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ABSTRACT

Belief propagation (BP) is a popular method for perform-
ing approximate inference on probabilistic graphical mod-
els. However, its message updates are time-consuming, and
the schedule for updating messages is crucial to its running
time and even convergence. In this paper, we propose a
new scheduling scheme that selects a set of messages to up-
date at a time and leverages a novel priority to determine
which messages are selected. Additionally, an incremental
update approach is introduced to accelerate the computa-
tion of the priority. As the size of the model grows, it
is desirable to leverage the parallelism of a cluster of ma-
chines to reduce the inference time. Therefore, we design a
distributed framework, Prom, to facilitate the implementa-
tion of BP algorithms. We evaluate the proposed scheduling
scheme (supported by Prom) via extensive experiments on
a local cluster as well as the Amazon EC2 cloud. The eval-
uation results show that our scheduling scheme outperforms
the state-of-the-art counterpart.
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1. INTRODUCTION

Probabilistic graphical models have been used for reason-
ing in a wide range of application domains [9,13,23,29,32].
Inference in these models, including marginalization and
maximum a posteriori estimation, forms the basis of many
statistical methods in knowledge management. Usually, ex-
act inference in a probabilistic graphical model is NP-hard.
As aresult, there have been many approaches on introducing
both variational and sampling approximations to inference.
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Among them, loopy belief propagation (BP) and its vari-
ants [12,19,21,25] are popular message passing methods for
performing approximate inference.

It has been shown that the schedule for updating mes-
sages can make a huge difference to the running time of BP
algorithms. Specifically, dynamic scheduling schemes, which
determine the order of updating messages by the changes
of message values, can significantly speedup BP algorithms
[6-8,22]. Although dynamic scheduling schemes have po-
tential to speedup BP algorithms, existing ones cannot fully
utilize the potential. Most of them typically select one mes-
sage for updating each time, e.g., the message with the high-
est priority value. As a result, many operations need to be
performed so as to select next message. That is, the cost of
realizing such a dynamic scheduling scheme is high.

In this paper, we propose to select a set of messages in-
stead of a single one to update at a time. Hence, the amor-
tized cost of selecting one message is low. Moreover, a novel
priority is leveraged to determine which messages are se-
lected. In other words, we present a prioritized block schedul-
ing scheme, which selects a block of messages to update via
a priority. The priority allows messages that are more useful
towards achieving convergence to be selected, and the com-
putation cost of the priority is low. To this end, we introduce
an efficient incremental update mechanism, which propa-
gates only the changes of original messages. The change of
a message is efficiently computed using the changes of orig-
inal incoming messages. Also, the change can be directly
utilized to calculate the priority. We refer to this mecha-
nism as an incremental-update approach.

As the probabilistic graphical models are applied to model
large and complex applications, such as image restoration for
high-resolution images, it is desirable to leverage the paral-
lelism of a cluster of machines to reduce the inference time.
Therefore, we design and implement a distributed frame-
work, Prom, which facilitates the implementation of BP
and other graph algorithms in a distributed environment.
Prom uses the proposed scheduling scheme as its built-in
scheduling and supports the incremental-update approach.
We evaluate two BP algorithms, the sum-product algorithm
and the max-product algorithm on Prom, on a local cluster
of machines as well as the Amazon EC2 cloud [1].

More specifically, our main contributions are as follows:

e We propose a novel scheduling scheme for BP algo-
rithms. It selects a set of vertices to update at a time
(in turn, a set of messages are selected, since all its out-
going messages are selected when a vertex is selected).
As a result, it performs the selection of vertices for



many message updates simultaneously instead of for
one message update, and thus reduces the overhead of
scheduling (since the amortized cost of selecting one
message is low).

e We present a novel priority, which is leveraged to de-
termine which messages are selected. The priority is
vertex-based and can well capture the gain of updat-
ing a vertex (updating its outgoing messages). In other
words, updating a vertex with large priority value will

send out highly useful outgoing messages towards achiev-

ing convergence. To keep the computation of the prior-
ity inexpensive, an incremental-update approach is in-
troduced. The message computed by the incremental-
update approach can be directly used to derive prior-

ity. Furthermore, the message update in the incremental-

update approach can be done by accumulating incom-
ing changes rather than by computing from scratch.

e We develop an asynchronous distributed framework,
Prom, to support the proposed scheduling scheme and
the incremental-update approach. Prom eases the pro-
cess of programming BP and other graph algorithms in
a distributed environment and does not require users
to have distributed programming experience. Prom
is evaluated via extensive experiments with both syn-
thetic and real-world data. The evaluation results show
that the proposed scheduling scheme outperforms the
state-of-the-art counterpart and the incremental-update
approach can further boost it. Moreover, a scalability
test on a 50-node cluster demonstrates nearly linear
scaling performance for large graphical models.

