
Models and Strategies for Variants of the Job Shop Scheduling
Problem

Diarmuid Grimes1 and Emmanuel Hebrard2,3

1 Cork Constraint Computation Centre
University College Cork, Ireland
d.grimes@4c.ucc.ie

2 CNRS ; LAAS ; 7 avenue du colonel Roche, F-31077 Toulouse, France
3 Université de Toulouse ; UPS, INSA, INP, ISAE ; UT1, UTM, LAAS ; F-31077 Toulouse, France

hebrard@laas.fr

Abstract. Recently, a variety of constraint programming and Boolean satisfiability ap-
proaches to scheduling problems have been introduced. They have in common the use of
relatively simple propagation mechanisms and an adaptive way to focus on the most con-
strained part of the problem. In some cases, these methods compare favorably to more clas-
sical constraint programming methods relying on propagation algorithms for global unary
or cumulative resource constraints and dedicated search heuristics. In particular, we de-
scribed an approach that combines restarting, with a generic adaptive heuristic and solution
guided branching on a simple model based on a decomposition of disjunctive constraints.
In this paper, we introduce an adaptation of this technique for an important subclass of job
shop scheduling problems (JSPs), where the objective function involves minimization of
earliness/tardiness costs. We further show that our technique can be improved by adding
domain specific information for one variant of the JSP (involving time lag constraints). In
particular we introduce a dedicated greedy heuristic, and an improved model for the case
where the maximal time lag is 0 (also referred to as no-wait JSPs).

1 Introduction

Scheduling problems come in a wide variety and it is natural to think that methods specifically
engineered for each variant would have the best performance. However, it was recently shown
this is not always true. Tamura et al. introduced an encoding of disjunctive and precedence con-
straints into conjunctive normal form formulae [22]. Thanks to this reformulation they were the
first to report optimality proofs for all open shop scheduling instances from three widely studied
benchmarks. Similarly the hybrid CP/SAT solver lazy-FD [10] was shown to be extremely
effective on Resource-Constrained Project scheduling (RCPSP) [21].

Previously, we introduced an approach for open and job shop problems with a variety of extra
constraints [12, 13] using simple reified binary disjunctive constraints combined with a number
of generic SAT and AI techniques: weighted degree variable ordering [5], solution guided value
ordering [3], geometric restarting [25] and nogood recording from restarts [15]. It appears that the
weighted degree heuristic efficiently detects the most constrained parts of the problem, focusing
search on a fraction of the variables.

The simplicity of this approach makes it easy to adapt to various constraints and objective
functions. One type of objective function that has proven troublesome for traditional CP schedul-
ing techniques involves minimizing the sum of earliness/tardiness costs, primarily due to the
weak propagation of the sum objective [8]. In this paper we show how our basic JSP model can
be adapted to handle this objective. Experimental results reveal that our approach is competitive
with the state of the art on the standard benchmarks from the literature.

Moreover, we introduce two refinements of our approach for problems with maximum time
lags between consecutive tasks, where we incorporate domain specific information to boost per-
formance. These time lag constraints, although conceptually very simple, change the nature of
the problem dramatically. For instance, it is not trivial to find a feasible schedule even if we do
not take into account any bound on the total makespan (unless scheduling jobs back to back).
This has several negative consequences. Firstly, it is not possible to obtain a trivial upper bound
of reasonable quality may be found by sequencing the tasks in some arbitrary order. The only ob-
vious upper bound is to sequence the jobs consecutively. Secondly, since relaxing the makespan
constraint is not sufficient to make the problem easy, our approach can have difficulty finding a
feasible solution for large makespans, even though it is very effective when given a tighter upper
bound. However because the initial upper bound is so poor, even an exploration by dichotomy of
the objective variable’s domain can take a long time.

We introduce a simple search strategy which, when given a large enough upper bound on
the makespan, guarantees a limited amount of backtracking whilst still providing good quality
solutions. This simple strategy, used as an initial step, greatly improves the performance of our
algorithm on this problem type. We report several new best upper bounds and proofs of opti-
mality on these benchmarks. Moreover, we introduce another improvement in the model of the
particular case of No wait JSP where the tasks of each job must be directly consecutive. This
variant has been widely studied, and efficient metaheuristics have been proposed recently. We
report 5 new best upper bound, and close 9 new instances in standard data sets.

Finally, because there are few comparison methods in the literature for problems with strictly
positive time lags, we adapted a job shop scheduling model written in Ilog Scheduler by Chris
Beck [3], to handle time lag constraints. Our method outperforms this model when time lag
constraints are tight (short lags), however when time lags are longer, the Ilog Scheduler model
together with geometric restarts and solution guided search is better than our method.

2 Background & Previous work

An n × m job shop problem (JSP) involves a set of nm tasks T = {ti | 1 ≤ i ≤ nm},
partitioned into n jobs J = {Jx | 1 ≤ x ≤ n}, that need to be scheduled on m machines
M = {My | 1 ≤ y ≤ m}. Each job Jx ∈ J is a set of m tasks Jx = {t(x−1)∗m+y | 1 ≤ y ≤ m}.
Conversely, each machine My ∈ M denotes a set of n tasks (to run on this machine) such that:
T = (

⋃
1≤x≤n Jx) = (

⋃
1≤y≤m My).

Each task ti has an associated duration, or processing time, pi. A schedule is a mapping of
tasks to time points consistent with sequencing and resource constraints. The former ensure that
the tasks of each job run in a predefined order whilst the latter ensure that no two tasks run
simultaneously on any given machine. In the rest of the paper, we shall identify each task ti
with the variable standing for its start time in the schedule. We define the sequencing (2.1) and
resource (2.2) constraints in Model 1.

