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Neural-Network Classifiers for Recognizing Totally
Unconstrained Handwritten Numerals

Sung-Bae Cho

Abstract—Artificial neural networks have been recognized
as a powerful tool for pattern classification problems, but a
number of researchers have also suggested that straightforward
neural-network approaches to pattern recognition are largely
inadequate for difficult problems such as handwritten numeral
recognition. In this paper, we present three sophisticated neural-
network classifiers to solve complex pattern recognition prob-
lems: multiple multilayer perceptron (MLP) classifier, hidden
Markov model (HMM)/MLP hybrid classifier, and structure-
adaptive self-organizing map (SOM) classifier. In order to verify
the superiority of the proposed classifiers, experiments were
performed with the unconstrained handwritten numeral database
of Concordia University, Montreal, Canada. The three methods
have produced 97.35%, 96.55%, and 96.05% of the recognition
rates, respectively, which are better than those of several previous
methods reported in the literature on the same database.

Index Terms—Handwritten numeral recognition, multiple neu-
ral networks, hidden Markov models, hybrid classifiers, self-
organizing feature maps.

I. INTRODUCTION

UNTIL today, a wide variety of methods have been
proposed to realize the perfect recognizer of handwritten

numerals by computer. Many systems have been developed,
but more work is still required to be able to match human
performance [1]. Recently, on the other hand, the emerg-
ing technology of neural networks has largely exploited to
implement a system toward a pattern recognizer of such level.

Among several models, the multilayer perceptron (MLP)
and Kohonen’s self-organizing map (SOM) have been most
frequently used as a powerful tool for pattern classification
problems. Their strength is in the discriminative power and the
capability to learn and represent implicit knowledge, but they
also have faced to several difficulties in real-world problems.

Once one fixes the structure of the network, the network
adjusts its weights via the learning rule until the optimal
weights are obtained. The corresponding weights along with
the structure of the network create the decision boundaries
in the feature space. In many practical pattern recognition
problems, however, this usual neural-network classifier tends
not to converge to its solution state. Even if the network
converges, the time required for convergence may be too
prohibitive for practical purposes.
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In this paper, we present three sophisticated neural-network
classifiers to recognize the totally unconstrained handwritten
numerals. Two of them are based on the MLP classifiers [mul-
tiple MLP classifier and hidden Markov model (HMM)/MLP
hybrid classifier], and another, the structure-adaptive SOM
classifier, based on the SOM classifier, which can adapt its
structure as well as its weights.

The rest of this paper is organized as follows. In Section II,
we give some background information on this work, such
as the related works on the handwritten numeral recogni-
tion, the database used for the experiments, and the feature
extraction methods used. Section III shows that the MLP
can be formulated as a Bayesian framework, thereby mak-
ing the connection to the statistical pattern classification.
And then we present what the multiple MLP classifier is
along with the possible combination methods. In Sections IV
and V we illustrate the HMM/MLP hybrid classifier and
the structure-adaptive SOM classifier. In order to investigate
the performance of the presented classifiers, experimental
results with the unconstrained handwritten numeral database
of Concordia University, Montreal, Canada, are provided in
Section VI.

II. BACKGROUNDS

A. Related Works

In the past several decades, a wide variety of approaches
have been proposed to attempt to achieve the recognition
system of handwritten numerals. These approaches gener-
ally fall into two categories: statistical method and syn-
tactic method [1]. First category includes techniques such
as template matching, measurements of density of points,
moments, characteristic loci, and mathematical transforms. In
the second category, efforts are aimed at capturing the essential
shape features of numerals, generally from their skeletons or
contours. Such features include loops, endpoints, junctions,
arcs, concavities and convexities, and strokes.

Table I shows the performances of some of the most re-
liable handwritten numeral recognition systems found in the
literature. It also provides information about the size of the
data sets used for training and testing along with the scanning
resolution in PPI (pixels per inch). It is important to realize
that recognition systems cannot be compared simply by their
reported performances since most systems are still tested on
databases with very different characteristics.
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TABLE I
COMPARISONS OF THEBEST RESULTS IN LITERATURE (%)

(a)

(b)

Fig. 1. Sample data for (a) training and (b) test.

