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Asymptotic Performance of Second-Order
Algorithms

Jean-Pierre Delma#lember, |IEEE

Abstract—This paper re-examines the asymptotic performance to the distribution and to temporal correlation of the involved
analysis of second-order methods for parameter estimation in a signals, which is often namedbustness to distribution and to
general cpntextf. It providesfaunifyigg fréslmewcirhktginvejtig?rtle thte temporal correlation Cardoso and Moulines [3] have shown
Shastic model assumption in which both the iaveforms and noise that the asymptotic performance of most high resolution covar-
Signa|s are possib|y tempora”y Corre|ated’ possib|y non_Gaussian, ance'based DOA estimators is Independent Of the dIStl‘IbutIOl’]
real, or complex (possibly noncircular) random processes. Thanks of the source signals for independent snapshots. This robustness
to a functional approach and a matrix-valued reformulated central  property was extended to the temporal correlation of the source
limit theorem about the sample covariance matrix, the conditions signals and clarified in [4], where it is proved that Toeplitzation

under which the asymptotic covariance of a parameter estimator . . . .
are dependent or independent of the distribution of the signal in- and the augmentation techniques are very sensitive to this corre-

volved are specified. Finally, we demonstrate the application of our lation. Abed Meraimet al. [5] presented an asymptotic perfor-
general results to direction of arrival (DOA) estimation, identifica- mance analysis of subspace methods for blind identification of

tion of finite impulse response models, sinusoidal frequency esti- single-input multiple-output FIR systems where it is shown that
mation for mixed spectra time series, and frequency estimation of e higher than second-order statistics of the input signals do
sinusoidal signal with very lowpass envelope. not affect the asymptotic covariance of the estimated impulse
Index Terms—Asymptotic covariance, asymptotic robust- response. Besides these works, most asymptotic performance
ness, central limit theorem, direction-of-arrival estimation, 5n5yses rest on the assumption that the sample covariance ma-
finite-impulse response identification, sample covariance matrix, , . . s .
second-order algorithms, sinusoidal frequency estimator. trix of th? data has a V_V'Sha_rt d'Str'pUt'on (See' e.g., [6]). Th's
assumption, however, is valid only if the signals are Gaussian
and i.i.d.
. INTRODUCTION It is thus of importance to determine if the performance is af-

HE problem of estimating parameters of waveforms enfcted by the joint distribution of the signals. The purpose of
T bedded in additive noise based on second-order algorithHi§ contribution is to provide a unifying framework to investi-
(i.e., algorithms using second-order statistics from the data onfite the asymptotic performance of second-order methods for
has been intensively studied in the signal processing comni@ameter estimation in a general context under the stochastic
nity due to its wide applicability, mostly explicit physical in-model assumption in which both the waveforms and noise sig-
terpretation, simplicity of implementation, and often good peRals are possibly temporally correlated, possibly non-Gaussian,
formance. Performance analyses of such algorithms derive fréf@l, Or complex (possibly noncircular) random processes. In
several signal models. The deterministic (or conditional) and tHéS context, the performanceaspriori expected to depend on
stochastic (or unconditional) model are the main models tHR€ joint distribution of the signals involved. We adopt a func-
have appeared in the literature (see, e.g., [1] and [2]). The notignal approach in which the Gaussian asymptotic distribution
is assumed to be a temporally uncorrelated Gaussian rand@ife covariance-based parameter estimates is derived from the
process in these two models, but the waveforms are assumef@iSsian asymptotic distribution of the sample covariance ma-
be fixed in all the realizations in the deterministic model antiix that is proved for this general model. This allows us to give
to be generally Gaussian temporally uncorrelated random pf:(gosed—form expressions for the asymptotic covariance matrices
cesses in the stochastic model. Many authors have compared*hgarameter estimates. We then examine under which condi-
asymptotic performance of parameter estimators with these tii@s the asymptotic covariance of parameter estimators are de-
models and connected their performance to the deterministigndent (or not) on the probability distribution and on the tem-
stochastic Cramer—Rao bound (see, e.g., [1] and [2] and the Rgral correlation of the signals involved. In particular, for the
erence therein). Among the performance studies carried out RfPA estimation, it is established that under mild assumptions
stochastic models, some authors have been interested in thél under the condition that the noise is temporally uncorre-

variance of the asymptotic distribution of parameter estimatdpged, the asymptotic covariance matrix of parameter estimates

is independent of the distribution and of the temporal correla-

tion of the waveforms. On the other hand, this asymptotic co-
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white noise case. Moreover, we prove that the noise whitenikige suppose that the parameterization used is identifiable to the
approach used classically when the spatial noise correlatiorsecond-order for the signal parameg&epnly, i.e.,
known is very sensitive to this correlation.

