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Asymptotic Performance of Second-Order
Algorithms

Jean-Pierre Delmas, Member, IEEE

Abstract—This paper re-examines the asymptotic performance
analysis of second-order methods for parameter estimation in a
general context. It provides a unifying framework to investigate the
asymptotic performance of second-order methods under the sto-
chastic model assumption in which both the waveforms and noise
signals are possibly temporally correlated, possibly non-Gaussian,
real, or complex (possibly noncircular) random processes. Thanks
to a functional approach and a matrix-valued reformulated central
limit theorem about the sample covariance matrix, the conditions
under which the asymptotic covariance of a parameter estimator
are dependent or independent of the distribution of the signal in-
volved are specified. Finally, we demonstrate the application of our
general results to direction of arrival (DOA) estimation, identifica-
tion of finite impulse response models, sinusoidal frequency esti-
mation for mixed spectra time series, and frequency estimation of
sinusoidal signal with very lowpass envelope.

Index Terms—Asymptotic covariance, asymptotic robust-
ness, central limit theorem, direction-of-arrival estimation,
finite-impulse response identification, sample covariance matrix,
second-order algorithms, sinusoidal frequency estimator.

I. INTRODUCTION

T HE problem of estimating parameters of waveforms em-
bedded in additive noise based on second-order algorithms

(i.e., algorithms using second-order statistics from the data only)
has been intensively studied in the signal processing commu-
nity due to its wide applicability, mostly explicit physical in-
terpretation, simplicity of implementation, and often good per-
formance. Performance analyses of such algorithms derive from
several signal models. The deterministic (or conditional) and the
stochastic (or unconditional) model are the main models that
have appeared in the literature (see, e.g., [1] and [2]). The noise
is assumed to be a temporally uncorrelated Gaussian random
process in these two models, but the waveforms are assumed to
be fixed in all the realizations in the deterministic model and
to be generally Gaussian temporally uncorrelated random pro-
cesses in the stochastic model. Many authors have compared the
asymptotic performance of parameter estimators with these two
models and connected their performance to the deterministic or
stochastic Cramer–Rao bound (see, e.g., [1] and [2] and the ref-
erence therein). Among the performance studies carried out for
stochastic models, some authors have been interested in the in-
variance of the asymptotic distribution of parameter estimators
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to the distribution and to temporal correlation of the involved
signals, which is often namedrobustness to distribution and to
temporal correlation. Cardoso and Moulines [3] have shown
that the asymptotic performance of most high resolution covari-
ance-based DOA estimators is independent of the distribution
of the source signals for independent snapshots. This robustness
property was extended to the temporal correlation of the source
signals and clarified in [4], where it is proved that Toeplitzation
and the augmentation techniques are very sensitive to this corre-
lation. Abed Meraimet al. [5] presented an asymptotic perfor-
mance analysis of subspace methods for blind identification of
single-input multiple-output FIR systems where it is shown that
the higher than second-order statistics of the input signals do
not affect the asymptotic covariance of the estimated impulse
response. Besides these works, most asymptotic performance
analyses rest on the assumption that the sample covariance ma-
trix of the data has a Wishart distribution (see, e.g., [6]). This
assumption, however, is valid only if the signals are Gaussian
and i.i.d.

It is thus of importance to determine if the performance is af-
fected by the joint distribution of the signals. The purpose of
this contribution is to provide a unifying framework to investi-
gate the asymptotic performance of second-order methods for
parameter estimation in a general context under the stochastic
model assumption in which both the waveforms and noise sig-
nals are possibly temporally correlated, possibly non-Gaussian,
real, or complex (possibly noncircular) random processes. In
this context, the performance isa priori expected to depend on
the joint distribution of the signals involved. We adopt a func-
tional approach in which the Gaussian asymptotic distribution
of the covariance-based parameter estimates is derived from the
Gaussian asymptotic distribution of the sample covariance ma-
trix that is proved for this general model. This allows us to give
closed-form expressions for the asymptotic covariance matrices
of parameter estimates. We then examine under which condi-
tions the asymptotic covariance of parameter estimators are de-
pendent (or not) on the probability distribution and on the tem-
poral correlation of the signals involved. In particular, for the
DOA estimation, it is established that under mild assumptions
and under the condition that the noise is temporally uncorre-
lated, the asymptotic covariance matrix of parameter estimates
is independent of the distribution and of the temporal correla-
tion of the waveforms. On the other hand, this asymptotic co-
variance is sensitive to the temporal correlation of the signals in-
volved when the noise is temporally correlated, which is the case
when the observed signal are oversampled or when the noise in-
cludes jammers. This result shows that the classic asymptotic
robustness property (see, e.g., [2]) is only valid in the temporally
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white noise case. Moreover, we prove that the noise whitening
approach used classically when the spatial noise correlation is
known is very sensitive to this correlation.

