Randomized Data Selection in Detection with
Applications to Distributed Signal Processing

CHARLES K. SESTOKSTUDENT MEMBER, IEEE MAYA R. SAID, STUDENT MEMBER, IEEE AND
ALAN V. OPPENHEIM, FELLOW, IEEE

Invited Paper

Performing robust detection with resource limitations such as |. INTRODUCTION

low-power requirements or limited communication bandwidth is . . . .
becoming increasingly important in contexts involving distributed ~ With the recent advances in device and computing tech-

signal processing. One way to address these constraints consistgnologies, static as well as dynamic networks such as cellular
of reducing the amount of data used by the detection algorithms. systems, the Internet, and sensor networks, are becoming
Intelligent data selection in detection can be highly dependent on increasingly ubiquitous. Designing signal processing algo-

a priori information about the signal and noise. In this paper, we . . ; . :
explore detection strategies based on randomized data selectionrIthrnS that satisfy constraints imposed by these networks is,

and analyze the resulting algorithms’ performance. Randomized therefore, becoming a necessity [1], [2]. Specifically, these
data selection is a viable approach in the absence of reliable and algorithms need to be efficient and robust, and in the case
detailed a priori information, and it provides a reasonable lower of battery-powered networks, they need to operate under
qu:t%‘:] 92 ,i'ggf;oeé?ggsﬁﬂg P:;L‘gm?ggesilseg%rﬁ ;‘ré’ég' ;gf(r)];s power constraints [3], [4]. In addition, there is usually the

ion is i . iz i u ; ; ot ;
the added benefits of simple implementation in a distributed envi- adde_d requirement of restricted communication bandwidth
ronment and limited communication overhead. As an example of fOr wireless networks and, therefore, careful management of
detection algorithms based upon randomized selection, we analyzethe network’s data transmission volume is important [5].
a binary hypothesis testing problem, and determine several useful While it may be appropriate to design networks that
properties of detectors derived from the likelihood ratio test. Addi- densely populate a region with microsensors during sensor

tionally, we suggest an adaptive detector that accounts for fluctu- ; :
ations in the selected data subset. The advantages and disadvan-dePonment’ operation of the network may not require that

tages of this approach in distributed sensor networks applications &ll network nodes be operating and communicating at once.
are also discussed. Indeed, for efficient operation, extended network lifetime,
Keywords—Bistributed signal processing, likelihood ratio test, and. efficient use of communication bandwidth, it m.ay be
nonparametric detection, randomized algorithms, randomized sam- desirable to select a subset of nodes to communicate at
pling, sensor networks. any fixed time [6]. The selected subset changes over time,
varying usage among the nodes to extend their effective
lifetime.
An appropriate algorithm for node subset selection in a
densely populated network can be highly dependent on the
a priori information about the characteristics of both the
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energy usage of the nodes, the network lifetime increases asvhere IV is the total number of network nodes. Subject to
this average rate decreases. Using this model, we considethis model, the total data available in time stotis denoted
randomized data selection and analyze the network perfor-

. ) z1[m]
mance as a function of this average rate for several classes of o [m]
detection algorithms. In addition, this approach can be used x[m] = i . 1)
to model intermittent hardware or communication failures :
and, therefore, the algorithms presented in this paper offer zn[m]
ways to compensate for these failures. In our randomized selection rule, the decision to select

In Section II, we consider randomized data selection and measurement, ] depends on the outcome of an indicator
discuss its impact on signal statistics. Section Ill analyzes random variable denoteg,[m]. The random variable is in-
the performance of randomized data selection algorithms in dependent of all other indicator random variables and from
detection problems, quantifying the performance versus theother physically measurable quantities available to the de-
average sampling or selection rate. We consider a wide clasgector. In our model, each measurement in the current time
of potential target signals, analyze a specific example, andslot is selected with probability,, i.e. g, [mm]! has the prob-
develop a low-complexity, suboptimal detector for the entire ability mass function
sigqal class. Sectiop v rgvieyvs our results and discusses di- o, g=1
rections for further investigation. Pgaim)(9) = { (f’_ )y 9 =0. (2)
This selection rule reduces the expected complexity of the
detector implementation by a factor ¢f.

Il. RANDOMIZED DATA SELECTION The randomly selected data vectsy,[m], can be repre-
sented by the equation

Distributed networks are composed of interacting hard- x,[m] = Glm]x[m] 3)
ware and software systems. The energy efficiency of these g '
networks can be improved by modifying the hardware [7] Here, x[m] is the data vector defined in (1), an@[m)]
or any of the algorithms, such as data routing [8], source is an N x N diagonal matrix with theith entry given
coding [10], [11], or signal processing. In this paper, we by G;;[m] = gi[m]. Consequently, the vectot,[m] is
focus on data selection as an algorithmic approach to im- N-dimensional with each entry being either zero or a data
proving the network’s energy efficiency. Similar strategies measurement. In each time slat, the number of nonzero
have been used as a design for efficient systems in such di-entries ofx,[m] is a random variable, which we denote by
verse fields as filter approximation [12], statistical regression K[m]. Prior to discussing the specific detection problems,
[13], and multiple-input multiple-output (MIMO) wireless  we examine the signal statistics fog[m].
communication [14], [15]. Selection, by reducing the amount ~ Since the detector only receives a portion of the data, we
of communication congestion throughout the network and must base our algorithms upon the conditional density for
avoiding the computational burden of processing all avail- x4[m] given G[m] = G. To establish the notation for the
able data, relieves two major sources of energy dissipation.conditional density, let the set
rSitlﬂrci]ea\\/\rl:ij eiatrseilcjr]oncerned pru_’nanly with thg selection algo S[m] = {j|Gy,m] = 1} )

pact upon signal processing performance,
we do not attempt to quantify the energy savings because itdenote the selected measurements in time siotlf a
would be highly dependent upon specific algorithm or hard- particular realization of this set i§ = {j1,J2,...,7x},
ware properties. the conditional density fo,[m] is the joint density for