Moreover, we shall consider two objective functions: total makespan, and weighted earli-
ness/tardiness. In the former, we want to minimize the the total duration to run all tasks, that is,
Cmax = maxti∈T (ti+pi) if we assume that we start at time 0. In the latter, each job Jx ∈ J has
a due date, dx. There is a linear cost associated with completing a job before its due date, or the
tardy completion of a job, with coefficient we

x and wt
x, respectively. (Note that these problems

differ from Just in Time job shop scheduling problems[2], where each task has a due date.) If
txm is the last task of job Jx, then txm + pxm is its completion time, hence the cost of a job is
then given by: ETsum =

∑
Jx∈J (max(we

x(dx − txm − pxm), wt
x(txm + pxm − dx)))

model 1 JSP

ti + pi ≤ ti+1 ∀Jx ∈ J , ∀ti, ti+1 ∈ Jx (2.1)

ti + pi ≤ tj ∨ tj + pj ≤ ti ∀My ∈M, ti 6= tj ∈My (2.2)

2.1 Boolean Model

In previous work [13] we described the following simple model for open shop and job shop
scheduling. First, to each task, we associate a variable ti taking its value in [0,∞] that stands for
its starting time. Then, for each pair of tasks sharing a machine we introduce a Boolean variable
that stands for the relative order of these two tasks. More formally, for each machine My ∈ M,
and for each pair of tasks ti, tj ∈ My , we have a Boolean variable bij , and constraint (2.2) can
be reformulated as follows:

bij =

{
0⇔ ti + pi ≤ tj
1⇔ tj + pj ≤ ti

∀My ∈M, ti 6= tj ∈My (2.3)

Finally, the tasks of each job Jx, are kept in sequence with a set of simple precedence constraints
ti + pi ≤ ti+1 for all ti, ti+1 ∈ Jx.

For n jobs and m machines, this model therefore involves nm(n − 1)/2 Boolean variables,
as many disjunctive constraints, and n(m−1) precedence constraints. Bounds consistency (BC)
is maintained on all constraints. Notice that state of the art CP models use instead m global con-
straints to reason about unary resources. The best known algorithms for filtering unary resources
constraints implement the edge finding, not-first/not-last, and detectable precedence rules with
a O(n log n) time complexity [24]. One might therefore expect our model to be less efficient
as n grows. However, the quadratic number of constraints – and Boolean variables – required
to model a resource in our approach has not proven problematic on the academic benchmarks
tested on to date.

2.2 Search Strategy

We refer the reader to [12] for a more detailed description of the default search strategy used for
job shop variants, and we give here only a brief overview.

This model does not involve any global constraint associated to a strong propagation algo-
rithm. However, it appears that decomposing resource constraints into binary disjunctive ele-
ments is synergetic with adaptive heuristics, and in particular the weighted-degree-based heuris-
tics [5]. (We note that the greater the minimum arity of constraints in a problem, the less dis-
criminatory the weight-degree heuristic can be.) A constraint’s weight is incremented by one
each time the constraint causes a failure during search. This weight can then be projected on
variables to inform the heuristic choices.

It is sufficient to decide the relative sequencing of the tasks, that is, the value of the Boolean
variables standing for disjuncts. Because the domain size of these variables are all equal, we use
a slightly modified version of the domain over weighted-degree heuristic, where weights and do-
main size are taken on the two tasks whose relative ordering is decided by the Boolean variable.
Let w(ti) be the number of times search failed while propagating any constraint involving task
ti, and let min(ti) and max(ti) be, respectively, the minimum and maximum starting time of ti
at any point during search. The next disjunct bij to branch on is the one minimizing the value of:

(max(ti) +max(tj)−min(ti)−min(tj) + 2)/(w(ti) + w(tj))

A second important aspect is the use of restarts. It has been observed that weighted heuristics
also have a good synergy with restarts [11]. Indeed, failures tend to happen at a given depth in the
search tree, and therefore on constraints that often do not involve variables corresponding to the
first few choices. As a result, early restarts will tend to favor diversification until enough weight
has been given to a small set of variables, on which the search will then be focused. We use
a geometric restarting strategy [25] with random tie-breaking. The geometric strategy is of the
form s, sr, sr2, sr3, ... where s is the base and r is the multiplicative factor. In our experiments
the base was 256 failures and the multiplicative factor was 1.3. Moreover, after each restart, the
dead ends of the previous explorations are stored as clausal nogoods [15].

A third very important feature is the idea of guiding search (branching choices) based on
the best solution found so far. This idea is a simplified version of the solution guided approach
(SGMPCS) proposed by Beck for JSPs [3]. Thus our search strategy can be viewed as variable
ordering guided by past failures and value ordering guided by past successes.

Finally, before using a standard Branch & Bound procedure, we first use a dichotomic search
to reduce the gap between lower and upper bound. At each step of the dichotomic search, a
satisfaction problem is solved, with a limit on the number of nodes.

3 Job Shop with Earliness/Tardiness Objective

In industrial applications, the length of the makespan is not always the preferred objective. An
important alternative criterion is the minimization of the cost of a job finishing early/late. An
example of a cost for early completion of a job would be storage costs incurred, while for late
completion of a job these costs may represent the impact on customer satisfaction.

Although the only change to the problem is the objective function, our model requires a num-
ber of additional elements. When we minimize the sum of earliness and tardiness, we introduce
4n additional variables. For each job Jx we have a Boolean variable ex that takes the value 1 iff
Jx is finished early and the value 0 otherwise. In other words, ex is a reification of the precedence
constraint txm + pxm < dx. Moreover, we also have a variable Ex standing for the duration be-
tween the completion time of the last task of Jx and the due date dx when Jx is finished early:
Ex = ex(dx − txm − pxm). Symmetrically, for each job Jx we have Boolean variable lx taking
the value 1 iff Jx is finished late, and an integer variable Lx standing for the delay (Model 2).

model 2 ET-JSP

minimise ETsum subject to :

ETsum =
∑

Jx∈J

(we
xEx + wt

xLx) (3.1)

ex ⇔ (txm + pxm < dx) ∀Jx ∈ J (3.2)

Ex = ex(dx − txm − pxm) ∀Jx ∈ J (3.3)

lx ⇔ (txm + pxm > dx) ∀Jx ∈ J (3.4)

Lx = lx(txm + pxm − dx) ∀Jx ∈ J (3.5)

(constraints 2.1) & (constraints 2.3)

Unlike the case where the objective involves minimizing the makespan, branching only on
the disjuncts is not sufficient for these problems. Thus we also branch on the early and late

Boolean variables, and on the variables standing for start times of the last tasks of each job. For
these extra variables, we use the standard definition of domain over weighted degree.