This paper is organized as follows. After the general data
model and some assumptions are introduced, some examples
are given in Section II. In Section III, some regularity condi-
tions assumed for the algorithms under study are specified, and
a general functional approach providing a unifying framework
for asymptotic performance analysis is presented. In Section IV,
the asymptotic normality of the sample covariance matrix is es-
tablished for these general data models where a matrix valued
reformulated central limit theorem is given. This methodology
is then applied to direction-of-arrival (DOA), finite impulse re-
sponse (FIR), and sinusoidal frequency estimators for mixed
spectra times series and for sinusoidal signals with very lowpass
envelopes. Finally, some remarks concerning the noise temporal
correlation and about the whitening approach are given in Sec-
tion V.

The following notations are used throughout the paper., ,
and stand for transpose, conjugate transpose, and conjugate,
respectively. and denote matrices and column vectors with
zero entries, respectively. Vec is the “vectorization” operator
that turns a matrix into a vector consisting of the columns of the
matrix stacked one below another. Depending on whether the
data are real or complex-valued, superscriptstands for trans-
pose or conjugate transpose, and the Kronecker product
is the block matrix, the block element of which is
or .1 The vec-permutation matrix transforms Vec to
Vec for any square matrix . Diag is a diag-
onal matrix with diagonal elements. The symbol denotes
the indicator function of the condition , which assumes the
value 1 if this condition is satisfied and 0 otherwise, and the
symbol denotes the convergence in distribution.

II. DATA MODEL

A. General Hypotheses

In many applications, it is of interest to estimate the parameter
from the following -variate real or complex

(possibly noncircular) valued wide sense stationary time series

(2.1)

and model the signals of interest and additive mea-
surement noise, respectively. It is assumed that is deter-
ministic and known as a function of the unknown signal param-
eters . Of course, the probability distribution of
depends on extra parameters, which are also unknown, but we
are only interested here in the estimation of parameters. In
this general model, and are multivariate independent, zero-
mean, second-order stationary time series of covariance ma-
trices and . Thus, the covariance
matrix of is

(2.2)

1This unusual convention makes it easier to deal with complex matrices for
which Vec(ABC ) = (A 
C)Vec(B).

We suppose that the parameterization used is identifiable to the
second-order for the signal parameteronly, i.e.,

whatever the expressions and [resp., and ]
of [resp., ] compatible with their structure required by
the algorithms. The studied model does not suppose that the
nuisance parameter, i.e., the parameters that parametrizeand

, are identifiable to the second order. Some examples of this
data model are briefly described in Section II-B.

B. Examples of Application

1) Narrowband DOA Estimation: represents the
-vector of the observed complex envelope at the sensor output.

, where is the complex envelope
of the emitted signal by the sourceat time . is the

“steering” matrix, and is the spatial parameters of the
sources, which are referred to as the DOAs of the sources.
is the spatial covariance matrix (which is assumed positive

definite and diagonal for the algorithms that require the sources
spatially uncorrelated, e.g., in the Toeplization and the augmen-
tation techniques; see, e.g., [4]). and are,
respectively, the complex envelope and the spatial covariance
matrix of the sensor output additive noise whereare unknown
parameters and are known Hermitian weighting matrices
(see, e.g., [7]). By choosing , , and , the
special case where the noise is spatially white is obtained.