While data selection algorithms accounting for many as- z;, [m], zj,[m],...,z . [m]. The indicator random vari-
pects of the network’s state can be useful in practice, we ables are independent affm], so no useful information
choose a generic approach requiring limisgatiori informa- about the signal is gained by observiGgm)].
tion and communication overhead. Specifically, we consider  For notational convenience, we will denote the conditional
a randomized data selection strategy. This approach leads talensity ofx,[m| givenG[m| = G by the expression
useful algorithms in distinct fields such as estimation, hard-
ware failure modeling, low-power design [17], and theoret- Px,|c(X|G) ©)

ical computer science [18]. with the dependence an understood.

i B. Application to Distributed Signal Processing
A. Notation . .
The properties of a sensor network strongly influence

Throughout this paper, we use the following notation to the choice of appropriate distributed signal processing
describe the data selection and signal processing algorithmsalgorithms. Important variables influencing this choice
used by the distributed system. Our analysis focuses oninclude the number and density of sensor nodes, the area
signal processing procedures using data collected in a single
.g Ip Wi 9p h h 9 . . 9 IThroughout this paper, random variables will be denoted with a time slot
“m? S Ot e assume t at_ each measurement Is ass'gne%dex, such ag, [m]. Scalars or vectors, such@sor g, are denoted without
an identifier index:, arbitrarily chosen between 1 and, the indexes.
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covered by the network, available information about external data. Additionally, we consider the robustness of the detector
environment, and the communication capabilities of the to inaccuracies or unknown parameters indtgiori model
network. for the target signal’s probability density. While this issue

Randomized data selection may be an attractive approachis not directly related to random sampling, it illustrates the
to distributed signal processing in a variety of situations. For challenging signal processing environment in which detec-
example, many simple sensor nodes may be densely distors often operate.
tributed throughout the extent of the network. Additionally,
noa priori information about where targets are likely to ap- A. General Signal Model
pear may be available to aid the sensor selection algorithm. |n order to derive useful properties of the likelihood ratio
Due to the high node density, data from neighboring nodes test in the presence of random selection, we impose restric-
can be highly redundant. In this situation, random selection tions on the statistical model for the target signature. To bal-
with a small value ofy, can lead to acceptable detector per- ance the generality of the signal model with its special sta-
formance, while limiting the energy dissipated by commu- tistical structure, we assume that the probability density of
nication of sensor data through the network. Additionally, the target signal is symmetric about the origin of the sample
the randomized selection procedure avoids computational orspace. We shall refer to random vectors that satisfy this con-
communication overhead that may be incurred from more dition as even random vectors or even-symmetric signals.
complicated iterative selection procedures [16], or from cen- The precise definition of an even random vector is given in
tralized coordination of sensor selection. Definition 1.

Randomized selection is compatible with common ar-  Definition 1: An N-dimensional random vectaifm] is
chitectures for ad hoc wireless networking. Many networks referred to as even if, for every, € RV, its probability
use a combination local clustering (where a group of nodes density function satisfiegs(s,) = ps(—so).
communicate with a base-station node) and multihop routing  This signal model establishes a useful structure on the
in their networking protocols. Clustering can be combined probability density of the signal, enabling us to determine
with randomized data selection; in every time slot, each key properties of the likelihood ratio test. Additionally, the
node in the cluster randomly determines whether to transmit signal model is broad enough to model many interesting
its sensor measurement to the base station. The selectionarget signatures. For example, a sinusoid with an unknown,
procedure limits the expected amount of data processed byuniformly distributed phase satisfies the condition in Defi-
each local base-station node. In multihop routing, each of nition 1, as does a zero-mean, Gaussian random vector with
the selected sensor measurements follows a path through known covariance matrix.
several nodes in the network. Any node in the network sees The general binary hypothesis test for signals in additive
a random number of packets from an individual time slot. Gaussian noise obeys the following statistical model:

Thus, if necessary, any node in the network can use the
detection algorithms we describe.

Finally, note that the techniques we use to adapt the de- H; : x[m] =s[m] + n[m]. (7)
tector to fluctuations in the size of, [m] can be applied to
situations where unreliable sensor or communication hard-
ware lead to intermittent loss of data in the network.

Hy : x[m] =n[m]

Here, we assume thafm], is anN-dimensional, zero-mean,

white Gaussian random vector with covariardge = o21.

The signal vectos[mn] has an even-symmetric probability

density. Finally, we assume thgin] andn|[m] are indepen-

dent random vectors. This model describes the statistics of
In this section, we analyze the interaction of randomized the data without randomized selection.

selection and signal detection in a background of additive In the presence of randomized data selection, the detector

white Gaussian noise. The canonical detector from a binary has access to the indicator random variable&im:] and

hypothesis testing model is the likelihood ratio test [19]. The processes the subset of the available data containegdyi].

test compares the likelihood ratiqx), defined as the ratio ~ The likelihood ratio for detectors with randomized selection

between the conditional densities fafm], with a fixed can be expressed as

I1l. RANDOMIZED SELECTION IN DETECTION

thresholdy. If the detector observesin a region of sample au(x,, GH)
space wherd.(x) > 7, it makes the decisiodl = H;. L(x4,G) = '
Otherwise, it decidedl = H,. We denote decision rules of p"g’G|H(X9’ G|H,)
this form with the notation _ Px,|G,H(%|Gy H1) paiu(GIHY)
e, Px,1G.H(Xg|G, Ho) pa|u(G|Ho)
Lix) Z 7. (6) =L(x4|G). (8)
H=H,

The simplification in the likelihood occurs because the in-
Our analysis of the likelihood ratio test highlights two key is- dicator random variables are independent of the hypotheses
sues inherent to randomized data selection. First, we discusd{;.

the binary hypothesis test, and account for random selection Since conditioning upofi[m] does not affect the selected

in its statistical model. Second, we suggest low-complexity data inx,[m], the detection problem based upogm] and
detectors that adapt to fluctuation in the amount of selected G[m] reduces to an unconditional detection problem for the
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data associated with the nonzero indicator random variables.ratio test for the general detection problem. Finally, we dis-
For example, if three pieces of data are available, there arecuss nonparametric detection for any signal with an even-
eight possible arrangements of the indicator random vari- symmetric density.

ables. If measurements 1 and 2 are selected in timerslot

the detector must make a decisiéhbased upon the joint ~B. Example—Detecting a Sinusoidal Signal

densities We consider detection of a sinusoidal signal in the pres-
ence of randomized data selection. Our analysis illustrates

Pxy1G.1 (X|1,2, Ho) = piy oz (21, w2| Ho) the difficulties associated with detection in the presence of
Px,lG,H (X1, 2, H1) = pay oo g (x1,22|H1).  (9) uncertainty in the target signal and the challenges imposed

by the fixed false alarm requirement from (11).

