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Executive Summary

The current approach to resilience for large high-performance computing (HPC) machines is based on
global application checkpoint/restart. The state of each application is checkpointed periodically; if the
application fails, then it is restarted from the last checkpoint. Preserving this approach is highly desirable
because it requires no change in application software.

The success of this method depends crucially on the following assumptions:

1. The time to checkpoint is� mean time before failure (MTBF).

2. The time to restart (which includes the time to restore the system to a consistent state) is�MTBF;

3. The checkpoint is correct—errors that could corrupt the checkpointed state are detected before the
checkpoint is committed.

4. Committed output data is correct (output is committed when it is read).

It was not clear that these assumptions are currently satisfied. In particular, can one ignore silent data
corruptions (SDCs)? It is clear that satisfying these assumptions will be harder in the future for the following
reasons:

• MTBF is decreasing faster than disk checkpoint time.

• MTBF is decreasing faster than recovery time—especially recovery from global system failures.

• Silent data corruptions may become too frequent, and errors will not be detected in time.

• The output of the application may be used in real time.

Each of these obstacles can be overcome in a different way: (1) we can checkpoint in RAM, rather than
disk; (2) we can build global operating systems that fail less frequently or recover faster; (3) we can design
hardware with lower SDC rates or, alternatively, use software to detect SDCs or tolerate them; and (4) we
can use replication for the relatively rare real-time supercomputing applications.

The different approaches are associated with different costs, risks, and uncertainties; we do not have
enough information to choose one approach now. Therefore, we considered the following three design
points: (1) business as usual, (2) system-level resilience, and (3) application-level resilience.

Design point 1: Business as Usual This approach continues to use global checkpoint/restart. Hybrid
checkpoint methods (using DRAM or NVRAM, as well as disk) can provide fast checkpoint and application
restart time and can accommodate failure rates that are an order of magnitude higher than today’s failure
rates. The additional power consumption is low, but the acquisition cost of platforms will rise because of
the need for additional memory.

Two key technologies are needed for this approach to be feasible. (1) low SDC frequency (same as now)
and low frequency of system failures or an order of magnitude improvement in system recovery time.

Maintaining the current rate of hardware SDC seems possible, at the expense of <20% of additional
silicon and energy; and vendor research can further lower the overhead. However, supercomputing needs
both low power and low SDC rate. It is not clear that there is a large market for this combination; hence it is
not clear that this combination will appear in lower-cost volume products.

Silent hardware errors can be masked in software—the simple approach is to duplicate computations
and compare results. Since most compute time and compute energy are spent moving data, a good hard-
ware/software combination should enable the duplication of computation at a cost that is much less than
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100%, as data movement need not be replicated. Such combined solutions might be more if they provide
the user with a choice of higher performance or higher reliability.

Reducing system failures or system recovery time seems feasible but requires new research. This in-
cludes development of fault-tolerance mechanisms that avoid or mitigate failures due to hardware or soft-
ware. A significant body of knowledge in this area exists but has not been applied to HPC; research should
focus on the new problems that are likely to arise with this new application.

Design point 2: System-Level Resilience This approach assumes that vendors will not provide suffi-
ciently low SDC rates at an acceptable acquisition and operation cost but that a combination of hardware
and software technologies can hide the increased failure rates from the application.

Various techniques are available for detecting SDCs in software, and applications can tolerate some
SDCs. This design point is not fundamentally different from the first one. It does, however, give more
leeway to vendors on selecting where they apply hardware and where they apply software solutions. It also
calls on the wider system software community to develop resilience capability for runtimes and libraries.

Design point 3: Application-Level Resilience This approach assumes that application codes will need
to be modified in order to handle the increased failure rate, since neither hardware nor firmware will be
efficient enough in avoiding SDCs. The critical need is for codes that can tolerate SDCs or detect SDCs.

Significant research does exist in this area, but the research is focused on specific algorithms and meth-
ods. It is not clear that current approaches can cover a large fraction of DOE’s workloads.

Recommendations: Any future solution to the resilience problem must be rooted in a clear understanding
of the current situation: What is the cause of failures, and what is the frequency of SDC? This information
is not readily available. Thus, we make the following recommendations.

Recommendation 1: Perform experiments to estimate SDC rates on current platforms. Collect, in a
consistent manner, information on detected failures on current large DOE systems and make it available to
researchers in a suitable form.

The main downside of the first design point is the potential cost of platforms using this approach; the
second and, especially, the third design points have risks in terms of problems with no known solutions. The
three design points motivate fairly different investment streams.

Recommendation 2: Work with industry to refine estimates on cost (design complexity, transistors,
power) of keeping SDC rates low and to understand the market opportunities for low-power, high-resilience
technology. Aim for an early decision on levels of error detection and correction that will be provided by
hardware. Invest in research on combined hardware/software error detection that is transparent to the user.

Some technologies are required no matter what design point is picked; some are beneficial no matter
what design point is picked. In the first category is the need for more robust system software infrastructure
and for faster system recovery, as well as good support for hybrid checkpoints. In the second category is
fault prediction that increases the effective MTBF and, therefore, reduces the cost of fault tolerance.

Recommendation 3: Invest first in R&D for technologies that are required or beneficial no matter what
design point is picked.

Solutions must apply to all or to the large majority of DOE’s workloads. A solution that is specific to
a subset of these workloads can, at best, accelerate the execution of these workloads but will not avoid the
need for developing a general solution.

Recommendation 4: Focus research on application-level error handling to solutions that can apply to
all or to the large majority DOE workloads. Point solutions that address specific codes should be a second
priority.
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1 Introduction

“The problems are solved, not by giving new information, but by arranging what we have known
since long.” – Ludwig Wittgenstein, Philosophical Investigations

This white paper is the result of the workshop on “Addressing Failures in Exascale Computing” held in
Park City, Utah, August 4–11, 2012. The workshop was sponsored by the Institute for Computing in Science
(ICiS). More information about ICiS activities can be found at http://www.icis.anl.gov/about. The charter
of this workshop was to establish a common taxonomy about resilience across all the levels in a computing
system; to use that common language in order to discuss existing knowledge on resilience across the various
hardware and software layers of an exascale system; and then to build on those results, examining potential
solutions from both a hardware and software perspective and focusing on a combined approach.

The workshop brought together participants with expertise in applications, system software, and hard-
ware; they came from industry, government, and academia; and their interests ranged from theory to imple-
mentation. The combination allowed broad and comprehensive discussions and led to this document, which
summarizes and builds on those discussions.

The document is organized as follows. In the rest of the introduction, we define resilience and describe
the problem of resilience in the exascale era. In Section 2, we present a consistent framework and terms
used in the rest of the document. Sections 3 and 4 describe the sources and rates for hardware and software
errors. Section 5 examines classes of software capability in preventing, detecting, and recovering from
errors. Section 6 takes a systemwide view and describes possible ways of achieving resilience. Section 7
presents possible scenarios and how to handle failures. Section 8 provides suggested actions.

1.1 The Problem of Resilience at Exascale

DOE and other agencies are engaged in an effort to enable exascale supercomputing performance early in the
next decade. Extreme-scale computing is essential for progress in many scientific and engineering areas and
for national security. However, progress from current top high-performance computing (HPC) systems (at
tens of petaflops peak performance and roughly 1 PF sustained performance) to systems 1,000 times more
powerful will encounter obstacles. One of the main roadblocks to exascale is the likelihood of much higher
error rates, resulting in systems that fail frequently and make little progress in computations or in systems
that may return erroneous results. Although such systems might achieve high nominal performance, they
would be useless.

Higher error rates will be due to a confluence of many factors:

• Hardware failures are expected to be more frequent (discussed in more detail in Section 3). Errors
undetected by hardware may be frequent enough to affect many computations.

• As hardware becomes more complex (heterogeneous cores, deep memory hierarchies, complex topolo-
gies, etc.), software will become more complex and hence more error-prone. Failure and energy man-
agement also add complexity. In addition, the larger scale will add complexities as more services
need to be decentralized, and complex failure modes that are rare and ignored today will become
more prevalent.

• Application codes are becoming more complex. Multiphysics and multiscale codes couple an in-
creasingly large number of distinct modules. Data assimilation, simulation, and analysis are coupled
into increasingly complex workflows. Furthermore, the need to reduce communication, tolerate asyn-
chrony, and tolerate failures results in more complex algorithms. The more complex libraries and
application codes are more error-prone. Software error rates are discussed in Section 4 in more detail.
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1.2 Applicable Technologies

The solution to the problem of resilience at exascale will require a synergistic use of multiple hardware and
software technologies.

Avoidance: for reducing the occurrence of errors

Detection: for detecting errors as soon as possible after their occurrence

Containment: for limiting the impact of errors

Recovery: for overcoming detected errors

Diagnosis: for identifying the root cause of a detected error

Repair: for repairing or replacing failed components

We discuss potential hardware approaches in Section 3 and potential software solutions to resilience in
Section 5.

1.3 The Solution Domain

The current approach to resilience assumes that silent errors are rare and can be ignored. Applications
checkpoint periodically; when an error is detected, system components are either restored to a consistent
state or restarted; applications are restarted from the latest checkpoint. We divide the set of possible solutions
for resilience at exascale into three categories.

Base Option: Use the same approach as today. This would require the least effort in porting current appli-
cations but may have a cost in terms of added hardware and added power consumption. We discuss
in Section 7.1 what improvements are needed in hardware and system software in order to carry this
approach into the exascale range, and we consider what costs will be incurred.

System Option: Use a combination of hardware and system software to handle resiliency in a manner that
is transparent to the application developer. This approach will require no change in application codes
and is therefore equivalent to the base option from the viewpoint of application developers. The
relative cost of hardware changes vs. system software changes will dictate preferences between the
base option and the system option. We discuss this option in Section 7.2.

Application Option: Require application developers to handle resilience as part of their application code.
The approach is more invasive from the viewpoint of application developers but may reduce the cost
of exascale platforms and their energy consumption. We further subdivide this option into two subop-
tions.

Application-Level Error Detection Application code is responsible for error detection; recovery is
done, as today, by restarting from a checkpoint. That is, the only added burden on application
developers is to provide a checkpoint validation routine. We discuss this option in Section 7.3.

Application-Level Error Correction Application code is also written so as to avoid the need for
global checkpoint and global restart, thus possibly reducing the overheads entailed by this ap-
proach. We discuss this option in Section 5.6.4.
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We find that some technologies are essential no matter which approach is chosen. For example, it is
essential to reduce the frequency of system crashes and to reduce the time to recover from system crashes.
Other technologies are “no brainers” in that they improve the resilience of systems with little added cost.
This is true, for example, of failure prediction and avoidance, as discussed in Section 5.1.

The three options are not mutually exclusive. The system option will still require adequate hardware
support, and the application option will require adequate hardware and system software support. Design
choices will need to consider the maturity of various technologies and the relative cost of the different
choices of higher platform acquisition cost, higher power consumption, or higher cost for application code
development and porting. The balance may change over time and may well not be the same for today’s
10 PF machines as for a 100 PF system or an exascale system. To be able to make the tradeoffs requires
understanding the costs based on the expected and possible capabilities at each layer. Thus, we discuss
in Section 8 the commonality between these options, pointing out technologies that are clearly needed no
matter what path is taken, and the research, observations, and experiments that can help us choose the
appropriate path.

1.4 Previous Reports

Our work leverages several recent reports on resilience.
A DARPA white paper on system resilience at extreme scale was issued in 2008 [40]. It points out that

current high-end system wastes 20% of its computing capacity on failure and recovery. The white paper
outlines possible evolutionary and revolutionary research with the goal of bringing this number down to 2%.

A DOE/DOD report issued in 2009 [32] identifies resilience as a major emerging issue for high-end
computing (HEC) that requires new approaches. It calls for a national effort and proposes research in five
thrust areas: theoretical foundations, enabling infrastructure, fault prediction and detection, monitoring and
control, and end-to-end data integrity. This report considers resilience to be “concerned with reliability of
information in lieu of, or even at the expense of, reliability of the system.”

A DOE/DOD report issued in 2012 [37] identifies six high priorities: fault characterization, detection,
fault-tolerant algorithms, fault-tolerant programming models, fault-tolerant system services, and tools.

The Computing Community Consortium (CCC) organized in 2011 a Cross-Layer Reliability Visioning
Study [6]. This study, while not focused on high-performance computing, makes many relevant points. It
suggests a research and education program with eight components: repairable hardware architectures; cross-
layer information sharing; multilayer error filtering; multilayer tradeoffs for error handling; differential
reliability; techniques, theories, and platforms that are scalable and adaptive to a wide range of error rates
and error types; graceful degradation; and embedding of reliability and immunologics engineering into
electrical engineering, computer engineering, and computer science curricula.

A recent DOE workshop [56] focused on resilience from the perspective of DOE, with the following
goals: (1) describe the required HPC resilience for critical DOE mission needs; (2) detail what HPC re-
silience research is already being done at the DOE national laboratories and is expected to be done by
industry or other groups; (3) determine what fault management research is a priority for DOEs Office of
Science and NNSA over the next five years; and (4) develop a roadmap for getting the necessary research
accomplished We included in this list only recent reports. We note, however,

that research on fault-tolerant computing is as old as computers are. Frequent failures were a major
problem in the earliest computers: ENIAC had an MTTF of two days [148]. Major advances in this area oc-
curred in the 1950s and 1960, for example, in the context of digital telephone switches [36] and mainframes
[143]. Bibliographical research must be an important component of a research program in resilience.
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2 Taxonomy of Terms

Editor: Jon Stearley
Contributors: Rinku Gupta

“Clear language engenders clear thought.” – Richard Mitchell, The Underground Grammarian

The absence of agreed upon definitions and metrics for supercomputer reliability, availability, and ser-
viceability has, in the past, obscured meaningful discussion of the issues involved and has hindered their
solution [145]. In order to avoid similar confusion, several of the participants were asked to address ter-
minology a few weeks ahead of the workshop. In subsequent email discussions, it was proposed that the
taxonomy of Aviženis [9] be considered as a widely used standard to build upon (having roughly 2,000 ci-
tations). A summary sheet was prepared and then discussed on the first day of the workshop; it is appended
to this report. Several omissions and corrections were identified during the discussion, but there was wide
consensus that the taxonomy was sufficiently clear and complete to be used as a basis of our discussion
of addressing failures at exascale. Additional revisions were made during the week based on subsequent
discussions, and the resulting definitions appear below.

2.1 Dependability

The definitions in this section are based almost entirely on [9].

System: an entity that interacts with other entities

Component/subsystem: a system that is part of a larger system

Atomic component: the point at which system/component recursion stops, by desire or discernability

Functional specification: description of system functionality and performance, defining the threshold be-
tween a correct and an incorrect service (acceptable vs unacceptable)

Service: a system’s externally perceived behavior

Quality of service (QoS): guarantees provided by the system on the performance and reliability of the
service it provides

Behavior: what a system does to implement its function, described by a series of states

Total state: a system’s computation, communication, stored information, interconnection, and physical
condition

Dependability: the ability to avoid service failures that are more frequent and more severe than is accept-
able

Dependence: the extent to which a system’s dependability is affected by another’s

Trust: accepted dependence

The terms fault, error, and failure are sometimes used synonymously, but we believe that more distinctive
use, as defined in [9], is beneficial:

Fault: the cause of an error (e.g., a bug, stuck bit, alpha particle)

Error: the part of total state that may lead to a failure (e.g., a bad value)
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Figure 1: Error propagation and cascading failures
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Life Cycle 
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Figure 2: System’s operational status

Failure: a transition to incorrect service (an event, e.g., the start of an unplanned service outage)

Degraded mode/partial failure the failure of a subset of services

Faults can be active or inactive, meaning actually causing errors or not. A fault is generally local to a
single component, as distinct from errors that may propagate from component to component. Similarly, the
failure of one component may lead to the failure of another (e.g., “cascading” failures), as shown in Figure 1.

For example, consider a cracked wire inside a cable. The crack is the fault, and it does not move from
cable to cable. Because of the crack, a certain bit may be incorrectly flipped during transmission, resulting
in an error (an incorrect bit value). The cable failed to provide correct service. The error may continue to
propagate from device to device, perhaps leading to incorrect results (a failure). Or that flipped bit may have
no effect on final results (no failure).

2.2 Life Cycle and Operational Status

After acceptance, a system is, at any time, in one of the operational states shown in Figure 2.

2.3 Failure Characteristics

Domain: What has failed. The failure can be involve the wrong content (incorrect state) or wrong timing—
service not provided in a timely manner.

Persistence: A failed system may halt (fail-stop) or may exhibit an erratic behavior.

Detectability: A failure can be signaled once it is detected and a warning is generated; otherwise, it is
unsignaled. The detection and signaling mechanism can fail, resulting in false positives (a false
alarm) or a false negative (a failure that did not generate an alarm). The precision of a detection
mechanism is the fraction of signaled failures that were actual failures, and recall is the fraction of
failures that were detected and signaled: precision = 1 − false positives/signalled; and recall =
1− false negatives/failures.
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Consistency: A failure is consistent if it is perceived identically by all users; it is inconsistent (or Byzantine)
if it is perceived differently by different users. Fail-stop errors are normally consistent, whereas erratic
failures can lead to Byzantine behavior.

2.4 Fault Characteristics

Active: Fault causes an error.

Dormant: Fault does not cause an error. The dormant fault is activated when it causes an error.