B. Database Used

In this paper, we have used the handwritten numeral data-
base of Concordia University, Montreal, Canada, which con-
sists of 6000 unconstrained numerals originally collected from
dead letter envelopes by the U.S. Postal Service at different

Fig. 2. Definition of eight neighborsAk (k = 0; 1; � � � ; 7) of pixel (i; j):

(a) (c)

(b) (d)

Fig. 3. Kirsch masks used for extracting four directional features: (a) hor-
izontal direction, (b) vertical direction, (c) right-diagonal direction, and (d)
left-diagonal direction.

locations in the United States. The numerals of this database
were digitized in bilevel on a 64 224 grid of 0.153 mm
square elements, giving a resolution of approximately 166
PPI [19]. Among the data, 4000 numerals were used for
training and 2000 numerals for testing. Fig. 1 shows some
representative samples taken from the database. We can see
that many different writing styles are apparent, as well as
numerals of different sizes and stroke widths.

C. Feature Extraction

Numerals, whether handwritten or typed, are essentially
line drawings, i.e., one-dimensional structures in a two-
dimensional space. Thus, local detection of line segments
seems to be an adequate feature extraction method. For each
location in the image, information about the presence of a
line segment of a given direction is stored in a feature map
[8]. Especially, in this paper Kirsch masks have been used for
extracting directional features [7].

Kirsch defined a nonlinear edge enhancement algorithm as
follows [20]:

(1)

where

(2)

(3)

Here, is the gradient of pixel the subscripts of
are evaluated modulo 8, and is eight

neighbors of pixel defined as shown in Fig. 2.
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Fig. 4. Overall process of extracting features: four 4� 4 local features from Kirsch masks and one 4� 4 global feature from compressed image.

In this paper, input pattern is size-normalized by 1616
and then directional feature vectors for horizontal (H), vertical
(V), right-diagonal (R), and left-diagonal (L) directions are
calculated from the size-normalized image as follows:

(4)

As a final step in extracting directional features, each 1616
directional feature vector is compressed to 44 feature
vector. Fig. 3 shows the Kirsch masks used for calculating
directional feature vectors.

Moreover, 4 4 compressed image can be considered as a
good candidate for global features. In addition to those two fea-
tures, we have also used a contour feature: 15 complex Fourier
descriptors from the outer contours and simple topological
features from the inner contours.

As a result, available features include five 44 features
(four 4 4 local features and one 4 4 global feature) and
structural features extracted from the contours of the numerals.
Fig. 4 shows the schematic diagram of the steps for extracting
the former features.

III. M ULTIPLE MLP CLASSIFIER

There has been a tremendous growth in the complexity
of the recognition, estimation, and control problems expected
from neural networks. In solving these problems, we are faced
with a large variety of learning algorithms and a vast selec-
tion of possible network architectures. After all the training,
we choose the best network with a winner-take-all cross-
validatory model selection. However, recent theoretical and
experimental work indicates that we can improve performance

Fig. 5. A two-layered MLP architecture.

by considering methods for combining multiple neural net-
works [21]–[25]. In the following, we shall briefly introduce
the MLP as a pattern classifier and describe how to boost the
performance by combining them.

A. MLP Classifier

Fig. 5 shows a two-layered neural network. The network
is fully connected between adjacent layers. The operation of
this network can be thought of as a nonlinear decision-making
process. Given an unknown input and
the output set each output node yields
the output of belonging to this class by

(5)

where is a weight between theth input node and the
th hidden node, is a weight from the th hidden node

to the th class output, and is a sigmoid function such as
The node having the maximum value is

selected as the corresponding class.
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The outputs of the MLP as shown in the above are not
just likelihoods or binary logical values near zero or one. In-
stead, they are estimates of Bayesiana posterioriprobabilities
[26], [27]. With a squared-error cost function, the network
parameters are chosen to minimize the following:

(6)

where is the expectation operator,
the outputs of the network, and the desired
outputs for all output nodes. Performing several treatments
in this formula allows it to cast in a form commonly used
in statistics that provides much insight as to the minimizing
values for [26]

(7)

where is the conditional expectations of and
is the conditional variance of

Since the second term in (7) is independent of the network
outputs, minimization of the squared-error cost function is
achieved by choosing network parameters to minimize the
first expectation term. This term is simply the mean-squared
error between the network outputs and the conditional
expectation of the desired outputs. For a “1” of problem,

equals one if the input belongs to class and zero oth-
erwise. Thus, the conditional expectations are the following:

(8)

which are the Bayesian probabilities. Therefore, for a “1” of
problem, when network parameters are chosen to minimize a
squared-error cost function, the outputs estimate the Bayesian
probabilities so as to minimize the mean-squared estimation
error.