This paper is organized as follows. After the general dat®,(©1)RVES(0:) + RY =E,(02)RPES(0,) + R
model and some assumptions are introduced, some examples = 0, =0,
are given in Section Il. In Section Ill, some regularity condi-
tions assumed for the algorithms under study are specified, amidatever the expressioi." andR‘? [resp., R andR?]
a general functional approach providing a unifying frameworsf R, [resp.,R.,,] compatible with their structure required by
for asymptotic performance analysis is presented. In Section tNe algorithms. The studied model does not suppose that the
the asymptotic normality of the sample covariance matrix is esuisance parameter, i.e., the parameters that paraniBtyiaad
tablished for these general data models where a matrix valurg, are identifiable to the second order. Some examples of this
reformulated central limit theorem is given. This methodologyata model are briefly described in Section 11-B.
is then applied to direction-of-arrival (DOA), finite impulse re-
sponse (FIR), and sinusoidal frequency estimators for mixgd Examples of Application

spectra times series and for sinusoidal signals with very Iowpas%) Narrowband DOA Estimationx; represents the
t

ector of the observed complex envelope at the sensor output.

Cllef .
Sy %(styl,...,st[()T, where s; ;, is the complex envelope

of the emitted signal by the souréeat time¢. E;(©) is the
X K “steering” matrix, and® is the spatial parameters of the
Sources, which are referred to as the DOAs of the sources.
R, is the spatial covariance matrix (which is assumed positive

zero entries, respectively. Vet is the “vectorization” operator o . X .
b - e P Hieefmlte and diagonal for the algorithms that require the sources

that turns a matrix into a vector consisting of the columns of t X . o
matrix stacked one below another. Depending on whether ﬁ;%atlally uncorrelated, e.g., in the Toeplization and the augmen-

A . ) . L
data are real or complex-valued, supersci#iptands for trans- tation tﬁch|n|thr1]es, see,le.g., [Zhll)lb andR,a t_h21=1tc.”?l are,
pose or conjugate transpose, and the Kronecker prodlgeiB restpgc 'X&y’ € comptexter&\(/j(_etp pe an f spatia Eovanance
is the block matrix, théz, j) block element of which is; ;B matrix ot the Sensor output additive noise wherare unknown

. ) ; parameters an€); are known Hermitian weighting matrices
orb; _/? The vec permutatlo.n mat.rK transforms Ye(:A? to (see, e.q., [7]). By choosing = 1, a, = 02, andQ, — L, the
Vec(A') for any square matriA. Diag(aq, ..., a,) is a diag- P

onal matrix with diagonal elemenis. The symboll 4 denotes SDSCIaBllpZS?dWthffe tthe nollslsls thatlallylwmte IS obtaltne:jh.
the indicator function of the conditiod, which assumes the ) Blind Identification o anneisx, represents e

value 1 if this condition is satisfied and O otherwise, and trf’e"{lfftor of observed complex envelope of the channel output.

phided . - . T
symbol = denotes the convergence in distribution. Xp = (B0 oy T K Tr=1 0oy Tl Ko -+ D= N, K, )
where z, ;. is the kth output signal at time. E,(©) is the

(N + DK, x (M + N + 1)K, convolution matrix7 (h)
for SIMO channels [respd (H)] for the MIMO channel. N
A. General Hypotheses and M + 1 are the smoothing factor and the channel impulse

In many applications, itis of interest to estimate the paramef&SPonse length, respectively= (N + 1)K; (see, e.g., [8]).
© € ® C R1/C from the followingp-variate real or complex The components db are the FIR coefficients of the channel.

envelopes. Finally, some remarks concerning the noise tempaor:
correlation and about the whitening approach are given in S
tion V.

The following notations are used throughout the papeH,
andx stand for transpose, conjugate transpose, and conjug

respectivelyO ando denote matrices and column vectors wit

Il. DATA MODEL

. . . . . . T
(possibly noncircular) valued wide sense stationary time SENBS= (St,1s-- s St,K,s St—1,1, - --» St—M—N,K;) » Where s,
is the kth input signal at timef. R, is the positive definite
x; =E,(O)s;+n, t=1,...,N. (2.1) covariance matrix of the inputs (which is assumed diagonal

for the linear prediction-based algorithms), and R,, are,
E,(0)s; andn, model the signals of interest and additive medespectively, the complex envelope and the covariance matrix
surement noise, respectively. It is assumed Kag) is deter- Of the channel output additive noisR., = o°T if the noise is
ministic and known as a function of the unknown signal pararfipatially and temporally uncorrelated. This later assumption
eters®. Of course, the probability distribution ¢k;);—1, ~ does not include jammers and supposes that the temporal
depends on extra parameters, which are also unknown, but&grelation of noise due to the oversampling is not taken into
are only interested here in the estimation of paramegersy ~ account.
this general modes, andn, are multivariate independent, zero- 3) Sinusoidal Frequency Estimation for Mixed Spectra

mean, second-order stationary time series of covariance nméves Seriesix; = (.. -,a_rt_p_+1)T where in the complex
tricesRSde:fE(sts;L) anande:fE(ntn;L). Thus, the covariance Cas€.: is a surrgoof smusm_d signals and a linear stationary
matrix of x; is processn, = 32, biug—g With 37,20 |bi| < o0 Ey(©) =
(el, . ,eK) with e, = (1, CiQﬂ—f’“, R CiQﬂ—(p*l)f’“)H. ©
R,“E (xtx;") — E,(0)R,E+(0) + R,,. (2.2) represents theX distinct frequencies in] — 1/2,+1/2[.
s, = (alewlci%ﬁt, o ag K ciQWfKt)T, where (az)

