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Neural-Network Classifiers for Recognizing Totally
Unconstrained Handwritten Numerals

Sung-Bae Cho

Abstract—Aurtificial neural networks have been recognized In this paper, we present three sophisticated neural-network
as a powerful tool for pattern classification problems, but a classifiers to recognize the totally unconstrained handwritten
number of researchers have also suggested that straightforward numerals. Two of them are based on the MLP classifiers [mul-
neural-network approaches to pattern recognition are largely . ' - .
inadequate for difficult problems such as handwritten numeral tiPle MLP classifier and hidden Markov model (HMM)/MLP
recognition. In this paper, we present three sophisticated neural- hybrid classifier], and another, the structure-adaptive SOM
network classifiers to solve complex pattern recognition prob- classifier, based on the SOM classifier, which can adapt its
lems: multiple multilayer perceptron (MLP) classifier, hidden structure as well as its weights.

Markov model (HMM)/MLP hybrid classifier, and structure- - . - .
adaptive self-organizing map (SOM) classifier. In order to verify Th? rest of this paper is organized as follows. In Section Il
the superiority of the proposed classifiers, experiments were W€ give some background information on this work, such
performed with the unconstrained handwritten numeral database as the related works on the handwritten numeral recogni-
ﬁ;\%or‘fgéﬂigegg‘;eggg}’: gﬂsogg;al'a(r?gng%dgé;—hgftmgerenggtm?ggn tion, the database used for the experiments, and the feature
rates,F;espectively,.whig,h aré be'?t’er than thoseoof several pr%vious extraction methods used. Sect_lon Il shows that the MLP
methods reported in the literature on the same database. can be formulated as a Bayesian framework, thereby mak-
, i . ing the connection to the statistical pattern classification.

Index Terms—Handwritten numeral recognition, multiple neu- . e
ral networks, hidden Markov models, hybrid classifiers, seif- And then we present what the multiple MLP classifier is
organizing feature maps. along with the possible combination methods. In Sections IV
and V we illustrate the HMM/MLP hybrid classifier and
the structure-adaptive SOM classifier. In order to investigate
the performance of the presented classifiers, experimental
UNTIL today, a wide variety of methods have beemesults with the unconstrained handwritten numeral database

proposed to realize the perfect recognizer of handwrittesi Concordia University, Montreal, Canada, are provided in
numerals by computer. Many systems have been developgdction VI.
but more work is still required to be able to match human
performance [1]. Recently, on the other hand, the emerg-
ing technology of neural networks has largely exploited to
implement a system toward a pattern recognizer of such level.

Among several models, the multilayer perceptron (MLP‘)\' Related Works
and Kohonen'’s self-organizing map (SOM) have been mostin the past several decades, a wide variety of approaches
frequently used as a powerful tool for pattern classificatidmve been proposed to attempt to achieve the recognition
problems. Their strength is in the discriminative power and tisystem of handwritten numerals. These approaches gener-
capability to learn and represent implicit knowledge, but theglly fall into two categories: statistical method and syn-
also have faced to several difficulties in real-world problemsactic method [1]. First category includes techniques such

Once one fixes the structure of the network, the netwods template matching, measurements of density of points,
adjusts its weights via the learning rule until the optimahoments, characteristic loci, and mathematical transforms. In
weights are obtained. The corresponding weights along witie second category, efforts are aimed at capturing the essential
the structure of the network create the decision boundarisape features of numerals, generally from their skeletons or
in the feature space. In many practical pattern recogniti@ontours. Such features include loops, endpoints, junctions,
problems, however, this usual neural-network classifier tenacs, concavities and convexities, and strokes.
not to converge to its solution state. Even if the network Table | shows the performances of some of the most re-
converges, the time required for convergence may be ttable handwritten numeral recognition systems found in the
prohibitive for practical purposes. literature. It also provides information about the size of the
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TABLE |
COMPARISONS OF THEBEST RESULTS IN LITERATURE (%)

Methods Correct Error Training Testing PPI
Ahmed [2] 87.85 12.15 5000 3540 166

Beun [3] 90.87 9.13 15000 10000
Cohen [4] 95.54 4.46 2711 300
Cohen [4] 97.10 2.90 1762 300