4 Job Shop Scheduling Problem with Time Lags

Time lag constraints arise in many scheduling applications. For instance, in the steel industry, the
time lag between the heating of a piece of steel and its moulding should be small [27]. Similarly
when scheduling chemical reactions, the reactives often cannot be stored for a long period of
time between two stages of a process to avoid interactions with external elements [19].

4.1 Model

The objective to minimise is represented by a variable Cmax linked to the last task of each job by
n precedence constraints: ∀x ∈ [1, . . . , n] txm + pxm ≤ Cmax. The maximum time lag between
two consecutive tasks is simply modelled by a precedence constraint with negative offset. Letting
L(i) be the maximum time lag between the tasks ti and ti+1, we use the following model:

model 3 TL-JSP

minimise Cmax subject to :

Cmax ≥ txm + pxm ∀Jx ∈ J (4.1)

ti+1 − (pi + L(i)) ≤ ti ∀Jx ∈ J , ∀ti, ti+1 ∈ Jx (4.2)

(constraints 2.1) & (constraints 2.3)

4.2 Greedy Initialization

In the classical job shop scheduling problem, one can consider tasks in any order compatible with
the jobs and schedule them to their earliest possible start time. The resulting schedule may have
a long makespan, however such a procedure usually produces reasonable upper bounds. With
time lag constraints, however, scheduling early tasks of a job implicitly fixes the start times for
later tasks, thus making the problem harder. Indeed, as soon as tasks have been fixed in several
jobs, the problem becomes difficult even if there is no constraint on the length of the makepsan.
Standard heuristics can thus have difficulty finding feasible solutions even when the makespan
is not tightly bounded. In fact, we observed that this phenomenon is critical for our approach.

Once a relatively good upper bound is known our approach is efficient and is often able
to find an optimal solution. However, when the upper bound is, for instance, the trivial sum of
durations of all tasks, finding a feasible solution with such a relaxed makespan was in some cases
difficult. For some large instances, no non-trivial solution was found, and on some instances of
more moderate size, much computational effort was spent converging towards optimal values.

We therefore designed a search heuristic to find solutions of good quality, albeit very quickly.
The main idea is to move to a new job only when all tasks of the same machine are completely
sequenced between previous jobs. Another important factor is to make decisions based on the
maximum completion time of a job, whilst leaving enough freedom within that job to potentially
insert subsequent jobs instead of moving them to the back of the already scheduled jobs.

Algorithm 1 Greedy initialization branching heuristic
fixed jobs← ∅; jobs to schedule← J ;
while jobs to schedule 6= ∅ do

pick and remove a random job Jy in jobs to schedule; fixed jobs← fixed jobs∪ {Jy};
next decisions← {bij | Jx(i), Jx(j) ∈ fixed jobs};
while next decisions 6= ∅ do

1 pick and remove a random disjunct bij from next decisions;
if Jx(i) = Jy then branch on ti + pi ≤ tj else branch on tj + pj ≤ ti;

2 branch on txm ≤ min(t(x−1)m+1)+ stretched(Jy);

We give a pseudo-code for this strategy in Algorithm 1. The set jobs to schedule stands for
the jobs for which sequencing is still open, whilst fixed jobs contains the currently processed
job, as well as all the jobs that are completely sequenced. On the first iteration of the outer
“while” loop, a job is chosen. There is no disjunct satisfying the condition in Line 1, so this
job’s completion time is fixed to a value given by the stretched procedure (Line 2), that is,
the minimum possible starting time of its first task, plus its total duration, plus the sum of the
possible time lags.

On the second iteration and beyond, a new job is selected. We then branch on the sequencing
decisions between this new job and the rest of the set fixed jobs before moving to a new job. We
call Jx(i) the job that contains task ti, and observe that for any unassigned Boolean variable bij ,
either Jx(i) or Jx(j) ∈ fixed jobs must be the last chosen job Jy . The sequencing choice that
sets a task of the new job before a task of previously explored jobs is preferred, i.e., considered
in the left branch. Observe that a failure due to time lag constraints can be raised only in the
inner “while” loop. Therefore, if the current upper bound on the makespan is large enough, this
heuristic will ensure that we never backtrack on a decision on a task. We randomize this heuristic
and use several iterations (1000 in the present set of experiments) to find a good initial solution.

4.3 Special Case: Job Shop with no-wait problems

The job shop problem with no-wait refers to the case where the maximum time-lag is set to 0,
i.e. each task of a job must start directly after its preceding task has finished. In this case one can
view the tasks of the job as one block.

In [12] we introduced a simple improvement for the no-wait class based on the following
observation: if no delay is allowed between any two consecutive tasks of a job, then the start
time of every task is functionally dependent on the start time of any other task in the job. The
tasks of each job can thus be viewed as one block. We therefore use a single variable Jx standing
for the starting times of the job of same name.