Permanent Presence is continuous in time.

Transient Presence is temporary.

Intermittent Fault is transient and reappears.

Hard/solid: Activation is systematically reproducible.

Soft/elusive: Activation is not systematically reproducible.

The distinction between hard and soft faults is not a strict one: Faults may be due to a complex combi-
nation of internal state and external conditions that occur rarely and are difficult to reproduce; they appear
as soft faults; a root cause analysis may identify the precise circumstances of the fault, enabling systematic
reproduction.

2.5 Error Characteristics

Detected: indicated by error message or signal

Latent/silent: not detected

Masked: not causing a failure

Soft: due to a transient fault

2.6 Means of Dealing with Faults

Forecasting: to estimate the present number, future incidence, and likely consequences of faults

Prevention: to prevent fault occurrence

Removal: to reduce fault number and severity

Tolerance: to avoid service failures in the presence of faults

2.7 Fault Tolerance Techniques

Error detection: identify the presence of an error

Concurrent: occurs during service delivery

Preemptive: occurs during planned service outage

Recovery: prevent faults from causing failures

11



Error handling: eliminate errors

Rollback: revert to previous correct state (e.g., checkpoint, retry)
Rollforward: move forward to a new correct state
Compensation: correct the error (e.g., via redundancy)

Fault handling: prevents faults from reactivating

Diagnosis: identifies fault location and type
Isolation: excludes from interaction with other components
Reconfiguration: replaces component or moves work elsewhere
Reinitialization: performs a pristine reset of state (e.g., reboot)

Error detection identifies the presence of an error but does not necessarily identify which part of the
system state is incorrect, and what fault caused this error. By definition, every fault causes an error. Almost
always, the fault is detected by detecting the error this fault caused. Therefore, “fault detection” and “error
detection” are often used synonymously.

“Full diagnosis” identifies the root cause of a failure—the original fault or faults that caused this failure;
on the other hand,“partial diagnosis” traces back the error to previous events in the causality chain but
does not necessarily identify the original fault. Thus, failure of a software system may be traced back to a
hardware error, such as a bit flip, without identifying the fault that caused this bit flip.

2.8 Metrics

If you can not measure it, you can not improve it. – Kelvin

We cannot optimize resilience without measuring it. We discuss here two metrics: workload and avail-
ability.

2.9 Workload

A key metric is the ratio of the ideal time to solution on an ideal, fault-free system (Tsolve) to the actual
runtime in a real system (Twallclock):

Workload Efficiency = Tsolve/Twallclock.
In the general case, where the system is running a mix of jobs, we can define workload efficiency as the
ratio between the ideal time to solution for this job mix on a fault-free system and the actual running time.
The difference between Twallclock and Tsolve is the overhead associated with dealing with faults, errors, and
failures, including scheduled downtime, unscheduled downtime, and the cost of detection, diagnosis, repair,
compensation, and time lost because of degraded performance.

Typically, workload efficiency is measured with respect to “system faults” and includes all faults under-
lying applications that impact solution correctness or solution time: software bugs, hardware bugs, hardware
faults, and so forth. It does not include faults such as application bugs or user errors. However, the work-
load efficiency does depend on the application code. For example, it depends on how frequently the user
checkpoints and how efficient the checkpoint and restart code are. If failure handling will require increased
user involvement in the future, then workload efficiency will increasingly depend on the user code, but the
overhead due to user code that handles failures will be increasingly hard to measure.

The workload efficiency metric is an “instantaneous metric.” The workload efficiency of a system will
vary over time: failure rates are higher on a new system or on a system close to the end of its lifetime.
Better system design and better testing procedures may reduce the time needed to stabilize a system and
raise the workload efficiency faster. Therefore, it is also useful to define a total workload efficiency metric
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Figure 3: System history

that integrates workload efficiency over the lifetime of a system. The definition of such an integrated metric
has to take into account that computers depreciate rapidly: a flop now is twice as valuable as a flop in
two to three years; hence overhead now is twice as expensive as overhead in two to three years. Given a
depreciation rate, it is easy to compute a depreciated total workload efficiency.

The definition of workload efficiency considers time as the critical system resource. If energy is the
critical resource, then workload efficiency can be defined as the ratio of the energy needed to solve a problem
in an ideal, fault-free system, to the energy needed in reality. Considering the impact of wasted energy is
important: Some of the techniques for recovery discussed in this report could have little effect on total
wall-clock time but could significantly reduce power consumption.

In practice, both time and energy are important resources, as are the acquisition cost of the system
and the additional program development effort needed to handle failures. The contribution of resilience
technology to the value of supercomputers can be measured by a “total factor productivity” (TFP) metric,
as the ratio between the cost of inputs (acquisition price, salaries, electricity bills) and the value of outputs
(scientific results) [141]). Unfortunately, it is hard to properly estimate the cost of various inputs (e.g.,
programming time), even harder to separate the contribution of resilience technology from the contribution
of other technologies, and practically impossible to put a price on the output of supercomputers.

2.10 Availability

Availability metrics are similar in spirit but more operational in nature. For example, a system may be
defined to be “down” when more than 5% of the compute nodes are down or the file system is down;
downtime may be considered “unscheduled” if notification occurs less than 12 hours in advnace[105].

Consider the time series in Figure 3 of system states, where numbers indicate duration in days. We
tabulate the data into sets and obtain the following statistics:

Set X
∑
X |X|

Uptime periods={6, 2, 3.7, 3, 2.6} Uptime = 17.3 NumUptimes = 5
Scheduled downtime periods={1, 1, 2} Scheduled Downtime = 4 NumSchedDown = 3
Unscheduled downtime periods={.3, .4} Unscheduled Downtime = .7 NumInterrupts = 2

Total T ime = 22
The following metric is recommended as a control (specified) metric [11]:

• Scheduled Availability =Total Time - Scheduled Downtime/Total Time.

In our example, Scheduled Availability= (22− 4)/22 = 81.8%.
The following metric is recommended as an observed metric:

• Actual Availability =Uptime/Total Time.

In our example, Total Availability= 17.3/22 = 78.6%
We are using interrupt as synonymous with detected failure, so mean time between interrupts (MTBI)

is equal to mean time between failures (MTBF). In our example, MTBI = TotalT ime/NumInterrupts =
22/2 = 11 days.
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Similarly, if MTTI is the mean time to interrupt, then MTTI = Uptime/NumInterrupts = 17.3/2 =
8.65 days.

The mean time to repair (MTTR) is the average length of a unscheduled downtime period. In our
example, MTTR = Unscheduled Downtime/NumInterrupts = .7/2 = .35 days.

The mean uptime is the average length of an uptime period. In our example, MeanUptime = Uptime/
NumUptimes = 17.3/5 = 3.46 days.

2.11 Subsystem

When discussing faults, errors, and failures, one must carefully identify what “system” is being referred to.
In the previous example, the cable can be considered a system (of wires, solder connections, pins, etc.), the
transmission network a whole can be considered a “system” (of cables, switches, network cards), and the
entire collection can be considered a “system” (compute nodes, I/O nodes, network, disks, etc.).

The taxonomy [9] was developed to address both dependability and security, so the definitions are ex-
tremely broad. For example, “system” can refer not only to computing equipment but also to a hacker or
group of collaborating hackers. We found it important to identify what is meant by “system” and to iden-
tify when that definition changes during the discussion, such as “full system” versus “I/O system.” Some
uses of “system” include applications, users, and administrators; but the majority of participants referred to
“full system” as the collection of components underlying the application (not including the application or
elements above it, such as users).

Unique acronyms can increase clarity. For example, Sandia and Los Alamos National Laboratories
prepend an “S” (e.g., SMTTI) to metrics that apply to the full system and‘ other prefixes to identify subsys-
tems [2, 145]. JMTTI, the job mean time to interrupt, is defined as JMTTI = (Uptime×NumJobs)/Num
JobInterrupts, where NumJobs is the total number of jobs run and NumJobInterrupts is the total num-
ber of jobs terminated as a result of any failure. NMTTI, node mean time to interrupt, is defined as
NMTTI = Uptime × NumNodes/NumNodeFailures, where NumNodes is the total number of nodes
and NumNodeFailures is the total number of node failures.

2.12 Statistical Models

Analyses of failures and recovery algorithms assume that failures occur according to a probabilistic process
that has a closed-form description. A typical assumption is that failures are independent, that is, failure
intervals are independent, identically distributed random variables. This assumption is clearly false over
long periods, since failures are more frequent on a new system or on a system close to the end of its expected
lifetime (this leads to a so-called bathtub distribution of failures). It is not clear to what extent the assumption
is valid over short time periods, since many phenomena may cause correlated failures. In particular, even
if faults are independent, some faults may cause cascading failures of many components. For example, a
power or cooling fault can cause the failure of a large number of nodes.

It is often assumed that between-failure intervals have an exponential distribution, with a cumulative
distribution function (CDF) F (t) = 1 − e−t/M , where M is the MTBI. Such a distribution is implied
by the assumption that failures occur according to a Poisson process: The probability that a failure occur
during a time interval depends only on the length of this interval. A Weibull distribution, with a CDF of
F (t) = 1− e−(t/M)k , can be used to model a decreasing failure rate (k < 1), constant failure rate (k = 1),
or increasing failure rate (k > 1),

An empirical study of HPC failure data from Los Alamos National Laboratory showed a poor fit to
an exponential distribution, whereas gamma or Weibull distributions with decreasing failure rates (.7-.8) fit
well [135]. Surprisingly this study showed that the Weibull distribution fit better in the outer years of the
observed system, while no distribution fit well in the first years. These results could interpreted as meaning
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that failures in HPC systems are chaotic during the long period it takes for the system to stabilize and that
the system keeps improving its reliability through its lifetime. Such an interpretation is consistent with the
observation that most failures are due to software.

See http://cfdr.usenix.org for this and other data.

2.13 Resilience, Fault Tolerance, and Dependability

Unitl now, we have been using the key term “resilience” without clearly defining it. Several reports [38, 33,
112, 37] have used different definitions; and debate continues about how, or whether, resilience differs from
“fault tolerance” or “dependability.” Avizienis et al. [9] considered it synonymous with “fault tolerance”
and defined it as a wide collection of techniques. The authors defined “dependability” as the“ability to avoid
services failures that are more frequent and more severe than is acceptable.” In HPC, service failure has two
aspects: (1) failure to run a program or incorrect answer and (2) computation taking too long. The second
criterion is quantitative and can be measured in various ways, in particular by using the workload efficiency
metric defined earlier: A system fails if its workload efficiency is below a certain threshold. Accordingly,
resilience can be defined as follows:

The collection of techniques for keeping applications running to a correct solution in a timely and
efficient manner despite underlying system faults

“Correct,” “timely,” and “efficient” are context-dependent. In some contexts “correct” may mean “bit
reproducible”; in another context, it could mean “within a rounding error”; in yet another context, we
could be content with a system that frequently provides a correct solution to a problem—provided that we
can efficiently verify solutions. “Timely” and “efficient” are relative rather than absolute (as in before the
hurricane arrives and within our power budget). The definition of “efficient” also depends on what we
consider to be the total system—for example, are programming costs included?

3 Sources and Rates of Hardware Faults and Errors

Editor: Mattan Erez
Contributors: Pradip Bose, Paul Coteus, Al Geist, Subhasish Mitra, Rob Schreiber

In this section we describe a generic HPC machine along with the various hardware errors and failures
that can occur while it is executing an application. We focus on hardware aspects and do not account for
any masking or handling in software. We summarize the rates at which these errors and component failures
occur on current systems and then discuss models for the underlying fault mechanisms, project these models
to future 11 nm technology, and recommend possible mitigation techniques and their overheads.

3.1 Generic Machine Model and Associated Errors and Failures

Figure 4 describes a generic exascale machine, patterned after the current generation of HPC machines
at Argonne, Los Alamos, Lawrence Livermore, and Oak Ridge National Laboratories and similar leading
supercomputing centers. Faults can occur in any part of the machine, with differing consequences. Some
failures (fans, power converters) are masked by redundant hardware. Other failures (nodes) will cause an
application to crash and restart from the last checkpoint with a new set of nodes but will not cause the
system to crash. Some failures cause the entire system to crash and have to be rebooted. The severity of
different failures can be measured by the loss of machine time they cause. The masked failure of a fan
slightly increases scheduled downtime; a system crash causes the entire machine to be down for half an
hour or more.

To expand on the hierarchy, we imagine that the nodes, servers, and switches of the machine are com-
posed of field replaceable units (FRUs): processors, memory DIMMs, various circuit cards, power and
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fan modules, and the like, which are usually collected into removable and field serviceable drawers. Sets
of drawers may form chassis, and multiple chassis form racks. Typically, but not always, communication
is highest between FRUs on a processor node (formed of one or more processor sockets sharing coherent
memory and with at least one network connection). This then is a natural fault containment region. Fur-
ther, groups of nodes may share some common resource—a network adapter card, power supply, or fan
module—making this group of nodes in a drawer (or chassis) a higher-level containment region. The entire
rack, perhaps sharing a common resource such as a power cord and bulk AC-DC power supply, could form
an even higher containment region. However, HPC applications are tightly coupled, so that errors propa-
gate quickly across components. Software help is needed in order to avoid error propagation and transform
physical fault containment units into logical error containment units.

3.2 Classification of Errors and Failures

Hardware faults can result in errors and failures that may be grouped into three categories: (1) detected and
corrected by hardware (DCE), (2) detected in hardware but flagged as being uncorrectable (DUE), and (3)
silent (SE). A silent fault may be masked; a silent data corruption (SDC) is an error caused by an unmasked
silent fault. We describe these categories below and discuss the possibility that faults may lead to operating
with degraded performance, efficiency, and/or fault protection capability.

Examples of DCE: (a) a detected error in an error checking and correcting (ECC) protected SRAM/DRAM
array that is corrected “in place” before being passed on to a unit that consumes that piece of data and (b) a
detected parity error in the processor pipeline that triggers an instruction retry mechanism, resulting in re-
covery of an uncorrupted, prior-architected register state and re-execution from that point. In the latter case,
the recovery mechanism must ensure that leakage of potentially corrupted data to the system’s memory or
I/O state is prevented during the whole “detection and recovery” process. The system can be architected such
that DCEs are usually transparent to the user (application) program and possibly even to supervisory system
software (e.g., operating system). In some cases the supervisory system or operating system is invoked in
order to help record DCE statistics in system memory for later error analysis. In such cases, the DCE is still
transparent to the user application. Usually, hardware has autonomous (software-transparent) mechanisms
to record DCE statistics in hardware trace (debug) arrays for later diagnostics. Note that frequent DCEs will
slow the system and could, in extreme cases, cause timing errors.
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Examples of DUE: (a) a double-bit error, detected during the attempted reading of a SECDED ECC-
protected SRAM/DRAM array datum, that could not be corrected “in place” and (b) a detected parity error
in the processor pipeline that cannot inform the on-chip recovery mechanism within a stipulated deadline,
which is an architected parameter designed to ensure that known (potentially) corrupted data is not released
to system memory or I/O state. Usually, all DUEs are flagged as an exception to system software by the
hardware. Depending on the nature (severity) of the DUE and the capability of the system, the software
should be able to handle the hardware-raised exception in a manner that enables one of the following three
actions: (i) restart of the processor execution from a local or global checkpoint; (ii) application checkstop
that terminates the application, without crashing the node; or (iii) system checkstop that results in a machine
check (requiring “reboot”) for the particular node or, in the worst case, perhaps even the whole system. In
some cases it might be preferable to simply mark corrupted values as invalid, or poisoned, and allow the
application itself to handle the error. An example is to use NaN values to prevent incorrect data from silently
corrupting results, while still allowing for potential application-level masking or handling.

Examples of SDC: (a) an undetected arithmetic computation error, within an integer or floating-point
data path pipeline, that makes it into architected register state (and eventually perhaps the system memory
state) without triggering any error alert at the hardware level; (b) an undetected control error that results
in a premature termination of an iterative loop computation that may result in a datum held in register or
memory state to contain a value that is incorrect from a program-intended perspective; and (c) incorrect
memory and network transfers that were not detected by the error protection mechanisms (e.g., triple-bit
errors with SECDED protection). Such SDCs may eventually be detected within a self-checking application
program or as a result of a triggered DUE, but such a detection could happen many thousands, millions, or
billions of cycles beyond the point of the original occurrence of the SDC. Thus, a sophisticated “root cause
analysis” of a DUE may later point to a an originating (causative) SDC when it comes to proper accounting
statistics of various categories of errors in the hardware.

As a consequence of errors originating from hardware sources, and the associated error-handling hierar-
chy in hardware and/or software, the overall computing system may manifest degraded levels of quality of
service as viewed by the end user. For example, if the system encounters a node failure, even if the system or
application can recover from the failure, the system will operate at a degraded performance level during the
period of system reconfiguration (via updates in the routing tables, etc.). Similarly, an escalated sequence
of ECC memory errors may eventually result in a memory “chipkill” that reduces the amount of available
system memory (before the defective memory module is replaced), thereby degrading performance. Simi-
larly, certain other repair actions resulting from the flagging of hardware errors may reduce the capability of
hardware in terms of being able to detect the full range of errors that the system was originally designed for.