Consider a set of data generated by sampling a signal at
several locations, denoted by, i = 1,..., N. We shall
assume that these locations can be modeled by a set of
independent, identically distributed uniform random vari-
ables over an interval significantly larger than the sinusoid’s
Ivvavelength.

Let H, denote the state in which the sinusoid is absent, and
H, denote the state when it is present. Ttiemeasurement

under each hypothesis is given by

Likewise, if measurements 2 and 3 are selected, the de-
cision H is determined fromp,, oo 1 (72, 23| Ho) and
pa:g,a:3|H($27 ‘L3|Hl)

Based upon (8), the likelihood ratio test fot,[m]
and G[m] reduces to the comparison df(x,|G) to
a fixed threshold. While the test is optimal under the
Neyman—Pearson detection criteria, it poses some practical
problems. First, determining the threshold can become
computationally complex when there is a large amount of
data available for selection. The threshold that achieves a
desired false alarm ratg; is determined by inverting the Hy:z;=n;
equation H, :z; =Acos (271'% + (,b) + n;. (12)

Pr(n) =Y pen(GlHo) Pr(L(x,) > n|G, Ho). (10) The random variable:; is a zero-mean Gaussian random
G variable with variance2. The probability density fox ,[m],

If N samples of data are available, there 2afeterms in  conditioned uporG[m] and Hy is white Gaussian. In order

the summation. Although it may be possible to approx- to determine the likelihood ratio and the resulting receiver

imate this function well by discarding terms with low Operating chargpteristic,we also need the probabil.it_y density

pa|a(G|Hy), determining the functional form of such for x,[m] conditioned uporG[m] and . This conditional

an approximation may be troublesome. The functions of density depends, in turn, on the joint density of

the thre;sholoh given'byPr(L(xg) > _77|G,H0) may not wy = 21l 4 é (13)

be easily parameterized. Second, since the threshaid A

constant whileG fluctuates, the conditional false alarm rate  for the selected data ifi[m]. The probability density for the

Pr(G,n) = Pr(L(x,) > 1|G, Hy) fluctuates as well. In  signal is a function of the joint density of the phase random

a situation where actions taken following a false alarm are variables. Since the signal and noise are independent under

costly, however, this fluctuation may not be desirable, since H,, the overall conditional density for,[m] is the convolu-

it is induced by the random data selection rather than antion of the signal density and the noise density. The determi-

information-bearing signal. nation of the joint density for the phase random variables is
Faced with the practical difficulties of solving (10) fgr a key step in this calculation.

asuboptimal yet tractable alternative seems desirable. Area- Since {v;} are independent and uniform over a large

sonable approach fixes the conditional false alarm rate interval, we can approximatgw;} as independent, identi-

= cally distributed uniform random variables over the region
Pp(G,n) = Pr 11 [—, 7). Using this model, we can analyze the form of the

for each realization of. Similar procedures have been dis- likelihood ratio test for the model suggested in (12). Here,
cussed in [22] in a two-sensor situation. This constraint elim- We assume that the base station knotwexactly. The signal
inates the fluctuations in the conditional false alarm rate and iS ¢[m], wherec[m] is a K-dimensional random vector.
may simplify the implementation of the resulting detector, Each entry takes the form ] = A cos(w;). Based upon
since the constraint has a constant rather than exponentiaPur approximation, the probability density fefim] is

number of terms. It does, however, require the detector to K w(A = |es))
adap'F the test threshold to th(_a arrangemer@&ph]. In thg pe|r(c|K) = H sz
remainder of the paper, we will focus on detectors designed i=1 VAT TG
with randomized data selection and the constraint imposed\yhere(-) denotes the unit step function. This density is

by (11). _ _ _ _ nonzero over thek -dimensional hypercube of sidé. For
In the remainder of this section, we discuss detector adap-fixed 7, we denote the randomly selected data ly; [m)].

tation from several perspectives. First, we analyze the ex-

ample problem of detecting a sinusoidal signal, a familiar 2When applied to a vector, the subscrigtindicates its dimension. This

¢ t si ¢ that satisfies th diti in Definiti 1 oes not contradict our earlier notation, where the subscript of a scalar
arget signature that satisties the condition in DENNon 1. y5n40m variable indicated the identity of the measurement. The dimension

Second, we demonstrate some properties of the likelihoodsubscript is always attached to a vector, not a scalar.

(14)
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Fig. 1. One-dimensional conditional densities for the signal model defined
shows the density faf, with a solid line. The densities fadd; with A = 1, 2,

in (15). The top plot
4, and6

become progressively wider. The second plot shows the corresponding log-likelihood ratios,

L(z|K = 1). In all piots,o = 1.

This random vector lists the selected data contiguously,
rather than with zeros as #y,. For notational convenience,
we assume that measurements 1HKoare selected, so

Xr = [21 22 ... vx]T. The resulting signal model is

HO : XK[m] :n[m]

Hi : xg[m] =c[m] + n[m]. (15)
Based on these probability density functions, we can

construct the likelihood ratio test for fixed values fand

A. The conditional density undei is Gaussian with zero

mean. Undeif{, the conditional density is the convolution

of the Gaussian with the density fepm] given in (14). The

conditional density fox i [m] under Hy can be written in

terms of a one-dimensional (1-D) convolution, since both

Sincex g [m] underHy is a white, Gaussian random vector
with varianceo?, the likelihood ratio is
) e (_ ) da;

K):H]O e(

2

a
i

2
_(zi—a;)”
2 252

o2

u (A — |ai)

Lixx /A2 — a?

i=1

:H L(z;).