Duerr [5] 99.50 0.50 5000 5000
Gader [6] 96.35 3.65 6000 166
Gader [6] 98.20 1.80 2219 300

Knerr [8] 90.30 9.70 7200 1800
Krzyzak [9] 86.40 13.60 4000 2000 166
Krzyzak [9] 94.85 5.15 4000 2000 166
Kuan [10] 93.30 6.70 1820 7100 300
Lam [11] 93.10 6.90 4000 2000 166
Le Cun [12] 90.00 10.00 7291 2007 300
Le Cun [12] 92.00 8.00 7291 2007 300
Kim [7] 95.40 4.60 4000 2000 166
Kim [7] 95.85 4.15 4000 2000 166
Legault [13] 93.90 6.10 4000 2000 166

Lemarie [14] 97.97  2.03 8783 7394
Mai [15] 92.95 7.05 4000 2000 166

Mitchell {16]  87.95 12.05 2103
Nadal [17] 86.05 13.95 4000 2000 166

Stringa [18] 92.60 7.40 19377 19377
Suen [19] 93.05 6.95 4000 2000 166
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Fig. 1. Sample data for (a) training and (b) test.

= 3¢

Wl W W
KNSR

B. Database Used

In this paper, we have used the handwritten numeral data-
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Fig. 2. Definition of eight neighborsl;, (k =0,1,---,7) of pixel (¢, j).
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Fig. 3. Kirsch masks used for extracting four directional features: (a) hor-
izontal direction, (b) vertical direction, (c) right-diagonal direction, and (d)
left-diagonal direction.

locations in the United States. The numerals of this database
were digitized in bilevel on a 64 224 grid of 0.153 mm
square elements, giving a resolution of approximately 166
PPI [19]. Among the data, 4000 numerals were used for
training and 2000 numerals for testing. Fig. 1 shows some
representative samples taken from the database. We can see
that many different writing styles are apparent, as well as
numerals of different sizes and stroke widths.

C. Feature Extraction

Numerals, whether handwritten or typed, are essentially
line drawings, i.e., one-dimensional structures in a two-
dimensional space. Thus, local detection of line segments
seems to be an adequate feature extraction method. For each
location in the image, information about the presence of a
line segment of a given direction is stored in a feature map
[8]. Especially, in this paper Kirsch masks have been used for
extracting directional features [7].

Kirsch defined a nonlinear edge enhancement algorithm as
follows [20]:

G(i, j) = max{1, Iggg[|5sk — 3731} @)
where

Sk =Ap + Apg1 + Ay ()
Ty = Agy3 + Apta + Apys + Akte + Arrre. 3)

base of Concordia University, Montreal, Canada, which cofiere, G(z, 7) is the gradient of pixel%, j), the subscripts of
sists of 6000 unconstrained numerals originally collected from are evaluated modulo 8, andl, (k = 0,1,---,7) is eight
dead letter envelopes by the U.S. Postal Service at differertighbors of pixeki, ) defined as shown in Fig. 2.
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16 %16

Fig. 4. Overall process of extracting features: foux 4 local features from Kirsch masks and onex44 global feature from compressed image.

In this paper, input pattern is size-normalized by 2616
and then directional feature vectors for horizontal (H), vertical
(V), right-diagonal (R), and left-diagonal (L) directions are
calculated from the size-normalized image as follows:

G(i, j)n = max(|5So — 3To|, |54 — 3T4|) X
G(i, 5)v = max(|5Sy — 3T3|, 556 — 3T5|)

G(i, j)r = max(|551 — 311/, |5S5 — 3T3|)

G(i,j)L = max(|553 — 3T3],|557 — 3Tx]).  (4)

As a final step in extracting directional features, eachk186 Fig 5. A two-layered MLP architecture.
directional feature vector is compressed tox44 feature

vector. Fig. 3 shows the Kirsch masks used for calculatinb% ideri hods f bini ol |
directional feature vectors. considering methods for combining multiple neural net-

Moreover, 4x 4 compressed image can be considered aé/vgrks [21]-[25]. In the following, we shall briefly introduce

good candidate for global features. In addition to those two fe € MLP as a pattern classifier and describe how to boost the

tures, we have also used a contour feature: 15 complex Fouﬁgrformance by combining them.
descriptors from the outer contours and simple topological B
features from the inner contours. A. MLP Classifier