IThis unusual convention makes it easier to deal with complex matrices foFl,.... K are f'xed_ positive r-eal numb.ersl’ ar(d’k)k:l ----- K
which Ve ABCH) = (A @ C)VedB). are random variables uniformly distributed ofd, 2x].
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n, = (nt,...,nt_p+1)T, R, = ¢’BB!, whereB is the C. Constraints Upon the Differential of the Algorithm
p X oo Toeplitz filtering matrix with first rowb? = (¢, b1,...),

and o is the power of the noise innovatiol is generally p yion of the estimated paramet®iis invariant with respect to
unknown, except in the whitening approach. , the distribution and the temporal correlationspfandn,, we

4) Frequency Estimation of Sinusoidal S|gnals _W|th Velyoed to prove the following lemma.
Lowpass EnvelopesThe envelopesa. ;. Of sinusoids areé ) omma 1: Under conditions 1 and 2, one has the following
stationary time series but slowly varying (w.r.tfy) and, ) alg ) i
therefore, are considered constant during the window of sig8"Straints 0e  , according to the structure of the covari-
p. The signal model is identical to the previous one witf"ce matrice®t, andR..:
st = (ap1e™™Nt L .,atyKeiQ”fKt)T. Contrary to [9], which
analyzes the degradation of performance induced by thqa)g[%w (E4(©) @ E4(0)) = O, for R, unstructured
aforementioned mismodeling, our paper is only devoted to the (3.3)
asymptotic covariance of the estimates. alg

Do, (€:,1(0) ®e,1(0)) =0
Il. A LGORITHMS UNDER STUDY k=1,..., K, for R, structured diagonal

A. Functional Approach

al
To consider the asymptotic performance of a second-order D@,%IVGC (Es(®)Ef(©)) =0
algorithm, we adopt a functional analysis that consists of recog- for R, structured proportional to the identity matrix

To specify the conditions under which the asymptotic distri-

(3.4)

nizing that the whole process of constructing an estire ) (3.5)
of © is equivalent to defining a functional relation linking this alg

estimate©( V) to the statisticR.(N) = (1/N) S, x,x; Dgr, VedQ) =0, I=1,....L

from which it is inferred. This functional dependence is de- for R, structured as a linear combination(@®;);—: . r.
noted@(N) = alg(R.(V)). By assumption® = alg(R.); (3.6)

therefore, the different algorithms &Iy constitute distinct ex-
tensions of the mappin®., — © generated by any unstruc-yiih E,(©) = (e,1(0),...,e, x(O)).

tured real symmetric or Hermitian matri..(V). In the fol- Proof: The proof follows because for any perturbations
lowing, we consider “regular” algorithms. We assume the reggr _ynstructured§R,, = Diag (602 §02%),6R, = 8021,

. . s S 3t ‘A 5 s 1
lanity conditions stated below. oréR,, = Zf:l(éal)Ql, the following equalities hold:

B. Regular Algorithms .
1) The function alg.) is differentiable in a neighborhood of alg(E.(©) (R, + ¢R,)EF(©) + Z (a; + 6a1)Qy)

R, ie., if Dglg{ﬁz denotes the; x p* matrix of this =1
differential evaiuated at poirik., =0
= 0+ DAY (Vec (B, (0)5R, L ()
algR, + 6R) = 0 + DAY Veq(sR) + o(dR).  (3.1) L
’ + Vec <Z 6alQl> + o(6R.,) + o(Sa)
2) For any® € @ and any covariance matric&, andR,, =1
(structured if the algorithm relies on this structure) — o+ Dgl,%w ((Es(@) ® E,(©)) Vec(6R,,)

alg (E; (O)R,E(0) + Rn) = ©. (3.2) + EL: Sa;Ved(Qy)) + o(6R.,) + of6a)

. L=1
These two requirements are met by most second-order al-

gorithms, including the covariance. matching estimatiowith Sae! (6a1,...,6aL)T. When &R, is diagonal,
technlques [7]. We note that tq fulfill requwement'l, th%Rs = Diag (802, ...,602 );thus, Ve(E, (©)6R,E+ (0)) =
extension toR,(N) of the mappingR, — © sometimes K 5 i K 5

needs regularization techniques (see, e.g., [10] for the linar—1 8% VeC (e&’“(@)es,k(@»: k=1 80i(es1(0) @
prediction method in blind identification of FIR). Requiremenes,x(©)). When éR,, = 6031, Vec(E,(0) §R, E}(0))
2 means that most second-order algorithms do not requﬂ@fVeC(Es(@)Ej(@))-

the knowledge of covariance matricRs, andR.,. However, Interpretation: We note that Ve¢E,(©)E,(©)*) is a

specified structures are sometimes needed. Some exampledidgdr combination of the vectors Vée; »(©) @ e; x(©)),
given in Section II-B. k =1,..., K, the latter vectors being in the column space of