2) Blind Identification of FIR Channels: represents the
-vector of observed complex envelope of the channel output.

,
where is the th output signal at time. is the

convolution matrix
for SIMO channels [resp., ] for the MIMO channel.
and are the smoothing factor and the channel impulse
response length, respectively, (see, e.g., [8]).
The components of are the FIR coefficients of the channel.

, where
is the th input signal at time . is the positive definite
covariance matrix of the inputs (which is assumed diagonal
for the linear prediction-based algorithms). and are,
respectively, the complex envelope and the covariance matrix
of the channel output additive noise. if the noise is
spatially and temporally uncorrelated. This later assumption
does not include jammers and supposes that the temporal
correlation of noise due to the oversampling is not taken into
account.

3) Sinusoidal Frequency Estimation for Mixed Spectra
Times Series: where in the complex
case, is a sum of sinusoid signals and a linear stationary
process with .

with .
represents the distinct frequencies in .

, where
are fixed positive real numbers, and

are random variables uniformly distributed on .
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, , where is the
Toeplitz filtering matrix with first row ,

and is the power of the noise innovation. is generally
unknown, except in the whitening approach.

4) Frequency Estimation of Sinusoidal Signals With Very
Lowpass Envelopes:The envelopes of sinusoids are
stationary time series but slowly varying (w.r.t., ) and,
therefore, are considered constant during the window of size
. The signal model is identical to the previous one with

. Contrary to [9], which
analyzes the degradation of performance induced by the
aforementioned mismodeling, our paper is only devoted to the
asymptotic covariance of the estimates.

III. A LGORITHMS UNDER STUDY

A. Functional Approach

To consider the asymptotic performance of a second-order
algorithm, we adopt a functional analysis that consists of recog-
nizing that the whole process of constructing an estimate
of is equivalent to defining a functional relation linking this
estimate to the statistics
from which it is inferred. This functional dependence is de-
noted alg . By assumption, alg ;
therefore, the different algorithms alg constitute distinct ex-
tensions of the mapping generated by any unstruc-
tured real symmetric or Hermitian matrix . In the fol-
lowing, we consider “regular” algorithms. We assume the regu-
larity conditions stated below.

B. Regular Algorithms

1) The function alg is differentiable in a neighborhood of

, i.e., if
alg 2 denotes the matrix of this

differential evaluated at point

alg
alg

Vec (3.1)

2) For any and any covariance matrices and
(structured3 if the algorithm relies on this structure)

alg (3.2)

These two requirements are met by most second-order al-
gorithms, including the covariance matching estimation
techniques [7]. We note that to fulfill requirement 1, the
extension to of the mapping sometimes
needs regularization techniques (see, e.g., [10] for the linear
prediction method in blind identification of FIR). Requirement
2 means that most second-order algorithms do not require
the knowledge of covariance matrices and . However,
specified structures are sometimes needed. Some examples are
given in Section II-B.

2Expressions ofD
alg

are ordinarily deduced from perturbation calculus.
3Of course, the algorithm does not need to knowR andR .

C. Constraints Upon the Differential of the Algorithm

To specify the conditions under which the asymptotic distri-
bution of the estimated parameteris invariant with respect to
the distribution and the temporal correlation ofand , we
need to prove the following lemma.

Lemma 1: Under conditions 1 and 2, one has the following

constraints on
alg

, according to the structure of the covari-
ance matrices and :

alg
for unstructured

(3.3)
alg

for structured diagonal

(3.4)
alg

Vec

for structured proportional to the identity matrix

(3.5)
alg

Vec

for structured as a linear combination of

(3.6)

with .
Proof: The proof follows because for any perturbations
unstructured, Diag , ,

or , the following equalities hold:

alg

alg
Vec

Vec

alg
Vec

Vec

with . When is diagonal,
Diag ; thus, Vec

Vec

. When , Vec
Vec .
Interpretation: We note that Vec is a

linear combination of the vectors Vec ,
, the latter vectors being in the column space of

. The larger thea priori knowledge about

is needed, the less severe the constraints (3.3)–(3.5) on
alg

become. To derive the asymptotic distribution of second-order
estimators, we need to know the asymptotic distribution of the
sample covariance matrix .
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IV. ROBUSTNESS OFPARAMETER ESTIMATES