B. Multiple Classifier

The networks train on a set of example patterns and dis-
cover relationships that distinguish the patterns. A network
of a finite size does not often load a particular mapping
completely or it generalizes poorly. Increasing the size and
number of hidden layers most often does not lead to any
improvements. Furthermore, in complex problems such as
character recognition, both the number of available features
and the number of classes are large. The features are neither
statistically independent nor unimodally distributed. Therefore,
if we could make the network consider the only specific part
of the complete mapping, it would perform its job better.

The basic idea of the multiple network classifier is to de-
velop independently trained neural networks with particular
features, and to classify a given input pattern by obtaining a
classification from each copy of the network and then using
a consensus scheme to decide the collective classification by

Fig. 6. The multiple MLP classifier with consensus scheme.n independently
trained neural networks classify a given input pattern by using a consensus
method to decide the collective classification.

utilizing combination methods [21] (see Fig. 6). Two general
approaches, one based on fusion techniques and the other on
voting techniques, form the basis of the methods presented.

There have been proposed various neural-network opti-
mization methods based on combining estimates, such as
boosting, competing experts, ensemble averaging, metropolis
algorithms, stacked generalization, and stacked regression.
A general result from the previous works is that averaging
separate networks improves generalization performance for the
mean squared error. If we have networks of different accuracy,
however, it is obviously not good to take their simple average
or simple voting.

To give a solution to the problem, we have developed a
fusion method that considers the difference of performance of
each network in combining the networks, which is based on the
notion of fuzzy logic, especially the fuzzy integral [28], [29].
This method combines the outputs of separate networks with
importance of each network, which is subjectively assigned as
the nature of fuzzy logic.

The fuzzy integral introduced by Sugeno and the associ-
ated fuzzy measures provide a useful way for aggregating
information. Using the notion of fuzzy measures, Sugeno
developed the concept of the fuzzy integral, which is a
nonlinear functional that is defined with respect to a fuzzy
measure, especially -fuzzy measure.

Definition 1: Let be a finite set and be a
fuzzy subset of The fuzzy integral over of the function

with respect to a fuzzy measureis defined by

(9)

The calculation of the fuzzy integral with respect to a
-fuzzy measure would only require the knowledge of the
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density function, where theth density is interpreted as
the degree of importance of the source toward the final
evaluation. These densities can be subjectively assigned by an
expert or can be generated from data. The value obtained from
comparing the evidence and the importance in terms of the

operator is interpreted as the grade of agreement between
real possibilities and the expectations Hence, fuzzy
integration is interpreted as searching for the maximal grade of
agreement between the objective evidence and the expectation.
For further information, see [29].

IV. HMM/MLP H YBRID CLASSIFIER

Though MLP has been recognized as powerful for pattern
classification problems, current neural-network topologies are
inefficient in modeling temporal structures. An alternative
approach to sequence recognition is to use HMM’s. The
HMM provides a good probabilistic representation of temporal
sequences having large variations and has been widely used
for automatic speech recognition.

The main drawback of an HMM-based recognizer trained
independently, however, is the weak discriminative power. The
maximum likelihood estimation procedures typically used for
training HMM can be suitable to model the time sequential
order and variability of input observation sequences, but the
recognition task requires more powerful discrimination.

This section presents a classifier in which HMM’s provide
an MLP with input vectors through which the temporal varia-
tions are filtered. This classifier takes the likelihoods inside
the HMM’s of all class models and presents them to an
MLP to estimate posterior probabilities better. To evaluate the
performance of the hybrid classifier, we utilize the contour
features of handwritten numerals.

A. Hidden Markov Models

An HMM can be thought of as a directed graph consisting
of nodes (states) and arcs (transitions) representing the
relationships between them. We denote the state at timeas

and an observation sequence as
where each observation is one of the observation symbols
and is the number of observations in the sequence. Each
node stores the initial state probability

and the observation symbol probability
distribution a posterioriprobability of
observation given , and each arc contains the state
transition probability distribution

Using these parameters, the ob-
servation sequence can be modeled by an underlying Markov
chain whose state transitions are not directly observable.