E,(©) @ E,(©). The larger thea priori knowledge abouR,,

is needed, the less severe the constraints (3.3)—(3.]5)25%%7‘

become. To derive the asymptotic distribution of second-order
2Expressions ODSI,%I are ordinarily deduced from perturbation calculus. €stimators, we need to know the asymptotic distribution of the
30f course, the algorithm does not need to kriBw andR.,. sample covariance matriR, (V).



52 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 50, NO. 1, JANUARY 2002

IV. ROBUSTNESS OFPARAMETER ESTIMATES E (Ve(R.(N) — R,)Vec!(R,(N) — R,)) K.  Therefore,
the noncircular complex Gaussian asymptotic distribution of
) o — R.(N)is characterized b g_ only.

For convenience, the definition of the complex Gaussian dis-  proof: In the example of application 3, wherg is a sum
tribution is recalled. A complex randomx 1 vectory has a of sinusoid signals and an MA process, this theorem is proved
zero-mean complex Gaussian distribution if #pejoint distri- iy [11]. The generalization to the data model (2.1) follows the
bution of the real and imaginary part pfis 2p-zero-mean real same lines. First, (4.2) is straightforwardly proved after tedious
Gaussian, i.e., for any complexx 1 vectorw; the real scalar pyt simple manipulations. Then, to prove (4.1), we adapt the
wiy-+(wiy)" has a zero-mean real Gaussian distribution witfyens of [12, sect. 7.3] to each model. -
variance Remark 1: This theorem extends theorems following the
classic stochastic model assumption (see, e.g., [1] and [2])
to accommodate non-Gaussian and temporally correlated
noise. For Gaussian temporally uncorrelated noisg, and
the cross-term&r  and Cg,  reduce toR, ® R, for
circular complex case [resgR,, ® R, )(I, + K) for real
case] R, ® R,, andR,, ® R, respectively. The non-Gaussian

finite fourth-order moments, the following theorem is proved assumption simply adds a fourth-order term in the expression
' 9 P ‘of Cpr,_, but the temporal correlation assumption completely

_Theor_em L: VN (Vec(R,,(N)) — VedR,,)) converges in .modifies the expression &€z , Cr. . andCg__. When the
distribution to the zero-mean real [resp., complex] Gau35|%rc1)ise is possibl non-Gaussign anaﬂiem oralrscorrel dod
distribution of covarianc€ g, [resp.,Cr,, Cr K] in the real P y P y

. becomes in the circular complex ARMA case (see [4])
case [resp. in the complex case].

A. Asymptotic Distribution of the Sample Covariance Matrix

2wl w4+ wiX,w* + wlSiw

whereE (yy) = bf%,, andE (yy?) = 2. This distribu-
tion, which is denotedv'(0; 331, 32,), is specified by x p pos-
itive definite matrix3; andp x p symmetric matrix¥, and
denotedV(0; 331, X»). For stationary processesandn, with

+1/2
VN (VedR,(N)) — Vec(R,.)) SA(0;Cr, ) Cr, = / S.(N)@S.(NHAf +Q.  (4.9)
[resp.A(0;Cr,,Cr K)]. (4.1) e

whereS,,( ) denotes the power cross-spectral density ma-
trix of n,. If the fourth-order polyspectrum of the components
(ne =1, pOfnyfor ky, ko, ks, ks = 1,...,pis defined as

Furthermore

Jim NCov(VedR,(N))) = Cg, (4.2)
Pk ,ka,kz kg (f7 f/7 f”)

whereC R, T S def
o = E ; .
ead = Cum (n07k1 1 ke s Tt kg s n‘r”,k4)

CRa: = (ES(@) [059) ES(@)) CRS (E:(@) X E:(@)) + CRn P
+(E.(0) L) Cr., (EF(©)®1L,) w (2RI T )
+ (I, ®E,(0)) Cr, , (I,  Ef (0)) (4.3) [Qul )i ptt 4
+1/2 p41/2
with the equation shown at the bottom of the page, with — / pisanlfs f = f)dfdf’
i,j = s,n0rn,s, whereR,(N)'S(1/N) N | sisi, Ry (V) —1/2 J-1y2

/N TN nenf, REVEE (s,57), REYEE (nenjf),

; , denotes the? x p? fourth-order cumulant matrix. Simplified
R, CE (s,s7) and R, “ZE (nn}). formulas of the expressions of the cross-tefis , andCr,
In the complex case, Cd¥ecR.(N))) denotes given in Theorem 1 can be obtained if the sequef®é ®
E(Vec(Ry(N) — Ry)Vec'(R(N) —R,)). We  note RZ),_. ., . is assumed absolutely summablén this
that VeéF(Rm (N) \ Rw) - il vec! (RE(N) . R'I:): 4This condition is satisfied if the sequendg$ andR!, are absolutely sum-
vec (Rf(N) B Rf) = Vec (Rw (N) - Rw) K, and mable or if one of the two sequences is absolutel)}lsummable and the other
therefore,  E (Veq(R.(N) — R;)Vec" (R,(N) — R;))=  bounded.