2. BELIEF PROPAGATION

Probabilistic graphical models, such as Bayesian networks,
factor graphs, and pairwise Markov Random Fields (MRFs),
are popular tools to capture uncertainty in real-world ap-
plications. Without loss of generality, we consider factor
graphs, since any other graphical models can be converted
to factor graphs [13]. A factor graph is a bipartite graph
with two types of vertices: variable vertices and factor ver-
tices. Each variable vertex represents a single random vari-
able (e.g., z;). Each factor vertex (e.g., f;) denotes a func-
tion that maps a subset of random variable values (e.g., X;)
to a non-negative real-valued number so as to capture the
compatibility of an assignment to those variables. The argu-
ments are graphically represented by edges, which connect a
particular function vertex with its variable vertices. There-
fore, a factor graph is a factored representation of a joint
probability distribution: P(z1,z2,...,2n) = % [Lies £i(X5),
where Z is the normalization constant.

We next briefly review two BP algorithms, the sum-product
algorithm and the max-product algorithm, and then discuss
asynchronous BP algorithms.

2.1 Sum-Product Algorithm

Marginal probabilities of the distribution represented by
a factor graph are central to inference. The sum-product al-
gorithm provides an efficient way to compute marginal prob-
abilities on a factor graph. It propagates messages in both
directions along edges. Each vertex sends and receives mes-
sages till reaching a stable situation, and then the incoming
messages are used to estimate the marginal probabilities of

the vertex. Let m;—q(z;) and mq—;(x;) denote the message
sent from variable vertex x; to factor vertex f, and the mes-
sage sent from f, to x;, respectively. They can be updated
by the following equations:
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where N (i)\a denotes the set of neighbors of a given vertex i
(z;) excluding vertex a (fa), and A is a normalization factor
to ensure all elements of the messages sum to 1.

The belief at a variable vertex (e.g., i) is proportional
to the product of all the messages coming to the vertex:
bi(x;) erN(i) Mg (2;:). Then, the estimate of the marginal
probability is P(x;) & b;(x;). While the sum-product algo-
rithm converges to the exact marginal probabilities in acyclic
graphs, there are no guarantees of convergence or correct-
ness for graphs with loops. Nonetheless, the sum-product
algorithm is widely applied on cyclic graphs for approximate
inference with great success [4,17,26].

2.2 Max-Product Algorithm

In some cases, we are interested in determining which valid
configuration has the largest probability, rather than deter-
mining the marginal probabilities for the individual vari-
ables. The max-product algorithm addresses this problem
efficiently. Message updates in the max-product algorithm
are similar with those in the sum-product algorithm. In fact
we only need to replace Y, with max in computing factor-to-
variable messages. The message updates in the max-product
algorithm are as follows:
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2.3 Asynchronous BP

We can represent each message as a vector in the vector
space & C R?, and represent an entire set 9 of messages as
a vector in 6!, The BP algorithm can be considered as
the iterative algorithm with an update function F : &/ —
GM ie. mt = F(m'™!).

BP aims to find a fixed point m* where m* = F(m*). BP
is guaranteed to converge to a unique fixed point m*, if the
update function F' is a contraction under a message norm,

[[ £ (m)

where the message norm || - || measures the distance between
messages. If F' is a max-norm contraction, then we have
[|[F(m) — m™||oc < allm—m"||oo, where the max-norm || - [|oo
is defined as the maximum of the individual message norms,
[mf —m" oo = max;; [mf,; — mZH]H In this paper, we
use the max-norm to measure the convergence of BP. Mooij
and Kappen [18] present sufficient conditions for F' to be a
contraction under the max-norm.

Function F' can also be viewed as a set of individual func-
tions, and each individual function F; applies to one mes-
sage. These individual update functions can be used to de-
fine synchronous BP and asynchronous BP. In synchronous
BP, the functions compute the new values of all messages
simultaneously at every iteration using their values from last

—m'| <afm-—m",0<a <1,



iteration. In asynchronous BP, the functions update mes-
sages using the most recent values. The convergence rate
of asynchronous BP (with a pre-defined update order) is
proven to be at least as good as that of synchronous BP [6].