As a result, available features include fivex44 features Fig. 5 shows a two-layered neural network. The network
(four 4 x 4 local features and one % 4 global feature) and s fully connected between adjacent layers. The operation of
structural features extracted from the contours of the numeralgis network can be thought of as a nonlinear decision-making
Fig. 4 shows the schematic diagram of the steps for extractipgbcess. Given an unknown inpiit = (z1,22, -, z7) and
the former features. the output sef2 = {w1, ws,--,w.}, each output node yields

the outputy; of belonging to this class by

lll. MULTIPLE MLP CLASSIFIER

There has been a tremendous growth in the complexity yi=f wa,z" Zwﬁ%l (5)
of the recognition, estimation, and control problems expected k J

from neural networks. In solving these problems, we are faced

with a large variety of learning algorithms and a vast seleetere wﬁ” is a weight between the¢th input node and the
tion of possible network architectures. After all the trainingsth hidden nodew;™ is a weight from thekth hidden node
we choose the best network with a winner-take-all cros® theith class output, and is a sigmoid function such as
validatory model selection. However, recent theoretical andz) = 1/(1+ ¢~*). The node having the maximum value is
experimental work indicates that we can improve performanselected as the corresponding class.



46 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 8, NO. 1, JANUARY 1997

The outputs of the MLP as shown in the above are not
just likelihoods or binary logical values near zero or one. In-

o
stead, they are estimates of Bayesagposterioriprobabilities N Eg
[26], [27]. With a squared-error cost function, the network ﬁé
parameters are chosen to minimize the following: u

B> (ni(X) - d»?] (6)
=1
where E[-] is the expectation operatofy;(X): ¢ =1,---,¢c} —

the outputs of the network, andl;: ¢ = 1,---, ¢} the desired X —
outputs for all output nodes. Performing several treatments

in this formula allows it to cast in a form commonly used

in statistics that provides much insight as to the minimizing
values fory;(X) [26]

FEATURE
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C

Z(%(X) — E[d;|X])*
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> var [di|X]] @)
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where E[d;|X] is the conditional expectations af; and
var[d;| X] is the conditional variance af;.
Since the second term in (7) is independent of the netwoﬂg. 6. The multiple MLP classifier with consensus schemedependently
L . trained neural networks classify a given input pattern by using a consensus
outputs, minimization of the squared-error cost function |Sethod to decide the collective classification.
achieved by choosing network parameters to minimize the
first expectation term. This term is simply the mean-squared

error between the network outpusX) and the conditional utilizing combination methods [21] (see Fig. 6). Two general
expectation of the desired outputs. For a “1” Jaf problem approaches, one based on fusion techniques and the other on

d; equals one if the inpuk belongs to class; and zero oth- voting techniques, form the basis of the methods presented.

erwise. Thus, the conditional expectations are the following: 1Nere have been proposed various neural-network opti-
mization methods based on combining estimates, such as

boosting, competing experts, ensemble averaging, metropolis
algorithms, stacked generalization, and stacked regression.
A general result from the previous works is that averaging
separate networks improves generalization performance for the
which are the Bayesian probabilities. Therefore, for a“1A6f Mean squared error. If we have networks of different accuracy,
problem, when network parameters are chosen to minimiz/@VeVer, it is obviously not good to take their simple average

squared-error cost function, the outputs estimate the Bayes¥rSimple voting.

probabilities so as to minimize the mean-squared estimation!® 9ive a solution to the problem, we have developed a
error. fusion method that considers the difference of performance of

each network in combining the networks, which is based on the

notion of fuzzy logic, especially the fuzzy integral [28], [29].

i This method combines the outputs of separate networks with
The networks train on a set of example patterns and djgsportance of each network, which is subjectively assigned as

cover relationships that distinguish the patterns. A netwogke nature of fuzzy logic.