Cp, = lim NCov(Ved(R,(I)))
Cr, = lim NCov(Veo(R.,(N)))

' ' ¢ ¢ . .
By oo % Sy Yo R @RI, in the circular complex case

: 1 N N t—t’ t—t’
Cr,, = By oo 200y 20— R - OR;
' ) r r t—t’ t—t' . .
+ UMy oo & Dopey Ef\,zl <R; ® R;. ) K, inthe noncircular complex and real case
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case, we get from [13, A10, p. 411], and from Parseval's the- C'g = Jim NE (B(N) —©)(O(N) - e)h)
orem, we get (4.5), shown at the bottom of the page. a T
Remark 2: Detailed expressions &, Cr,, Cr, ., and _Da|9 CrK <Dgl% ) _ (4.10)

Ckr, . depend on the application. For example
+1/2 ) . . Consequently, for second-order algorithms satisfying the
Cr —/ S2(f) [eref @ epelf] df regularity conditions of Section IlI-B, the expressions of the
—1/2 - a ° asymptotic covariance€g and C’g of estimators can be
+_ ruVec (QBB ) Ve (BB ) simplified thanks to the constraints m@'}%x of Lemma 1 and
Cg, , =Diag (|ai|*e1e]'Sn(f1), -, |ax|exel Sn(fi))

+
(4.6) becomeCo = D3Y Cr. <DS',%I)  Co=D39 Cr K

T
andCg, , is the block matrix whosg:, j) block element is ngI%Q , whereCr_ is deduced from the expression of
)

Su(fi), ... r, (4.3) by suppressing some terms. This result is specialized

A to the examples described in Section 1I-B and implies that these
lax|? [ekek] Sa( fz;)) covariance matrices are invariant to the distri_bution and/or

to the temporal correlation of; and n;, depending on the

for  sinusoidal frequency estimation  with  cir-application. This admits the following interpretation: The larger

cular complex additive noise n, of spectral thea priori knowledge abouR; andR,, is needed, the less

density Sn(f), /i,u,deszur‘r(u,,u,,u,,u,) and severe the constraints ddg, Ig are, and the less robust to the

ef“e:f(1767‘27#7._.7ei2(p—1)ﬂf)H_ A similar expression is distribution of the signals the 'second-order estimators become.

obtained for Cg, for blind identification of SIMO FIR

channels when the inpw; is circular complex temporally C. Examples of Applications

uncorrelated of poweb? with msdeszum(st,s;f,st,s;f) and 1) Narrowband DOA EstimationDepending on whether,

[CRS 71]4 = Dlag(|a1| [elel] is

efdef (1 e f ez‘?wa)”; is assumed temporally uncorrelated (an assumption admitted in
y all papers devoted to performance analysis) or correlated, the
+1/2 -
following results hold.
— 4 H H . H
Cr, = /_1/2 o5 lesef @esej] df +r;VedT,)Vec(L,). Result 1: If n, is assumed temporally uncorrelated, the algo-

(4.7) rithms that do not suppose the sources to be spatially uncorre-
We note that instead of the classic Bartlett formulation, whidated are robust to the distribution and to the temporal correla-
is concerned with the sample correlation coefficients sequentien of the sources;.
Theorem 1 is devoted to the sample covariance matrix. This for- Proof: Thanks to the first constraint (3.3)r, is deduced
mulation is better adapted to deriving the asymptotic distribirom the expression &€ i, by suppression of its first term. Fur-
tion of estimated parameters as is derived in Section IV-B. thermore, because the ter@s;  andCg,  of Cg, reduce,
respectively, to the spatial ternis, @ R, andR,, @ R, Cg,

B. Asymptotic Distribution of the Estimated Parameter reduces to

By the regularity condition (3.1), the asymptotic behaviors of
O(N) ande_(N) are directly r(_elated. The standgrq theorem op 4 (E.(0)91,) (R, @R,,) (EF(©) @ T,)
regular functions of asymptotically normal statistics (see e.g.,

[14, p. 122]) applies. + (I, ® E4(0)) (R, ® R,) (I, ® EF (0)) .
Theorem 2:
£ .
VN (B(N) = ©) SN/(0;Co) for © € R This extends the results by Cardoso and Moulines [3] that
[resp. N (0; Ce,C'e) for © € €] (4.8) have shown that the asymptotic performance of most high-res-
. olution covariance-based DOA estimators is independent of the
with distribution of the source signals for independent snapshots. It
Co = lim NE ((@(N) — ©)(O(N) — @)+) is shown [4] that the Toeplization and augmentation techniques,
N— which are based on the source spatial uncorrelation assumption,
alg Ke <Dalg >+ (4.9) are very sensitive to the distribution and to the temporal corre-
Re O.R, lation of the sources in the case of several sources because the