Given a model and an unknown input se-
quence the matching score is obtained
by summing the probability of a sequence of observation
generated by the model over all possible state sequences giving

(10)

Fig. 7. Schematic diagram of an HMM-based recognizer.

Then, we select the maximum as

(11)

and classify the input sample as classA schematic diagram
of the HMM based recognizer is shown in Fig. 7.

For a given an efficient method for computing (10),
known as the forward–backward algorithm, is as follows.

• Initialization:

(12)

• Induction:

(13)

Then the matching score can be calculated by

(14)

Notice that in this equation the score for a model is computed
as a sum over all states of the model, but it is usual to specify
distinguished final states for each model. In that case, the score
is amount to the sum of the forward variables at the
final states.

B. The Hybrid Classifier

The key idea in the proposed HMM/MLP classifier is 1) to
convert a dynamic input sample to a static pattern sequence by
using HMM-based recognizer and 2) to recognize the sequence
by using an MLP-trained classifier. A block diagram of the
hybrid classifier is shown in Fig. 8.

A usual HMM-based recognizer assigns one Markov model
for each class. Recognition with HMM’s involves accumu-
lating scores for an unknown input across the nodes in each
class model, and selecting that class model which provides the
maximum accumulated score. On the contrary, the proposed
classifier replaces the maximum-selection part with an MLP
classifier.
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Fig. 8. The HMM/MLP hybrid classifier.

The hybrid classifier takes the likelihood patterns inside the
HMM’s and presents them to an MLP to estimate posterior
probabilities of class as follows:

(15)

where the is a weight from the th input node at the
th state to the th hidden node, is a weight from the
th hidden node to theth class output, and is a sigmoid

function such as Here, is the
value of the forward variable at the th HMM class
model. Rather than simply selecting the model producing the
maximum value of the proposed classifier have an
MLP perform additional classification with all the likelihood
values inside HMM’s. In this classifier, the HMM yields a kind
of static pattern of which the inherent temporal variations have
been processed and the MLP classifier discriminates them as
belonging to one particular class.

The hybrid classifier automatically focuses on those parts
of the model which are important for discriminating between
sequentially similar patterns. In the conventional HMM-based
approach, only the patterns in the specified class are involved
in the estimation of parameters; there is no role for any
patterns in the other classes. The hybrid classifier uses more
information than the conventional approach; it uses knowledge
of the potential confusions in the particular training data
to be recognized. Since it uses more information, there are
certainly reasons to suppose that the hybrid classifier will
prove superior to the conventional approach. In this classifier,
the MLP will learn prior probabilities as well as to correct the
assumptions made on the probability density functions used
in the HMM’s.

V. STRUCTURE-ADAPTIVE SOM CLASSIFIER

A. -Means Algorithm

Assume a sequence of samples of a vectorial observable
where is the time coordinate, and a set of

variable reference vectors
If the have been initialized in some proper way and

Fig. 9. Kohonen’s self-organizing map.

Fig. 10. Doubly self-organizing neural network. The figure in each circle
means the class that the corresponding node represents.

can somehow be simultaneously compared with each at
each successive instant of time, the best-matching is to
be updated to match even more closely the current In this
way the different reference vectors tend to become specifically
tuned to different domains of the input variable

In general, however, no closed-form solution for the optimal
placement of the is possible and iterative approximation
schemes must be used. By the way, it often turns out to be
more economical to first observe a number of training samples

which are labeled according to the closest vectorsand
then to perform the updating operation in a single step. For
the new vector the average is taken of those that were
identified with vector This algorithm, termed the-means
algorithm, is widely used in pattern recognition, especially for
pattern clustering.

It has been pointed out in several previous works that
Kohonen’s SOM is an iterative version of the-means al-
gorithm, although SOM has a lot of intrinsic merits that a
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(a) (b) (c)

Fig. 11. Map configurations changed through learning. (a) Initial status. (b) Intermediate status. (c) Final status.

neural-network model usually possesses. Therefore, it is not
appropriate to use the SOM for classification problems because
decision accuracy cannot be fine-tuned with the conventional
SOM. Also, it is quite difficult to determine the size and struc-
ture of the network. To overcome these difficulties, several
approaches based on the structure adaptation of the networks
have been recently proposed [30]–[32].