3.3 Quantification of Component Errors and Failures

Table 1 shows the hardware error and failure data for 382 days of the Intrepid system at Argonne National
Laboratory. This 40-rack, 557 TF Blue Gene/P system currently shows a mean time to (hardware) interrupt
of 7.5 days. Thus, the total of any detected hardware failure, including compute nodes, I/O nodes, compute
node interconnect, control hosts, and file servers, was roughly 1 per 7.5 days. This was extremely close
to the 7-day MTBF predicted for the machine back in 2006, well before installation, and shows that one
can accurately predict hardware failure rates on a large system before its construction. We point out that
this agreement was obtained only after wholesale replacement of two minor but problematic elements of
the machine—the 10 Gb/s optical transceiver modules on the I/O links and early versions of the bulk power
supply modules. This experience is consistent with the LANL study discussed in Section 2.12: In the
beginning there is chaos; statistical regularity takes over when the system matures.
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Table 1: Error and failure rates for the Intrepid Blue Gene/P system.

Detected Uncorrectable Predicted % Fails per Re-
pair Period

Intrepid (ANL 40 racks)
Observed failures per Re-
pair Period

Intrepid without I/O Fail-
ures per Repair Period

Compute cards 90% 0.648 0.648

Node boards 5% 0.137 0.137

I/O cards 2% 0.785 0.000

Link cards 2% 0.020 0.020

Service cards 1% 0.098 0.098

Fans 0% 0.000 0.000

Bulk power 0% 0.000 0.000

Mid-planes 0% 0.000 0.000

Clock card 0% 0.000 0.000

1.69 0.90
Detected and Corrected/Marked

Compute Cards: (80% DRAM) 58% 2.003 2.003

Node boards 28% 0.491 0.491

IO Cards 0% 0.000 0.000

Link Cards 2% 0.059 0.059

Service cards 1% 0.196 0.196

Fans 4% 0.079 0.079

Bulk Power 6% 0.884 0.884

Mid-planes 0% 0.000 0.000

Clock card 0% 0.000 0.000

3.71 3.71

Not all failures have the same impact. A node board failure affects all 32 compute cards sitting on
it (each card contains a 4-core processor and attached memory). The failure of an I/O card can affect all
compute cards on the board containing the I/O card. The failure of a link card affects an entire partition or
set of nodes that are assigned to a running job.

3.4 Hardware Fault, Error, and Failure Models and Projections

To project the hardware error and failure rates expected in an exascale machine, one must understand the root
cause of these events. While reasonably good models exist for some faults in some components, important
gaps remain in the projections we will be able to make. We summarize our best-effort models below.

3.4.1 Compute Node Soft Errors

Soft errors in the compute node (processor and memory only; network, power, and cooling are discussed
later in this section) are most often a result of events that are entirely external to the system and cannot be
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replicated. By far the most significant source of transient faults is energetic particles that interact with the
silicon substrate and either flip the state of a storage element or disrupt the operation of a combinational
logic circuit. The two common sources of particle strike faults are alpha particles that originate within the
package and high-energy neutrons. Alpha particles are charged and may directly create electron-hole pairs.
When a high-energy neutron interacts with the silicon die, it creates a stream of secondary charged particles.
These charged particles then further interact with the semi-conductor material, freeing electron-hole pairs.
If the charged particle creates the electron-hole pairs within the active region of a transistor, a current pulse
is formed. This current pulse can directly change the state of a storage device or can manifest as a wrong
value at the end of a combinational logic chain.

To analyze the impact a particle strike has on a compute node, we model the effect on each node compo-
nent separately, namely, SRAM, latches, combinational logic, DRAM, and NVRAM. We then determine a
rough estimate for the number of units of each component within the node. We use this estimate to provide
a rough order-of-magnitude fault rate for the compute node. We also briefly mention how such faults are
handled in processors today, and we discuss how advances in process technology are expected to affect these
soft faults. We make projections for the impact of particle-strike soft errors on a future 11 nm node, as well
as present an estimate of the overhead/error-rate tradeoffs at the hardware level. The estimates are based on
the models below and on some assumptions about the components of a node, as shown in Table 2. First,
however, we give a few important caveats about the models and projections.

• The numbers summarized in Table 2 do not include errors due to hard faults or to transient faults
other than particle strikes. We expect those to be a significant contributor to software-visible errors
and failures.

• We do not have access to good models for the susceptibility of near-threshold circuits and do not
consider such designs.

• We give only a rough, order-of-magnitude (at best) estimate; many important factors remain unknown
with respect to a 11 nm technology node.

We expect that, over the next few years, ongoing research at microelectronic companies, research labs,
and academia will provide more accurate estimates.

Table 2: Summary of assumptions on the components of a 45 nm node and estimates of scaling to 11 nm.
45 nm 11 nm

Cores 8 128

Scattered latches per core 200, 000 200, 000

Scattered latches out of cores
√
ncores×1.25

ncores
= 0.44

√
ncores×1.25

ncores
= 0.11

FIT per latch 10−1 10−1

Arrays per core (MB) 1 1

FIT per SRAM cell 10−4 10−4

Logic FIT / latch FIT 0.1–0.5 0.1–0.5

DRAM FIT (per node) 50 50

SRAM. Large SRAM arrays dominate the raw particle-strike fault rate of a processor silicon die. When a
particle strike releases charge within an active region of a transistor in an SRAM cell, the charge collected
may exceed the charge required to change the value stored in the cell, causing a single event upset (SEU).
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Table 3: Summary of per-processor particle-strike soft error characteristics within a compute node (sea level,
equator). Note that other sources of transient faults cannot be ignored.

Array Interleaving and SECDED
(Baseline)

DCE [FIT] DUE [FIT] SE [FIT]
45 nm 11 nm 45 nm 11 nm 45 nm 11 nm

Arrays 5000 100000 50 20000 1 1000

Scattered latches 200 4000 N/A N/A 20 400

Combinational logic 20 400 N/A N/A 0 4

DRAM 50 50 0.5 0.5 0.005 0.005

Total 1000–5000 100000 10–100 5000–20000 10–50 500–5000

Array Interleaving and ¿SECDED
(11nm overhead: ∼ 1% area and < 5% power)

DCE [FIT] DUE [FIT] SE [FIT]
45 nm 11 nm 45 nm 11 nm 45 nm 11 nm

Arrays 5000 100000 50 1000 1 5

Scattered latches 200 4000 N/A N/A 20 400

Combinational logic 20 400 N/A N/A 0.2 5

DRAM 50 50 0.5 0.5 0.005 0.005

Total 1500–6500 100000 10–50 500–5000 10–50 100–500

Array Interleaving and ¿SECDED + latch parity
(45 nm overhead ∼ 10%; 11nm overhead: ∼ 20% area and ∼ 25% power)

DCE [FIT] DUE [FIT] SE [FIT]
45 nm 11 nm 45 nm 11 nm 45 nm 11 nm

Arrays 5000 100000 50 1000 1 5

Scattered latches 200 4000 20 400 0.01 0.5

Combinational logic 20 400 N/A N/A 0.2 5

DRAM 0 0 0.1 0.0 0.100 0.001

Total 1500–6500 100000 25–100 2000–10000 1 5–20

An SEU may impact a single SRAM cell or may change the values of multiple adjacent cells. Such multicell
upsets (MCUs) are also called burst errors. A reasonable ballpark figure for SRAM particle-strike upset rate
is 1 upset every 107 hours for 1 Mb of capacity, which is a rate of 10−4 FIT/bit [139]. Our best estimates
indicate that the SEU rate for SRAM will remain roughly constant as technology scales. While many
complex phenomena impact susceptibility, the current roadmap of changes to devices, operating voltage,
and scale do not point to extreme changes in susceptibility. What is expected to change is the distribution of
MCUs, with a single upset more likely to affect a larger number of cells at smaller scales.

Because the raw FIT/chip from SRAM is high (estimated at roughly 0.5 upsets per year per chip, or
multiple upsets an hour in a large-scale HPC system), large arrays are protected with error detection and
error correction capabilities. An approach in use today is a combination of physical word interleaving
coupled with an error detection code or with ECC mechanisms. Given the distribution of MCUs today,
4-way interleaving with SECDED capabilities per array line is sufficient. Stronger capabilities will likely
be needed in the future, but their energy and area overhead are expected to be low (see Table 3). Note that
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our estimates assume that 4-bit or larger bursts increase from 1% of all SEUs to 10% or higher between 45
nm and 11 nm technology and that the rate of bursts of 8 bits or larger increases from 0.01% of all SEUs to
1% of all SEUs [81].

Note that alternative storage technology with much lower particle-strike error rates is possible. Some
current processors use embedded DRAM for large arrays, and future processors may use on-chip arrays
of nonvolatile storage. Embedded DRAM has a 100 times or more lower error rate than does SRAM.
Nonvolatile storage cells are immune to particle strikes but do display some soft-error fault mechanisms
(see discussion below).

Latches. The error mechanisms and trends for latches are similar to those of SRAM, and the per-latch
SEU rate is expected to remain roughly 10−4–10−3 FIT/bit [35]. Given the smaller number of latch cells
in a processor today compared with SRAM cells, the overall contribution to error rate of latches is much
smaller as well. Future processors will contain a much larger number of latch cells, and protection may be
necessary. The protection mechanisms and overheads of latches depend on how the latch is used. Some
latches are organized in arrays, like SRAM arrays, while other latches are scattered within logic blocks.
Array latches can be protected with interleaving and ECC, although such latches are often accessed with
finer granularity than large SRAM arrays, which increases the relative overhead of protection. We include
this extra cost in Table 3 and project a higher power overhead than area overhead for protecting arrays in
order to account for the added protection of latch arrays that may be needed in future processors.

“Scattered latches” are more difficult to protect, on the one had, because the overhead of interleaving
and ECC is exorbitant without the regularity of an array. On the other hand, an error in a scattered latch
is often masked by the natural operation of the circuit it is part of. Various estimates exist for the derating
factor that should be applied for this natural masking, typically ranging from 90 to 95%. The masking rate
may depend on the application and also on the architecture, with more streamlined architecture potentially
having a lower rate of masked latch errors. If needed, scattered latches can be protected against particle-
strike-induced upsets. The two main techniques that can be applied are hardened latches or a combination
of parity prediction from logic with parity checking on a collection of latch bits. Both techniques can be
effective but potentially have high overhead if a large fraction of latches must be protected. We show the
impact of this overhead in Table 3.

Combinational Logic. The trends we expect for particle-strike-induced soft errors in combinational logic
are again consistent with those for SRAM and latches. The raw SEU rate associated with combinational
logic can reasonably be estimated at 0.1–0.5 FIT for every 1 FIT contributed by scattered latches within
logic blocks [57]. Note that this is the raw upset rate and does not account for logical masking effects.
Similar to latches, even if an output of a logic gate is changed, this change is highly unlikely to impact the
final result of the circuit. Because the output of a combinational logic path is always a latch, the overall
masking rate of combinational logic upsets is most likely close to 99%.

Note that the raw upset rate quoted above already accounts for electrical masking, which results from
the SEU current pulse being attenuated as it passes through multiple gates, and for timing or latch masking,
which results from the output of the combinational logic being observed for only a fraction of the cycle.
As with scattered latches, we expect the raw fault rate to stay roughly constant as technology scales, and
application and architecture may impact masking rates. The parity-prediction mechanism that can be used
to detect errors in latches, will also detect a large fraction of logic errors. Other techniques for detecting
combinational logic soft faults at the hardware level include those based on arithmetic coding [122, 94, 8, 95]
and replication [7, 140, 133]. Moreover, electrical masking can be increased by using less area and power-
efficient gate designs [72, 99].
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DRAM. As a rule, DRAM exhibits a fixed rate of particle-strike soft errors per DRAM die, regardless of
technology. This rate is roughly 10–20 FIT/device, and a significant fraction affects multiple bits and entire
rows, columns, or banks of the DRAM device [144]. Many DRAM devices are required for the capacity
of each node. Recent studies have shown that the error rate of DRAM is far higher than the particle-strike
soft errors, indicating that hard faults in either the peripheral or signaling circuits are the main cause of
problems [136, 79, 144].

Regardless of the fault mechanism, DRAM is protected with ECC, with large-scale systems typically
supporting some form of chipkill-level ECC, which is effective against hard errors as well. We expect that
even if new ECC schemes are needed in the future, their overhead will overall be similar to the overhead
observed today for most applications.

NVRAM. We cover several technologies: NAND Flash, spin-transfer torque memory, phase-change mem-
ory, and resistive memories such as memristor.

NAND Flash is vulnerable to soft errors. The FIT rate per bit is growing with process shrinks. Currently
it is 10−5 FITs. It was 10−8 FITs at the 100 nm technology node. ECC is needed and used to cope with
this rate, which exceeds that of DRAM. NAND Flash wears out after approximately 106 rewrite cycles.
Many architectural techniques are used to spread the load across the cells of a chip, a technique called wear
leveling. Wear-out is not a major issue in consumer storage devices such as media cards. It may be an issue
in solid-state disks, but it is clearly manageable there. As main memory and cache, Flash is unsuitable for
this and other reasons.

Spin-Transfer Torque (STT), the leading magnetoresistive random-access memory (MRAM) technology,
is under development by Toshiba and Hynix, which have made prototypes at 30 nm. Samsung has made a
device at 17 nm. It is dense (6F 2 feature size). Speed and energy cost are good. Chips of 1 Gb are under
development and may reach the market in 2014. Wear-out does not appear to be a concern for STT. It also
seems that STT bits cannot be flipped by particle strikes. Thermal noise seems to cause something similar to
soft errors—errors due to external stimuli, not internal imperfections. A FIT rate of 10−10 FITs per bit has
been reported. Hard errors are an issue. It is said that “imperfections in the fabrication process greatly affect
the reliability of data in STT-MRAM. Process variability causes variation in the tunneling oxide thickness
and cross-section area, which affects both the static and dynamic behaviors of magnetic tunnel junctions,
resulting in cell errors” [82]. Appropriate responses could include testing and map-around for bad cells,
spare cells, and ECC. (These comments likely apply to all the memory technologies we consider.)

Phase-Change Memory (PCM) is resistive memory in which the state of a chalcogenide glass is changed
between crystalline and amorphous by heating and either slow or fast cooling. The resulting change in the
electrical resistance determines the state. Multilevel cells are possible with perhaps two bits per cell, but
possibly fewer (as when three resistance levels are used). Micron is marketing 45 nm PCM for consumer
applications today. PCM has better endurance than Flash, but it may wear out after as few as 106 up to a
high estimate of 109 cycles because of the physical stresses of repeated heating and cooling. It appears to
be invulnerable to particle-induced soft errors. The resistance of the PCM cell changes with time. Thermal
disturbance due to the heating required for reset of a nearby cell is a chief cause of resistance drift, and this
limits cell density. The decay of the stored data is similar to the charge leakage in the DRAM capacitor
and, like it, may cause errors. Some combination of refresh and ECC can cope with drift. Because of the
necessity for refresh to arrest drift, it is not clear that PCM is as nonvolatile as necessary for use in offline
storage. The rate of required refresh will depend on the degree to which storage density is boosted by using
multilevel cells; the tighter the level spacing, the more frequently the cell must be refreshed. In particular,
a one-bit cell with only two levels would have no drift problem. There is thus a complex design space in
which density, the cost of mitigating the resistance drift, the data retention time, and the error rate are in
competition. Optimization of the PCM cell and its required refresh and error correction architecture is an
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area of ongoing research.
The memristor is a new technology under development at HP and Hynix and in other laboratories and

companies. A memristor stores information in the resistance of a cell (like PCM), that resistance being a
function of the past flux (the integral of current) that has passed through (not by heating, as in PCM). HP
and Hynix have explored memristive systems in which a metal oxide (often titanium oxide but recently also
oxides of tantalum, zirconium, and hafnium) sandwiched between electrodes is electrochemically changed
by the passage of current. Memristors are two terminal devices. Like other resistive random-access memory,
memristors appear invulnerable to particle-strike soft errors, but a nonrecurring or transient error mechanism
in memristors may exist. Recent experimental studies and models show a tendency to fail to remain in the
lowest resistance state, randomly, with a probability that is strongly temperature related. At 150 degrees
Celsius, half of all cells may fail if left unchecked for ten days (see,for example, [52, 155]). It is not clear
whether these errors are due to cell deficiencies and can be reduced by mapping out bad cells or are totally
random and need to be handled by ECC and scrubbing, or both. Memristors can wear out, but the wear-out
mechanisms are not as clearly understood as they are for PCM. The ultimate durability of memristors is
still to be determined. In new work on tantalum oxide memristors, endurance of over 10 billion cycles has
been demonstrated [152]. Hard error vulnerabilities appear to be due to wear-out, manufacturing issues, and
interface/ communication issues and may be comparable to those of PCM.

Nonvolatile Memory as a Resilience Enhancer. Nonvolatile memory (NVM) is often less vulnerable to
soft error due to cosmic rays than is DRAM, but this is almost totally irrelevant to our discussion (since other
errors predominate, and NVM has its own sources of errors.) Thus, replacing DRAM with NVM will not,
in and of itself, enhance resilience. Checkpointing, normally at the application level, is the current default
for preserving the state of an ongoing computation in order to protect it from a subsequent failure. Because
of the growing size of application state and the failure of disk-based file systems to provide proportionally
growing bandwidth, checkpointing to shared disk is not seen as a sustainable approach at exascale. We
expect that on-node nonvolatile memory will appear, for many reasons. One reason is to serve as fast
checkpoint storage, since write bandwidth will be superior to disk. In order to cope with node hardware
failure, the checkpoint NVM may be “two-tailed (capable of being read by a service node or another compute
node following node failure). Alternatively, the checkpoints may need to be delocalized, stored on a buddy
node, or made recoverable by another scheme. DRAM can also be used for delocalized checkpoints. It will
survive node failures but not global power failures. Since such DRAM will be on standby mode most of the
time, there is no significant difference in power consumption.