For asynchronous BP, it has been shown that the dy-
namic scheduling, which uses a priority to determine the
order of updating messages, converges much faster than the
static scheduling [6-8,22]. The intuition behind the dynamic
scheduling is that sending a message whose current value is
very different from its previous value is perhaps more useful,
and thus leads to more rapid transfer of information across
the graph, while sending a message whose value does not
change is useless.

3. INCREMENTAL UPDATES

The general techniques of incremental updates have shown
efficiency in many algorithms, such as Nonnegative Matrix
Factorization [27] and Expectation-Maximization [28]. In
this section, we present an incremental update mechanism
for BP algorithms, referred to as an incremental-update ap-
proach. In contrast, the traditional way of updating mes-
sages (described in the previous section) is referred to as
a basic-update approach. The incremental-update approach
propagates only the incremental part (change) of the original
message. The message update in the incremental-update ap-
proach can be performed by accumulating incoming changes
instead of computing from scratch, and thus is much more
efficient than that in the basic-update approach. Further-
more, since it usually calculates the priority value using the
changes of messages, the dynamic scheduling can benefit
from the incremental-update approach.

The basic idea of the incremental update is inspired by
the Hugin architecture [5], an approach proposed for the ex-
act inference. It uses an efficient way to update messages,
which computes the marginal of a vertex as the product
of messages once and then divides a message out from the
marginal when one needs to update a message. However,
the incremental update we proposed aims to support asyn-
chronous computation. The order of asynchronous compu-
tations is based on a priority-based scheduling. The mes-
sage computed by our incremental update can be directly
used to derive priority, while there is no concept of prior-
ity in the Hugin architecture. Furthermore, our incremental
update performs log-space calculations, so it can use addi-
tion/subtraction to update messages, while the Hugin archi-
tecture uses more expensive multiplication/division.

To derive an incremental update mechanism for a BP al-
gorithm, we treat messages in log-space. A message in log-
space is the logarithmic equivalent of the original message,
ie., m(z;) = Inm(z;).

3.1 Incremental Updates for Sum-Product

When the messages are in log-space, the message compu-
tation for the sum-product algorithm is as follows:
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where m(z;) = Inm(x;), 8 = In()\), and g°~}(z;) =

JEN(aN mz;la (z;). Then, the belief at a variable vertex

(e.g., i) can be computed as: b;(z;) ox e=reN () Mh—i (@)

We can make a slight modification to Eq. (5) in which
we omit normalization factor 5. As Pearl [19] pointed out,
normalizing the messages is only for avoiding numerical un-
derflow and makes no differences to the final beliefs. Since
we still keep the normalization factor in Eq. (6) and mes-
sages are in log-space, there is no numerical underflow prob-
lem. Then, the message computation can be performed in-
crementally. The message m!_,,(z;) can be incrementally
computed as follows:

AmL—)a xl - Z Amk—)z :EZ) (7)
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where m{_,(x;) = 0, and Am)_,;(x;) = my_,;(x;) is the
initial message.

In our incremental-update approach, a vertex sends the
incremental part of the original message instead of the mes-
sage itself. For example, vertex x; sends message Am!_,,(x;)
to factor vertex f,. In order to compute the belief, variable
vertex x; also accumulates the messages received from its
neighbors, e.g., mb_;(v;) = mi_} (z;) + Amij,_,; (z:).

The function go—i(z;) in Eq. (6) can be also incrementally
computed. We have

Aga—n 37] = Z Am]_m «'BJ) (9)
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where ¢0_,;(x;) = 0.
Then, the incremental message sent from factor vertex f,
to variable vertex x; can be computed as follows:

Ay (i) = mi (i) — mb (i) (11)
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where m2_,;(z;) is the initial message. Factor vertex f, also
keeps records of gt~ (z;) and m! =} (x:).

Since the incremental-update approach uses only new in-
coming incremental messages to compute outgoing incre-
mental messages, the complexity of computing an outgoing
message for a vertex depends on the number of new incoming
messages the vertex has received (since last update) rather
than the vertex’s degree. This is highly useful especially in
the asynchronous communication model (e.g., under the dy-
namic scheduling), in which only part of a vertex’s incoming
messages may be updated when the algorithm computes its
outgoing messages. In contrast, the basic-update approach
always computes messages from scratch no matter how many
incoming messages are updated. Its computation complex-
ity is determined by the vertex’s degree.