Analysis of the likelihood ratio test derived from (17) for
K = 1andK = 2 provides useful intuition about the gen-
eral properties of the detector. The 1-D conditional densities,
Pe|m(v|Hy) andp, g (x|Hy), and the associated log-likeli-
hood ratios are shown in Fig. 1. Whéh= 1, L(z) is sym-
metric and increasing, so the likelihood ratio test from (6)

17

conditional densities are separable. The conditional densitysimplifies to a threshold test of the form

IS

P | K, H (XK Hy) = poj g (X | K) * P (X5 | K)
5 u(A—al) 1

~ /A2 —a? 270

) g,

Poim(zi|Hr).

[

1=

2
_(zi—a;)”
252

[l
.EN

—

(16)

K2

3This notation does not reduce the applicability of the analysis, since our
modeling assumptions make the measurements statistically indistinguish-
able. Their joint statistics depend only & and not on the measurement
identifiers.

1188

H=H,
|| z t.
fI:HO

(18)

Since the detector compares the magnitude of the received
data with a threshold, the implementation is simple.
Typically, the performance of a detector is shown by an
operating characteristic, which plots the detection prob-
ability Pp as a function of the false alarm probability
Pr. Both Pp and Pr can be calculated by integrating,
respectively, the conditional densitigs, |k r(xx|K, H1)
and py | r i (xx|K, Ho) over the H = H; decision
region. Thus, the operating characteristic is generated as
the threshold in (18) ranges over< t < oc. It can be
shown that the operating characteristic calculated from the
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likelihood ratio test gives the maximum achievalstg for test’s signal model is given by (7). The resulting expression
each false alarm rate < Pr < 1. for the conditional likelihood ratio is

ForK = 1, the detector described by (18) has animportant e _
universality property over the set of binary hypothesis tests L(x4|G) :/ps_q|G(aK|G)€(_maKaK)€(U_2xg aK)daK.
for A > 0. The threshold that achieves a cert&in can be ax
determined in terms of th@ function [23] ands2. Since the (19)
threshold can be determined without knowledge of the wave In the integral, the variabley is a K-dimensional vector,
amplitude 4, the test in (18) is a uniformly most powerful ~and the density, |c(ax|G) denotes the joint density for
(UMP) test [19]. For such a test, the decision regions that the selected signal measurements.

maximize Pp subject to a constraint oRr are invariant to The likelihood ratio is easily expressed in Cartesian coor-
the actual value of the parametér The actual value ofp, dinates. Its qualitative description, however, is easiestin gen-
however, does depend oh eralized,K -dimensional spherical coordinates. WhEn>

The contrast between the likelihood ratio test for= 1 3, the spherical coordinates can be determined via induction.

andK = 2 indicates some implementation challenges in the In general, the transformation between spherical and Carte-
presence of uncertain signal models and random data selecsian coordinates is expressed as
tion. WhenK > 1, the likelihood ratio test fok i [m] is not K
a function of the received data magnituiter ||, as shown i : )
in Fig. 2. Since the likelihood ratio is ianjfegllsing in all di- o _rsm(g)gsm(gb])
rections, the likelihood ratio test will declaié = H, in a K
simply connected region containing the origin. Outside this 2 =1 cos(f) H sin(¢;)
region, it will declared = H,. Thus, the two-dimensional i3
(2-D) test determines a closed curve, expressed in polar coor- K
dinates as(f), that gives the boundary between the decision x5 =1 cos(¢3) H sin(b;)
regionsford = HyandH = H,. Sincer(#) is not constant, i
the implementation of the likelihood ratio test is more com-
plicated in two dimensions than in one. Do
For situations wherd{ > 1,( t)here is not a UMP de- Tr_1 =rcos(pr_1)sin(Pg)
tector. In order to determine(#) properly, we require _
Do (X Ho), P 112 (x| H), and the desired value dfy. v =1 oos(¢x). (20)
As shown in Fig. 2, the detector requir@do determine the ~ The domain of the radius is > 0, and the domain of the
decision regions in the likelihood ratio test. angular variables ig € [0,2{) and¢; € [0,7) fori =
Finally, the likelihood ratio test’s decision regions depend 3 4 ... K.
on the value ofs . The shape of the decision regions variesas Using spherical coordinates, the boundary between
K changes, as they did whén increased from 1to 2. Evi-  the decision regions of the likelihood ratio test can be
dently, larger values ok lead to more complicated decision  described. In the 2-D example, the curve dividing the deci-
regions. For example, the decision regionsAor= 2 can be sion regions is denoted by(#). In higher dimensions, we
complicated sets in ther, z») plane. indicate the boundary surface by®), where the argument
The difficulty in determining the decision regions under @ — [0 ¢s ... ¢x]T is a vector containing all the angular
uncertainty inA and K makes the exact likelihood ratio test  yariables.
onxy challenging to implement. First, the fluctuationn Without specific knowledge of the signal probability den-
means that the detector must be able to quickly adapt the de-sity ps,|c(alG), the integral in (19) cannot be evaluated.
cision regions for each time slot. Second, potential uncer- The properties of even-symmetric Signa|s, however, enable
tainties in the target signal density prevent the detector from ys to discover qualitative properties of the likelihood ratio.
determining the exact likelihood ratio test. These challenges |n spherical coordinates, we denote the likelihood ratio, con-
in the example detection problem persist for the general evengitioned uponG[m] = G, by L(r,0|G). In Appendix |,
signal model. we prove the following theorem, showing that the likelihood
ratio test for an arbitrary even signal produces decision re-
gions similar to those for the example.
Theorem 1: Consider a detection problem of the class de-
The sinusoid detection example illustrates several fined in (7). Letr = ||x,|| and® = [6 ¢5 ... ¢x]T. Then,
properties of the likelihood ratio in white, Gaussian noise. the likelihood ratiaL(r, ©|G) given by (19) increases mono-
This section generalizes these properties to signals withtonically without bound for any fixe®.
even-symmetric probability densities. The qualitative be- As a consequence of this theorem, we can describe the
havior of the resulting decision regions is illustrated, and the likelihood ratio test in terms of-(©), a closed surface
prospects for practical implementation are discussed. containing the origin. The interior of the surface is the
Following the derivation of (16) and (17), we can calculate decision region/ = H,, and the remainder of the sample
the conditional likelihood ratio for an arbitrary signal withan  space is the decision regidih = H;. In order to determine
even-symmetric probability density. The binary hypothesis »(0), consider a fixed thresholg for the likelihood ratio