NVM may serve other resilience functions, in part simply by providing enough memory to do more or
as the top level in a hierarchy of nonvolatile storage components. For example, it can be used for logging
messages, in order to support local, uncoordinated checkpointing, or for holding file system caches.

3.4.2 Compute Node Hard Errors and Failures

While we could provide rough quantitative projections of particle-strike-induced soft error rates, we cannot
ignore possible failures and errors (detected and undetected) due to hard faults. Because of the complexity
of designing and efficiently operating future processors, some failures and errors may be intermittent and
manifest only with certain environmental conditions or specific execution characteristics. Major concerns
include increased early-life failure rate, permanent and intermittent faults associated with device degrada-
tion, and increased storage element error rates because of low-voltage operation. Quantitative data on how
such hard fault sources will evolve over technology generations is difficult to predict. But the effects can be
enormous. We briefly discuss the issues below.
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Early-Life Failures (Infant Mortality). Burn-in for screening early-life failures is becoming increasingly
challenging [17, 24, 84, 113, 149]. Major challenges include power dissipation, cost, and possibly reduced
effectiveness and coverage of the burn-in test techniques. Burn-in alternatives, for example, Iddq testing
(measuring the supply current, or Idd, in the quiescent state) and very low voltage testing [?, 55, 68, ?], are
also experiencing limitations, including high leakage, process variations, and reduced voltage margins. At
a highly scaled technology node with minimal reliance of burn-in, the effects of early-life failures can be
significant: on the order of several thousands of defective parts per million. Such a high rate of failures is
roughly equivalent to adding 103–104 FIT to the node failure rate. More aggressive on-line techniques for
detecting these failures may become necessary.

Device Degradation (Aging). Device degradation induced by degradation mechanisms such as bias tem-
perature instability (BTI) [3, 123, 158], hot-carrier injection, time-dependent dielectric breakdown, or metal
electromigration is becoming important. While design margins (guard bands) are being squeezed to achieve
higher energy efficiency, expanded design margins are required to cope with aging. Hence, traditional speed
or voltage margins to overcome degradation may become too expensive. Some projections predict that
beyond the 14 nm technology node, guard bands due to BTI degradation may grow to 20% or more, de-
grading efficiency and performance by a similar amount. Such guard bands are highly dependent on the
workload, and quantitative projections can be highly pessimistic for worst-case workloads. Moreover, for
near-threshold voltages of operation, a huge dilemma arises: while low-voltage operation can reduce the
amount of aging, high-voltage turbo modes of operation or fast execution followed by low-voltage opera-
tion for energy efficiency can significantly exacerbate this aging effect. Techniques that dynamically adjust
guard bands and improve performance and efficiency have been suggested, but their impact on intermit-
tent failures and errors has not been fully evaluated. Here, the difference between exascale and commodity
small-scale systems is vast, because of the scale multiplier of base rates and the impact of large variances
on tightly coupled systems.

Low-Voltage Storage-Element Stability. As supply voltage is reduced in order to improve energy effi-
ciency and reduce power consumption, maintaining the integrity of storage elements, including latches, flip-
flops, and SRAM cells, is challenging. For example, V ccmin-related errors can induce so-called goldilocks
failures [111]—failures that appear hard but are, in fact, caused by phenomena typically associated with soft
failures. Such failures are expected to become more problematic with increasingly complex circuilts and
lower voltage supplies, affecting other circuit structures besides SRAM. At present, the only viable way to
deal with V ccmin errors in sequential elements is to rely on (expensive) circuit-design techniques or resort
to high-voltage operation, resulting in poor energy efficiency.

Possible Mitigation Techniques. Understanding the effects of such failures is not enough. The question
is, how do we mitigate them, especially for silent errors that may lead to silent data corruption? Techniques
in the literature that can be useful include (1) on-line self-test and diagnostics, (2) concurrent error detection
techniques (similar to soft errors), (3) adaptive self-tuning and on-line optimization, and (4) on-line self-
repair. However, these techniques are generally not supported extensively for existing processors. If the U.S.
Department of Energy has to rely on COTs components, chances of all these techniques being supported get
even lower. That brings up the question, what hardware and software support is required for future exascale
systems?

3.4.3 Network

The transport layer of the network, whether electrical or optical, can be instrumented for error detection
and correction with quantifiable cost. Thus, for example, on Blue Gene/Q, a combination of CRC, Reed-
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Solomon codes, and Hamming codes, along with a retry mechanism for detected but uncorrected errors,
reduces the possibility of an error escape to 1050 [42]. Thus, network transport errors are containable.
Network logic, on the other hand, comprises SRAM, latches, and logic, as described above, with their
failure modes and correction techniques. Errors that result in data sent to a wrong destination are potentially
the most damaging but may be mitigated with hardware or software techniques that use knowledge of the
desired and actual recipient to trap errors before data corruption occurs. Networks that support superior
error detection and correction, with tailored mechanisms to ensure correct delivery, will surely be a part of
exascale systems.

3.4.4 I/O

The increased density of disks results in increased error rates, including an increase in undetected disk
errors—those that are not detected by current techniques (RAID 6 included). Various techniques are avail-
able for detecting such errors and correcting them—mostly in the form of added redundancy [65]. In addi-
tion, disk failure rates are often higher than the nominal MTBF would indicate, with 2%–4% yearly failure
rate common [134]; one parity block (RAID 5) is not sufficient, since the probability of two disk failures
within the same group is too high. The IBM GPFS system implements in software a RAID 6 scheme (two
parity blocks) that can overcome two disk failures [43].

While these techniques can practically eliminate the risk of data loss, they come at a cost: the disk
storage system of a large supercomputer will have continuous I/O background activity due to RAID recon-
struction after disk failure. The problem is worsened by the increasing gap between disk capacity and disk
bandwidth, which results in increasing reconstruction time—or the need to spread reconstruction across
more disks. This background activity will reduce the effective I/O bandwidth and cause significant I/O
performance jitter.

3.5 Commercial Trends

The technology analysis in this section provides insight into the cost of producing components with ac-
ceptably low failure rates; it does not tell us what will be the price of processors that incorporate these
technologies. While predicting component prices a decade ahead may be infeasible, we point out that mar-
ket trends are not favorable. High levels of resilience are important for high-end servers, such as mainframes
or RISC/Unix servers (Sun, Power, Itanium). For many other markets (mobile, clouds) vendors are likely
to accept lower reliability in order to achieve lower cost and lower energy consumption. Unfortunately, the
market for high-end servers is currently shrinking; the decline is particularly sharp for high-end RISC Unix
servers. While some of this decline may be attributed to the current state of the economy, this sector clearly
is an increasingly small fraction of the IT industry. Furthermore, this sector is likely to be less price sen-
sitive than other sectors. Buyers of mainframes or high-end Unix servers have been willing to accept large
markups on price per performance, in order to achieve higher reliability levels. These two trends are likely to
lead to an increasing cost differential between low-reliability components and high-reliability components.
Systems built with high-end RISC processors (Sparc64, Power7) are already sparse in the Top500 list. In
addition, low-power components may not be available with high reliability.

3.6 Shielding

The impact of particle strike can be reduced by shielding (an area where DOE has significant expertise).
The atmosphere is a natural shield, with higher locations suffering from higher strike rates; a computer at
sea level will fail less frequently than one at a high-altitude location. Natural or artificial shielding can
further reduce the neutron flux. For example, 2 meters of concrete will reduce the impact of 10 Mev neutron
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radiation by three orders of magnitude [137]; less energetic neutrons are attenuated much more. On the other
hand, neutrons with energies above 10 MeV carry a very small fraction of the total energy of cosmic-ray
neutrons [75]. Hence, the cheapest way of avoiding the effect of cosmic radiation-induced errors may be to
locate future exascale systems in abandoned SSD tunnels or repurposed atomic shelters.

4 Sources and Rates of Software Faults and Errors

Editor: Saurabh Bagchi;
Contributors: Jon Stearley, Eric Van Hensbergen, Al Geist

A large fraction of system failures is due to software, rather than hardware. A study of major DOE su-
percomputers in 2004–2006 showed that about 65% of failures can be attributed to software [115], whereas
a study of failures in 2012 on Intrepid, the BG/P system at Argonne National Laboratory, showed that less
than 16% of job crashes were due to hardware problems [5]. Results of studies show variance, however; a
study by Schroeder and Gibson in 2010 showed that failures attributable to hardware ranged from 30%–60%
[135].)

Moreover, the statistics do not include failures due to application software faults. Computer centers
typically keep statistics only for the failures they see themselves responsible for. With application software
failures included, the fraction of failures due to software faults is likely to be much higher.

Unfortunately, failures due to software are less well tracked and characterized. While statistics may
indicate which subsystem crashed (e.g., file system), they do not indicate why the file system crashed.
Therefore, much of the discussion in this section is qualitative.

4.1 Classes of Software Faults

Software faults can be grouped into three categories: pure software problems, hardware problems mis-
hanlded by software, and software causing a hardware problem.

4.1.1 Class 1: Pure software problems

Some of the software faults in the first category are “classical” correctness issues: unhandled exceptions,
incorrect return values, including null objects; and incorrect control flows, such as some function not being
called or called under a different condition from what was desired. Such errors are likely to be frequent
in the exascale system software stack. It is well known that system software is harder to develop than
application software; kernel software is harder to debug than user software; and reactive software, where
execution is driven by asynchronous events, is harder to get right than is transformational software, such as
scientific software, that transforms an input into an output through a long sequence of (mostly) deterministic
transformations.

Large scale is worsening the frequency or impact of two other types of software errors: concurrency and
performance.

Concurrency errors: Subsystems such as a parallel file system are large, concurrent applications. Con-
current code is hard to develop because programmers have difficulty comprehending the possible interac-
tions between a large number of agents. Humans often are said to be able to conceive of concurrency only at
a limited scale (roughly up to 10), much less than the scale of large supercomputers. Concurrent code also
is hard to debug because of the large number of possible interleavings of actions. Debugging tools typically
are designed to handle bugs caused by the interaction of only two or a few agents. Because of the large
number of agents in supercomputers and their tight interaction, failures due to subtle interactions between
many agents become more frequent. The problem is compounded by stringent performance requirements

26



that prevent the use of simple, coarse-grained synchronization. As an example, early versions of the Luster
file system would occasionally corrupt the data written on files [73].

Performance errors: By “performance errors” we mean failures due to resource (time, memory, etc.)
exhaustion. These manifest themselves in the form of unacceptable performance, or actual crashes, due to
timeouts (“time overflow”) or buffer overflows. Current programming models and programming method-
ologies do not provide good ways to manage the performance of large, distributed systems. Estimating the
average load on different nodes is relatively easy, but understanding the tail of a distribution and evaluating
the frequency of rare events are much harder. A large system is a “black swan detector”: events that occur
rarely on one node are much more frequent with 1,000,000 nodes. Unfortunately, humans are not good at
handling the impact of “black swans” [146]. The Luster file system has suffered from multiple performance
errors when deployed at large scale [138]. Some of the problems were due to a lack of clarity on the “accept-
able performance behavior” of applications. Programming models do not prevent applications from bring a
system down by taxing particular resources. In the case of Luster, one “Achilles heel” was a limited ability
to handle metadata operations. The designers of Luster assumed that no application would open or close
tens of thousands of files each second; some applications did the unthinkable.

4.1.2 Class 2: Hardware propagating up to software and software not handling it correctly

Examples of the second category are a node failure not being handled by software at other nodes (node goes
down, the RAS system notices it, but the application did not take that into account) and a disk failure causing
file system failure. These kinds of failure can be seen as software faults (bugs) because the software is
supposed to overcome such hardware failures. In practice, however, many failures seem to be due hardware
errors that were mishandled by software. One plausible reason is that testing code that handles failures is
difficult. Another is that software is typically designed to handle clean, fail-stop hardware failures but will
be taxed by messy, intermittent errors or other strange hardware behavior.

4.1.3 Class 3: Software creating a problem for the hardware

Incorrect firmware, for example, misbehaving thermal control firmware, can damage hardware; this can be
seen a firmware fault. Software can trigger an unusual usage pattern for the hardware, causing hardware
errors; this can be seen as a hardware fault. In both cases, however, the software is actually the culprit.

4.2 Severity of Software Faults

Not all software errors are equally bad. The syslog standard (RFC 3164 / RFC 5424) [61] defines eight
levels of severity.

0 Emergency: system unusable

1 Alert: immediate action required

2 Critical: critical conditions

3 Error: error conditions

4 Warning: warning conditions

5 Notice: normal but significant condition

6 Informational: informational messages

7 Debug: debug-level messages

27



Other dimensions are important as well: In particular, one must understand the scope of an error: how
the error propagates and what it affects. Errors with a local effect are much easier to handle than errors
that have a global effect. In software, we want to avoid as much as possible errors that corrupt large, global
system state, where recovery will involve the entire system and may take a long time.

4.3 Evolution of Failure Types and Rates at the Exascale

We expect a significant increase in software faults as we move to exascale. The software stack will become
more complex as it has to handle more issues (such as power management, resilience, and heterogeneity)
and has to face ever more stringent performance constraints (including memory footprint). Correctness
bugs will be more numerous. The increasing scale of such systems will certainly increase the frequency of
concurrency errors and of performance errors.

The problem is compounded by obstacles due to the development process for extreme-scale software.
Supercomputing is a small market; the development of software for the largest systems is usually under-
funded and understaffed. Furthermore, software for the largest systems is never tested at full scale before
they are deployed: Vendors cannot afford to stand test systems at full scale, and full-scale testing is done on
premise. As systems keep increasing in size, new software errors will surface with each new generation of
systems, even if the software does not change.

5 Error Prevention, Detection, and Recovery

Editor: Eric V Van Hensbergen
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In the preceding two sections we discussed sources of errors. Error handling can be categorized under
several headings.

Prevention While an error-free system is not within the realm of possibility, various techniques can reduce
the occurrence of errors.

Prediction Certain patterns of behavior can indicate future errors. If future errors are predicted with high
precision, then preventive actions can be used to avoid them.

Tolerance Various techniques can be used to ensure that errors do not lead to failures—even if they are not
detected.

Detection If an error cannot be tolerated, then it must be detected before it can be corrected.

Containment Error handling is eased if errors are contained so that they affect only a small part of the
system.

Recovery Once an error is detected, forward or backward recovery is used to bring the system back to a
correct state. Recovery most often will be automated.

Diagnosis As part of error detection and recovery, or at a later time, diagnosis activities can narrow down
the likely cause of an error.

Repair The recurrence of errors can be avoided by replacing components, updating software, changing
configuration parameters, and so on.

We address each of these approaches in the following subsections.

28



5.1 Prevention

We discussed in Section 3 mechanisms for hardening hardware and avoiding hardware errors. Suitable codes
can be used to detect and correct errors in memory, caches, and buses. Errors in combinatorial circuits and
latches can be detected and corrected by re-executing instructions.

Such prevention mechanisms can be used selectively. For example, one could have more reliable or less
reliable cores—using either different designs or different operation parameters (clock speed, voltage); one
could have the ability to run cores in tandem, comparing their outputs (to the L2 shared cache) in order to
detect errors; one could modify mechanisms for thread-level speculation or for transactional execution so
as to allow reexecution of code blocks when an error is detected; and one could have more reliable or less
reliable memory. Some of these choices (e.g., types of memory or cores) need to be made when hardware is
configured. Others (e.g., voltage levels, clock speeds, or duplicate execution) can be selected dynamically.

Automatic compensation mechanisms for hardware faults sometimes lead to poor overall system per-
formance. Examples of such scenarios can be found in prior anecdotal fault analysis of large-scale systems.
Sandia’s Redstorm large-scale runs were plagued by slower than expected performance due to several CPUs
running at 2.0 GHz instead of 2.2 GHz. Another Sandia system, Thunderbird, experienced poor system
performance due to several InfiniBand links silently degrading to 256 MB/s instead of 1 GB/s. The tightly
coupled nature of supercomputers exacerbates these issues, leading to the entire system experiencing per-
formance loss as a result of a small set of degraded components.

One proposed approach is pervasive self-test diagnostics that run before and potentially during appli-
cation execution in order to ascertain the health of system components as well as the overall system [83].
Similar diagnostics are run during system bring-up and in some cases weekly as part of scheduled main-
tenance windows—but systemic errors and performance degradation caused by transient faults happen at
a much finer granularity because of various causes, including environmental variability, certain workloads
exercising components of the system in unusual ways, and human error. The more pervasive use of such
diagnostics would enable a consistent performance environment from run to run, eliminating significant
variability in application performance resulting from latent undiagnosed system issues.

The tradeoff here would be the overhead of running diagnostics at boot time and periodically during
execution versus the possibility of performance degradation. Some of this overhead may be mitigated by
a “+1” core whose operation will not significantly interfere with the actual workload running on the other
cores. Finding the right balance between background monitoring, periodic health diagnostics, and other
forms of online self-test will be an important aspect of co-design research on extreme-scale systems.