of a finite size does not often load a particular mapping The fuzzy integral introduced by Sugeno and the associ-

completely or it generalizes poorly. Increasing the size apgeq fuzzy measures provide a useful way for aggregating

number of hidden layers most often does not lead t0 afformation. Using the notion of fuzzy measures, Sugeno

improvements. Furthermore, in complex problems such 88veloped the concept of the fuzzy integral, which is a

character recognition, both the number of available featurggniinear functional that is defined with respect to a fuzzy
and the number of classes are large. The features are neitfighsyre, especially,-fuzzy measure.

statistically independent nor unimodally distributed. Therefore, pefinition 1: Let X be a finite set and: X — [0,1] be a
if we could make the network consider the only specific paflizzy subset oft. The fuzzy integral over of the function

of the complete mapping, it would perform its job better. ;, with respect to a fuzzy measuteis defined by
The basic idea of the multiple network classifier is to de-

velopn independently trained neural networks with particular h(z)og(-) = gléx))g[lnin(;réiél h(z), g(E))]. 9)
features, and to classify a given input pattern by obtaining a -

classification from each copy of the network and then using The calculation of the fuzzy integral with respect to a
a consensus scheme to decide the collective classificationgqyfuzzy measure would only require the knowledge of the

Eld;|X] = ZdiP(wﬂX)

= P(wilX) (8)

B. Multiple Classifier
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density function, where théth density ¢’ is interpreted as
the degree of importance of the sourgetoward the final
evaluation. These densities can be subjectively assigned by a
expert or can be generated from data. The value obtained from
comparing the evidence and the importance in terms of the
min operator is interpreted as the grade of agreement betwee
real possibilitiesh(y) and the expectationg. Hence, fuzzy
integration is interpreted as searching for the maximal grade of
agreement between the objective evidence and the expectation.
For further information, see [29].

IV. HMM/MLP H YBRID CLASSIFIER

Though MLP has been recognized as powerful for pattern
classification problems, current neural-network topologies are
inefficient in modeling temporal structures. An alternativE'9- 7- Schematic diagram of an HMM-based recognizer.
approach to sequence recognition is to use HMM's. The
HMM provides a good probabilistic representation of tempordhen, we select the maximum as
sequences having large variations and has been widely used
for automatic speech recognition.

_ The main drawback of an HMM-based recognizer trainegq ¢|assify the input sample as classA schematic diagram
lndepender_ltly,.however: is the weak d|scr|m|nat.|ve power. Th tha HMM based recognizer is shown in Fig. 7.
maximum likelihood estimation procedures typically used for For a given);, an efficient method for computing (10),

training HMM can be suitable to model the time sequenti%own as the forward—backward algorithm, is as follows.
order and variability of input observation sequences, but the. Initialization:

recognition task requires more powerful discrimination.

This section presents a classifier in which HMM's provide aq (k) = mpbr (1), 1<ELSN. 12)
an MLP with input vectors through which the temporal varia-
tions are filtered. This classifier takes the likelihoods inside *
the HMM’s of all class models and presents them to an N
MLP to estimate posterior probabilities better. To evaluate the @t+1(J) = [Z Oét(/f)akj] bj(e41), I<t<T-1
performance of the hybrid classifier, we utilize the contour k=1
features of handwritten numerals. (13)

" = arg max P(X|\;), 1<i<ec (11)

Induction:

Then the matching score can be calculated by
A. Hidden Markov Models

N
An HMM can be thought of as a directed graph consisting P(X|\) =) ar(k). (14)
of N nodes (states) and arcs (transitions) representing the k=1

relationships between them. We denote the state atia® Notice that in this equation the score for a model is computed

@, and an observatpn sequence .&s = (37173723 *,Z7T), as asum over all states of the model, but it is usual to specify

where each observatian is one of the observation symbolsgjstinguished final states for each model. In that case, the score

and 7" is the number of observations in the sequence. Eaghamount to the sum of the forward variables (k) at the
node stores the initial state probability= {7;|7; = P(¢1 = final states.