C. General Properties of the Likelihood Ratio for Even
Signals
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Likelihood ratio for Plane Wave model, K=2, A=1,6=1

Likelihood ratio

. -3 -3
Xp axis X, axis

Decision Region Boundaries for PF =107*

2+

-3+

X, axis

Fig. 2. The top plot shows the 2-D likelihood ratio whéin= 1 ando? = 1. The bottom plot shows
the decision region boundary curves f8¢ = 10—*. In both cases, the noise variancets= 1. The
solid curve shows the boundary when= 1, and the dashed curve shows the boundary when 6.

test. Assuming that the probability densities contain no monotonically increasing. Thus, there is a unique solution to
point masses, the subset of sample space satisfying thehe equatior.(r,0,|G) = » if n > L(0,0,|G). The set of
condition L(r,©|G) < n composes the decision region for solutions generated &, varies defines(0), the boundary
Hy. Likewise, the conditior.(r, ®|G) > n determines the  between the decision regions. Since the absolute minimum
decision region forH;. For a fixed vecto®,, Theorem 1 of the likelihood ratio occurs at, = 0, the origin of the
implies that the function of given by L(r, ©,|G) is strictly sample space is always included in the decision region for
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Hy, if it is nonempty. Hence, the qualitative description of Based upon knowledge of the Gaussian conditional density
the likelihood ratio test for the sinusoidal signal generalizes p,g (|G, Ho), we design a threshold test
to any signal with an even-symmetric probability density.

. . e . H=H
Unfortunately, the implementation difficulties of the like- o= ' ¢ 1)
lihood ratio test for the sinusoidal signal generalize as well. a=m,

The detector must cope with fluctuations in the size of the se-

lected subset and uncertainties in thpriori signal model. ~ Wheret is chosen to achieve a desirfg. We show that this

To implement the likelihood ratio test in all cases using ran- (€St has the maximum possihig, for any set of decision
domized data selection, the detector should be able to de-€9I0NS based onthat achieve the false alarm rafe. Ad-

termine the decision regions for each realizatiorGfn). ditionally, we show a method to calculatéhat accounts for
Additionally, for a fixed realization of the indicator random ~fluctuations in the selected subset and maintains the CFAR

variables, determining these decision regions depends on throPerty. _ - . ]
exactdensity, ¢ i (x,|G, H) and the desired false alarm 1) Pr_ope_rpes of the Likelihood Ratio fefm]: In order
probabilityPF. If, as in the sinusoid detection model, there for th_e intuition based on the s_calar det_ect_or to Wor_k, two
are unknown parameters in the signal model, or the signal iscondmons must be satisfied. First, the likelihood ratio test

difficult to modela priori, the decision regions that achieve for.g[ng]. glvzeln (';I'Lm] mug.tt_reduce 0 ta th;ﬁst:?fl]d test dff'
Pr and maximizePp, are difficult to determine. scribed in (21). This condition guarantees that the operating

point of the test maximizeBp over all decision regions that
achieve the desireBlr, regardless of the target signal’s den-
) sity. Second, there ought to be an easy way to determine the
D. Nonparametric Detector proper threshold based upon a desired false alarm probability
Pr. This allows the detector to be implemented with the re-
Technigues from the theory of nonparametric and robust quired false alarm rate in real time. This subsection generates
statistics have been applied to detector design in situationsexact results for both these conditions, and the following sub-
without precise priori models [9], [19], [20]. Applicationof ~ section describes an approximate technigue to calculate the
two such techniques can combat the challenges identified intest threshold.
the previous section. One technique introduced to cope with  In order to justify the simple threshold detector structure,
uncertainty in a signal model is invariance [21]. If a signal we first verify that the likelihood ratio test simplifies to the
belongs to a class that is closed under some transformationform shown in (21). The likelihood ratio fofm] givenG[m)|
it is useful to design the detector so that its performance is is
also invariant to the transformation. The second challenge for pric.u(r|G, Hy)
the detector is the fluctuation i@ and the associated task of L(r|G) = G T
rapidly updating the decision regions to satisfy the constraint PriG.u(r|G, Ho)
in (11). This constraint enforces a constant false alarm rateRather than calculate the ratio by direct computation of the
(CFAR) condition on the detector: random fluctuations inthe densitiesp, g,z (r|G, Ho) and p,|g,z(r|G, H1), we can
size of the selected data subset do not cause changes in thehow the necessary result using the properties(sf,|G)
false alarm rate. established in the proof of Theorem 1. The following

metric detector addressing the implementation challenges ofthe threshold teston. _ _
the exact likelihood ratio test. The detector is invariant toro- ~ Theorem 2:For the statistical model established in (12),

(22)

tation of the target signal probability density, and maintains @nd a fixed value o', let r = ||x,||. If the conditional
the CFAR property. densitiespy, @,z (x4|G, H;) for i = 0, 1 are continuous
and positive, the likelihood ratio for = ||x,|| increases

The intuition behind our nonparametric detector arises
from the sinusoidal signal example whén = 1. In this
case, the 1-D sample space simplifies the decision region
and leads to a UMP detector. Even though we cannot
find a UMP detector fotK® > 1, we can determine a test

monotonically without bound.