A. Asymptotic Distribution of the Sample Covariance Matrix

For convenience, the definition of the complex Gaussian dis-
tribution is recalled. A complex random vector has a
zero-mean complex Gaussian distribution if the-joint distri-
bution of the real and imaginary part ofis -zero-mean real
Gaussian, i.e., for any complex vector ; the real scalar

has a zero-mean real Gaussian distribution with
variance

where , and . This distribu-
tion, which is denoted , is specified by pos-
itive definite matrix and symmetric matrix and
denoted . For stationary processesand with
finite fourth-order moments, the following theorem is proved.

Theorem 1: Vec Vec converges in
distribution to the zero-mean real [resp., complex] Gaussian
distribution of covariance [resp., , ] in the real
case [resp. in the complex case].

Vec Vec

resp., (4.1)

Furthermore

Cov Vec (4.2)

where reads

(4.3)

with the equation shown at the bottom of the page, with
or , where ,

, , ,

and .
In the complex case, CovVec denotes

Vec Vec . We note
that Vec Vec
Vec Vec , and
therefore, Vec Vec

Vec Vec . Therefore,
the noncircular complex Gaussian asymptotic distribution of

is characterized by only.
Proof: In the example of application 3, where is a sum

of sinusoid signals and an MA process, this theorem is proved
in [11]. The generalization to the data model (2.1) follows the
same lines. First, (4.2) is straightforwardly proved after tedious
but simple manipulations. Then, to prove (4.1), we adapt the
steps of [12, sect. 7.3] to each model.

Remark 1: This theorem extends theorems following the
classic stochastic model assumption (see, e.g., [1] and [2])
to accommodate non-Gaussian and temporally correlated
noise. For Gaussian temporally uncorrelated noise, and
the cross-terms and reduce to for
circular complex case [resp. for real
case], and , respectively. The non-Gaussian
assumption simply adds a fourth-order term in the expression
of , but the temporal correlation assumption completely
modifies the expression of , and . When the
noise is possibly non-Gaussian and temporally correlated,
becomes in the circular complex ARMA case (see [4])

(4.4)

where denotes the power cross-spectral density ma-
trix of . If the fourth-order polyspectrum of the components

of for is defined as

denotes the fourth-order cumulant matrix. Simplified
formulas of the expressions of the cross-terms and
given in Theorem 1 can be obtained if the sequence

is assumed absolutely summable.4 In this

4This condition is satisfied if the sequencesR andR are absolutely sum-
mable or if one of the two sequences is absolutely summable and the other
bounded.

Cov Vec

Cov Vec

in the circular complex case

in the noncircular complex and real case
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case, we get from [13, A10, p. 411], and from Parseval’s the-
orem, we get (4.5), shown at the bottom of the page.

Remark 2: Detailed expressions of , , , and
depend on the application. For example

Vec Vec

Diag

(4.6)

and is the block matrix whose block element is

Diag

for sinusoidal frequency estimation with cir-
cular complex additive noise of spectral
density , Cum and

. A similar expression is
obtained for for blind identification of SIMO FIR
channels when the input is circular complex temporally
uncorrelated of power with Cum and

:

Vec Vec

(4.7)
We note that instead of the classic Bartlett formulation, which
is concerned with the sample correlation coefficients sequence,
Theorem 1 is devoted to the sample covariance matrix. This for-
mulation is better adapted to deriving the asymptotic distribu-
tion of estimated parameters as is derived in Section IV-B.

B. Asymptotic Distribution of the Estimated Parameter

By the regularity condition (3.1), the asymptotic behaviors of
and are directly related. The standard theorem on

regular functions of asymptotically normal statistics (see e.g.,
[14, p. 122]) applies.