3.2 Incremental Updates for Max-Product

When the messages are in log-space, the message compu-
tation for the max-product algorithm is as follows:

miﬁa(xi) = mkaz(w’b) + B, (12)
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mg () = lnmg i (2:), B =n(X), and g7} (z;) =
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The only difference in computing messages between the
max-product algorithm and the sum-product algorithm is
that the former one replaces ). with max in computing
factor-to-variable messages. As a result, the message update
for the max-product algorithm can be performed incremen-
tally as well. Computing the incremental variable-to-factor
message is the same with that in the sum-product algorithm
(so is ga—i(x;)). Here, we only show how to incrementally
compute the factor-to-variable message. The incremental
message sent from factor vertex f, to variable vertex z; can
be computed as follows:

Am (@) = mi (i) — mb (1) (14)
—1
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where mQ_,;(x;) is the initial message. Factor vertex f, also
keeps records of gt~} (z;) and m!~} (z:).

Using mathematical induction, it is straightforward to ver-
ify that performing message updates traditionally and per-

forming message updates incrementally are equivalent.

4. OUR SCHEDULING SCHEME

In this section, we present our scheduling scheme, which is
inspired by the residual scheduling [6]. The residual schedul-
ing leverages the difference in values of the message before
and after the update as the residual of the message. By giv-
ing the message with high residual a high execution priority,
the BP algorithm can potentially converge fast. The resid-
ual scheduling uses a priority queue to order all outgoing
messages’ residuals. Every time it sends out the outgoing
message with the largest residual in the priority queue and
then updates the queue.

The issue of the residual scheduling is that it has high
overhead. It always selects one message to update at a time.
Once the message is updated, it needs to recompute the pri-
orities of the messages that have been affected and maintain
the priority queue so as to select next message. Moreover,
the residual scheduling determines a message’s priority by
actually computing the message. Many messages are com-
puted only for the purpose of obtaining their priority values,
and are never sent out. As a result, in order to select one
message, many operations have to be performed.

Our scheduling scheme selects a set of messages instead of
a single one to update each time so as to reduce the cost. It
utilizes a priority to determine which messages are selected.
In addition, we also present a novel priority, which allows
messages that are more useful towards achieving conver-
gence to be selected (without actually computing the mes-
sages in advance).

4.1 Prioritized Block Scheduling

Our scheduling scheme is over vertices. That is, when a
selected vertex is updated, all its outgoing messages will be
computed and sent out. Scheduling over vertices rather than
messages can reduce the cost of selecting messages, since
a vertex usually has at least several messages. Updating
a vertex always uses the most recently available data (i.e.,
incoming messages). Our scheduling scheme selects a block
of k vertices to update each time. Once the block of selected
vertices are updated, it selects another block of vertices to
update. A priority is used to determine which vertices are
selected. Every time our scheduling scheme selects the top-k

vertices in terms of the priority value. Since our scheduling
scheme selects a block of vertices to update via a priority,
we refer to it as the prioritized block scheduling.

The size of the block (i.e., k) balances the tradeoff between
the gain from the prioritized block scheduling and the cost
of selecting the k vertices. Setting k£ too small may incur
considerable cost, e.g., when k = 1, the prioritized block
scheduling can be in principle seen as a vertex-based version
of the residual scheduling (since it selects one vertex to up-
date at a time). Setting k too large may degrade the effect
of the prioritized block scheduling, e.g., if setting k as the
number of vertices, it degrades to the round-robin schedul-
ing. We will show in experiments (Section 6.3) that a quite
large range of k can allow the prioritized block scheduling to
have better performance than the round-robin scheduling.

The prioritized block scheduling uses an efficient way to
select the top-k vertices. The naive way is to first sort all
the vertices by their priority values and then pick the top
ones. However, sorting all the vertices can be expensive
and time consuming (at least O(nlogn) time). Instead, the
prioritized block scheduling first finds the vertex with the
k-th largest priority value. Then, it utilizes the k-th largest
priority value as a threshold to filter the vertices. That is, it
scans all the vertices once and picks only the vertices with
larger or equivalent priority values. Randomized-Select [3]
is utilized to find the k-th largest value. It has an expected
running time of O(n). In this way, the prioritized block
scheduling takes O(n) time (including the time in scanning
all the vertices) in extracting the top-k vertices.

