that this is a well-defined function, the
conditional densities for satisfy

(38)

whenever . Thus, the density sat-
isfies

(39)

This inequality shows that the likelihood ratio for the random
variable is bounded below by , i.e. .
In the remainder of this section, we will prove the existence
and continuity of and demonstrate that increases
monotonically without bound.

Consider the minimization from (37) in spherical coordi-
nates. The domain for the angular variables is a compact set;
each lies in the interval , and lines in the
interval . With fixed , is a positive,
bounded function over a compact set, so the minimum exists
[27].

The results of Theorem 1 show that is an increasing
function. For any and , consider the value of

(40)

Theorem 1 guarantees that for any
fixed . Additionally, the likelihood ratio satisfies

as a consequence of the definition of. Combining
these inequalities yields

for all if (41)

Since there is a strict inequality between and
, must satisfy

for all (42)

Thus, as a consequence of Theorem 1, the bound function
is strictly monotonically increasing.

To prove that is continuous, we must verify that for
every , we can find such that

(43)

The likelihood bound satisfies for some
unit vector due to its definition as a minimization. Thus,
using the fact that is an increasing function of,
we can determine the inequality

(44)
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for any fixed and . Using this inequality produces
the following property of

(45)
Since is the ratio of two positive, continuous
functions of , it is also a continuous function. Thus, for
any value of , we can find a value of such that

. This property, along
with the inequality (45) establish that is a continuous
function of .

Finally, we can establish that has a lower bound sim-
ilar to (35). In the proof of Theorem 1, we showed that, with
fixed , for any and any . Thus, we
can guarantee that

(46)

is a well-defined function because we are minimizing a func-
tion bounded from below over a compact set. Thus, for every

and every pair , the inequality

(47)

holds. Minimizing both sides of the expression guarantees
that satisfies

(48)

The function increases at least linearly, so it is
not bounded. Since , the theorem is
proven.
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