In order to determine an appropriate CFAR detector, we
require a rule for selecting a thresholas a function ofz[m]
and Pr. For a fixedt, the false alarm probability is

that has a weaker universality property over the class of Prp =Pr{r > t|G,Hy}
even-symmetric random vectors. In this case, it is possible
to determine a scalar-valued functiorsaf [m] so that there = / prima(r|G, Ho)dr
is a UMP test for the resulting random variable. >t
In thls_ section, we use a detegtor ba_lsgd_upon 'Fhe scalar _ P, .1 (%4| G, Ho)dx,. (23)
test statistio- = ||x,||. Note that this statistic is rotationally
invariant. We analyze the properties of the likelihood ratio Il lI>¢
for , and show that this statistic leads to a nonparametric The densityp, |c z(%,|G, Ho) is a multivariate Gaussian,
detector resembling the detector derived for= 1 earlier. so the integral (23) can be reduced the complementary dis-
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Normalized H0 Radius Conditional Densities for K = 10, 50, and 101
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Fig. 3. Normalized radial densities fdk = 10, 50, and101. Each radial density arises
from a Gaussian density fot, [m] with covariance matriX. The plotted curves are

((prirc,u (r| K, Ho))/(max(p, x,u(r|K, Hy)))). Each appears similar to a Gaussian with
standard deviation nedt /2).

tribution function (CDF) of a centrgy? random variable of

The algorithms for inverting (25) are iterative in nature.
degreeK [24]. In the case where? = 1, Py is

They may be computationally expensive to execute fre-

guently. This section proposes an approximation appropriate
1 N K1, % for low false alarm rates that is based on the inverse of
Pp = 25T (K) ) / > dr. (24) the @ function. This can be accomplished without iterative
2

t algorithms using a rational approximation [26], and is less

expensive to compute.
This integral can be expressed using the incomplete gamma P b

5 As shown in (24), the conditional density ferunderH
fupctlpn d'enolted by'(¢%/2, K/2). The false alarm rate in is proportional to the termy (1) — 5 ~1e=""/2. For large
this situation is values ofr, the exponential decay dominates the behavior of
r (ﬁ 5) this function. For values of near zero, however, the< !
Pp=1- 272 ' (25) term dominates. The overall behavior is that of a sharply
r(o,%) peaked function cresting at,.x = vK — 1. Fig. 3 shows

the normalized density for several valuegofEach peak re-
An exact determination of the test threshold that achieves asembles a Gaussian. Examining the logarithm of the function

desired false alarm rat requires inversion of (25). Insit-  yields further insight on the resemblance. Taking the loga-
uations where the false alarm rate is always fixed to a single rithm of ¢ (r) separates the terms in the function as
value, a lookup table fot versusk” may be appropriate. If

the application scenario requires ttat vary over time, the log qx (1) = (K — 1) log(r) — 172_ (26)
detector must be able to calculate the threshold numerically. 2
Techniques to perform this calculation are described in [25]. The functionlog gk () is shown in Fig. 4. Since thieg(r)
2) Low-Complexity Algorithm to Calculate the Detector term grows slowly for large, the apparent drop of the func-
Threshold: In this subsection, we propose a threshold tion nearr,,., resembles the quadratit/2)r2. Specifically,
calculation based on an approximation of the conditional the second derivativg; (rm.x) = 2 for all values of/". Con-
density forr under H, as a Gaussian with its parameters sequently, the Gaussian with
chosen as functions dt and Pr. The algorithm then uses  behavior ofp, (7| Ho) well near its peak a K — 1.
the Gaussian approximation to calculate the threshold that In order to estimate the density farther from the peak
would achievePr. This section argues for the plausibility —of qi (r), we extend the Gaussian approximation. Since
of this approximation procedure, and evaluates its accuracythe log(r) term in (26) varies slowly, it is possible to

in determiningt. approximatedog g (r) over several standard deviations by

= (1/2) approximates the
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Comparison of log P and Gaussian approximation
0

5 T T T T T

T
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— - Approximation

log p(r)

Radius

Fig. 4. Approximation oflog a x (r) by a parabola. The plot displays a case whér= 5. The
parabolic approximation is designed to fit well enough to determine thresholds necessary to
achieveP;, = 104,

a quadratic with properly chosen peak and curvature. Essen-sects the true conditional density in two locations, denoted
tially, the approximation ofog gx (r) resembles a Gaussian 7, andr;. These fit points are chosen so that the interva) [

with its mean and variance adjusted to accounff@nd Pz 7] is likely to contain the value of that produce$’s.
Fig. 4 shows an example of approximatiing a x () with a The values, andr, are determined by making an edu-
parabola given bjog gx (r) = D — ((r — 11%) /(202 prex))- cated guess of the true threshold, and centering the fit points

For properly chosen values ofi, D, and UZ})prox' the around it. The curvature dbg qx () at its peak is the same
approximation can fitog ax (1) closely over a particular  as a Gaussian with standard deviatip;;, = 1/2. Thus,
interval. Since the conditional density decays quickly for we generate an initial guess for the threshold using a crude
large values ofr, the interval where the approximation is Gaussian approximation. The initial guess is

accurate only needs to be a few standard deviations wide. .

There are many possible ways to approximater) in tinit = 1+ 0inie@ ' (Pp). (27)
order to determine an appropriate detector threshold. Our
Gaussian approximation is designed to be accurate for small
values of P, less thanl0~!. We suspect that this is a rea- o =tinie — 0.01
sonable range of operation for many detectors, since false
alarms will initiate subsequent processing, expending power
and communication resources. Detectors designed to operatehe choice ofr, andr, is ad hoc In general, however, it

efficiently would typically avoid a high false alarm rate. provides a close fit betwedog gx (1) and the approximation

In order to have a low false alarm rate, the detector on an interval extending several standard deviations past the
threshold should at least be greater thRAR — 1, the peak  {rye threshold. Since the true density is dominated by the
location of log g (r). Our approximation is based uUpon exp(—r2/2) term past its peak, the false alarm probability
determining a parabola that accurately fitg ¢ (r) over (24) is concentrated in the first several standard deviations
an interval ofr sufficiently large to suggest that the exact past the threshold. The approximation does not fit accurately

Given this guess, the fit points are chosen with

ry =timt + 0.01. (28)