A complementary approach to software-based errors would be to adopt better design and testing method-
ologies. For example, performance errors could be avoided by adopting techniques used in the design of
real-time software for avoiding overcommitment of resources. Alternatively, resource exhaustion could be
avoided by the use of properly designed feedback mechanisms—a topic that will appeal to control theory.

5.2 Prediction

A failure can be prevented by predicting the faults that cause the failure and evading the failure. For example,
if one can predict that a node is likely to fail, then one can prevent job failure by vacating the node and
migrating its workload to another node before the failure occurs. To do so, one needs to understands which
faults are most likely to cause failures; and one needs to predict the occurrence of such faults based on
past observations. The prediction should be timely: it is easy, but not very useful, to predict that each
piece of hardware will eventually fail. Conversely, if the prediction is too close in time to the failure, then
there may not be enough time for evading the failure. Failure prediction is used successfully for a wide
range of complex systems, including railroads [114], nuclear power plants [159], and aircraft engines [78].
Many different techniques can be used to forecast failures. A fairly complete survey of these techniques is
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presented in [132].
Several studies suggest that failure can be predicted in HPC systems. For example, a memory device

tends to show, for a given address, multiple repetitive correctable errors before showing an incorrectable
error [80]. Correlations in time have also been observed between soft errors and hard errors. Another recent
study [74] has observed correlation in space. The predictability of hard drive failure is at the origin of the
SMART (Self-Monitoring and Reporting Tech.) technology used in many disks.

In HPC systems, the overall failure prediction workflow based on event analysis, its limitations, and
needed improvements are reasonably well identified. HPC systems are producing events related to the
state of their software and hardware components. Events of the same type can be clustered into groups.
Event correlation analysis allows establishing stochastic propagation chains between events of the same
group or/and of different groups. Stochastic propagation chains essentially contain two categories of events:
precursors and critical events. When a critical event is in a propagation chain, all previous events in the
chain are called precursors (precursors potentially also include critical events). In the past two years, several
key results have demonstrated that recent advances in event clustering [?], anomaly detection, [50], event
correlation [51], propagation chain construction [74], and online detection of propagation chains [49] can
provide precise failure prediction. The time lag observed for the most efficient prediction approaches is
consistent with the time taken by proactive actions.

Current predictors can achieve a precision of over 90%, so that preventive actions will be superfluous in
only one-tenth of the cases; acting on such predictions is usually worthwhile (see analysis in Appendix B).
On the other hand, the recall is still low and stays below 50% even for the most advanced prediction ap-
proaches: fault prediction can effectively double the MTBI but cannot replace other methods, by itself. The
main reasons for the low recall are the lack of precursor events (some failures have no identified precursors)
and the precision losses at each step of the failure prediction workflow. Thus, an identified research objective
is to improve the whole failure prediction workflow to increase the failure prediction coverage from 50% to
80% or 90%.

5.3 Tolerance

For some applications, we may not need to recover from node failures at all. For example, in derivative-free
parameter estimation of a complex simulation, a node failure could be ignored and treated as a simulation
failure. However, not all simulation failures are the same. A graceful failure can yield partial informa-
tion that could be used when determining the next experiment to perform for the optimization. Structured
simulation-based optimization techniques can use this partial information to build partial interpolation mod-
els and thus become resilient to node failures. Similarly, we could use partial solutions for simulations at a
looser tolerance as long as we account for the truncation error in the model and optimization.

This approach can be likened to controlling the noise in simulations [107]. For stochastic noise, model-
based optimization methods have been developed that specify both a candidate point and the number of
replications needed to obtain sufficient accuracy. Parallel replications at a fixed point can be used to control
stochastic noise but not deterministic noise. For deterministic functions one could use nearby points and
Taylor’s theorem to bound the noise in the simulation. By neighborhood sampling one could reduce the
noise in many settings, and these samples may already be available from previous computations of the
algorithm.

An alternative approach is to use insight into the application to reduce the probability of failure by reduc-
ing the memory footprint of an application. Variable precision arithmetic can help in this approach by using
bounds on the precision requirements for Newton solves to compute low-precision steps initially. Analysis
tools, such as those developed for automatic differentiation and estimating computational noise, could iden-
tify blocks in the code for which higher precision would lead to improved precision in function evaluations.
Based on this identification, one could restructure the computation of a function so that the least-precision
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arithmetic was used in each block to obtain the required precision in the overall function evaluation. Similar
ideas could be applied for gradient and Hessian evaluations. User-provided and automatically generated
codes for quantities derived from function values (such as derivatives) can be significantly less precise than
the underlying function. Analysis of the underlying computational graph (for example, as done by Kubota)
could provide insight into reformulations of the derived code that yield both function and derived values to
specified precision.

5.4 Detection

Mechanisms for detecting hardware errors, such as ECC and circuit-level redundancy, are briefly described
in Section 3. Here we focus on software-driven detection and application-level detection.

5.4.1 Software-Driven Detection of Hardware Errors

Conventional hardware detectors either have relied on expensive redundancy-based solutions or have fo-
cused on specific fault models and hardware components. Recently, considerable work has been done on
software-driven solutions that are oblivious to the fault model and potentially provide larger hardware cov-
erage at low cost. The key observation underlying these techniques is that the hardware reliability solution
needs to handle only those faults that become observable to software. This class of solutions, therefore,
focuses on detecting hardware faults by monitoring for anomalous software behavior or symptoms. Much
research has shown that such monitors (implemented in software and/or hardware) can be inexpensive and
detect a wide range of hardware faults [34, 58, 71, 91, 100, 101, 118, 120, 151]. Moreover, this strategy
treats hardware faults analogous to software bugs, potentially leveraging software reliability techniques and
further amortizing overhead.

A software anomaly- or symptom-based detection strategy must be viewed in the context of a holistic
reliability solution. First, since the hardware fault is detected through software symptoms, the latency from
the activation of the fault to detection can be high (relative to traditional hardware-driven techniques). This
requires a sophisticated diagnosis strategy to determine the root cause of the symptom, namely, whether
it was a hardware or a software fault; in the case of a hardware fault, whether it was a permanent or a
transient fault; and in the case of a permanent fault, in which field reconfigurable unit the fault occurred so
as to trigger appropriate repair/reconfiguration and recovery. Simplifying detection in exchange for more
complex diagnosis is a reasonable tradeoff since the former is “always on,” whereas the latter is invoked in
the relatively infrequent case of a fault detection.

Second, the longer detection latency also impacts recovery. Software-driven detection techniques rely
on backward error recovery, typically checkpoint/rollback-based recovery. Therefore, the detection latency
should be short enough to ensure that a fault-free (recoverable) checkpoint is available on detection. Another
constraint comes from the need to buffer outputs until they are known to be fault-free; the detection latency
should be short enough to ensure that this buffering time does not degrade performance.

Much recent work has been done on individual components of the above approach [34, 58, 71, 91,
131, 100, 101, 118, 120, 151, 21, 90, 142, 119, 109, 121]. Recent work on the SWAT (SoftWare Anomaly
Treatment) project [91, 90, 131, 71, 121] has developed an integrated framework for all components of such
a resiliency solution with promising results. It performs software anomaly detections using both hardware
monitors (e.g., fatal traps that require no added cost or more explicit hardware out-of-bounds detectors
that detect addressing anomalies) and software monitors (e.g., the kernel panic routine that involves zero
cost or more explicit application-level invariant checkers). The detectors invoke a thin firmware layer that
diagnoses the root cause of the symptom, leveraging the rollback/replay mechanism available for recovery.
Repeated replays on different cores and units are used to systematically narrow down the source of the fault.
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Once the root cause is understood and eliminated or repaired, recovery is invoked, and application execution
continues.

The software-driven approach described has several advantages: (1) generality: it is oblivious to specific
failure modes and microarchitectural or circuit details; (2) masked faults ignored: it naturally ignores all
faults masked at the software level; (3) customizability: the software layer in charge of resilience can be
customized to the application and system in various ways; and (4) amortization of overheads: the approach
is inspired by online software bug detection [41, 67] and can leverage similar techniques, thereby amortizing
overheads toward a holistic view of system reliability.

A key limitation of the approach is that some faults could corrupt application state in undesirable ways
but escape detection. Such silent data corruptions could potentially be catastrophic, and much research is
required to mitigate their effects. A key problem is that the conventional method to quantify the presence
or impact of SDCs relies on fault (or error) injection campaigns (using real applications; see, for example,
[91, 100, 124, 151]). With the above approach, the impact of a fault depends on the application and where in
the application the fault was injected. A brute-force fault injection campaign might require trillions of fault
injections (one fault per application and hardware fault site) even for simple benchmarks and hardware fault
models and is clearly impractical. Therefore, statistical fault injection campaigns are used where a random
sample of application instructions (and hardware sites) is selected for fault injection, but these do not provide
any insight on where (if) SDCs might occur in the rest of the application. Without such knowledge, it is
difficult to design protection mechanisms for the SDC vulnerable parts of the application.

Significant progress has been made recently in addressing this problem. For example, recent work on
Relyzer [70, 69] proposes methods to determine when application-level transient faults are equivalent, en-
abling comprehensive analysis by injecting (transient) faults in only one instruction per equivalence class.
Relyzer is able to both determine all SDC vulnerable fault sites with relatively high accuracy for the studied
fault model and identify the reason for the SDC (i.e., the fault propagation path). The latter motivates low-
cost, application-specific detectors designed to protect only those instructions that are vulnerable, thereby
enabling selective, frugal, and customizable placement of detectors. The approach promises quantifiable
resiliency vs. overhead tradeoff curves that can be used as appropriate by the system designer or application
writer. Another project, SymPLFIED [117], takes a complementary approach of understanding the impact
of different errors in the same application site without performing different fault injections for each. Sym-
PLFIED inserts a symbolic error value and uses model checking to explore all execution paths with this
value, ensuring that all paths that result in corruptions are detected and, if not, to motivate detectors. This
approach has been tried only for relatively small programs, however, because model checking is resource
intensive. The Shoestring project [45] has developed a pure static analysis that identifies instructions where
faults are likely to be detected quickly enough (e.g., there is a short path in the data-flow graph from such
a fault to enough potentially symptom generating instructions) without requiring fault injections. The rest
of the faults are considered vulnerable and protected by using selective instruction duplication. Shoestring
reduces the SDC rate significantly but is not yet able to eliminate SDCs or comprehensively identify where
the remaining ones are.

Despite this progress, much research remains to be done to convert ideas such as these into a practical
workflow that can be demonstrated for all fault models of interest and that can drive automatic derivation
and insertion of detectors according to customizable resiliency vs. overhead tradeoff requirements.

5.4.2 Application-Level Detection of Hardware Errors

At the application-software level, we can develop a taxonomy of errors similar to the one presented in
Section 2. We separate errors into detectable and undetectable errors. An example of an undetectable error is
a corrupted matrix/vector dimension before we invoke a checksum. We can further subdivide each category
into irrelevant errors (such as errors in out-of-date data that will not be used further), correctable errors
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(such as a single corrupted matrix element that can be corrected using checksum), and uncorrectable errors.
The key message is that although application-level detection can handle some hardware errors, it cannot,
on its own, ensure resiliency. At the same time, application-level detection can mitigate the overhead of
error correction in hardware or lower-level system software and thus forms part of an integrated approach to
resiliency.

Application-level error detection schemes have been developed in the context of solvers for linear sys-
tems [77, 13, 12, 19, 26] and certain iterative methods for solving partial-differential equations (PDEs) [130].
These schemes are based on computing checksums of the rows and/or columns of the matrix (discretized
PDE). The checksums can be shown to preserve a range of common matrix operations such as addition,
multiplication, scalar product, and LU and QR decomposition (i.e., matrix inversion or solves). Check-
sums can thus detect errors in common matrix operations, although strictly speaking we can detect only the
fact that the checksum is inconsistent, which may indicate a corrupted matrix element or an error during
the checksum or matrix operation (a common misconception). With this caveat, a single erroneous matrix
element can be corrected by using checksums (more elements can be corrected if the matrix decomposes
and the errors occur in independent partitions). Unfortunately, the checksums have not been generalized to
multigrid methods [64, 147] for solving PDEs, which are optimal in terms of flop counts compared with the
SOR method described in [130].

Application-level detection in other areas of applied mathematics is less well developed (in part, this situ-
ation may be because other areas such as optimization or differential equations can be build on resilient linear
algebra routines, provided the remaining computations are performed in a resilient manner). However, addi-
tional opportunities exist at higher levels of abstraction to design resilient algorithms at potentially reduced
overhead. For example, when we are solving a nonlinear system of equations, F (x) = 0, with Newton’s
method, we typically promote convergence by enforcing descent in a merit function such as p(x) = ‖F (x)‖22
for the Newton step, sk, at iteration k, obtained by solving the linear system∇F (xk)sk = −F (xk). Solvers
assess progress by ensuring a sufficient reduction condition in the merit function (e.g., [47]) such as

p(xk)− p(xk + sk) ≥ σ
(
‖F (xk)‖22 − ‖∇F (xk)sk + F (xk)‖22

)
,

where σ ∈ (0, 1). We can use this condition to detect errors during the computation of the (approximate)
Newton step. If the right-hand side is negative, then the solve failed. If the sufficient reduction condition
fails, then we recompute the Newton step inside a reduced trust-region (e.g., [29]).

Other application-level error-detection schemes can be built around invariants. For example, we can
detect errors in the gradient computation, ∇F (xk), by recomputing gradients of p(xk) at a cost that is
comparable to a single function evaluation using automatic differentiation [59] to detect errors (∇p(xk) =
∇F (xk)F (xk)). Stochastic optimization [16] and stochastic PDEs [27] also provide error detection schemes.
In both cases, we typically solve an ensemble of systems and compute expected values. Thus, we can use
the deviation from the expected value to detect potential errors in individual ensembles. However, such a
scheme cannot detect all errors (e.g., those that are close to the expected value). An interesting challenge is
the integration of hardware error models into the convergence analysis of these sampling methods.

Invariants can also be derived from the physics of the simulated system: wind speed is positive and
does not exceed the speed of sound; nearby values cannot be too different; system energy is preserved.
Programmers often check such invariants in order to debug their codes; using such checks to catch hardware
errors may not add much coding effort.

The two approaches described in the preceding two sections (software-driven detection and application-
level detection) are nicely complementary. Software-driven detection is most effective for errors that affect
the system state or the control state of an application (e.g., wrong jump) or affect break the language abstrac-
tions (e.g., corrupt pointers); application state detection is most applicable when the application computation
proceeds unperturbed, but data values are incorrect. Research is needed to further study this complementar-
ity and understand the coverage obtained when both methods are used.
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5.4.3 Behavioral-Based Detection

The number of cores used in large-scale systems already exceeds a million cores. As a result, the challenge of
developing correct, high-performance applications is also growing. When an application does not complete
or completes with incorrect results, the developer must identify the offending task (such as an MPI task)
and then the portion of the code in that task that caused the error. Traditional parallel debugging tools
[126, 92, 97, 108] often perform poorly at large task counts. Hence, research is actively under way to
develop a detection toolchain that can identify the offending task and, to a customizable granularity, the
relevant portion of code within the task responsible for the error.

Several debugging tools detect bugs in large-scale applications without relying on extensive manual
effort demand by debuggers such as gdb, DDT, or TotalView. These more sophisticated debugging tools
typically focus on detecting violations of deterministic and statistical properties of the applications. Deter-
ministic tools can validate certain properties at runtime; any violation of these properties during an execution
is reported as an anomaly. For example, FlowChecker [54] focuses on communication-related bugs in MPI
libraries. It extracts information on the application’s intentions of message passing (e.g., by matching MPI
Sends with MPI Receives) and at runtime checks whether the data movement conforms to these intentions.
Bug localization follows directly: the data movement function that caused a discrepancy is the location of
the bug.

Statistical tools [53, 103] detect bugs by deriving the application’s normal behavior and looking for
deviations from it. For example, if the behavior of a process is similar to the aggregate behavior of a large
number of other processes, then it is considered correct, and different behaviors are considered incorrect.
Mirgorodskiy et al. [103] monitor the application’s timing behaviors and focus the developer on tasks and
code regions that exhibit unusual behaviors. This approach centers on function call traces in order to identify
the trace that is most different from other traces. DMTracker [53] uses data movement related invariants,
tracking the frequency of data movement and the chain of processes through which data moves.

While these tools are effective in their own domains, their primary weakness is that their designs do not
consider scalability. Typically, these tools collect trace data during the application’s execution and write it
to a central location. They then process the data in order to detect potential problems. Some recent work has
tried to rectify this problem by analyzing the application’s behavior online, without any central bottlenecks.
One such work is STAT [4, 88, 89], which provides scalable detection of task equivalence classes based on
the functions that the processes execute. STAT uses MRNet [129], a tree-based overlay network, to gather
and merge stack traces across tasks and presents the traces in a call-graph prefix tree that identifies task
equivalence classes. STAT removes problems associated with a central bottleneck by reducing the trace data
as part of a computation being performed within the overlay network through a custom reduction plug-in.