B. Structure-Adaptive SOM

In this section we present a structure-adaptive self-
organizing neural network which is able to simultaneously
determine a suitable number of nodes and the connection
weights between input and output nodes. The basic idea is
very simple.

1) Start with a basic neural network (in our case, 44
map of which each node is fully connected to all input
nodes).

2) Train the current network with the Kohonen’s algorithm
[33].

3) Calibrate the network using known input–output patterns
to determine

a) which node should be replaced with a submap of
several nodes (in our case, 22 map) and

b) which node should be deleted.

4) Unless every node represents a unique class, go to 2).

Note that step 3) positions the node in regions where the
current network does not produce a unique label for the
classification. In our model, the weights of new nodes are
interpolated from those of neighboring nodes.

C. Network Structure and Adaptation

The structure of the network is very similar to Kohonen’s
SOM shown in Fig. 9 except the irregular connectivity in the
map. Fig. 10 shows an instance of the network where each
node represents a unique class. Every node is connected to all
the input nodes with corresponding weights. (Actually, this
is the final network structure obtained for recognizing the

handwritten numerals in our simulation.) The initial map of
the network consists of 4 4 nodes. The weight vector of
node shall be denoted by

The simplest analytical measure for the match ofwith
the may be the inner product which is based on the
Euclidean distancebetween and The minimum distance
defines the winner If we define a neighborhood set
around node at each learning step all the nodes within
are updated, whereas nodes outside are left intact. This
neighborhood is centered around that node for which the best
match with input is found as

(16)

The width or radius of can be time-variable. For a good
global ordering, it is advantageous to let be very wide in
the beginning and shrink monotonically with time [33].

The updating process may read

if
if

(17)

where is a learning rate

D. Insertion of New Nodes

After a constant number of adaptation steps, a node repre-
senting more than one class is replaced with several nodes. (In
our case, we have used a submap of 22 nodes.) Obviously,
this node lies in a region of the input vector space where many
misclassifications occur. If input patterns from different classes
are covered by the same local node and activate this node to
about the same degree, it might be the case where their vectors
of local node activations are nearly identical.

Fig. 11 shows how the network structure changes as some
nodes representing duplicated classes are replaced by several
nodes having finer resolution.

E. Deletion of Nodes

The previous section gives us the way how to extend the
network structure. A necessary consequence thereof is that all
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TABLE II
THE RESULT OF RECOGNITION RATES (%)

Fig. 12. Rejection-versus-error curves (1).

the nodes are connected directly or indirectly to each other.
However, a problem may occur if the pattern space we try to
discriminate has some disconnected regions. A solution can be
found by introducing the deletion of nodes from the structure.
An obvious criterion for a node to be deleted would be that
it has a position in an area of the where the probability
density is zero. For this purpose, we delete some nodes that do
not activate for a long while. In our example, only one node
is deleted at the final map. [See Fig. 11(c).]

VI. EXPERIMENTAL RESULTS

A. Multiple MLP Classifier

To evaluate the performance of the multiple MLP classi-
fier, we have implemented three different networks, each of
which is a two-layer neural network using different features.
MLP MLP and MLP have used the normalized image,
Kirsch features, and the sequence of contour features, respec-
tively. In this fashion each network makes the decision through
its own criterion. Each of the three networks was trained with
4000 samples and tested on 2000 samples from the Concordia
database.

The error backpropagation algorithm was used for the
training and the iterative estimation process was stopped when
an average squared error of 0.9 over the training set was

Fig. 13. Rejection-versus-error curves (2).

Fig. 14. A comparison of the error rates of MLP, HMM, and the hybrid
classifier.

obtained, or when the number of iteration reaches 1000,
which was adopted mainly for preventing networks from
overtraining. The parameter values used for training were:
learning rate is 0.4 and momentum parameter is 0.6. An input
vector is classified as belonging to the output class associated
with the highest output activation.