We call Jx(i) the job of task ti, and we define hi as the total duration of the tasks coming
before task ti in its job Jx(i). That is, hi =

∑
k∈{k | k<i ∧ tk∈Jx(i)} pk. For every pair of tasks

ti ∈ Jx, tj ∈ Jy sharing a machine, we use the same Boolean variables to represent disjuncts as
in the original model, however linked by the following constraints:

bij =

{
0⇔ Jx + hi + pi − hj ≤ Jy
1⇔ Jy + hj + pj − hi ≤ Jx

Although the variables and constants are different, these are the same constraints as used in
the basic model. The no-wait JSP can therefore be reformulated as shown in Model 4, where the
variables J1, . . . , Jn represent the start time of the jobs and f(i, j) = hi + pi − hj .

model 4 NW-JSP

minimise Cmax subject to :

Cmax ≥ Jx +
∑

ti∈Jx

pi ∀Jx ∈ J (4.3)

bij =

{
0⇔ Jx(i) + f(i, j) ≤ Jx(j)

1⇔ Jx(j) + f(j, i) ≤ Jx(i)
∀My ∈M, ti 6= tj ∈My (4.4)

However, we can go one step further. For a given pair of jobs Jx, Jy the set of disjunct be-
tween tasks of these jobs define as many conflict intervals for the start time of one job relative
to the other. For two tasks ti and tj , we have Jx(j) 6∈]Jx(i) − f(j, i), Jx(i) + f(i, j)[. However,
these intervals may overlap or subsume each other. It is therefore possible to tighten this encod-
ing by computing larger intervals, that we shall refer to as maximal forbidden intervals, hence
resulting in fewer disjuncts. We first give an example, and then briefly describe a procedure to
find maximal forbidden intervals.

(a) Sample problem.

Machine 1 2 3 4
ti, tj t1, t5 t2, t7 t3, t8 t4, t6
pi 20 50 80 50
hi 0 20 70 150
pj 60 20 25 45
hj 0 105 125 60
−f(j, i) -60 -105 -80 45
f(i, j) 20 -35 25 140

(b) Values of p, h and f .

Fig. 1: Computation of conflict intervals.

In Figure 1a we illustrate two jobs Jx = {t1, t2, t3, t4} and Jy = {t5, t6, t7, t8}. The number
and shades of grey stand for the machine required by each task. The length of the tasks are
respectively {20, 50, 80, 50} for Jx and {60, 45, 20, 25} for Jy . In Figure 1b we give, for each
machine, the pair of conflicting tasks, their durations and the corresponding forbidden intervals.

For each machine Mk, let ti be the task of Jx and tj the task of Jy that are both processed on
machine Mk. Following the reasoning used in Model 4, we have a conflict interval (represented
by black arrows in Figure 1a) for each pair of tasks sharing the same machine: Jy 6∈]Jx −
f(j, i), Jx + f(i, j)[. In the example the forbidden intervals for Jy are therefore:]Jx − 60, Jx +
20[. . .]Jx − 105, Jx − 35[. . .]Jx − 80, Jx +25[. . .]Jx +45, Jx +140[. However, these intervals
can be merged, yielding larger (maximal) forbidden intervals, in which case we have: Jy 6∈
]Jx − 105, Jx + 25[∧ Jy 6∈]Jx + 45, Jx + 140[.

Given two jobs Jx and Jy , Algorithm 2 computes all maximal forbidden intervals efficiently
(in O(m logm) steps). First, we build a list of pairs whose first element is an end point of a
conflict interval, and second element is either +1 if it is the start, and −1 otherwise. Then these

Algorithm 2 get-F-intervals.
Data: Jx = {tx1 , . . . , txm}, Jy = {ty1 , . . . , tym},M
Iin ← [];
foreach txi ∈ Jx, tyj ∈ Jy such thatM(txi) =M(tyj) do

Iin ← Iin extended with [(−f(j, i),+1), (f(i, j),−1)];
sort Iin by increasing first element;
Iout ← []; open← 0;
while not-empty(I) do

(a, z)← remove first element from Iin;
if open = 0 then append a to Iout;
open← open+ z;
if open = 0 then append a to Iout;

return Iout;

pairs are sorted by increasing first element. Now we can scan these pairs and count, thanks to
the second element, how many intervals are simultaneously open. When we go from 0 to 1 open
intervals, this marks the start of a maximal forbidden interval, and conversely the end when we
go from 1 to 0 open intervals. The list Iout has 2k elements, and the 2i + 1th and 2i + 2th

elements are read as the start and end of a forbidden interval.
Given this set of forbidden intervals, we can represent the conflicts between Jx and Jy with

the following set of Boolean variables and disjunctive constraints:

bxy
105,25 =

{
0⇔ Jy + 105 ≤ Jx
1⇔ Jx + 25 ≤ Jy

bxy
45,140 =

{
0⇔ Jy − 45 ≤ Jx
1⇔ Jx + 140 ≤ Jy

In the previous encoding we would have needed 4 Boolean variables and as many disjunctive
constraints (one for each pair of tasks sharing a machine). We believe, however, that the main
benefit is not the reduction in size of the encoding. Rather, it is the tighter correlation between
the model and the real structure of the problem which helps the heuristic to make good choices.

model 5 NW-JSP

minimise Cmax subject to :

Cmax ≥ Jx +
∑

ti∈Jx

pi ∀Jx ∈ J (4.5)

bij
a,b =

{
0⇔ Jy − a ≤ Jx

1⇔ Jx + b ≤ Jy
∀Jx 6= Jy ∈ J , [a, b] ∈ get-F-intervals(Jx, Jy,M)(4.6)

5 Experimental Evaluation

The full experimental results, with statistics for each instance, as well as benchmarks and source
code are online: http://homepages.laas.fr/ehebrard/jsp-experiment.html.

5.1 Job Shop with Earliness/Tardiness Objective

The best complete methods for handling these types of problem are the CP/LP hybrid of Beck
and Refalo [4] and the MIP approaches of Danna et al. [9], and Danna and Perron [8], while
more recently Kebel and Hanzalek proposed a pure CP approach [14]. Danna and Perron also
proposed an incomplete approach based on large neighborhood search [8].