1),¢ = 1,2,---,N} and the observation symbol probability
distribution B = {b;(X,)|b;(X;) = a posterioriprobability of B The Hybrid Classifier

observationX, giveng; = j}, and each arc contains the state The kev idea in th d HMM/MLP classifier is 1
transition probability distributiotd = {a;;|a;; = P(g41 = € key 1dea |_n t € propose . classifier is 1) 1o
convert a dynamic input sample to a static pattern sequence by

Jlae =19),t,5=1,2,---,N}. Using these parameters, the ob-"" _ )
servation sequence can be modeled by an underlying Marlﬁﬁ)ng HMM-based recognizer and 2) to recognize the sequence

chain whose state transitions are not directly observable. hybuing: an'fl'vlLl'D—trar:ned glals:§|f|e8r. A block diagram of the
Given a model); = (4, B,7) and an unknown input se- ybnd classierIs shown in F1g. ©.

quenceX = (1, zs, - - -, 1), the matching score is obtained A usual HMM-based recognizer assigns one Markov model

by summing thé p;oba7bility7 of a sequence of observaibn for each class. Recognition with HMM's involves accumu-

enerated by the model over all possible state sequences |\}fﬁ . i .
g y P g g c a@s model, and selecting that class model which provides the

T maximum accumulated score. On the contrary, the proposed
P(XI\)= > mgbg (1) [[agiqbe (@) (10) classifier replaces the maximum-selection part with an MLP
91,92, t=2 classifier.
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Fig. 8. The HMM/MLP hybrid classifier. ) o
Fig. 9. Kohonen’s self-organizing map.

The hybrid classifier takes the likelihood patterns inside the
HMM'’s and presents them to an MLP to estimate posterior
probabilities of class.; as follows:

T N

H
Pwi|X) m O wil f1 YD withar(4,0) (15)
k=1

Jj=11=1

where thewzﬁ is a weight from thejth input node at the
Ith state to thekth hidden nodew{;" is a weight from the
kth hidden node to théth class output, ang is a sigmoid
function such asf(z) = 1/(1 + e~*). Here, ap(j,1) is the
value of the forward variablexr(I) at the jth HMM class
model. Rather than simply selecting the model producing the
maximum value ofP(X|};), the proposed classifier have an
MLP perform additional classification with all the likelihood
values inside HMM's. In this classifier, the HMM yields a kind
of static pattern of which the inherent temporal variations have
been processed and the MLP classifier discriminates them a
belonging to one particular class.

The hybrid classifier automatically focuses on those parts
of the model which are important for discriminating betweefig. 10. Doubly self-organizing neural network. The figure in each circle
sequentially similar patterns. In the conventional HMM-basgfans the class that the corresponding node represents.
approach, only the patterns in the specified class are involved
in the egtimation of parameters; therg Is no _role for an somehow be simultaneously compared with eagh) at
patterns in the other classes. The hybrid classifier uses mig, o,ccegsive instant of time, the best-matchif(@) is to
information than the conventional approach; it uses knowledg

of the potential confusions in the particular trainin data(‘g updated to match even more closely the cuiréat In this
0 be r:co nized. Since it Uses morF()a information thgere V}/gy the different reference vectors tend to become specifically
gnized. St tu : lon, Ahed to different domains of the input variabte

certainly reasons to suppose that the hybrid classifier le . .
: . . ... In general, however, no closed-form solution for the optimal

prove superior to the conventional approach. In this classifier . . . . L
lacement of thew; is possible and iterative approximation

the MLP will learn prior probabilities as well as to correct th .

. o . . s%hemes must be used. By the way, it often turns out to be

assumptions made on the probability density functions use . . .

in the HMM's. more ec-onomlcal to first observe a number of training samples

x(t), which are labeled according to the closest vectgrsand

then to perform the updating operation in a single step. For

the new vectotw;, the average is taken of thos€t) that were

. identified with vector:i. This algorithm, termed thé&-means

A. K-Means Algorithm algorithm, is widely used in pattern recognition, especially for
Assume a sequence of samples of a vectorial observap&tern clustering.

x = z(t) € R", wheret is the time coordinate, and a set of It has been pointed out in several previous works that

variable reference vectoray;(t): w; € R",i = 1,2,---,k}. Kohonen’s SOM is an iterative version of ttlemeans al-

If the w; (0) have been initialized in some proper way arid) gorithm although SOM has a lot of intrinsic merits that a

V. STRUCTUREADAPTIVE SOM QLASSIFIER
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Fig. 11. Map configurations changed through learning. (a) Initial status. (b) Intermediate status. (c) Final status.