Pp is nearPr. far fromt;,,;;, however, this will not have a significant impact
The Gaussian approximation has three free parametersgp, the approximation accuracy for thresholds neaor r,.
the meann, variances?, and the amplitudeD. In our ap- The parameters dbg gx () depend on the fit points and

proximate fitting procedure, we assigh = 7y,ax, Which K. The fitting error betweetvg qx (r) andlog gx (r) is

guarantees that the peak of the approximate density coin-
cides with the peak o, g u(r|G, Ho). Additionally, we
will chooseo? and D so that the approximation inter-

approx

E(T)ZD—;Z;J—(K—I)IOg(T)—I—T—;. (29)

approx
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Accuracy of Approximation versus K and Desired PF
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Fig. 5. Approximation accuracy. The ratio of the actual false alarm }g,to the desired
value Pr is shown forK' = 5, 10, 20, 50, 100, 150, and200. The desired false alarm rate

varies fromPr = 10~2 to Pr = 1012,

The parameters are determined by requiring= v K — 1,
E(ry) = 0, andE(r,) = 0. Solving for A ando? yields

9 Ty + Tq — 24
o =

approx 2

2

2
re (ra—
D = p*log(r,) — 5+ (2027'@. (30)

approx

The coefficients produce the approximatibig gx () =
D — (((r — 1)?)/(202,prox))- In practice, this function fits
log ax (r) well over a range of neart;,;;. Fig. 4 shows an
example of the curves fak = 5 and Py = 1074,

The approximation gives a technique for determining the
threshold to achieve a smat for a givenk . Adjusting for

the constant factors in the integrals (24), the threshold is

K_ K
L=t ouen @ [ L (5) (31)
=M approx F oD -

In order to verify the approximation accuracy, we compare
the actualPr versusPr over a range of exponentially spaced
values from10~2 to 10~'2. Each P is one-tenth the pre-
vious value. Fig. 5 shows the behavior of the approximation
for several values of(. In general, the approximation ap-
pears to producéy values slightly smaller tha®z. The
error increases witli. In general, the approximation is ac-
curate to within a factor of 1.5 for desired false alarm rates
between 0.01 ant0~'2 and K between 5 and 200.

in Fig. 6. The figure shows the performance of the detector
for several values of{. In all cases the noise variance is
o? = 1, and the wave’s amplitude i$ = 1. The simulations
shown in Fig. 6 indicate that the performance of the detection
algorithm improves a&” or the ratioA /o increase. These re-
sults are not particularly surprising, since increadihgives

the detector more raw data, and increasing improves the
signal-to-noise ratio of each individual measurement. The re-
sults are useful primarily as a low-complexity baseline for the
performance of detection schemes based upon more restric-
tive statistical models or data selection algorithms based on
the details of such models.

IV. CONCLUSION

In this paper, we propose randomized data selection as
a technique to cope with limited communication and com-
putation resources in distributed networks. To illustrate the
impact of randomized selection on signal processing per-
formed by the network, we focus on a binary hypothesis
testing problem: detection of a random vector with an even-
symmetric probability density in white, Gaussian noise.

The detection problem shows several issues inherent in
randomized selection. First, understanding the impact of ran-
domized selection on the signal statistics is required to de-
termine the new detector structure. Our assumptions about
the network’s communication protocols allow us to design
our detectors based upon the conditional densities of the sig-
nals. Second, the fluctuation in the size of the selected sensor

The actual performance of the threshold detector for the si- subset presents implementation challenges for the detector. It
nusoid detection problem described in Section IlI-B is shown needs to perform the likelihood ratio test for a large number
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Plane Wave Detection - Variation of Operating Characteristic vs. K
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Fig. 6. The receiver operating characteristic of the example problem is shown for
K =5, 10, and25.

of potential subsets. Finally, we consider the impact of un- baseline it provides. The selection algorithm can be modified
certainties in thea priori model for the signal’s probability =~ to account for selection over multiple time slots or selection
density on the detector. This issue was independent of ran-in the presence of colored noise. Both cases introduce an ad-
domized selection, but it describes the potential applications ditional degree of freedom to the basic approach analyzed
of sensor networks. They may often be used in situations here. Additionally, exploring the interaction between selec-
where the coefficients of the signal’s density are not known tion and routing or distributed source coding algorithms may
in advance. provide another interesting technique for balancing signal
In order to deal with the randomized selection environ- processing performance with communication cost.
ment, we analyze a nonparametric detector. In lieu ofa com- Finally, the randomized selection approach may be
plex detector based upon a detailed statistical model for theuseful in practical implementations of sensor networks.
target signal, we examine a threshold detector on the mag-The issues of robustness, complexity, and energy efficiency
nitude ofx,[m]. For any even-symmetric target signature are significant in this new environment, and randomized
in white Gaussian noise, the detector/&-( Pp) operating selection provides a way to balance these performance
point always achieves the maximuRy, for any set of rota-  criteria. The randomized selection approach suggested in
tionally invariant decision regions that produce a false alarm this paper has several implications for real systems. First,
rate equal toPr. In order to integrate the approach with it gives a performance baseline to algorithms based upon
randomized selection, we show an approximate technique tomore detailed state information and statistical models.
calculate the threshold from the desired false alarmPate ~ Second, it may provide a desirable operating point in the
andK. tradeoff between robustness, complexity, and performance.
The proposed detection algorithm rests upon the statisticalRandom selection requires no extra communication to
model for the noise. In practice, the noise may not obey collect the network state, and is robust to a wide class of
a Gaussian density. The algorithm, however, serves as asignal models. While it will likely produce performance
template for designing detectors for use with random sensorinferior to algorithms based upon detailed models, it may
selection. Detectors assuming different noise statistics will be more robust to modeling errors, and may strike a desir-
likely require similar approximations for the decision thresh- able balance between performance and complexity. Third,
olds. Overall, the algorithm serves as a low-complexity randomized selection is compatible with the cluster-based
baseline for evaluating the performance of sensor selectiondistributed signal processing techniques proposed for sensor
and detection algorithms in sensor networks. networks. In networks where nodes cooperate in local
Future work on distributed signal processing and sensor clusters, random selection can be applied in each cluster.
selection can take many directions. The analysis of randomFinally, the selection algorithm depends only upon a single
sensor selection can be expanded to improve the performanc@arameter. While we focused on single-shot processing

SESTOKet al. RANDOMIZED DATA SELECTION IN DETECTION WITH APPLICATIONS TO DISTRIBUTED SIGNAL PROCESSING 1195



in this paper, these detection algorithms will be used over

Proof: For the random variable[m], the likelihood

time. The selection procedure must balance the informationratio is given by

quality in an individual time slot with the longevity of the

sensor network. Since the randomized selection algorithms
depend on a single parameter, it may be possible to illustrate

the tradeoff between performance and network lifetime in

Pr|G, H{ |(}71¥1)
pria,u(r|G, Ho)
We shall derive a monotonically increasing lower bound for

L(r|G) = (36)

an appealing way through further analysis of this class of pric,u(r|G, Hy) in terms of the likelihood ratio fox[mn)].

sensor selection algorithms.