Our experiments were run on an Intel Xeon 2.66GHz machine with 12GB of ram on Fedora
9. Each algorithm run on a problem had an overall time limit of 3600s, and there were 10 runs
per instance. We report our results in terms of the best and worst run. We tested our method on
two benchmarks which have been widely studied in the literature. The comparison experimental
results are taken from [9] and [8], where all experiments were performed on a 1.5 GHz Pen-
tium IV system running Linux. For the first benchmark, these algorithms had a time limit of 20
minutes per instance, while for the second benchmark the algorithms had a time limit of 2 hours.

The comparison methods are as follows:

– MIP: Default CPLEX in [9], run using a modified version of ILOG CPLEX 8.1
– CP: A pure constraint programming approach introduced by Beck and Refalo in [4], run

using ILOG Scheduler 5.3 and ILOG Solver 5.3
– CRS-ALL: A CP/LP hybrid approach proposed by Beck and Refalo in [4], run using ILOG

CPLEX 8.1, ILOG Hybrid 1.3.1, ILOG Scheduler 5.3 and ILOG Solver 5.3
– uLNS: An unstructured large neighborhood search MIP method proposed by Danna and

Peron in [8], run using a modified version of ILOG CPLEX 8.1
– sLNS: A structured large neighborhood search CP/LP method proposed by Danna and Peron

in [8], run using ILOG Scheduler 5.3, ILOG Solver 5.3 and ILOG CPLEX 8.1

The first benchmark consists of 9 sets of problems generated by Beck and Refalo [4] using
the random JSP generator of Watson et al. [26]. For instance size J xM, there were three sets
of ten JSPs of size 10x10, 15x10 and 20x10 generated. The second benchmark is taken from the
genetic algorithms (GA) literature and was proposed by Morton and Pentico [18]. There are 12
instances, with problem size ranging from 10x3 to 50x8. Jobs in these problems do have release
dates. Furthermore earliness and tardiness costs of a job are equal.

We present results on the randomly generated ETJSPs in Table 1 in terms of number of
problems solved to optimality and sum of the upper bounds, for each algorithm.4 Here, the
column “Best” for our method means the number of problems solved to optimality on at least
one of the ten runs on the instance, while the column “Worst” refers to the number of problems
solved to optimality on all ten runs. We also report the mean cpu time in seconds for our method.

We first consider the number of problems solved to optimality (columns “Opt.”). While there
is little difference in the performance of our method and that of uLNS and CRS-ALL on the
looser instances (looseness factor of 1.3 and 1.5), we see that our method is able to close three of
the 23 open problems in the set with looseness factor 1.0. An obvious reason for this improve-
ment with our method would be the difference in time limits and quality of machines. However,
analysis of the results reveals that of the 68 problems solved to optimality on every run of our
method, only 8 took longer than one second on average, and only one took longer than one
minute (averaging 156s). Furthermore, uLNS only solved two problems to optimality when the
time limit was increased to two hours [8]. Clearly our method is extremely efficient at proving
optimality on these problems.

The previous results suggest that CRS-ALL is much better than uLNS on these problems.
However, as was shown by Danna et al. [9], this may not be the case when the algorithms are

4 Note that sLNS is not complete, hence it never proved optimality.

Table 1: ET-JSP - Random Problems, Number Proven Optimal and Upper Bound Sum

lf MIP CP uLNS sLNS CRS-All
Model 2

Best Worst Avg.
opt.

∑
ub opt.

∑
ub opt.

∑
ub

∑
ub opt.

∑
ub opt.

∑
ub opt.

∑
ub Time (s)

1.0 0 654,290 0 1,060,634 0 156,001 52,307 7 885,546 10 30,735 8 38,416 2534.86
1.3 14 26,930 6 1,248,618 30 8,397 8,397 30 8,397 30 8,397 30 8,397 0.36
1.5 27 7,891 6 1,672,511 30 6,964 6,964 30 6,964 30 6,964 30 6,964 0.18
Notes: Comparison results taken from [9], except uLNS, taken from [8].
Figures in bold are the best result over all methods.

compared based on the sum of the upper bounds found over the 30 “hard” instances (i.e. with
looseness factor 1.0). In order to assess whether there was a similar deterioration in the perfor-
mance of our method as for CRS-ALL on the problems where optimality was not proven, we
report this data in the columns “

∑
ub” of Table 1.

We find, on the contrary, that the performance of our approach is even more impressive when
algorithms are compared using this metric. The two large neighborhood search methods found
the best upper bounds of the comparison algorithms with sLNS the most efficient by a factor of
2 over uLNS. However, there are a couple of points that should be noted here. Firstly sLNS is an
incomplete method so cannot prove optimality, and secondly the sum of the worst upper bounds
found by our method was still significantly better than that found by sLNS. Indeed, there was
very little variation in performance for our method across runs, with an average difference of 256
between the best and worst upper bounds found.

Danna and Perron also provided the sum of the best upper bounds found on the hard instances
over all methods they studied [8], which was 36,459. This further underlines the quality of the
performance of our method on these problems. Finally, we investigated the hypothesis that the
different time limit and machines used for experiments could explain these results. We compared
the upper bounds found by our method after the dichotomic search phase, where the maximum
runtime of this phase over all runs per instance was 339s. The upper bound sums over the hard
instances were 32,299 and 49,808 for best and worst respectively, which refutes this hypothesis.

Table 2 provides results on the second of the benchmarks (taken from the GA literature).
Following the convention of previous work on these problems [23][4][9], we report the cost nor-
malized by the weighted sum of the job processing times. We include the best results found by
the GA algorithms as presented by Vázquez and Whitley [23]. We also provide an aggregated
view of the results of each algorithm using the geometric mean ratio (GMR), which is the ge-
ometric mean of the ratio between the normalized upper bound found by the algorithm and the
best known normalized upper bound, across a set of instances.

The performance of our method was less impressive for these problems, solving two fewer
problems to optimality than uLNS, and achieving a worse GMR than either of the large neigh-
borhood search methods. However, we remind the reader that all comparison methods had a 2
hour time limit on these instances, except the GA approaches for which the time limit was not re-
ported. We further note that we find an improved solution for one instance (ljb10) and outperform
all methods other than uLNS and sLNS.