neural-network model usually possesses. Therefore, it is mandwritten numerals in our simulation.) The initial map of
appropriate to use the SOM for classification problems becauke network consists of 4« 4 nodes. The weight vector of
decision accuracy cannot be fine-tuned with the conventiomadde: shall be denoted by, € R".
SOM. Also, it is quite difficult to determine the size and struc- The simplest analytical measure for the matchzofvith
ture of the network. To overcome these difficulties, severtile w; may be the inner produet? w;, which is based on the
approaches based on the structure adaptation of the netwdtkslidean distancéetween: andw;. The minimum distance
have been recently proposed [30]-[32]. defines the winner.. If we define a neighborhood sé¥.
around node:, at each learning step all the nodes withif
are updated, whereas nodes outside are left intact. This
B. Structure-Adaptive SOM neighborhood is centered around that node for which the best
In this section we present a structure-adaptive sefRatch with inputz is found as
organizing neural network which is able to simultaneously
determine a suitable number of nodes and the connection
weights between input and output nodes. The basic ide
very simple.

[l = we[| = ming [l —wi|}. (16)

a1'Re width or radius ofN, can be time-variable. For a good
global ordering, it is advantageous to I8t be very wide in

1) Start with a basic neural network (in our casex44  the peginning and shrink monotonically with time [33].
map of which each node is fully connected to all input Tpe updating process may read

nodes).

2) Train the current network with the Kohonen's algorithm ;| 1y — { wi(t) + a()z(t) —wi®)] i i € N()
[33]. w;(t) if i & Ne(t)

3) Calibrate the network using known input—output patterns (17)

to determine

a) which node should be replaced with a submap
Several nOdes (|n our CaSG,)QZ map) and D. Insertion of New Nodes

b) which node should be deleted. After a constant number of adaptation steps, a node repre-

4) Unless every node represents a unique class, go to Zenting more than one class is replaced with several nodes. (In
Note that step 3) positions the node in regions where tber case, we have used a submap of 2 nodes.) Obviously,
current network does not produce a unique label for thkis node lies in a region of the input vector space where many
classification. In our model, the weights of new nodes arrisclassifications occur. If input patterns from different classes
interpolated from those of neighboring nodes. are covered by the same local node and activate this node to
about the same degree, it might be the case where their vectors
of local node activations are nearly identical.

Fig. 11 shows how the network structure changes as some

The structure of the network is very similar to Kohonen'sodes representing duplicated classes are replaced by several
SOM shown in Fig. 9 except the irregular connectivity in theodes having finer resolution.
map. Fig. 10 shows an instance of the network where each _
node represents a unique class. Every node is connected té&alPelétion of Nodes
the input nodes with corresponding weights. (Actually, this The previous section gives us the way how to extend the
is the final network structure obtained for recognizing theetwork structure. A necessary consequence thereof is that all

g\%here a(t) is a learning raté) < «e(t) < 1.

C. Network Structure and Adaptation
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TABLE I 3.5
THE RESULT OF RECOGNITION RATES (%)
Voti
Methods Recognized Substituted Rejected Reliability 30 F >~ e A:elr':;e
MLP, 89.05 7.00 3.95 92.71 ) - Fuzzy
MLP, 95.40 3.75 0.85 96.22
MLP3 93.95 4.10 1.95 95.82 2.5
Voting 96.70 3.05 0.25 96.94
Average 97.15 2.35 0.50 97.64 20
Fuzzy 97.35 2.30 0.35 97.69 5
L
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Fig. 13. Rejection-versus-error curves (2).
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Fig. 12. Rejection-versus-error curves (1).
2. .......
the nodes are connected directly or indirectly to each other.
However, a problem may occur if the pattern space we try to

discriminate has some disconnected regions. A solution can be MLP ' HMM Hybrid

found by introducing the deletion of nodes from the structure, ) ]
An obvious criterion for a node to be deleted would be th§f% 12 # comparison of the error rates of MLP, HMM, and the hybrid
it has a position in an area of the” where the probability

density is zero. For this purpose, we delete some nodes that do

not activate for a long while. In our example, only one nod@Pt@ined, or when the number of iteration reaches 1000,
is deleted at the final map. [See Fig. 11(c).] which was adopted mainly for preventing networks from