Another work of this type is AutomaDeD [22, 86, 85], which performs runtime monitoring of a parallel
application to build a statistical model of the application’s typical timing and control flow behavior. Au-
tomaDeD models the control flow and timing behavior of application tasks as semi-Markov models (SMMs)
and detects faults that affect these behaviors. AutomaDeD examines how each task’s SMM changes over
time and relates to the SMMs of other tasks in order to identify the task and code region where a given
fault is first manifested. AutomaDeD detects which time period in the execution of the application is likely
erroneous. Next, it clusters task SMMs of that period and performs cluster isolation, which uses a novel
similarity measure to identify the task(s) suffering from the fault. Then, transition isolation detects the tran-
sitions that were affected by the fault more strongly or earlier than others, thus identifying the code region
where the fault is first manifested. STAT focuses primarily on the state of the application once an error
manifests itself, whereas AutomaDeD focuses on scalable analysis of the entire application execution.

Further work is needed to make the behavior-based detection tools robust enough to rely on in produc-
tion systems. One question is how a detection system should deal with changing workload patterns, and
corresponding discontinuous, but legitimate, changes in the correlation patterns. A related question is how
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a detection system should handle noise in the execution environment, such as that resulting from congestion
on the network switches due to competing applications executing on other nodes. For purposes of scala-
bility, tools compress models for comparison. It is tempting to use lossy compression for this purpose. If
so, what parts of the model can be compressed away because they are not germane to the error detection or
localization activities? Moreover, are the models powerful enough to handle a wide variety of applications
and their legitimate behaviors and yet simple enough that their parameters can be reliably derived through
training and detection and localization can be done efficiently at runtime using the models?

5.5 Containment

Most system-level failures affect only a single node. Statistical analysis [15] shows that multinode failures,
also called correlated failures, are rare. The probability distribution of multinode failures according to the
number of nodes involved in a correlated failure is heavy tailed: failures involving the whole system are rare
but still happen, for example, in the case of a long power outage.

On the other hand, the global checkpoint/restart approach to application recovery makes the simplifying
assumption that if an error occurred, then any application state could be corrupted. In practice, by the time
an error is detected, it may have propagated to only a small subset of the application state. Recovery could
be faster if only this small fraction of the application data was repaired.

5.5.1 Strategies to Limit Propagation

Various containment strategies can be used to limit error propagation.
A priori containment recursively divides the resources of a parallel system and execution of a parallel

program into nested disjoint containment domains (CDs); the goal is to limit recovery to one CD, at the
finest nesting granularity possible. Any error or failure can be contained within some level of the CD tree
and may be recovered by restoring only the state necessary to re-execute that CD. State is restored from
explicit preservation clauses within each CD, which permit a range of preservation/restoration tradeoffs.
These include preserving only a partial state, relying on regeneration routines or on state already available
elsewhere in the system or at a higher CD level. Alternatively, one could use forward recovery of state where
the state of a CD is corrected, for example, by extrapolating from the state of neighbors; this is discussed in
Section 5.6.4. These approaches can be applied hierarchically. If recovery fails at one level of the system
falls back to recovery at a higher level (which, presumably, is more expensive but more reliable) [28].

The choice of containment domains in terms of granularity, preservation/restoration options, and recov-
ery and detection routines introduces new, flexible tradeoffs. For example, one can construct a strict CD
hierarchy in which all communication occurs at a single CD context at a time, simplifying preservation and
recovery. Often, however, it is preferable to relax this communication constraint in order to reduce preser-
vation overhead and the granularity of recovery. When communication is allowed between CDs, data must
first be verified for correctness in order to prevent silent data correction. Communication should also be
logged in order to retain the ability to recover CDs in an uncoordinated manner (see Section 5.6.2). Overall
the tradeoffs are between the cost of preserving state (lower relative overhead for larger domains) and the
cost of CD recovery (which is relatively higher if containers are large).

Containment domains can be selected statically, based on the application structure and tuned automat-
ically for optimal resilience. For example, in a multiphysics code, modules running the different physic
codes are natural containment domains, with the containment done by the coupler that couples these mod-
ules. Alternatively, one can build containment domains automatically by tracking communication during a
trial run and finding good separators in the communication graph [128].

Another possible approach is a posteriori containment. The logic of the application may constrain error
propagation. For example, in an iterative algorithm with nearest-neighbor communication, an error can
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propagate at most one neighbor away at each iteration. In a 3D problem, where each node holds a k× k× k
subcube, a bit flip in a data element will have propagated to at most dn/ke3 nodes after n iterations. An
algorithm that checks periodically for corrupted values can compute a posteriori the domain that could be
affected by their error and use localized recovery.

Another form of a posteriori containment is the retention of multiple checkpoints [76, 98] and recovery
based on analysis or more extensive error checking than one would normally incur at each checkpoint. When
an error is manifested and the system proceeds to recovery, then based on application semantics, the contents
of multiple checkpoints can be analyzed to find the most recent one that has a correct application state that
can be resumed. This is a particularly powerful technique for tolerating silent errors and may avoid the need
for checking checkpoints for correctness as they are committed. Such multiversion checkpoints are likely
to be most viable for applications that have modest main memory requirements, when application-level
determination of critical state is employed, or when additional resources such as NVRAM are available.

5.5.2 System Software

Application recovery requires a correct functioning of multiple global system services (resource managers,
parallel file system, etc.). Failures in these systems are much harder to recover from and often require a
time-consuming reboot. Thus, containment techniques are important for OS functions.

One approach to this problem is to partition system software in such a way that even when corruption
occurs in systems code, it can be contained, and failures in a particular core do not impact other cores. Such
a partitioning can be accomplished within an OS image by taking a formally verified microkernel approach
with the system software [150], by using a hypervisor such as Palacios [87] or a hybrid kernel approach such
as those proposed by NIX [102] or FusedOS [116]. All of these approaches create strict boundaries between
different software components of the system, which can be used to facilitate the creation of containment
domains within the system services and applications. Selective restart or fail-over of those partitions can
refine the granularity of recovery to improve efficiency.

5.6 Recovery

Recovery will return the system to a valid state. Backward recovery returns the system to a previous state
(a previous checkpoint), whereas forward recovery evolves the system to a new, correct state. Currently,
in high-performance computers, system state is recovered by forward recovery, while application state is
recovered by backward recovery. Checkpoint/restart is advantageous when large parts of the computation
state change rapidly; this is the case with application variables in a scientific computation. Replication
at MPI process level has been explored [46]. Its cost is high, and this approach is competitive against
checkpoint/restart only in extreme situations. Full-node replication has not been explored in the HPC domain
as far as we are aware. Its cost in development and overhead would be even more expensive than replication
at the level of MPI processes.

Forward recovery makes sense when a relatively small part of the state changes; this is the case with
a file system and with the system state (most of which does not change during a scientific computation).
Forward recovery requires sufficient redundancy in stored state that a correct state can be recreated if part of
it was lost. It also requires the use of update mechanisms that ensure that a failure in the midst of an update
will not corrupt the state. Commit protocols and transaction logging for replay are two examples.

Research efforts in this area focus on avoiding the need for a global checkpoint/restart for applications,
by ensuring that errors are contained and recovery can be performed locally. In addition, if the OS and
runtime have a more dynamic behavior (e.g., resources added or deleted during a computation, processes
migrated), then forward recovery of the OS and runtime will require additional effort.
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5.6.1 Restart

The classical checkpoint/restart strategy for resilience used in most large-scale executions in petascale sys-
tems has two main limitations: (1) the time to save the state of the execution (checkpoint) is becoming
unacceptable compared ith the system MTBF, and (2) all processes involved in the execution are restarted
from the last checkpoint even if only one process fails. Recent results in multilevel checkpointing and in
fault tolerance protocol show that these two limiting factors could be addressed and make checkpoint/restart
a viable approach for exascale resilience for errors that are quickly detected—detected in less time than it
takes to commit a checkpoint.

Multilevel checkpointing (hybrid checkpointing) consists of using multiple storage resources with dif-
ferent characteristics in terms of speed and reliability in order to respond to different failure scenarios. The
main scenarios to consider are the crash of a process that can be restarted on the same node, the failure of a
node that make that node unavailable for restart, and the failure of the entire system.

Multilevel checkpoint restart uses local storage resources (nonvolatile memory, HDD or SSD devices)
as a first level of storage for execution checkpoints. A second level could use the storage resources of
remote nodes. If a node failed, even if it cannot be restarted, the execution context of that node could
be restarted from the checkpoint stored on remote node. Local, persistent storage can also handle node
failures if it is twin-tailed, that is, remotely accessible even after a node failure. A third level of checkpoint
considers an encoding of several process checkpoint and a distributed storage of the encoding result on
several nodes. Different encoding algorithms (Xor, Reed Solomon, etc.) can be used, leading to different
levels of reliability. According to the level of reliability provided by the encoding algorithm, this third level
of checkpointing can be used to tolerate simultaneous multinode failures. A fourth level of storage is the
remote parallel file system. This level is relevant only for catastrophic failure scenarios that could not be
covered by the previous checkpointing storage levels, such as the loss of enough nodes to make impossible
the restoration of the checkpoint images. Finally, mass storage can back up disk information, enabling
recovery from catastrophic failures of the file system. The available bandwidth for checkpoint storage of
several levels of storage is studied in [106].

Currently, two environments provide multilevel checkpoint/restart: SCR (scalable checkpoint/restart)
[106] and FTI (fault tolerance interface) [14]. While SCR is keeping the file interface abstraction, FTI is
providing a data structure abstraction, masking from the programmer how the data to be saved is actually
managed by the library. Recent results show that a process context of 1 GB can be saved in 2–3 seconds
in local SSD (2 SSDs mounted in RAID0). Such checkpoint speed is orders of magnitude faster than
checkpointing on a remote file system, which requires tens of minutes on current petascale systems (about
30 minutes if the full system memory is dumped in the remote file system). An experiment with FTI on
a current large-scale execution (.5 million GPU cores) of an earthquake simulation on a hybrid system
composed of CPU and GPUs demonstrates very low overhead on the execution time (less than 10%) when
using a checkpoint strategy compared with a computation that does not checkpoint. Other research results
demonstrate that checkpointing on remote node memory is even faster than on local HDD or SSD [157].
Research still is needed, however, in order to understand how to take advantage of new storage technologies
such as phase change memory. Europe has a project called AMFT to test this approach with several storage
technologies; the objective is to include multilevel checkpoint restart in the PRACE software stack and to
prepare for exascale.

5.6.2 Localized Restart

Checkpoint/restart is usually done at the application level. Applications periodically save state onto storage
and provide a callback function to restore the computation from saved state. For most applications, the
checkpoint size is a fraction of the system memory. Checkpointing is coordinated: the involved processes
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synchronize before checkpointing and ensure that no message is in flight during the checkpoint operation.
If the computation is restarted, then all processes restart from the last checkpoint, even if only one pro-

cess has failed. In general, this situation cannot be avoided. If the computation is nondeterministic, the
computation after restart could follow a different path from that followed before the failure occurred; the
computations of the “healthy” processes may not be valid anymore. However, most HPC scientific codes
are “piecewise deterministic”: the execution consists of long deterministic phases, with nondeterminism
occurring at a small (possibly empty) set of execution points. THus, the opportunity exists to use message-
logging protocols in order to avoid global restarts. During the fault-free execution, all messages contents
and nondeterministic events (reception orders) are recorded. When a failure occurs, only the failed process
restarts; its state is reconstructed by sending it the messages recorded before the failure and by forcing the
message deliveries in the same order. Many variants of message-logging protocols have been developed
[39]. However, they all share two limitations: (1) the contents of all the messages need to be saved, requir-
ing a significant amount of storage; and (2) the nondeterministic events (reception orders) also need to be
stored, thus impacting either the communication latency or the communication bandwidth, depending on
the message-logging protocol.

A recent analysis of communications patterns in HPC applications shows two important properties:
(1) communication patterns are either deterministic (the order and outcome of communication operations
at each process are fixed) or send-deterministic (whatever is the order of reception for each process, the
sequence of send operations is identical in any correct execution) [23]; and (2) communications show strong
spatial and temporal localities and form clusters, which can be observed manually for some applications
and extracted automatically with graph-partitioning tools [127]. These two properties can be leveraged to
develop new fault-tolerant protocols having excellent properties in the HPC context: no global restart, no
need to log all message content, no need to store reception orders, no risk of restart from the beginning. Two
fault-tolerant protocols have been proposed in the literature [62, 63] from these principles. A hybrid protocol
can use coordinated checkpointing inside clusters and message logging between clusters. This protocol is
a good match for HPC applications built of independent modules, such as the CESM climate simulation
code [1]: checkpoint/restart can be done independently for each module (cluster), and logging (within the
coupling toolkit) handles interaction within modules. For real applications, the number of messages to log
is a small fraction (10%) of all the messages sent during the execution [63]. Other hierarchical, hybrid
fault-tolerant protocols, combining coordinated checkpointing with some form of message logging), have
been proposed that do not consider communication determinism [20]. They require logging, in some way,
the message reception orders of all messages.

While this progress is encouraging, many research questions remain open: how to form clusters to re-
duce the number of messages to log, how to adapt clusters to the different communication patterns seen
during the execution, how to prove the deterministic or send deterministic nature of communication patterns
automatically, how to organize a fully distributed recovery, how to better understand sources of nondeter-
minism in applications that show nondeterministic or send-deterministic communication patterns, and how
to address them.

Localized restart reduces the total I/O volume needed to restart, but it may not reduce the restart time
if all nodes have to wait for the failed node to be restarted. Nevertheless, it still may result in lowered
power consumption, since the waiting nodes can reduce their power intake. Furthermore, the restart can be
accelerated by being distributed across multiple nodes.

5.6.3 Fault-Tolerant Data Structures

Between application-level and restart schemes, there are runtime-level techniques for redundancy and re-
pair. These techniques can operate at the data structure level, below even a typical application abstraction,
and by encoding additional information into the data structures enable them to be reconstructed in case of
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error. Common examples include i-nodes in filesystems, redundant virtual-physical mapping information
in operating system page tables, trees and lists with multiply linked structures, and redundancy-encoded
arrays and data structures. These techniques offer the potential for significant recovery capability under
software (compiler, runtime, OS, even application) control, and they support selective and flexible usage.
One example of such structures has been proposed in the Global View Resilience (GVR) system [48].

5.6.4 Application and Algorithmic Recovery

Application and recovery techniques can use the algorithmic redundancy available in many parallel algo-
rithms, in order to recreate a valid computation state if the loss of a (small) part of the state has been detected.
Many simulations use iterative methods on meshes. When a catastrophic node failure occurs and is commu-
nicated to the remaining nodes, such a method could approximate the missing information and continue with
the computation, by extrapolating the missing information from the remaining information. If the method
had suitable convergence properties, then the error thus introduced would be smoothed out, possibly at the
price of additional iterations. More sophisticated recovery methods that use a hierarchy of meshes gener-
ated for multigrid methods could also be developed. These methods would traverse from fine to coarse and
back using restriction and interpolation operations. By moving to a coarser level, one could estimate the
numerical values of the computational node that failed, using the interpolation operation and neighboring
values, and then construct a new mesh for the missing patch and apply interpolation operations. Such an
approach requires knowledge of how to remesh and recover the mesh hierarchy, and possibly a rebalancing
of the computations to prevent neighboring nodes from becoming a computational bottleneck.

In applications with different types of structure, the recovery mechanism might be less intrusive. For
example, in branch-and-bound methods for mixed-integer optimization, which recursively subdivide the
domain and solve optimization problems on each subdomain, a tree structure maintains the current state.
As long as the tree structure was available, if a solve on a subdomain did not complete because of node
failure, that subdomain could be recovered from the tree and the optimization problem solved on a different
node. The same approach applies to any functional execution model, where variables are not mutable: if
the evaluation of a function fails to complete, it can be just recomputed. This approach is heavily used by
Hadoop to provide resilience [31].

This discussion also suggests that algorithm-level checkpointing can be more efficient than system-level
checkpointing. For example, to ensure that function, gradient, and Hessian computations are correct, one
needs only to checkpoint the computational graph of the nonlinear functions, which is orders of magnitude
less information than the values and sparsity patterns. Similarly, branch-and-bound schemes need only to
checkpoint the root node of each distributed solve, which can be stored by using two binary vectors.

Another advantage of algorithm-based recovery is that it may not be necessary to replay the MPI mes-
sages since the last checkpoint. For example, if a node fails during a distributed solve of F (x) = 0, we can
simply resume the Newton iterations from the checkpoint, because we are not interested in the sequence of
iterates, xk, but the final solution. This opens the door for new hybrid methods that combine Newton with
Gauss-Jacobi steps. The analysis of such methods remains an open problem. In the context of stochastic
optimization, asynchronous techniques already exist that can accommodate missing subproblem solves [93].

5.6.5 Fault-Tolerant MPI

Application-level recovery needs to be preceded by system-level recovery. For example, if a node has failed,
then the application has to be made aware of the failure and has to continue its execution in a well-defined
environment, in order to execute the recovery code. This problem is usually addressed in the context of
MPI. Can we ensure that the failure of one node will not cause processes running on other nodes to crash?
How can we inform the other processes of the failure? What is the state of MPI after the crash? Projects
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aimed at providing a fault-tolerant MPI have been going on for over a decade [44, 18], and several prototype
implementations of fault-tolerant versions of MPI exist. However, the MPI forum has not agreed yet on a
standard for fault-tolerant MPI.