Table 2: ET-JSP - GA Problems, Normalized upper bounds

Instance Size MIP CP uLNS sLNS CRS-All
GA Model 2
Best Best Worst

jb1 10x3 0.191* 0.474 0.191* 0.191 0.191* 0.474 0.191* 0.191*
jb2 10x3 0.137* 0.746 0.137* 0.137 0.531 0.499 0.137* 0.137*
jb4 10x5 0.568* 0.570 0.568* 0.568 0.568* 0.619 0.568* 0.568*
jb9 15x3 0.333* 0.355 0.333* 0.333 1.216 0.369 0.333* 0.333*
jb11 15x5 0.233 0.365 0.213* 0.213 0.213* 0.262 0.221 0.235
jb12 15x5 0.190* 0.239 0.190* 0.190 0.190* 0.246 0.190* 0.190*

GMR 1.015 1.774 1 1 1.555 1.610 1.006 1.017
ljb1 30x3 0.215* 0.847 0.215* 0.215 0.295 0.279 0.215 0.221
ljb2 30x3 0.622 1.268 0.508 0.508 1.364 0.598 0.590 0.728
ljb7 50x5 0.317 0.614 0.123 0.110 0.951 0.246 0.166 0.256
ljb9 50x5 1.373 1.737 1.270 1.015 2.571 0.739 1.157 1.513
ljb10 50x8 0.820 1.569 0.558 0.525 1.779 0.512 0.499 0.637
ljb12 50x8 1.025 1.368 0.488 0.605 1.601 0.399 0.537 0.623

GMR 1.943 3.233 1.213 1.170 4.098 1.220 1.299 1.686
Overall GMR 1.329 2.434 1.084 1.068 2.305 1.408 1.118 1.256

Comparison results taken from [9]. Figures in bold indicate best upper bound
found over the different algorithms. “*” indicates optimality was proven by the algorithm.

5.2 Job Shop Scheduling Problem with positive Time Lags

These experiments were run using the same settings as in Section 5.1. However, because of the
large number of instances and algorithms, we used only 5 random runs per instance.

There are relatively few results reported for benchmarks with positive maximum time lag
constraints, as most publications focus on the “no wait” case. Caumond et al. introduced a ge-
netic algorithm [7]. Then, Artigues et al. introduced a Branch & Bound procedure that allowed
them to find lower bounds of good quality [1]. Therefore, in order to get a better idea of the ef-
ficiency of our approach, we adapted a model written by Chris Beck for Ilog Scheduler (version
6.3) to problems featuring time lag constraints. This model was used to showcase the SGMPCS
algorithm [3]. We used the following two strategies: In the first, the next pair of tasks to schedule
is chosen following the Texture heuristic/goal predefined in Ilog Scheduler and restarts following
the Luby sequence [16] are performed, this was one of the default strategies used as a reference
point in [3]. In the second, branching decisions are selected with the same “goal”, however
the previous best solution is used to decide wich branch should be explored first, and geomet-
ric restarts [25] are performed, instead of the Luby sequence. In other words, this is SGMPCS
with a singleton elite solution. We denote the first method Texture-Luby and the second method
Texture-Geom+Guided. These two methods were run on the same hardware with the same time
limit and number of random runs as our method. Finally, we report results for our approach
without the greedy initialization heuristic (Algorithm 1) in order to evaluate its importance.

We used the benchmarks generated by Caumond et al. in [7] by adding maximal time lag
constraints to the Lawrence JSP instances of the OR-library5. Given a job shop instance N, and
two parameters x and y, a new instance N x y is produced. For each job all maximal time lags

5 http://people.brunel.ac.uk/˜mastjjb/jeb/info.html

are given the value ym, where m is the average processing time over tasks of this job. The first
parameter x corresponds to minimal time lags and will always be 0 in this paper.

Table 3: TL-JSP - Comparison with related work (Time & Upper bound).

Instance
[AHL] [CLT] Model 3

time (s) Cmax time (s) Cmax time (s) Cmax

la06 0 10 707.00 927 0.00 926 0.03 926
la06 0 1 524.00 1391 1839.00 1086 70.60 926
la07 0 10 518.00 1123 25.00 890 3600.00 890
la07 0 1 754.00 1065 1914.00 1032 3600.00 896
la08 0 10 260.00 863 2.00 863 0.07 863
la08 0 1 587.00 1052 1833.00 1048 615.80 892
average 558.33 1070 935.50 974 1314.41 898
PRD 18.88 8.32 0.00

Due to space limitations, we present most of our results in terms of each solver’s aver-
age percentage relative deviation (PRD) given by the following formula: PRD = ((CAlg −
CRef)/CRef) ∗ 100, where CAlg is the best makespan found by the algorithm and CRef is the
best upper bound among all considered algorithms6. In Table 3, we first report a comparison with
the genetic algorithm described in [7], denoted [CLT] and the adhoc Branch & Bound algorithm
introduced in [1], denoted [AHL]. We used only instances for which results were reported in both
papers, and where the time lags were strictly positive, hence the relatively small data set. Despite
that, and despite the difference in hardware and time limit, it is quite clear that our approach
outperforms both the complete and heuristic methods on these benchmarks.

Table 4: TL-JSP - Comparison with Ilog Scheduler (Proofs of optimality & Upper bound PRD).