,__Oo Rt @RY) (I +K) = (f+11/22 . (f)df) (L: +K), inthereal case 45)
Rom = _ .
L RLOR, = f+11/22 s n(f)df, in the complex case.
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constraint (3.3) is not satisfied. For only one source, the robust-\We note that this result does not extend to blind MIMO iden-
ness is preserved thanks to constraint (3.4). tification methods because in this case, the fourth-order term of
Result 2: If n, is assumed temporally correlated, all theC g, is no longer structured in the forrm,Ved(I,,)Vec™ (I,,).
second-order algorithms are sensitive to the temporal correlaThis robustness property extends to any second-order algo-
tion of the sources. rithm, where the robustness result is proved by [5] for some sub-
Proof: This is due to the contribution of tern@g, , and  space methods after calculatiflgy i>'“. We note that proving

Cr, , [see (4.5)]inCk, . B this robustness property directly from the expressioﬁ)@{%ﬁ

A realistic example of this situation is given in Section V-A¢qr each specific algorithm would be tedious and cumbersome:
2) Blind Identification of FIR ChannelsFrom the general g0 e.g., the intricate expression[m{gPR in [10].

methodological viewpoint, the second-order algorithms may begrthermore, as a byproduct of our results, we note that the
classified as methods that do not suppose that the inputs asymptotic covarianc€e has the same expression under the
are temporally uncorrelated (e.g., the subspace methods whighmptionss; is Gaussian i.i.d.” ands; are temporally un-
exploit low-rank space—time properties; see, e.g., [5] and ref@gyrelated with any distribution” for all second-order algorithms
ences therein) and methods that explicitly suppose that the iRat suppose, temporally uncorrelated. Therefore, our result
putss, ;. are temporally uncorrelated (e.g., the linear predictiapligates the asymptotic performance and limitation results of
methods, using specific invertibility properties of FIR modelszeng and Tong [6] (which were based on the i.i.d. Gaussian as-
see, e.g., [10] and references therein). sumption of,) for an inputs, temporally uncorrelated with any
Result 3: The blind SIMO identification methods that do nofjstribution.

suppose that the inputg . are temporally uncorrelated are ro- 3 sinusoidal Frequency Estimation for Mixed Spectra Times
bust to the distribution of the inputs but sensitive to the temporgkries:

correlation of the inputs. _ _ Result 5: The second-order algorithms are robust to the dis-
Proof: Thanks to the first constraint (3.3, is deduced tribution of the noisen, but sensitive to its temporal correlation.
from the expression o€r, by suppression of its first term, Proof: Thanks to the fourth constraint (3.6) (whe@e =

wh_ich is the_only term that depends on the fourth-order proBBH) applied to the expression (4.6) 6f_ , the contribution
erties of the inputs; , by way of Cr, . ThereforeCr, reduces of the cumulants, of the noise innovation is canceled in the
to expression of g, which reduces to

Cr, +(E.(®)@L)Cg,, (Ef(©)0T,) (E;(©) @ B,(0)) Cr, (EI(6) @ EJ(0))

s,m

+(L, @ E.(0)) Cr, , (L, @ EF(0)). /2
’ - ) + [ sH ) fesel oeselldr
These methods are sensitive to the temporal correlation of the in- —1/2
puts because the terri, , andCr,, , depend on the temporal +(Ey(©)®1L,)Cr,,, (Ef(©) @ L)
correlation of the inputs, including th(_e case where the noise is + (I, ® E4(©)) Cr, , (Ip ® Ej(@)) . n
temporally uncorrelated because in this c&3g, , = R,®R,, _ _
andCpr = R,®R, [see (4.5), wherR: = 1,_oR,,],where  This result apparently contradicts a Monte Carlo simulation

R, includes temporal correlation in this space—time applicatiofgcently presented in [15] in which the frequency estimators de-
m 9rade with an heavy-tailed probability distribution of the noise.

We note that this result does not extend to blind MIMO iderlD fact, this simulation is presented with a complex circular sym-

tification methods. In this case, time serigs  )x—1... x are metric o-stable distribution of the noise with = 1, for which