Our prioritized block scheduling has much lower cost of
selecting one message than the residual scheduling. Updat-
ing one message in the residual scheduling needs to reset
the message’s residual and adjust the dependent messages’
residuals (the messages sent from the message’s destination
vertex). Assuming the degree of the message’s destination
vertex is d, there are (d — 1) dependent messages. We
know that adjusting an element’s priority value in a pri-
ority queue with n elements typically needs O(logn) time.
Given a factor graph with |V vertices and |E| edges, there
are O(|E|) messages in the priority queue. Hence, select-
ing a message to update in the residual scheduling needs
d*O(log |E|) time, O(log | E|) for the selected message itself
and (d — 1) xO(log |E|) for the (d — 1) dependent messages.
In our prioritized block scheduling, selecting k vertices to
update only needs O(]V]) time. Suppose the averaged de-
gree of these k vertices is d’. Then, (k * d’') messages will
be updated once the k vertices are selected. As a result,
the amortized cost of selecting one message to update in our
prioritized block scheduling is Ok(l‘d/,') . For a reasonably large
k (e.g., k is one tenth of |V]), the cost is low and much lower
than that in the residual scheduling.

4.2 Priority

We define the residual of an incremental message Am(z;)
as its L'-norm (in log-space),

r(Am) =Y |Am(z;)|.

Next, we derive the priority utilized in our prioritized block
scheduling for the sum-product algorithm and for the max-
product algorithm, respectively. The priority is vertex-based,
and the priority of a vertex is directly computed from the
residuals of its incoming messages.



4.2.1 Priority in Sum-Product

For any outgoing message sending from a variable vertex
(e.g., 1), its residual can be computed as follows:

T(Ami*ﬂl) = Z ‘Amz—m T | = Z| Z Amkaz x’b)'

z; keN(i)\a

Therefore, we use the summation over all assignments of
incoming messages in log-space,

pri = Z' Z Amk%z Li ‘

z; keN(1)

as the priority of a variable vertex (i), which well approx-
imates the residual of each individual outgoing message of
the variable vertex.

For any outgoing message sending from a factor vertex
(e.g., a), its residual can be computed as follows:
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We have derived the lower bound and the upper bound for

r(Amga—;). Then, we use a value between these two bounds
to approximate 7(Ama—). Let vami =37, éZx \os

| 2 enan: Am ¢ ()], where s is the number of possible

states of X;\z;. We can see that (since vq—; is the aver-

age) Va—; is between those bounds. Therefore, we use vq—;

to approximate T(Amaﬁi), and use the summation of av-
eraged values over all assignments of incoming messages in
log-space,
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as the priority of a factor vertex (a). Intuitively, this prior-
ity well captures the importance of new incoming messages
available to the factor vertex.

4.2.2  Priority in Max-Product

The message update for a variable vertex in the max-
product algorithm is the same with that in the sum-product
algorithm. Accordingly, the priority for a variable vertex
defined in the sum-product algorithm also applies to the
max-product algorithm. Next, we derive the priority for a
factor vertex in the max-product algorithm.

For any outgoing message sending from a factor vertex
(e.g., a), its residual can be computed as follows:
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From the above 1nequat10ns, we can see that the max-
product algorithm has the same bounds for the residual of an
outgoing message sending from a factor vertex as the sum-
product algorithm. Accordingly, the priority for a factor
vertex defined in the sum-product algorithm applies to the
max-product algorithm as well.

The defined priority uses summation to aggregate incom-
ing messages, and thereby we call it the sum priority. From
the above derivation, we can see that the sum priority has
strong connections with the residuals of its outgoing mes-
sages and thus well captures the gain of updating the vertex.
That is, updating a vertex with large sum priority will send
out highly useful outgoing messages. In contrast, updating



a vertex with zero sum priority will waste a update, since
the outgoing messages will not change.

4.3 Convergence

The prioritized block scheduling guarantees that BP al-
gorithms converge if update function F' is a max-norm con-
traction. It has been shown that when F' is a max-norm
contraction, if a scheduling scheme can guarantee that ev-
ery message is updated infinitely often (until convergence),
the BP algorithm will converge [6]. We first show that our
prioritized block scheduling can fulfill this requirement.