Table II shows the recognition rates with respect to the
three different networks and their combinations by utilizing
consensus methods like majority voting, average, and the
fuzzy integral. The reliability in the table is computed as the
following equation:

reliability
recognition rate

recognition rate error rate
(18)

where the error rate is the portion of patterns which are
classified incorrectly by the method. As can be seen, every
method of combining multiple MLP produces better results
than individual networks, and the overall classification rate
for the fuzzy integral is higher than those for other consensus
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TABLE III
COMPARISONS OF THEPRESENTED METHOD WITH THE RELATED (%)

TABLE IV
CONFUSION MATRIX FOR THE PROPOSEDMETHOD

methods. Fig. 12 and 13 provide rejection-versus-error curves
that compare the results at the same levels of rejection.

B. HMM/MLP Hybrid Classifier

The next experiment is to recognize the same data set by
HMM and the hybrid classifiers. For the HMM, we have
implemented left–right model in which no transitions are
allowed to states whose indexes are lower than that of the
current state. It was composed of the ten nodes and the eight
observation symbols in each node. The ten nodal matching
scores of all models provided as inputs to the neural network
part of the hybrid classifier.

In order to apply the presented hybrid classifier for the nu-
meral recognition, we have implemented another two-layered
MLP which has 100 input nodes, 20 hidden nodes, and ten
output nodes. The input was provided by the ten HMM models
consisting of ten nodes.

Fig. 14 compares the error rates of all the three methods.
The overall recognition rate for the ten classes with hybrid
classifier is 96.55%. This is a significant improvement over the
performance obtained with the HMM trained with maximum
likelihood (ML) optimization (93.95% recognition rate), as

well as with the MLP using the direction sequences of digit
contour as inputs (95.10% recognition rate).

In summary, the hybrid classifier gave a better discrimi-
native capability over the conventional HMM classifiers. We
may thus assert that these improvements are mainly due to the
excellent discriminative capability of MLP. In the problem
of recognizing off-line characters, however, it has to be
considered seriously to devise a robust method for extracting
sequential features before attempting to use the HMM-based
method.

C. Structure-Adaptive SOM Classifier

Table III shows the performance of the presented method
along with the results produced by some previous methods
reported on the same database. Even though some of the
previous methods produce relatively higher reliability, it must
be acknowledged that it uses a highly tuned architecture. The
error rate of the proposed classifier is 3.95%, which is a big
improvement compared with those of the previous methods,
but in terms of the reliability this result cannot be said as
excellent. Further work is in progress toward emphasizing
this aspect by introducing the reject criteria to the decision
process.
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Table IV reports the confusion matrix for the proposed
method with respect to the data set. It can be seen from this
table that most of the confusion makes sense: For example,
“0” has three instances of misclassification, as “2,” “6,” and
“8,” respectively, all of which are just neighbors to the correct
node in the map produced by the classifier obtained in the
simulation. [See Fig. 11(c).]

This is a strong evidence that the classifier made by the
proposed neural network preserves the topological ordering
of the input patterns, the handwritten numerals. In order to
improve the performance in this point, we are attempting to
incorporate the concept of-nearest neighbor rule into the
decision of the final class.

VII. CONCLUDING REMARKS

In this paper, we have presented three sophisticated neural-
network classifiers to recognize the totally unconstrained hand-
written numerals: multiple MLP classifier, HMM/MLP hybrid
classifier, and structure-adaptive SOM classifier. All of them
have produced better results than several previous methods
reported in the literature on the same database. Actually,
the proposed methods have a small, but statistically signifi-
cant advantage in recognition rates obtained by
the conventional methods. We have found that the proposed
neural-network classifiers might solve the complex classifica-
tion problem.

Although the multiple MLP classifier was the best in this
simulation, each classifier has its own merits and gives some
possibility to enlarge the conventional neural-network clas-
sifiers for real-world problems. The multiple MLP classifier
leads to a reliable recognizer without great effort to fine-
tune the individual MLP classifiers. Also, the HMM/MLP
hybrid classifier complements each method for improving the
overall performance, and the structure-adaptive SOM classifier
automatically finds a network structure and size suitable for
the classification of complex patterns through the ability of
structure adaptation.

Even though our work to date is concentrated on handwrit-
ten numeral recognition, we believe that the methods presented
can be easily generalized to more difficult problems, such as
handwritten Roman character recognition and Hangul (Korean
script) recognition. The further works are under going with the
more difficult task of recognizing handwritten Hangul.
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