Theorem 2:

for

resp., for (4.8)

with

alg alg
(4.9)

alg alg
(4.10)

Consequently, for second-order algorithms satisfying the
regularity conditions of Section III-B, the expressions of the
asymptotic covariances and of estimators can be

simplified thanks to the constraints on
alg

of Lemma 1 and

become
alg alg

,
alg

alg
, where is deduced from the expression of

(4.3) by suppressing some terms. This result is specialized
to the examples described in Section II-B and implies that these
covariance matrices are invariant to the distribution and/or
to the temporal correlation of and , depending on the
application. This admits the following interpretation: The larger
the a priori knowledge about and is needed, the less

severe the constraints on
alg

are, and the less robust to the
distribution of the signals the second-order estimators become.

C. Examples of Applications

1) Narrowband DOA Estimation:Depending on whether
is assumed temporally uncorrelated (an assumption admitted in
all papers devoted to performance analysis) or correlated, the
following results hold.

Result 1: If is assumed temporally uncorrelated, the algo-
rithms that do not suppose the sources to be spatially uncorre-
lated are robust to the distribution and to the temporal correla-
tion of the sources .

Proof: Thanks to the first constraint (3.3), is deduced
from the expression of by suppression of its first term. Fur-
thermore, because the terms and of reduce,
respectively, to the spatial terms and ,
reduces to

This extends the results by Cardoso and Moulines [3] that
have shown that the asymptotic performance of most high-res-
olution covariance-based DOA estimators is independent of the
distribution of the source signals for independent snapshots. It
is shown [4] that the Toeplization and augmentation techniques,
which are based on the source spatial uncorrelation assumption,
are very sensitive to the distribution and to the temporal corre-
lation of the sources in the case of several sources because the

in the real case

in the complex case.
(4.5)
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constraint (3.3) is not satisfied. For only one source, the robust-
ness is preserved thanks to constraint (3.4).

Result 2: If is assumed temporally correlated, all the
second-order algorithms are sensitive to the temporal correla-
tion of the sources.

Proof: This is due to the contribution of terms and
[see (4.5)] in .

A realistic example of this situation is given in Section V-A.
2) Blind Identification of FIR Channels:From the general

methodological viewpoint, the second-order algorithms may be
classified as methods that do not suppose that the inputs
are temporally uncorrelated (e.g., the subspace methods which
exploit low-rank space–time properties; see, e.g., [5] and refer-
ences therein) and methods that explicitly suppose that the in-
puts are temporally uncorrelated (e.g., the linear prediction
methods, using specific invertibility properties of FIR models;
see, e.g., [10] and references therein).

Result 3: The blind SIMO identification methods that do not
suppose that the inputs are temporally uncorrelated are ro-
bust to the distribution of the inputs but sensitive to the temporal
correlation of the inputs.

Proof: Thanks to the first constraint (3.3), is deduced
from the expression of by suppression of its first term,
which is the only term that depends on the fourth-order prop-
erties of the inputs by way of . Therefore, reduces
to

These methods are sensitive to the temporal correlation of the in-
puts because the terms and depend on the temporal
correlation of the inputs, including the case where the noise is
temporally uncorrelated because in this case,
and [see (4.5), where ], where

includes temporal correlation in this space–time application.

We note that this result does not extend to blind MIMO iden-
tification methods. In this case, time series are
assumed independent, and consequently,is structured block
diagonal, and the first constraint (3.3) no longer applies.

Result 4: The blind SIMO identification methods that explic-
itly suppose that the inputs are temporally uncorrelated are
robust to the distribution of the inputs.

Proof: Thanks to the third constraint (3.5) applied to the
expression (4.7) of and thanks to the equality

Vec Vec

Vec

the contribution of the cumulant of the input signal is can-
celed in the expression of , which reduces to

We note that this result does not extend to blind MIMO iden-
tification methods because in this case, the fourth-order term of

is no longer structured in the form Vec Vec .
This robustness property extends to any second-order algo-

rithm, where the robustness result is proved by [5] for some sub-
space methods after calculating . We note that proving

this robustness property directly from the expression of
alg

for each specific algorithm would be tedious and cumbersome;
see, e.g., the intricate expression of in [10].