overtraining. The parameter values used for training were:
learning rate is 0.4 and momentum parameter is 0.6. An input
vector is classified as belonging to the output class associated
A. Multiple MLP Classifier with the highest output activa}t?on. .
Table Il shows the recognition rates with respect to the
To evaluate the performance of the multiple MLP classinree different networks and their combinations by utilizing
fier, we have implemented three different networks, each ghnsensus methods like majority voting, average, and the

which is a two-layer neural network using different featuregzzy integral. The reliability in the table is computed as the
MLPy,MLP,, and MLP; have used the normalized imagefouowing equation:

Kirsch features, and the sequence of contour features, respec- "

tively. In this fashion each network makes the decision through reliability = rggognmon rate x 100 (18)

its own criterion. Each of the three networks was trained with recognition ratet- error rate

4000 samples and tested on 2000 samples from the Concorkdieere the error rate is the portion of patterns which are

database. classified incorrectly by the method. As can be seen, every
The error backpropagation algorithm was used for thwmethod of combining multiple MLP produces better results

training and the iterative estimation process was stopped wtthan individual networks, and the overall classification rate

an average squared error of 0.9 over the training set whas the fuzzy integral is higher than those for other consensus

VI. EXPERIMENTAL RESULTS
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TABLE 11l
COMPARISONS OF THEPRESENTED METHOD WITH THE RELATED (%)
Methods Recognized Substituted Rejected Reliability

Kim [7] 95.40 4.60 0.00 95.40

Kim [7] 95.85 4.15 0.00 95.85

Krzyzak [9] 86.40 1.00 12.60 98.85

Krzyzak [9] 94.85 5.15 0.00 94.85

Lam [11] 93.10 2.95 3.95 96.98

Legault [13] 93.90 1.60 4.50 98.32

Mai [15) 92.95 2.15 4.90 97.74

Nadal [17] 86.05 2.25 11.70 97.45

Suen [19] 93.05 0.00 6.95 100.00

Proposed method 96.05 3.95 0.00 96.05

TABLE IV
CONFUSION MATRIX FOR THE PROPOSED METHOD
Class 0 1 2 3 4 5 6 7 8 9  Recognized

0 197 0 1 0 0 0 1 0 1 0 98.5%
1 0 192 4 1 0 0 2 0 1 0 96.0%
2 0 0 189 3 2 1 0 1 3 1 94.5%
3 0 2 2 190 0 0 0 1 3 2 95.0%
4 0 3 0 0 193 0 1 1 1 1 96.5%
5 1 0 0 1 0 193 2 1 2 0 96.5%
6 2 1 0 0 0 2 191 O 4 0 95.5%
7 0 6 0 0 0 0 0 193 1 0 96.5%
8 1 0 2 2 0 2 5 0 188 0 94.0%
9 1 0 1 0 0 1 1 1 0 195 97.5%
Average 96.05%

methods. Fig. 12 and 13 provide rejection-versus-error curwesll as with the MLP using the direction sequences of digit
that compare the results at the same levels of rejection. contour as inputs (95.10% recognition rate).
In summary, the hybrid classifier gave a better discrimi-
native capability over the conventional HMM classifiers. We
B. HMM/MLP Hybrid Classifier may thus assert that these improvements are mainly due to the

The next experiment is to recognize the same data set ellent discriminative capability of MLP. In the problem

HMM and the hybrid classifiers. For the HMM, we have®’ récognizing off-line characters, however, it has to be
implemented left—right model in which no transitions ar§onsidered seriously to devise a robust method for extracting

allowed to states whose indexes are lower than that of thgduential features before attempting to use the HMM-based

current state. It was composed of the ten nodes and the eiﬁ}?tthc’d'

observation symbols in each node. The ten nodal matching ] -

scores of all models provided as inputs to the neural netwdrk Structure-Adaptive SOM Classifier

part of the hybrid classifier. Table 11l shows the performance of the presented method
In order to apply the presented hybrid classifier for the nalong with the results produced by some previous methods

meral recognition, we have implemented another two-layeresported on the same database. Even though some of the