A similar problem occurs for any library that provides a view of collective operations and consistent
state across multiple nodes. These include mathematical libraries and I/O libraries. For each of these, we
need to define what the state of the system is after a failure and how the information about the failure is
propagated.

5.6.6 Accommodation of Errors Based on Naturally Redundant Information

For some applications, we may not need to recover from node failures at all. For example, in derivative-free
parameter estimation of a complex simulation, a node failure could be ignored and treated as a simulation
failure. However, not all simulation failures are the same. A graceful failure can yield partial informa-
tion that could be used when determining the next experiment to perform for the optimization. Structured
simulation-based optimization techniques can use this partial information to build partial interpolation mod-
els and thus become resilient to node failures. Similarly, we could use partial solutions to simulations at a
looser tolerance as long as we account for the truncation error in the model and optimization.

This approach can be likened to controlling the noise in simulations [107]. For stochastic noise, model-
based optimization methods have been developed that specify both a candidate point and the number of
replications needed to obtain sufficient accuracy. Parallel replications at a fixed point can be used to control
stochastic noise but not deterministic noise. For deterministic functions we could use nearby points and
Taylor’s theorem to bound the noise in the simulation. By neighborhood sampling we could reduce the noise
in many settings; these samples may already be available from previous computations of the algorithm.

An alternative approach is to use insight into the application in order to reduce the probability of failure
by reducing the memory footprint of an application. Variable-precision arithmetic can help in this approach
by using bounds on the precision requirements for Newton solves in order to compute low-precision steps
initially. Analysis tools, such as those developed for automatic differentiation and estimating computational
noise, could identify blocks in the code for which higher precision would lead to improved precision in func-
tion evaluations. Based on this identification, one could restructure the computation of a function so that the
least-precision arithmetic is used in each block to obtain the required precision in the overall function evalu-
ation. Similar ideas could be applied for gradient and Hessian evaluations. User-provided and automatically
generated codes for quantities derived from function values (such as derivatives) can be significantly less
precise than is the underlying function. Analysis of the underlying computational graph (for example, as
done by Kubota) could provide insight into reformulations of the derived code that yield both function and
derived values to specified precision.

5.6.7 Rejuvenation

Software rejuvenation is meant to mitigate the problem of software aging, in which the state of the software
system degrades with time [25]. The primary causes of this degradation are the exhaustion of operating sys-
tem resources (such as file handles or network sockets), data corruption, and numerical error accumulation.
Eventually, software aging leads to performance degradation or correctness problems such as hang or crash
failure. Some typical causes of this degradation are memory bloating and leaking, unterminated threads,
unreleased file-locks, data corruption, storage-space fragmentation, and accumulation of round-off errors.
These causes also affect HPC applications, and hence software rejuvenation is a relevant technique in our
toolchest. In particular, accumulation of round-off errors is a problem in some numerical computations that
appear in HPC applications [66].
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Software rejuvenation essentially involves occasionally terminating an application or a system, cleaning
its internal state, and restarting it. This process removes the accumulated errors and frees up operating
system resources, thus preventing in a proactive manner an unplanned and potentially expensive system
outage due to the software aging. Much research has been done in order to determine optimal times to do
software rejuvenation [10, 60], for example, when the load on the system is low, the amount of corrupted
state is likely to be small, or a failure is impending. With an appropriate choice, the cost of system downtime
can be reduced significantly compared with reactive recovery from failure.

Surprisingly, software rejuvenation has not been widely used in HPC applications. In [110], the au-
thors argue that rejuvenation should be tried in HPC applications only at the level of individual OS kernel,
rather than the entire system. They propose three scheduling strategies for rejuvenation: using the MTTF,
the median of TTFs, and the reliability of the system. Based on failure data extracted from System 20 at
Los Alamos National Laboratory [96], they evaluate the hypothesis that rejuvenation together with check-
point/restart can reduce the lost computation over simply checkpoint/restart. The verdict is mixed. Only
by a careful estimate of TTFs can rejuvenation give benefits. Not surprisingly, more rejuvenations quickly
reach a point where they hurt overall performance.

Nevertheless, it seems worthwhile to further explore the application of rejuvenation in HPC applications.
The first issue that needs to be considered is what state should be saved and “rejuvenated.” Related to this
is how that state should be compartmentalized so that a quick rejuvenation is possible. The second issue
is when to trigger the rejuvenation. In addition to the factors that have already been explored in non-HPC
domains, here one must also consider interactions of that node being rejuvenated with all the other nodes
in the cluster on which the application is running. Done right, software rejuvenation holds the promise of
extending the MTBF and reducing the frequency of checkpoint/restart.

6 System View of Resilience

Editor: Rinku Gupta
Contributors: Pedro Diniz, Pavan Balaji, Pradip Bose, Subhasish Mitra, Dean Liberty, Jon Stearley

We discussed in the preceding section mechanisms for detecting hardware errors at the system or ap-
plication level. A similar interplay between the various system layers applies to all aspects of resilience.
Proper interfaces between the different layers are required in order to propagate information about faults,
errors, and failures in various subsystems to the subsystems that will be involved in managing them: the
subsystems that need to act upon the information to contain and recover from the errors and the subsystems
and will be further involved in diagnosis and repair. Furthermore, resilience techniques are often based on
the assumption that a single fault will occur at a time. It is hard enough to address in a systematic manner
all possible faults and practically impossible to address in a systematic manner all possible combinations of
multiple faults. The “single fault” assumption is statistically valid if errors are rare and are cleared rapidly. It
also requires the error-handling infrastructure to be flawless. Therefore, the correctness and the performance
of the fault-handling software are paramount considerations.

6.1 Fault and Error Management

Each layer of running software should be able to optionally specify its dependencies—namely, which errors
in other subsystems may affect it and the designated error handlers for different types of errors, whether in-
ternal or external. Operational error handling may also dump local data in support of later fault management
activities (diagnosis and repair). In general, the invocation of error handlers must be carefully ordered. For
simplicity, let us consider each higher-layer (or procedurally deeper) error handler as being pushed onto a
stack. When passing error-handling control to successive error handlers, the system will invoke the topmost
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handler on the stack. When returning, the handler will indicate whether the error was successfully handled.
If it was not, the next handler on the stack is invoked. In this way, error handling passes from the most
specific to the most general handler, with increasingly general actions attempted to recover from the error.
The problem is complicated by the existence of a horizontal as well as a vertical organization: The error
handler can be invoked on a node different from the node that signaled the error; the error can be signaled
in a place different from the place where it occurred; and errors may be signaled multiple times, through
different mechanisms. For example, the failure of a node can lead to an error being signaled through the
hardware monitoring infrastructure to the system console; it may cause communication timeouts, generating
error messages at other nodes that communicate through the failed node; and it may generate a timeout on a
system or application heartbeat. We need to ensure that recovery actions are not duplicated and are properly
ordered.

As information on faults or errors propagate through the system, it is also important to properly map
their semantics from level to level, into terms meaningful to each level and to the recovery abilities of each
level. For example, if a bit switched in memory, the hardware layer will want to know the physical address
of the affected location and will want to further localize the failure to a hardware subcomponent, such as
CPU, cache, or memory. The system layer will want to know how far the error could have propagated; the
application level will want to know which variables may be corrupted; and so on. Therefore, it is useful to
define at each level the set of conditions that can be signaled, so that a fairly generic, portable error interface
can be used to program error handlers at each level. Having such a generic classification of error types for
applications will allow a more portable programming model and a simpler evaluation of the effects of errors
on application execution.

Diagnosis and repair may involve more elaborate actions that have to be coordinated across layers. For
example, a node failure is recovered by replacing the node (possibly involving the global resource manager),
updating routing tables and MPI structures, and restarting from the last checkpoint. Later diagnosis and
recovery actions may include running detailed diagnostics and replacing the node.

A viable model for diagnosis and repair could be a software repository that allows subscriptions to
fault management updates, thus allowing arbitrarily complex recovery and repair actions. In addition, these
actions need information about static and dynamic configuration of the system: what the hardware and
system configuration is, which applications run on which nodes, what the software configuration of the
application (source code, compiler versions, library versions, etc.) was, and so on. Today, this information
is typically distributed across multiple databases or is not captured at all. As a result, root cause analysis
is much more painful than it should be. All configuration changes should be captured and configuration
information stored in a repository, using schemata that reflect the logical system organization.

6.2 Reporting of Software-Detected Errors

The various software layers, including the top-level application, can detect errors that were not caught by
the lower-level layers. The application code may detect outliers, for example, that may indicate silent data
corruption. Therefore, reporting can also move information downward. This approach is complicated,
however, since the information cannot be fully trusted (is the algorithm sure that a silent data corruption
happened, or could this be the effect of a data race?) and the information comes with a lower level of
detail than information produced by lower-level detection mechanisms (the algorithm may not know where
and when was a bit flipped). The passing of such information is likely to invoke a complex procedure
that evaluates the reliability of the information, based on other information available to the recipient (e.g.,
information about the sender) and triggers activities to isolate and diagnose potentially faulty components.
Such a level of activity is probably more appropriate as part of diagnosis and repair, when more complex,
trainable logic can be used.
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6.2.1 Error Management: Algorithm Hints and Watchpoints

Different parts of the software stack typically have different capabilities for handling a propagated fault or
error. For example, in many situations, an application and its runtime may be able to validate its results
and recover from an underlying error or fault. Similarly, a communication library may be able to establish a
dynamic alternative connection on detection of a lost communication error. In such cases, an interface would
be useful that allows the different software to express their inherent fault tolerance capabilities. Algorithmic
hints would also allow lower-level software to understand what level of error semantics is useful to the upper
application layers and what level of fault information could be conveyed to them. We explore algorithm hints
in greater detail in Sections 6.5 and 6.6.

In many situations, the application or the lower-level subsystem can recover from an underlying error
but needs to execute recovery code for that purpose. For example, an application may tolerate a corrupted
data value by interpolating a replacement value from neighbor points in a mesh. This approach is most
efficient if the error is detected and the recovery action enacted as soon as possible after the error occurred.
In this scenario, the application (or underlying runtime) will register its ability to handle some types of error
and will register the exception handler to be invoked when such an error occurs. For example, the algorithm
could identify memory regions that it wants to “watch” along with the recovery procedure for errors in this
region. Then when an error is found by the hardware and translated up the software stack, it will trigger the
appropriate exception handler, passing to it the location and type of error. The compiler and runtime need
to ensure that the granularity of error reporting by hardware (e.g., ECC block) matches the granularity of
software objects.

6.2.2 Error Management: Communication Errors

Communication errors require added attention because their effect can be global. A misrouted message
could corrupt state at any node in the system. This can be handled in a variety of ways.

We can provide sufficient levels of error handling in hardware to ensure that communication errors
are fail-stop errors, where the communication fails but no incorrect message is delivered. An end-to-end
protocol (a variant of the sliding window protocol) can ensure that message deletions are detected and
corrected for point-to-point communication channels. However, the support for correction may require
additional buffering space (to save message copies) and additional latency (to receive acknowledgments
and ensure that messages will be transmitted in the right order, even in the face of errors). The problem is
harder to manage for collective communications or one-sided communications. Application hints that relax
message-passing semantics (e.g., relax ordering requirements) could be used to improve communication
performance.

6.3 Responding to and Handling of Faults/Errors

Various components of a system (whether software or hardware) can receive information about a fault or er-
ror occurring in a specific part of the system. Several of these components could independently be interested
in handling this fault and initiating a recovery section. These different recovery actions may be interdepen-
dent: they need to occur in a correct order, and the recovery procedure for a component may depend on the
outcome of previous recovery procedures. For example, a partition may require a new node to replace a
failed node. The application recovery could follow different paths if the request succeeded or failed.

Response prioritization is an inherent part of response negotiation. The systemwide resilience infras-
tructure will need to support mechanisms that will allow declaring response priorities of various components
for the variety of faults that they might receive. In addition, interfaces are needed to allow components to
specify the outcome of their recovery procedure. On failure of failure handling by the first component,
the infrastructure should be able to delegate the responsibility to the next component on the list. Response
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negotiation can become more complicated when response priorities for components differ between various
job executions.

6.4 Fault/Error Propagation and Security Implications

While a large amount of information related to faults and errors is present on systems, not all of it can be
made available to all consumers because of security reasons. Often, low-level hardware/system fault infor-
mation is made available only to administrators of the system. A systemwide fault-sharing infrastructure
needs to have mechanisms and interfaces to control access to different types of information, for example, by
using capability-based security.

6.5 Top-Down View of Errors

Higher-level algorithms may not require notification or recovery from certain types of errors, since the
normal course of computation will overcome the error. A prototypical example is solving a nonlinear system
of equations using Newton’s method. The basic steps of Newton’s method are to compute the residual, solve
a linear system of equations with the residual on the right-hand side to obtain a direction, determine a step
length along the direction, and update the iterate. For well-scaled problems, Newton’s method can ignore
errors in many parts of the computations without suffering ill effects.

We will often tolerate errors in the least significant digits of the mantissa of floating point numbers (say,
the last 8 digits), as these would be analogous to rounding errors; but we would need to detect and correct
errors in the sign, exponent, or most significant mantissa digits. The recovery may be recomputation in the
case of the residual or switching to using the steepest descent direction in the step length computation. We
cannot tolerate errors in the the sparsity structure of the Jacobian matrix, but we can easily tolerate low-
order errors in the nonzero values of the Jacobian matrix. High-order errors in the sign, exponent, or most
significant digits can be also be tolerated, but there are consequences, such as degradation in the convergence
rate of Newton’s method and requiring extra iterations to converge to an acceptable solution. As long as the
Jacobian matrix is correct or suffers from only low-order errors a large fraction of the time, then there is
little impact on performance, and one may need to perform only a single extra iteration. We do note that
a change in the sign or magnitude of the values can result in a positive definite matrix becoming indefinite
and thus impacting linear solvers, such as the conjugate gradient method. Errors in the computation of the
norm of the residual can be tolerated in the step length calculation. uch errors may not be tolerated in the
convergence tests, however, if the error results in a smaller norm of the residual that triggers premature
termination of the algorithm.

Similar observations can be made about other types of algorithms and about other software subsystems.
These suggest the need for an interface that enables an application or a software subsystem to provide hints
and describe which lower-level errors it can tolerate. The lower software layers and the hardware could then
provide differentiated levels of resilience, protecting state that the application cannot repair, if corrupted.
These could include using more resilient memory, duplicating critical computation (done automatically by
the compiler and runtime), or checking double-precision calculations with (cheaper) single-precision ones.
Providing increasing levels of resilience would come at higher costs, with tradeoffs of both power and
performance, thus requiring that the provided set of interfaces be expressive enough to allow upper-layer
software to specify their tradeoff preferences.

6.6 Bottom-Up View of Errors

This section focuses on issues related to exposing error semantics upstream (to higher-level libraries or ap-
plications), the amount of information to be exposed, and the information to expose. Cost is a big challenge
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in detecting and correcting errors in the underlying hardware. The challenge is how to minimize the power
and performance costs of highly effective error detection. Can we make use of high-level (e.g., application
level or high-level system stack) information to minimize this cost?

Error Semantics and Translation. While an error can influence multiple layers of the hardware/software
stack, how an error is interpreted can differ for each layer of the stack. For example, a fault on flight #1508
might be relevant at the hardware layer to correct or work around, but it might not have much semantic
meaning for the application. Similarly, the fact that memory variable “X” is corrupted might be relevant for
an application, but it might not have much semantic meaning for the hardware developer, unless the virtual
memory address and eventually the appropriate physical memory address translation are known.

Amount and Type of Error Information Exposed. The amount of error information propagated to upper
layers needs to be tunable. While some upper layers can benefit from having information on every ECC
error (corrected or detected but not corrected) that the hardware encounters, other upper layers might be
interested only in uncorrected errors. Similarly, an application might not necessarily care about errors on
all of its memory regions. For example, as discussed in Section 6.5, if a higher-level library can correct
memory faults on a region of memory, it might not care about the lower level of the stack returning errors
for that region of memory. Such a model should also allow software architects to define the contract or
expectations they have from the lower layers of the stack.

How can such hints on criticality be generated? Does the hardware need to provide low-level information
to the higher layers so that the critical hints can be generated? Once hints are generated and passed down,
several opportunities can exist.

Example 1. The Built-In Soft Error Resilience (BISER) technique [104, 156] can be configured, during
system operation, to operate in one of two modes: an error-resilient mode in which BISER protection is
turned on, and an economy mode in which BISER protection is turned off. Such configurability can be
implemented in hardware and may be activated through software orchestration. It can minimize the system-
level power cost of BISER by turning on the error-resilient mode only for critical computation. However,
dynamic reliability management across multiple abstraction layers and orchestration of information flow
across abstraction layers to utilize such configurability during system operation are open research questions.
For BISER, one can piggyback on existing scannable signals available on-chip, but a general question con-
cerns the costs that are incurred for such configurability at the hardware level. Can such configurability be
implemented for arbitrary techniques (e.g., easy for core/thread duplication)? Is it easy for inline checking
techniques such as parity prediction? What is the level of configurability that should be supported?