Furthermore, as a byproduct of our results, we note that the
asymptotic covariance has the same expression under the
assumptions “ is Gaussian i.i.d.” and “ are temporally un-
correlated with any distribution” for all second-order algorithms
that suppose temporally uncorrelated. Therefore, our result
validates the asymptotic performance and limitation results of
Zeng and Tong [6] (which were based on the i.i.d. Gaussian as-
sumption of ) for an input temporally uncorrelated with any
distribution.

3) Sinusoidal Frequency Estimation for Mixed Spectra Times
Series:

Result 5: The second-order algorithms are robust to the dis-
tribution of the noise but sensitive to its temporal correlation.

Proof: Thanks to the fourth constraint (3.6) (where
) applied to the expression (4.6) of , the contribution

of the cumulant of the noise innovation is canceled in the
expression of , which reduces to

This result apparently contradicts a Monte Carlo simulation
recently presented in [15] in which the frequency estimators de-
grade with an heavy-tailed probability distribution of the noise.
In fact, this simulation is presented with a complex circular sym-
metric -stable distribution of the noise with , for which
neither nor are defined, and our analysis is devoted
to second-order processes only. Fig. 1 illustrates the asymptotic
performance of the MUSIC algorithm for two equipowered si-
nusoids with two complex circular distributions of the noise
[Gaussian (a) and with the heavy-tailed probability distribution
of normalized p.d.f. (b)]. Fig. 1 shows the sim-
ilarity of the behavior of this algorithm with these two distribu-
tions. We notice good agreement between the theoretical and
the estimated MSE with a domain of validity reducing with
increasing ( , 500, and 3000 for, respectively, ,
6, and 12). This remark extends to non-Gaussian noise, as ob-
served in [16] (where, e.g., for and dB, a
good agreement requires ).

4) Frequency Estimation of Sinusoidal Signals With Very
Lowpass Envelopes:

Result 6: The second-order algorithms are robust to the dis-
tribution of the envelopes of the sinusoidal signals and of
the noise but sensitive to their temporal correlation.

Proof: Thanks to the first (3.4) and fourth (3.6) constraint
(where ) applied to the first term of (4.3) and
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Fig. 1. Theoretical and estimated (100 runs) MSE off (N) with 95%
confidence interval (with error bars) by the MUSIC algorithm for two
equipowered sinusoids and white noise (f = 0:1, f = 0:2 and
SNR = 10 dB) for p = 4, 6, and 12 versusN when (a) the noisen is
circular Gaussian distributed and (b) circularly distributed with the normalized
p.d.f.2= (�(1 + x ) ).

to the expression (4.6) of , respectively, the term and
the contribution of the cumulant of the noise innovation is
canceled in the expression of , which reduces to

V. FURTHER ILLUSTRATIONS

A. Temporally Correlated Noise

One would expect that the temporal correlation of the noise
would modify the asymptotic performance of the covari-

ance-based frequency estimation of sinusoidal signals because
the asymptotic Cramér–Rao bounds of the estimated frequen-
cies are inversely proportional to the local signal-to-noise ratio

[17], but in the case of the DOA and FIR parame-
ters, the asymptotic robustness property (see, e.g., [2]) proved
in the temporally white noise case is questioned. To show the
influence of this noise temporal correlation, we concentrate on
the circular complex narrowband DOA estimation example. In
this case, thanks to result 1 and (4.4) and (4.5), the asymptotic
covariance of the parameter estimates reduces to

alg

alg
(5.1)

Usually, performance analyses are evaluated as a function of the
number of observed snapshots without taking the sampling rate
into account. In fact, depending on the value of this sampling
rate, the collected samples are more or less temporally corre-
lated, and performance is affected. Thus, the interesting ques-
tion arises as to how the asymptotic covariance of the parameter
estimators varies with this sampling rate for a fixed ob-
servation interval . This will be investigated by considering
the preprocessing operation. The received signals are bandpass
filtered (with bandwidth ) around the center frequency of in-
terest. After frequency down-shifting the sensor signals to base-
band, the complex envelope is generated. If the background
noise is white, the continuous-time noise envelopeis white
in the bandwidth with a power spectral den-
sity . is circular complex and assumed Gaussian and spa-
tially uncorrelated. The cross-power spectral density matrix of
the continuous-time source envelope is denoted and lies
in . Under these conditions, after sampling the
complex envelope signals at the rate , the power spectra of
the discrete-time signals in the bandwidth be-
come

Diag

Therefore, according to whether the signals are oversampled or
subsampled with respect to the Nyquist frequency, the integrals
of (5.11) become the following.
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• If

Diag

Diag

where denotes the noise power.
• If , the separate terms in the previous inte-

grals overlap and, according to the value of, , and
, fluctuate around their limit value when ,

viz.