Instance Sets
Texture Model 3

Luby Geom+Guided no init. init. heuristic
Opt. PRD Opt. PRD Opt. PRD Opt. PRD

la[1,40] 0 0 0.12 25.37 0.12 16.15 0.37 10.42 0.35 0.06
la[1,40] 0 0.25 0.20 22.98 0.25 12.01 0.37 3.46 0.40 0.00
la[1,40] 0 0.5 0.22 19.47 0.25 5.17 0.37 2.62 0.42 0.00
la[1,40] 0 1 0.35 15.76 0.42 1.18 0.40 17.43 0.45 0.47
la[1,40] 0 2 0.67 7.35 0.75 0.13 0.67 74.16 0.70 0.37
la[1,40] 0 3 0.75 3.47 0.92 0.00 0.75 95.91 0.77 0.29
la[1,40] 0 10 0.95 0.10 0.97 0.00 0.92 0.04 0.92 0.05

Next, in Table 4, we report results on all modified Lawrence instances for both Ilog Scheduler
models, and the two version of Model 3, with and without the greedy initialization heuristic.
Since there are 280 instances in total, the results are aggregated by the level of tightness of the

6 To the best of our knowledge, these are the best known upper bounds.

time lag constraints. For each set, we give the ratio of instances that were solved to optimality in
at least one of the five runs in the first column, as well as the mean PRD in the second column.

First, we notice the great impact of the new initialization heuristic on our method. Without
it, the Ilog Scheduler model was more efficient for instances with y = 1, and the overall results
are extremely poor for larger values of y. However, the mean results are deceptive. Without ini-
tialization, Model 3 can be very efficient, although in a few cases no solution at all can be found.
Indeed, relaxing the makespan does not necessarily makes the problem easy for this model. The
weight of these bad cases in the mean value can be important, hence the poor PRD. On the other
hand, we can see that the Ilog Scheduler model is more robust to this phenomenon: a non-trivial
upper bound is found in every case. It is therefore likely that the impact of the initialization
heuristic will not be as important on the Ilog model as on Model 3.

We also notice that solution guidance and geometric restarts greatly improve Ilog Scheduler’s
performance. Interestingly, we observe that our approach is best when the time lag constraints
are tight. On the other hand, Scheduler is slightly more efficient on instances with loose time lag
constraints and in particular proves optimality more often on these instances. However, whereas
our method always finds near-optimal solutions (the worst mean PRD is 0.47 for instances with
y = 1), both scheduler models find relatively poor upper bounds for small values of y.

5.3 Job Shop Scheduling Problem with no wait constraints

For the no-wait job shop problem, the best methods are a tabu search method by Schuster
(TS [20]) and a hybrid constructive/tabu search algorithm introduced by Bożejko and Maku-
chowski in 2009 (HTS [6]). We also report the results of a Branch & Bound procedure introduced
by Mascis and Pacciarelli [17]. This algorithm was run on a Pentium II 350 MHz.

Table 5: NW-JSP - Comparison with related work (Upper bound PRD).

Instance
Mascis et al. Schuster Bożejko et al. Model 4 Model 5

B&B TS HTS HTS+ tdom+bw tdom/tw tdom+bw tdom/tw

la[1-10] 0.00 4.43 1.77 1.77 0.00 0.00 0.00 0.00
la[11-20] 31.66 7.93 3.49 0.95 0.14 0.10 0.00 0.31
la[21-30] 61.09 10.43 7.25 0.08 1.16 0.57 0.25 0.84
la[31-40] 73.73 10.95 8.33 0.15 4.42 1.77 2.68 1.36
abz[5-9] 47.04 9.01 5.95 0.78 2.47 1.14 1.13 1.20
orb[1-10] 0.00 2.42 0.77 0.77 0.00 0.00 0.00 0.00
swv[1-5] 60.85 3.94 3.67 0.00 2.54 0.77 0.00 0.43
swv[6-10] 57.82 4.99 4.19 0.00 4.78 1.71 0.44 1.00
swv[11-15] 70.98 0.68 2.48 0.60 19.50 6.53 17.54 5.18
swv[16-20] 76.81 5.71 3.98 0.00 10.92 68.94 4.47 3.17
yn[1-4] 72.74 12.40 8.85 0.32 5.60 5.75 2.37 2.88
overall 44.72 6.51 4.36 0.52 3.53 5.50 1.97 1.13

For the no-wait class we used the same data sets as Schuster [20] and Bożejko et al. [6]
where null time lags are added to instances of the OR-library. We report the best results of each
paper in terms of average PRD. It should be noted that for HTS, the authors reported two sets
of results. The former were run with a time limit based on the runtimes reported in [20] and

varying from 0.25 seconds for the easiest instances to 2360 seconds for the hardest. The latter
(in italic font, and referred to as HTS+ in Table 5) were run “without limit of computation time”.
We use bold face to mark the best result amongst methods that had time limits, i.e. excluding
HTS+. We ran two variable ordering heuristics for our method. First, the heuristics used for ET-
JSP and TL-JSP, where the Boolean variable minimizing the value of (max(ti) + max(tj) −
min(ti) −min(tj) + 2)/(w(ti) + w(tj)) is chosen first, denoted tdom/tw. Second, we used
another heuristic, denoted tdom+bw that selects the next Boolean variable to branch on solely
according to the tasks’ domain sizes (max(ti)+max(tj)−min(ti)−min(tj)+2), and break
ties with the Boolean variable’s own weight w(bij).

Table 6: NW-JSP - New best upper bounds and optimality proofs.

Instance
Schuster Bożejko Model 4 Model 5

BKS TS HTS HTS+ tdom+bw tdom/tw tdom+bw tdom/tw

la11 0 0 2821 1737 1704 1621 1622 1619 1619* 1621
la13 0 0 2650 1701 1696 1580 1582 1590 1580* 1580
la14 0 0 2662 1771 1722 1610 1578 1578 1578* 1612
la15 0 0 2765 1808 1747 1686 1692 1679 1671* 1691
la26 0 0 4268 2664 2738 2506 2624 2511 2488 2540
la28 0 0 4478 2886 2741 2552 2640 2605 2546 2569
la30 0 0 4097 2939 2791 2452 2452 2452 2452* 2508
la34 0 0 6380 3957 3936 3659 3914 3693 3817 3657
la39 0 0 4295 2804 2725 2687 2660 2660 2660* 2660
swv01 3824 2396 2424 2318 2344 2343 2318* 2333
swv02 3800 2492 2484 2417 2440 2418 2417* 2417
swv05 3836 2482 2489 2333 2433 2333 2333* 2333
yn2 4025 2705 2647 2370 2486 2603 2427 2353
yn4 4109 2705 2630 2513 2532 2573 2499 2582

In Table 6 we report the results on no-wait instances for which we obtained new upper bounds
(5 instances) or new proofs of optimality (9 instances), thanks to the model introduced here.