LEMMA 4.1. If update function F' is a max-norm contrac-
tion, the prioritized block scheduling guarantees that every
message s updated infinitely often.

PrOOF. We prove this lemma by contradiction. Assume
there are a set of messages that belong to (sent from) a set
of vertices, C, which are updated only before a time point
t. We use pr; to denote the priority value of vertex i. Since
update function F' is a contraction, the messages that are
updated will move towards their fixed points. Consequently,
at some time point after ¢, for any vertex that does not
belong to C' (i.e., i € (V — C), where V is the whole set of
vertices), its outgoing messages can reach the fixed points
(since they are always being updated). At that time, for
any ¢ € (V — C), we have pr; = 0; if we also have pr; = 0
for any ¢ € C, the BP algorithm has converged; otherwise,
a vertex in C (e.g., j, pr; > 0) must be selected to update,
which contradicts with the assumption that any vertex in C
is updated only before time point ¢. []

Therefore, we have the following theorem.

THEOREM 4.2. If update function F' is a maz-norm con-
traction, BP algorithms with the prioritized block scheduling
converge.

S. DISTRIBUTED FRAMEWORK

BP algorithms and its variants are commonly used to
perform inference on large real-world probabilistic graphi-
cal models. It is desirable to leverage the parallelism of a
cluster of machines to reduce the completion time, and to
have a general framework to facilitate the implementation in
a distributed environment. BP algorithms (and its many ex-
tensions) are graph algorithms. Actually, graph algorithms
have become an essential component in knowledge discov-
ery, since graphs can capture complex dependencies and in-
teractions. Therefore, we propose Prom, an asynchronous
distributed framework for graph algorithms.

Prom provides several high-level APIs to users for im-
plementing BP or other graph algorithms without worry-
ing about the complexity of parallel computation. Prom
supports asynchronous executions on graphs, in which ver-
tices are updated using the latest available values, and lever-
ages the proposed prioritized block scheduling as its default
scheduling in order to efficiently order vertex updates.

Prom is built upon Maiter [31], an open-source graph pro-
cessing framework. Maiter has shown good performance for
several graph algorithms. In Maiter, users specify the appli-
cation logic simply through a vertex update function. How-
ever, Maiter assumes that each vertex (or message) has only
one scalar value (e.g. a floating-point number), and thus
cannot support algorithms with vector values, such as BP

and Personalized PageRank [10]. Additionally, Maiter as-
sumes that the update function has only one operation (e.g.,
addition) with commutative and associative properties, but
there are many graph algorithms with more than one opera-
tions in the update function (e.g., sum-product has addition
and multiplication). These limitations need to be removed
so as to accommodate more graph algorithms. To this end,
Prom extends Maiter to support a broader class of graph
algorithms efficiently. Prom makes two basic assumptions:
(1) the graph structure is static and will not change during
execution; (2) asynchronous execution with dynamically or-
dering vertex updates does not affect the correctness of the
algorithm. Graph algorithms satisfying these two assump-
tions can be implemented on Prom and can benefit from the
efficient prioritized block scheduling.

A vertex-centric programming model (which has been shown
to be efficient for many graph algorithms) is adopted by
Prom. That is, each vertex is considered as an independent
computing unit, and the operations are performed over ver-
tices until termination. Vertex updates are performed on
workers, and there is a master controlling the flow of com-
putation. All workers (and the master) run in parallel and
communicate through MPI.

5.1 Data Partition and Storage

The input graph is split into partitions and each worker
is responsible for one partition. Each partition consists of a
set of vertices and all their (outgoing) edges. Each worker
leverages an in-memory table, info table, to store the ver-
tices in its partition. For graph algorithms under the vertex-
centric programming model, storing the following informa-
tion is typically sufficient for a vertex: ID, incoming mes-
sages, outgoing messages, priority, state, and edges (with
edge data associated with each edge). Hence, as shown in
Figure 1, Prom represents a vertex by a tuple with six fields,
{v,im, om, pr, st, sd}, where field v for the vertex ID, im for
the incoming messages, om for the outgoing messages, pr
for the priority value, st for the state, and sd for the static
data (e.g., edges and their associated data).

v :
vy |imy |om, | pry | sty |sd,

P vy |imy |lomy | pry | Sty |sdy
— |

U3

vz |imz |omg | pr3 | stz |sds

prioritized list info table

Figure 1: Data storage in a worker.