assumed independent, and consequeRtlyis structured block neitherE(n,) norE|n,|? are defined,_ and_our analysisis devoted.
diagonal, and the first constraint (3.3) no longer applies. to second-order processes only. Flg. 1 illustrates t.he asymptptlc
Result 4: The blind SIMO identification methods that explic-Performance of the MUSIC algorithm for two equipowered si-
itly suppose that the inputs ;, are temporally uncorrelated arenusmds_ with two cqmplex circular _d|str|but|on_s_ of t_he_n0|_se
robust to the distribution of the inputs. [Gauss,|ar_1 (a) and with the heavy-tailed probablhty dlstrlt_)uuon
Proof: Thanks to the third constraint (3.5) applied to th@f normalized p.d.f2/ (r(1 + “72)2), (b)]. Fig. 1 shows the sim-
expression (4.7) o€ and thanks to the equality |!ar|ty of the b(_ahawor of this algorithm with these two dls.trlbu—
' tions. We notice good agreement between the theoretical and
[E.(©) @ EF (0)] Ve((I) =Vec[E,(0)IEf (©)] the estimated MSE with a domain of validity reducing with
—\Vec [ES(G)Ej(G)] increasing (V = 100, 500, and 3000 for, respectively,= 4,
' 6, and 12). This remark extends to non-Gaussian noise, as ob-
the contribution of the cumulant, of the input signal is can- served in [16] (where, e.g., fogr = 8 andSNR = 20 dB, a

celed in the expression 6fz, , which reduces to good agreement requiréé = 10 000).
11/ 4) Frequency Estimation of Sinusoidal Signals With Very

E E 4 H o Lowpass Envelopes: _
(E:(0) © E:(9)) </_1/2 7slerer @ efef]df) Result 6: The second-order algorithms are robust to the dis-

tribution of the envelopes, ;. of the sinusoidal signals and of
+ the noisen; but sensitive to their temporal correlation.

(Es ©)@ Ip) Proof: Thanks to the first (3.4) and fourth (3.6) constraint
(I,  EX(0)) . m (whereQ; = BB") applied to the first term o€, (4.3) and

x (Ef(©) @ Ef(©)) + Chp,
+(E;(©)21,) Ckg
+ (I, ® E4(©)) Cr

n,8
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ance-based frequency estimation of sinusoidal signals because
the asymptotic Cramér—Rao bounds of the estimated frequen-
cies are inversely proportional to the local signal-to-noise ratio
a;/Sn(fr) [17], but in the case of the DOA and FIR parame-
ters, the asymptotic robustness property (see, e.g., [2]) proved
in the temporally white noise case is questioned. To show the
influence of this noise temporal correlation, we concentrate on
the circular complex narrowband DOA estimation example. In
this case, thanks to result 1 and (4.4) and (4.5), the asymptotic
covariance of the parameter estimates reduces to

+1/2
—1/2
+1/2
+(E.(0)0T,) < / S.(f) Sn(f)df>

—1/2
() x (EY(©) o L) + (I, ® E,(©))

+1/2
x ( / S.(f) @ Ss(f)df>
—1/2

X (I,,@EE(@))) <Dg'7%$>H. (5.1)

Usually, performance analyses are evaluated as a function of the
number of observed snapshots without taking the sampling rate
into account. In fact, depending on the value of this sampling
rate, the collected samples are more or less temporally corre-
lated, and performance is affected. Thus, the interesting ques-
tion arises as to how the asymptotic covariance of the parameter
estimators varies with this sampling ratt¢7; for a fixed ob-
servation intervall’. This will be investigated by considering

the preprocessing operation. The received signals are bandpass
filtered (with bandwidthB) around the center frequency of in-
terest. After frequency down-shifting the sensor signals to base-
band, the complex envelope is generated. If the background
Fig. 1. Theoretical and estimated (100 runs) MSE fef N) with 95% _nOISE 1S Whlte_’ the Contmuous'tlm_e noise envelnpes white
confidence interval (with error bars) by the MUSIC algorithm for twoln the bandwidth[—B/2,+B /2] with a power spectral den-
gq#;govlerlegidg?tflg?idS_aZd GWZirt]Z i\gliinr S(u; wor{;h (fg) - ngg@a?g sity No. n; is circular complex and assumed Gaussian and spa-
ci;cular_Gaussian disgribTJted’ aﬁd (b) circularly distributed with the ndtrmalizébally un(,:orrelate.d' The cross-power s.pectral density m.amx of
p.d.f.2/ (7(1 4 22)?). the continuous-time source envelope is den&@gd’) and lies

in [-B/2,+B/2]. Under these conditions, after sampling the

to the expression (4.6) &, respectively, the ter@x, and comp_lex enve_lope _signals_ at the ray/@s,_the power spectra of
the contribution of the cumulant, of the noise innovation is the discrete-time signals in the bandwidthB/2, +B/2] be-

canceled in the expression@f, , which reduces to come
+1/2 2 H H 1 = k
[, S0 [erelf oesefr+ (B0 0L) Cu, .-z > (- 1)
—1/2 5 oo s
x (EF(©)@I,) + (1, @ E.(©))Cg, , (I, @ Ef(0)). 1 =
Sn(f) :i Z Dlag(Nol[—E—T%:g—T%](f)’
[ k=—oc
Nol_g_p 2 41(0)
V. FURTHER ILLUSTRATIONS :
A. Temporally Correlated Noise Therefore, according to whether the signals are oversampled or

One would expect that the temporal correlation of the noiseibsampled with respect to the Nyquist frequency, the integrals
would modify the asymptotic performance of the covarief (5.11) become the following.
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wherea = NoB denotes the noise power. Fig. 2. Power density spectra for white (0) and MA noise of order (1), (2), (4)
« If 1/Ts < B, the separate terms in the previous intesf zerobe?>"/o for b = 0.8 andf, = 0.4.

grals overlap and, according to the valuelgf Cg, , and

Ck, ., fluctuate around their limit value whey, — oo, white noise assumption can be used. In these circumstances, it
viz. makes sense to study the influence of the correlations between
the components of; and the selected linear transformation
Cr, =R, ®R,, = o—jﬁIpz on the performance of this covariance-based estimator. Consid-
Cg.. =R, ® R, = R, @ o°L,,. ering our functional analysis, Theorem 2 answers this question.