Example 2. One can combine software-level error resilience techniques with circuit-level techniques using
a “temporal combination” approach. For a memory controller unit (MCU) in a multicore SoC, for example,
we can start with request duplication with BISER flip-flops in economy mode. We then switch the BISER
flip-flops into error-resilient mode (i.e., incurring high power costs) and turn off request duplication when the
systems stalls because of pending requests (which indicate high-traffic situations). We switch back to request
duplication with BISER flip-flops switched to economy mode when all queues have only a few entries (to
indicate low-traffic situations). Such “temporal combination” simultaneously incurs very small performance
cost (performance impact similar to that of BISER-only and far better than request duplication-only) and
small energy cost (similar to request duplication-only and far better than BISER).

Example 3. Depending on workload, temperature sensors, and so forth, the fault-sharing framework can
pass on the information to hardware to initiate fault management, for example, on-line circuit failure pre-
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Figure 5: System utilization as a function of checkpoint and recovery time

diction through reactive on-line self-test and diagnostics. This approach minimizes any side effects and can
initiate proactive self-repair.

7 Possible Scenarios

We present in this section several possible scenarios for handling failures at exascale, describe their pros and
cons, and discuss technologies needed to support each scenario.

7.1 Base Scenario

In the base scenario, errors are handled the same way they are handled now: applications use global check-
point/restart, and system software is either restarted upon failure or handles its own recovery. The obvious
advantage of this scenario is that it requires (almost) no change in current application codes and requires
no changes on the overall infrastructure for error recovery. (One required change will be more frequent
checkpoints; with high-frequency checkpoints, it is unlikely that checkpoints will be identical to the output
that goes to long-term storage or to in situ analysis.)

The performance of global checkpoint/restart schemes has been analyzed by multiple authors [153, 30].
We recapitulate the analysis in Appendix B. This analysis enables us to compute an optimal checkpoint
interval, given checkpoint time and mean time to failure (MTTF); next we can compute the utilization of
such systems, namely, the fraction of the total computer time that is usefully applied to computation, rather
than used for checkpointing and restart or wasted because of failures.

We plot in Figure 5 utilization as function of checkpoint time and recovery time. Utilization depends on
the length of checkpoint and recovery relative to MTTF; if all three parameters are increased or decreased
by the same ratio, then utilization is unchanged. Therefore, we express checkpoint time and recovery time
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as a fraction of MTTF. Figure 6 shows the same data, in the form of a contour map.
Suppose we want to achieve a utilization of more than 80%. Then Figure 6 indicates that we need to keep

checkpoint time at 1%–2% of MTTF and recovery time at 2%–5% at MTTF. Assume that the MTTF of an
exascale system is 30 minutes. Then global checkpoint should be done in less than 20 seconds, and recovery
in about a minute. It does not seem feasible to checkpoint so fast on disk, but it is feasible to checkpoint
in a few seconds in RAM. Several schemes have been proposed for hybrid or multilevel checkpointing
where frequent checkpoints are done in memory or, less frequently, on disk [106, 14]. One can use either
nonvolatile RAM to store checkpoints or volatile RAM with a “RAID” scheme that allows recovery from
the failure of one (or more) nodes. (The second option may be constrained by the limited number of write
cycles supported by various NVRAM technologies.)

Such a scheme has an obvious cost: the need to significantly increase the amount of memory by, say,
50%. This will have a significant impact on the system acquisition cost. Note, however, that the increase in
power consumption is negligible. This is obvious for NVRAM but true also for DRAM, since checkpoint
memory would be in standby mode most of the time.

The two main obstacles to this approach are the need to detect errors in a timely manner and the need
for fast recovery. We looked in Section 3 at soft errors due to particle strikes and estimated that current
technologies could be used to keep their frequency to current levels at a cost of < 20% additional silicon
and power. However, these numbers involve considerable uncertainty. Particle strikes are only one of
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multiple potential new sources of errors, and the impact of near-threshold logic was not taken into account.
Furthermore, for reasons explained in Section 3.5, there is no certainty that the market will produce the low-
energy, high-resilience components that would be needed to avoid silent errors in hardware at an acceptable
price. If silent errors can propagate into checkpoints, then checkpoints are not of much use.

While the time for backward recovery from checkpoint at the application level is essentially gated by
I/O rates, the time for forward recovery that reboots or repair various system software components is gated
by the computation overhead of boot or repair code. Boot time of large systems may currently exceed
30 minutes; without a change, the boot time of an exascale supercomputer could exceed its MTBF—not
a sustainable situation. This last problem is common to all envisaged scenarios for resilience. Therefore,
advances that reduce boot time and repair time for the system infrastructure at exascale are essential. Also
essential are advances that reduce the likelihood of system failures—in particular, software failures.

7.2 System Software Scenario

In the second scenario, hardware is assumed not to provide enough detection, and therefore silent data cor-
ruption events occur too frequently to be ignored. Instead, we assume that data corruption can be prevented,
detected, and corrected or else tolerated with no change to the application software.

Not all hardware errors have the same severity. A bit flip in a large array of data may have little impact
on the final answer; a bit flip in a program counter or a data pointer is likely to have stranger, less predictable
impact; and a bit flip in a page table or a routing table is likely to have a catastrophic impact. Luckily, the
software error detection schemes described in Section 5.4.1 are more likely to detect the “bad errors”—those
that will have a significant impact on the final answer or will cause a crash. Furthermore, redundancy can
be used in order to reduce the probability of “bad errors.” Critical computations can be executed twice (and
the redundancy can be introduced automatically by a compiler [125, 154]); more reliable memory may be
used for more sensitive data; and so forth.

A plausible hypothesis is that silent hardware errors fall into two categories: “pleasant errors” that
can be treated as aleatoric uncertainty in the computation and “nasty errors” that, essentially, change the
computation model. The latter must be treated as epistemic errors that cannot be modeled as statistical noise
and have to be avoided or corrected. Fortunately, “nasty errors” are likely to be less frequent than “pleasant
errors” in large scientific codes and are easier to avoid or correct. If this hypothesis is correct, then silent
data corruption events can be survived with little to no change in application codes. This hypothesis needs
to be validated for all or a large fraction of large scientific workloads.

The system scenario also covers schemes for using local restart, thus reducing restart overhead—provided
that the construction of node clusters (application containers) can be automated.

7.3 Application Scenarios

Handling resilience without changes in application codes may turn out to be too expensive. We envisage
two subcases: those in which the application code has to handle only tolerance or detection and those in
which the application code also has to handle correction.

We discussed fault-tolerant algorithms in Section 5.6.6, algorithmic fault detection in Section 5.4.2, and
algorithmic recovery in Section 5.6.4. The main issue with these techniques is that they are specific to one
or to a family of algorithms. We need generic techniques that will apply to all computations of interest for
the exascale era and efficient techniques that will apply to the large majority of these computations.

Another issue is how to compose different approaches to resilience. If one module can tolerate silent
bit flips, another module can detect them efficiently and recover using checkpoints, and yet another module
needs redundant execution, how are these three modules coupled in one application?
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8 Suggested Actions

We outline in this sections actions that are suggested by this workshop.

8.1 Information Gathering

The different scenarios imply very different strategies for achieving the required level of resilience: from
possibly significant investments in hardware that has little use outside extreme-scale computing to possibly
significant investments in recoding existing applications. At this time, we do not have enough information to
choose a direction; more information gathering is essential. We propose several activities for that purpose.

8.1.1 Characterization of Sources of Failures on Current Systems

DOE has a rich source of information in the form of the message logs that are collected at each of the su-
percomputing centers at DOE labs. Unfortunately, most of this data is not centrally collected; also, different
vendors use distinct terminologies, so that data cannot be directly compared. To the best of our knowledge,
there are no vendor restrictions on the publication of data owned by the various centers. Initial discussions
with vendors indicate a willingness to help analyze the data.

We propose to establish as soon as possible a centralized repository within DOE that will systematically
collect event logs and other relevant information from all DOE supercomputing centers. In parallel, we
propose to invest in tools to normalize these logs into a vendor-neutral notation and to anonymize them.
DOE would then make these cleansed logs available to the broader research community.

We note that the paper of Schroeder and Gibson on “Understanding Failures in Petascale Computers
[135] cites three repositories for computer failure data. Two (at LANL and NERSC) do not seem to be
accessible on the web. The third, the Computer Failure Data Repository (CFDR) at http://cfdr.usenix.org,
which is maintained by Bianca Schroeder, is easily accessible. This situation suggests that a community
effort will be more productive that the individual efforts of supercomputing centers.

Event logs provide failure symptoms but do not provide a root cause for each failure. Root cause analysis
is now a tedious manual process that engages much of the time of the staff at supercomputing centers. We
propose two efforts on root cause analysis:

1. Develop a registration system that will facilitate recording the results of the manual root cause analy-
sis. The gaol is to annotate event logs with the result of such analyses.

2. Develop better tools for root cause analysis. Existing software products, such as SMARTS of EMC,
could be a good start for such development.

8.1.2 Study of Frequency of Silent Errors

Currently there exists a large uncertainty about the frequency of silent data corruption events. On the one
hand, the practice of supercomputer users is to assume such events do not occur. On the other hand, anec-
dotal evidence on the nonreproducibility of computations that are supposed to be bit reproducible suggests
they do occur, and occur quite frequently.

We propose to push a study on the frequency of SDC events on current supercomputers. Such a study
could be effected by running a background job on as many nodes as possible on various supercomputers.
The job would produce bit reproducible, testable results and be used to detect SDCs.
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8.1.3 Refinement of Estimates on Future Hardware Technologies

The main uncertainty about future roadblocks to resilience concerns the frequency of hardware silent data
corruption events. Our analysis showed that cosmic radiation induced SDCs could be managed at a cost of
less than 20% in circuitry and in power consumption—using current methods. More research in this area
could further reduce the gap. However, the study ignored other issues (subthreshold logic, aging). In any
case, the main uncertainty about future hardware technologies is less about what can be done and more about
what will be done by industry, given market forces. It will be useful to complement technological studies
with economic studies, based on the evolution of different markets (high-end server, cloud, mobile). The
key question to be addressed is the following: What is the market size for processors that have low power?
have high resilience? high floating-point performance?

8.2 Research Areas

We divide research directions into three categories:

Necessary Technologies: Technologies that will be necessary for resilience at extreme scale, no matter
what scenario ends up being pursued.

Generally Useful Technologies: Technologies that will be useful no matter what scenario ends up taking
effect

Scenario-Specific Technologies: Technologies that will come into play only under a subset of the scenar-
ios.

DOE investments in R&D should focus on the roadblocks we know will certainly exist, and less so on
roadblocks that are still hypothetical. On the other hand, one may justify investments in scenario-specific
technologies as a risk-reduction action, if the technology is necessary under some plausible scenario and the
time lag from research to deployment is expected to be significant.

8.2.1 Necessary Technologies

In any scenario, it will be essential to reduce the frequency of system failures, contain them, and reduce
recovery time from system failures. Some of the problems may have simple engineering solutions, for
example, fast boot from nonvolatile memory. Solutions to other problems may require new structures and
mechanisms for global system services. Some of the current research on error containment that is now
focused on application errors could be fruitfully applied to system errors. Faster recovery form file system
failures will be important.

Another critical technology is the communication infrastructure that enables recovery actions at different
levels of the system. This infrastructure will need to be as resilient as the current out-of-band networks
that collect hardware monitoring information and channel it to the hardware monitoring console. But the
infrastructure also will need to handle software failures and avoid the sequential bottleneck of one global
monitoring point.

8.2.2 Generally Useful Technologies

Some technologies are useful no matter what scenario takes effect. One example is fault prediction and
avoidance—predicting node failures and migrating a node workload before the node fails. Successful fault
prediction and avoidance effectively increase the system MTBF, thus increasing the system utilization.

Another example is provided by technologies for fault containment. Avoiding a global restart can reduce
the time and energy consumed by restarts, thus improving system performance.
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8.2.3 Scenario-Specific Technologies

Scenario-specific technologies include all the technologies that would be required if SDCs become a major
problem: technologies for system software error detection, containment, and correction and technologies
for application-level error tolerance, detection, containment, and correction.

Arguably, the choice between handling errors in hardware or in firmware is a vendor choice. Vendors
will choose one or the other, or a mix of the two, according to relative non-recurring and recurring costs
of the two approaches. Research in DOE can help in exploring firmware-level resilience solutions. We
recommend a co-design collaboration between DOE research and vendors in exploring the right mix of
hardware and system software approaches that would provide the appearance of a failure-free system to the
application layer.

Application-level error handling is a much more significant departure from current practice, one that
should be entertained only if the other options are not feasible or have a significant cost. Application-level
error correction will require new services from the underlying hardware and software—for example, the
ability to provide differentiated resilience quality for computations or storage, fault-tolerance at the level of
MPI and other global libraries, and mechanisms for signaling errors to application code. Since these are
needed for research in application-level error handling, their development should be a priority.

A main focus on application-level error handling should be on generic techniques that apply to all
applications or large classes of applications. These are needed in order to avoid having to develop a unique
solution for each application code.

We note that although application-level tolerance or detection of SDCs is more important than application-
level correction, global/checkpoint restart is still viable at exascale, provided one can ignore or detect errors.

8.3 Integration

Much of the current research on resilience is addressing small sections of the problem, for example, how
to tolerate or detect SDCs errors for a particular algorithm. Point solutions are useful only if they fit in
an overall resilience architecture. For example, algorithm error-handling may assume that some system
services continue to be available after an error occurred and may be able to handle some errors (a bit flip
in data) while ignoring other errors (a bit flip in a pointer). These assumptions and limitations must be
made explicit in order to ensure that error modes ignored by the point solution are either sufficiently rare or
handled by another point solution.

We need to develop a resilience architecture that specifies (1) which errors are assumed to occur and
which errors are assumed to be so rare as to be ignored (e.g., SDCs) and (2) what the division of labor is
between the various layers of the system in handling such errors.

As long as we have not converged to one scenario, we will have multiple resilience architectures. But
each of them must be brought to a reasonable level of completeness in order to make sure the different
approaches are comprehensive.
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B Derivation of Optimal Checkpoint Interval

We assume a global checkpointing model: The system is periodically taking global checkpoints; after a
failure, computation is restarted from the last checkpoint. We use the following parameters:

• Checkpoint time is C

• Recovery time is R

• Checkpoint interval is τ : A new checkpoint is taken time τ after the previous checkpoint started, or
time τ after a failure occured.

• Probability of failure within a time interval τ is F (τ)

• Time to first failure, given that a failure occurs within the interval τ is W (τ).

We assume that C, R, and τ are constant, while W (τ) is a random variable. We further assume that the
system is memoryless: F (τ) and W (τ) are the same, for each time interval.

We divide the computation into epochs: A new epoch starts when a failure occurred, or when a check-
point completed. Let Compi be the amount of useful computation done in epoch i and let Timei be the
amount of wallclock time consumed by epoch i. Compi are i.i.d. random variables and Timei are i.i.d.
random variables (Compi and Timei are not independent).

We have

Comp =

{
τ − C if epoch completes normally
−R otherwise

(1)

The −R represents the fact that not only no progress was done, but the computation now requires
recovery. Also

Time =

{
τ if epoch completes normally
W (τ) otherwise

(2)

We define the Utilization of the system to be ratio between compute time and wall-clock time:

Util = lim
n→∞

∑n
i=1Compi∑n
i=1 Timei

We have 1
n

∑n
i=1Compi → E[Comp] and 1

n

∑n
i=1 Timei → E[Time], so that

Util =
E[Comp]

E[Time]
(3)

We derive, from Equations 1 and 2,

E[Comp] = (1− F (τ))(τ − C)− F (τ)R

and

E[Time] = (1− F (τ))τ + F (τ)E[w]

so that

1



Util =
(1− p)(τ − C)− pR
(1− p)τ + pE[W (τ)]

(4)

Note that this formula does not involve any approximation and does not depend on the distribution of
between-failure intervals.

We shall assume from now on that failures occur according to a Poisson process, and normalize time so
that MTTF equals to 1 (i.e., we express checkpoint time and recovery time as fractions of MMTF). Thus,

F (τ) = 1− e−τ

and

E[w] =
1

p

∫ τ

0
xe−xdx

But
∫ τ

0
xe−xdx = −(x+ 1)e−x/1|τ0 = −(τ + 1)e−τ + 1

Thus

E[CT ] = e−τ (τ − C)− (1− e−τ )R = (τ − C +R)e−τ −R,

E[WT ] = τe−τ − (τ + 1)e−τ + 1 = 1− e−τ ,

and

Util =
(τ − C +R)e−τ −R

1− e−τ
.

We want to select τ that maximizes utilization. Such τ solves the equation dUtil
dτ = 0.

We compute derivatives and obtain the equation

(e−τ − (τ − C +R)e−τ )(1− e−τ )− ((τ − C +R)e−τ −R))e−τ = 0

Simplifying, we obtain the equation

e−τ = 1− τ + C (5)

and

Util =
(τ − C +R)(1− τ + C)−R

τ − C
= 1− τ + C −R (6)

We solve Equation 5 numerically, for different values of M and R, and plug into Equation 6 in order to
compute the best possible utilization, as a function of (relative) MTTI and recovery time.

Various approximations can be derived from Equation 5: If we approximate ex with the first three terms
of its Taylor expansion, then we get

1− τ − τ2

2
= 1− τ + C (7)

so that τopt =
√
2C and Util = 1−

√
2C + C −R

If the MTBF is M (rather than 1), we get
τopt =M

√
2C/M =

√
2CM and Util = 1−

√
2CM + (C −R)/M .

The approximation is valid when C �M [153]. Higher level approximations are derived in [30].
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