MLP which has 100 input nodes, 20 hidden nodes, and tprevious methods produce relatively higher reliability, it must

output nodes. The input was provided by the ten HMM modeltge acknowledged that it uses a highly tuned architecture. The

consisting of ten nodes. error rate of the proposed classifier is 3.95%, which is a big
Fig. 14 compares the error rates of all the three methodsiprovement compared with those of the previous methods,

The overall recognition rate for the ten classes with hybriout in terms of the reliability this result cannot be said as

classifier is 96.55%. This is a significant improvement over tlexcellent. Further work is in progress toward emphasizing

performance obtained with the HMM trained with maximunthis aspect by introducing the reject criteria to the decision

likelihood (ML) optimization (93.95% recognition rate), agrocess.
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Table IV reports the confusion matrix for the proposed[3] M. Beun, “A flexible method for automatic reading of handwritten

method with respect to the data set. It can be seen from th
table that most of the confusion makes sense: For exampl
“0” has three instances of misclassification, as “2,” “6,” and
“8,” respectively, all of which are just neighbors to the correc
node in the map produced by the classifier obtained in the

simulation. [See Fig. 11(c).]

This is a strong evidence that the classifier made by th
proposed neural network preserves the topological ordering
of the input patterns, the handwritten numerals. In order to
improve the performance in this point, we are attempting tgz
incorporate the concept df-nearest neighbor rule into the

decision of the final class.

VIl. CONCLUDING REMARKS

numerals,”Philips Tech. Rey.vol. 33, pp. 89-101, 130-137, 1973.

E. Cohen, J. J. Hull, and S. N. Srihari, “Understanding handwritten text
in a structured environment: Determining ZIP codes from addresses,”
Int. J. Pattern Recognition Artificial Intell.vol. 5, nos. 1 and 2, pp.
221-264, 1991.

] B. Duerr, W. Haettich, H. Tropf, and G. Winkler, “A combination of

statistical and syntactical pattern recognition applied to classification of
unconstrained handwritten numeralBattern Recognitionvol. 12, pp.
189-199, 1980.

P. D. Gader, D. Hepp, B. Forester, T. Peurach, and B. T. Mitchell,
“Pipelined systems for recognition of handwritten digit in USPS ZIP
codes,” in Proc. U.S. Postal Service Advanced Technol. Copf.
539-548, 1990.

Y. J. Kim and S. W. Lee, “Off-line recognition of unconstrained
handwritten digits using multilayer backpropagation neural network
combined with genetic algorithm,” (in Korean), iroc. 6th Wkshp.
Image Processing Understanding994, pp. 186—-193.

S. Knerr, L. Personnaz, and G. Dreyfus, “Handwritten digit recognition
by neural networks with single-layer training|lEEE Trans. Neural
Networks vol. 3, pp. 962-968, 1992.

In this paper, we have presented three sophisticated neurd} A. Krzyzak, W. Dai, and C. Y. Suen, “Unconstrained handwritten

network classifiers to recognize the totally unconstrained hand-
written numerals: multiple MLP classifier, HMM/MLP hybrid
classifier, and structure-adaptive SOM classifier. All of theft®]
have produced better results than several previous methods
reported in the literature on the same database. Actuallyll
the proposed methods have a small, but statistically signifi-
cant (p> 0.995), advantage in recognition rates obtained bpz2]
the conventional methods. We have found that the proposed
neural-network classifiers might solve the complex classifica-

tion problem.

Although the multiple MLP classifier was the best in thi$3]
simulation, each classifier has its own merits and gives some
possibility to enlarge the conventional neural-network clas-
sifiers for real-world problems. The multiple MLP classifie
leads to a reliable recognizer without great effort to fine-
tune the individual MLP classifiers. Also, the HMM/MLP [15]
hybrid classifier complements each method for improving the
overall performance, and the structure-adaptive SOM classifi&$]
automatically finds a network structure and size suitable for
the classification of complex patterns through the ability qf7

structure adaptation.

Even though our work to date is concentrated on handwr'[ 8
ten numeral recognition, we believe that the methods presente
can be easily generalized to more difficult problems, such
handwritten Roman character recognition and Hangul (Kore
script) recognition. The further works are under going with the

more difficult task of recognizing handwritten Hangul.
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