The process, is whitened using the Cholesky decomposition

These values are obtained when the successive snapshoty ©f R." and any unitary matriQ:
are assumed independent. N et
The asymptotic error covariance matrix of the parameéter R, ' = L7 with L'=QL
is now considered as a function of the observation intéfval
NT,. The previous values dfg, andCg, , show that if the and the covariance matrix & becomes
signals are oversampled
R, = L'E,(®)R, (L'E,(0))" +¢2L
T
E((6(1) - 0)(&(T) = ©)F) ~ BT Co> NC@ If alg(.) denotes a second-order algorithm based on the new data
for v 1 modelx, = (L'E;(0))s; +n} and white noise assumption, the

parameters are estimated with the following scheme:
irrespective of the sample ratg'Z;, and if the signals are sub-

sampled e I
P R.(N) — R,(N) SLR. (ML Ho()
alg’
E ((6(T) - ©)(6(T) - ©)7) ~ %c@ :%c@ = R, (V) O(N).
>%C@ Applying the chain differential rule, Theorem 2 applles in

for N >>1andBT, > 1 this situation by replacing in (4.9) and (4. 1@6 by
D29 - DAY, (I’ o I/) because Ve®/, (V) = (I’ o L)
where Co denotes the asymptotic covariance matrix of est\/ec(R (N)).
mated DOA parameters under the snapshot independence aso illustrate the sensitivity of performance to the coloring
sumption. Thereforethe array must be oversampled, and thgf the noise, a numerical study is presented. First, we note
parameter of interest that characterizes performance is not thigat taking into account the expression HMUSTC, it is
number of snapshot¥ but the observation intervaf'. easily proved that the MUSIC algorithm associated with the
prewhitening of the data is insensitive to the choice of the
unitary matrixQ. Consider a complex sinusoid corrupted addi-
In the special case where the covariance majxis known  tively by an MA process of transfer functida — be?27(/o—1))"
up to a multiplicative constant, the whitening of the noise used order» = 1, 2, or 4. The power density spectrum of the
classically in direction of arrival estimation (DOA) (see, e.gnoise is shown in Fig. 2. The sinusoid frequency is estimated
[18]) can be used to advantage because many second-ordefratn the sample covariance matrix of order= 3 by the
gorithms requireR,,, to be proportional to the identity matrix. standard MUSIC algorithm after noise whitening. Fig. 3 plots
In this approach, aften, is whitened by a linear transforma-the theoretical MSE of sinusoid frequencfi(N), where
tion applied tax;, many covariance-based methods based on ti&/ R = 0 dB, andN = 200 as a function off; for white and

B. Whitening Approach
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(3]
(4]
(5]
8
=
(6]
‘ 7]
7 ; . H ; i ; . . (8]
10-0.5 -0.4 0.3 -0.2 -0.1 o 0.1 0.2 0.3 0.4 0.5
sinusoid frequency
Fig. 3. Theoretical MSE of; () versus the frequency; of the complex [9]
sinusoid for (0) white and MA noise of order (1), (2), (4) with= 3, N = 200,
andSNR = 0 dB.
(10]

MA noise of order 1, 2, or 4. This figure shows a degradation
of the performance when the frequengy is in the vicinity  [11]
of the maximum of the power density spectra of the noise.
This result is similar to the performance of the nonlinear leasf; ;)
square estimator [17], where the asymptotic variances are
proportional t0.S,,(f1)/a?, although the MUSIC algorithm [13]
uses knowledge of the noise color contrary to the nonlineaf 4
least square estimator.

[15]

VI. CONCLUSION

In this paper, we have provided a unifying framework to in- 116!
vestigate the asymptotic performance of second-order methods
for parameter estimation under the stochastic model assump-1
tion. Thanks to a functional approach and a matrix-valued refor-
mulated central limit theorem about the sample covariance ma-
trix, we have specified conditions under which the second-orddi8l
algorithms are robust to the temporal correlation and to the dis-
tribution of the signals involved. Our results have been illus-
trated in the context of DOA, FIR, and frequency estimators,
and particular attention has been given to the temporal correla-
tion of the noise and to the whitening approach.

For complex noncircular signals, our analysis did not take
into account the second covariance matrix of the data. An
asymptotic analysis of second-order based-algorithms de
cated to these specific signals is underway.
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