APPENDIX |
PROOF OFTHEOREM 1

Theorem 1: Consider a detection problem of the class de-
finedin (7). Letr = ||x||and® = [ ¢3 ... ¢x]|*. Then, the
likelihood ratioL(r, ®|G) given by (19) increases monoton-
ically without bound.

Proof: Using the spherical coordinate system defined

in (20), a vectox € RV can be written
X = 1ve (32)

wherevg is a unit vector defined by the angular variables. In

terms of these coordinates, the conditional likelihood ratio is

T
Pre%K
7
9”2 aKaK)e 7

L(r7®|G):/psg|G(aK|G)e( )daK.

ag

(33)
Expressed in spherical coordinates, the derivative is

dL

dr / ps, 6 (ax |G)el - mzekax)

vgaK 20
. aK
) <2 sinh <7“ o

(34)

VgaK VT <
* > B daK.
a a

In order to make the argument precise, let

f(r)

| mﬁn L(x4|G).

Under the assumption that this is a well-defined function, the
conditional densities fox satisfy

Px, |G, H(Xg|G, H1) > py, a1 (X4|G, Ho) f(r)

whenevet|x,|| = r. Thus, the density, g,z (r|G, H;) sat-
isfies

(37)

(38)

2

oz ) S0 @9

This inequality shows that the likelihood ratio for the random
variabler is bounded below by (r),i.e. L(r|G) > Bg f(r).

In the remainder of this section, we will prove the existence
and continuity off(r) and demonstrate thgt(r) increases
monotonically without bound.

Consider the minimization from (37) in spherical coordi-
nates. The domain for the angular variables is a compact set;
eachg; lies in the interval < ¢; < =, andf lines in the
interval0 < 6 < 27. With fixed r, L(r, ®|G) is a positive,
bounded function over a compact set, so the minimum exists
[27].

The results of Theorem 1 show thA{r) is an increasing
function. For any > 0 ande > 0, consider the value of

flr+e = L(x4|G). (40)

PriG, H( |G Hl) > B[J‘K 1exp<

min
[Ixg[|=r+e

Each term in the integrand is positive over the region where Theorem 1 guarantees thaf(r + ¢), ©) > L(r, ) for any
vgak > 0; thus, the integrand is positive for every value of fixed ©. Additionally, the likelihood ratio satisfies(r, ©) >
r > 0, and the likelihood ratio is always increasing. Similar f(r) as a consequence of the definition Af Combining

analysis shows that the second derivative of the likelihood these inequalities yields

ratio is always positive.

Since((dL)/(dr)) > 0 and((d*>L)/(dr?)) > 0 for all
positive values ofr, straightforward calculus shows that
L(r,ve|G) satisfies the inequality

L(r,0|G) > L(r,,0|G) + L'(1,,0|G)(r —r,) (35)

> 0. Thus, there is

for every © and every pair > 7,

no upper bound ol (r, ©|G); the likelihood ratio diverges
along the direction identified by the unit vectog. O

APPENDIX Il
PROOF OFTHEOREM 2

Theorem 2: For the statistical model established in (12),

and a fixed value off, letr = ||x,]||. If the conditional
densitiespy, |,z (%4|G, H;) for i = 0, 1 are continuous
and positive, the likelihood ratio for = ||x,|| increases

monotonically without bound.

1196

L((r+¢),0|G)> f(r)forall®, ife>0. (41)

Since there is a strict inequality betweg((r + ¢),©) and
f(r), f(r + €) must satisfy

f(r+¢) > f(r)foralle > 0. (42)

Thus, as a consequence of Theorem 1, the bound function
f(r) is strictly monotonically increasing.

To prove thatf(r) is continuous, we must verify that for
everye > 0, we can finds > 0 such that

[f(r+0) = f(r)| <e (43)

The likelihood bound satisfieg(r) = L(r,0|G) for some
unit vector® due to its definition as a minimization. Thus,
using the fact thal(r, ©|G) is an increasing function of,
we can determine the inequality

flr+6)= L(%4|G) < L((r +6),0,|G) (44)

min
Xgl|=r
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forany fixedr > 0 andé > 0. Using this inequality produces
the following property off (r)

F(r+6) = F(r) < [L((r +6),0,|G) — L(r.0,| G)|..

(45)
Since L(r,0,|G) is the ratio of two positive, continuous
functions ofr, it is also a continuous function. Thus, for
any value ofe > 0, we can find a value ob such that
|L((r+6),0,|G) — L(r,0,|G)| < e. This property, along
with the inequality (45) establish thd{(r) is a continuous
function of r.

Finally, we can establish th&{r) has a lower bound sim-
ilar to (35). In the proof of Theorem 1, we showed that, with
fixed ©, (dL)/(dr) > 0 for anyr > 0 and any®. Thus, we
can guarantee that

dL
d(r) = min — 46
r) llgll=r dr (46)
is a well-defined function because we are minimizing a func-
tion bounded from below over a compact set. Thus, for every
© and every pair > r, > 0, the inequality

L(r,0|G) > L(r,,0|G) + d(r,)(r — ro) 47)

holds. Minimizing both sides of the expression guarantees
that f(r) satisfies

f(r) 2 f(ro) +d(ro)(r — o). (48)

The function f(r) increases at least linearly, so it is
not bounded. Sincd.(r|G) > Bk f(r), the theorem is
proven. O
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