6 Conclusions

We have shown that the simple constraint programming approach introduced in [13] can be
successfully adapted to handle the objective of minimizing the sum of earliness/tardiness costs.
These problems have traditionally proven troublesome for CP approaches because of the weak
propagation of the sum objective [8].

Then we introduced a new heuristic to find good initial solutions for job shop problems
with maximal time lag constraints. The resulting method greatly improves over state of the art
algorithms for this problem. However, as opposed to the other aspects of the method (adaptive
variable heuristic, solution guided branching, restarts with nogood storage) this new initialization
heuristic is dedicated to job shop problems with time lag constraints.

Finally, we showed that domain-specific information can also be used to improve our model
for no-wait job shop scheduling problems, allowing us to provide several improved upper bounds
and prove optimality in many cases.

References

1. C. Artigues, M-J. Huguet, and P. Lopez. Generalized Disjunctive Constraint Propagation for Solving
the Job Shop Problem with Time Lags. EAAI, 24(2):220 – 231, 2011.

2. P. Baptiste, M. Flamini, and F. Sourd. Lagrangian Bounds for Just-in-Time Job-shop Scheduling.
Computers & OR, 35(3):906–915, 2008.

3. J. C. Beck. Solution-Guided Multi-Point Constructive Search for Job Shop Scheduling. JAIR, 29:49–
77, 2007.

4. J. C. Beck and P. Refalo. A Hybrid Approach to Scheduling with Earliness and Tardiness Costs. Annals
OR, 118(1-4):49–71, 2003.

5. F. Boussemart, F. Hemery, C. Lecoutre, and L. Sais. Boosting Systematic Search by Weighting Con-
straints. In ECAI, pages 482–486, 2004.

6. W. Bozejko and M. Makuchowski. A Fast Hybrid Tabu Search Algorithm for the No-wait Job Shop
Problem. Computers & Industrial Engineering, 56(4):1502–1509, 2009.

7. A. Caumond, P. Lacomme, and N. Tchernev. A Memetic Algorithm for the Job-shop with Time-lags.
Computers & OR, 35(7):2331–2356, 2008.

8. E. Danna and L. Perron. Structured vs. unstructured large neighborhood search: A case study on
job-shop scheduling problems with earliness and tardiness costs. Technical report, ILOG, 2003.

9. E. Danna, E. Rothberg, and C. Le Pape. Integrating Mixed Integer Programming and Local Search: A
Case Study on Job-Shop Scheduling Problems. In CPAIOR, 2003.

10. T. Feydy and P. J. Stuckey. Lazy Clause Generation Reengineered. In CP, pages 352–366, 2009.
11. D. Grimes. A Study of Adaptive Restarting Strategies for Solving Constraint Satisfaction Problems.

In AICS, 2008.
12. D. Grimes and E. Hebrard. Job Shop Scheduling with Setup Times and Maximal Time-Lags: A Simple

Constraint Programming Approach. In CPAIOR, pages 147–161, 2010.
13. D. Grimes, E. Hebrard, and A. Malapert. Closing the Open Shop: Contradicting Conventional Wisdom.

In CP’09, pages 400–408, 2009.
14. J. Kelbel and Z. Hanzálek. Solving production scheduling with earliness/tardiness penalties by con-

straint programming. J. Intell. Manuf., 2010.
15. C. Lecoutre, L. Sais, S. Tabary, and V. Vidal. Nogood Recording from Restarts. In IJCAI, pages

131–136, 2007.
16. M. Luby, A. Sinclair, and D. Zuckerman. Optimal Speedup of Las Vegas Algorithms. In ISTCS, pages

128–133, 1993.
17. A. Mascis and D. Pacciarelli. Job-shop Scheduling with Blocking and No-wait Constraints. EJOR,

143(3):498–517, 2002.
18. T. E. Morton and D. W. Pentico. Heuristic Scheduling Systems. John Wiley and Sons, 1993.
19. C. Rajendran. A No-Wait Flowshop Scheduling Heuristic to Minimize Makespan. The Journal of the

Operational Research Society, 45(4):472–478, 1994.
20. C. J. Schuster. No-wait Job Shop Scheduling: Tabu Search and Complexity of Problems. Math Meth

Oper Res, 63:473–491, 2006.
21. A. Schutt, T. Feydy, P. J. Stuckey, and M. Wallace. Why Cumulative Decomposition Is Not as Bad as

It Sounds. In CP’09, pages 746–761, 2009.
22. N. Tamura, A. Taga, S. Kitagawa, and M. Banbara. Compiling Finite Linear CSP into SAT. In CP,

pages 590–603, 2006.
23. M. Vázquez and L. D. Whitley. A comparison of genetic algorithms for the dynamic job shop schedul-

ing problem. In GECCO, pages 1011–, 2000.
24. P. Vilı́m. Filtering Algorithms for the Unary Resource Constraint. Archives of Control Sciences, 18(2),

2008.
25. T. Walsh. Search in a Small World. In IJCAI, pages 1172–1177, 1999.
26. J-P. Watson, L. Barbulescu, A. E. Howe, and L. D. Whitley. Algorithm performance and problem

structure for flow-shop scheduling. In AAAI, pages 688–695, 1999.
27. D. A. Wismer. Solution of the Flowshop-Scheduling Problem with No Intermediate Queues. Opera-

tions Research, 20(3):689–697, 1972.