These values are obtained when the successive snapshots
are assumed independent.

The asymptotic error covariance matrix of the parameter
is now considered as a function of the observation interval

. The previous values of and show that if the
signals are oversampled

for

irrespective of the sample rate , and if the signals are sub-
sampled

for and

where denotes the asymptotic covariance matrix of esti-
mated DOA parameters under the snapshot independence as-
sumption. Therefore,the array must be oversampled, and the
parameter of interest that characterizes performance is not the
number of snapshots but the observation interval .

B. Whitening Approach

In the special case where the covariance matrixis known
up to a multiplicative constant, the whitening of the noise used
classically in direction of arrival estimation (DOA) (see, e.g.,
[18]) can be used to advantage because many second-order al-
gorithms require to be proportional to the identity matrix.
In this approach, after is whitened by a linear transforma-
tion applied to , many covariance-based methods based on the

Fig. 2. Power density spectra for white (0) and MA noise of order (1), (2), (4)
of zerobe for b = 0:8 andf = 0:4.

white noise assumption can be used. In these circumstances, it
makes sense to study the influence of the correlations between
the components of and the selected linear transformation
on the performance of this covariance-based estimator. Consid-
ering our functional analysis, Theorem 2 answers this question.
The process is whitened using the Cholesky decomposition

of and any unitary matrix :

with

and the covariance matrix of becomes

If alg denotes a second-order algorithm based on the new data
model and white noise assumption, the
parameters are estimated with the following scheme:

alg

Applying the chain differential rule, Theorem 2 applies in

this situation by replacing in (4.9) and (4.10),
alg

by
alg alg

because Vec
Vec .

To illustrate the sensitivity of performance to the coloring
of the noise, a numerical study is presented. First, we note
that taking into account the expression of , it is
easily proved that the MUSIC algorithm associated with the
prewhitening of the data is insensitive to the choice of the
unitary matrix . Consider a complex sinusoid corrupted addi-
tively by an MA process of transfer function
of order , 2, or 4. The power density spectrum of the
noise is shown in Fig. 2. The sinusoid frequency is estimated
from the sample covariance matrix of order by the
standard MUSIC algorithm after noise whitening. Fig. 3 plots
the theoretical MSE of sinusoid frequency , where

dB, and as a function of for white and
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Fig. 3. Theoretical MSE off (N) versus the frequencyf of the complex
sinusoid for (0) white and MA noise of order (1), (2), (4) withp = 3,N = 200,
andSNR = 0 dB.

MA noise of order 1, 2, or 4. This figure shows a degradation
of the performance when the frequency is in the vicinity
of the maximum of the power density spectra of the noise.
This result is similar to the performance of the nonlinear least
square estimator [17], where the asymptotic variances are
proportional to , although the MUSIC algorithm
uses knowledge of the noise color contrary to the nonlinear
least square estimator.

VI. CONCLUSION

In this paper, we have provided a unifying framework to in-
vestigate the asymptotic performance of second-order methods
for parameter estimation under the stochastic model assump-
tion. Thanks to a functional approach and a matrix-valued refor-
mulated central limit theorem about the sample covariance ma-
trix, we have specified conditions under which the second-order
algorithms are robust to the temporal correlation and to the dis-
tribution of the signals involved. Our results have been illus-
trated in the context of DOA, FIR, and frequency estimators,
and particular attention has been given to the temporal correla-
tion of the noise and to the whitening approach.

For complex noncircular signals, our analysis did not take
into account the second covariance matrix of the data. An
asymptotic analysis of second-order based-algorithms dedi-
cated to these specific signals is underway.
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