Prom allows users to define each field of the info table. For
example, to implement the incremental-update approach for
BP, we can define the incoming message field (im) of a ver-
tex with [Ama,, A, ..., Ay, Ma, , Moy, - - ., My, ] (each
item can be a vector), where Am,,, stores the new incoming
incremental message from neighbor v,, and m,, accumu-
lates the incoming messages already received from v,. The
static data (sd) is usually defined to contain edges and the
data associated with edges (e.g., factor functions of the fac-
tor graph). Each tuple is stored in one entry of the info
table, which is indexed by the vertex ID (v).

5.2 Vertex Operation

Each worker has two main operations for its stored ver-
tices: the catch operation and the update operation. The



catch operation uses a user-defined function (c_fun()) to ag-
gregate a new incoming message for a vertex (say v;) to its
stored incoming messages. That is, function c_fun() needs
to update the incoming message field (im;) of vertex vj,
upon receiving a new incoming message. Also, it needs to
update the priority field (pr;) to aggregate the importance of
the new incoming message. By defining function c_fun() in
different ways, users can realize different update approaches
(e.g., incremental-update or basic-update) and priorities.

The update operation uses another user-defined function
(u—fun()) to compute outgoing messages (and the state)
for scheduled vertices. When it is performed on a vertex,
function u_fun() computes outgoing messages and updates
the state (e.g., the belief distribution of the vertex) by in-
corporating the latest incoming messages, and modifies the
incoming message field if necessary as well as resets the pri-
ority value to zero.

Prom uses MPI to transmit messages between workers.
All messages during transmission are in the format (dst, src,
ent), where dst denotes the message’s destination vertex, src
indicates the source vertex, and cnt denotes the message’s
content. The catch operation and the update operation are
realized in two threads for asynchronous execution.

5.3 Distributed Prioritized Execution

Prom leverages the prioritized block scheduling (described
in Section 4.1) as its default scheduling scheme. Since a cen-
tralized ordering is inefficient in a distributed environment,
Prom allows each worker to build its own prioritized block
scheduling. Round by round, each worker selects its local
top-k vertices in terms of the priority value as a block to
update. All workers selects vertices independently.

A worker puts the block of selected vertices into a list,
prioritized list. To minimize the copy cost, only vertex IDs
are put in the prioritized list, as shown in Figure 1. Vertex
IDs are used to locate corresponding vertices in the info
table. All the vertices in the prioritized list will be updated
by the update operation during the round. In the first round,
all vertices are put into the prioritized list to guarantee that
each vertex is updated at least once before convergence.

5.4 Distributed Termination Check

Prom adopts a passively monitoring model to perform ter-
mination check. Each worker utilizes a user-defined func-
tion (m_fun()) to periodically measure its local progress by
scanning the info table (typically looking at the incoming
message field), and reports the progress to the master. The
master aggregates the local progress reports from workers
(in the way that a user specifies) so as to obtain the global
progress, and in turn determines whether the termination
condition is satisfied. If yes, the master sends termination
signals to all workers. Upon receiving the terminate signal,
a worker stops updating its info table and dumps the table
to a distributed file system (i.e., HDFS) so as to reliably
store the converged results.

We use the following convergence criterion (max-norm)
for BP algorithms (where € > 0 is a small constant):

max [ Amijll < e.

6. EVALUATION

In this section, we evaluate the proposed prioritized block
scheduling and the priority. Both the sum-product algo-

rithm and the max-product algorithm are implemented on
Prom. For the comparison purpose, both the incremental-
update approach and the basic-update approach are used.
To show the performance of the prioritized block schedul-
ing, we compare it with the round-robin scheduling (static
scheduling). We also compare the prioritized block schedul-
ing with the state-of-the-art dynamic scheduling.

6.1 Experiment Setup

The experiments are performed on a local cluster and a
large-scale cluster on Amazon EC2 [1]. The local cluster
consists of 4 machines, and each of them has Intel E8200
dual-core 2.66GHz CPU, 4GB of RAM, and 1TB of hard
disk. These 4 machines are connected through a Gbit switch.
The large-scale cluster consists of 50 medium instances.

Table 1: Factor Graph Summary

Dataset # of Vertices Description
gird-n 4xn* —2xn n x n grid MRF
uw-theory 133,999 uw-theory MLN
uw-systems 414, 340 uw-systems MLN

Both synthetic and real-world factor graphs are used. We
generate one type of pairwise MRFs, random grids with bi-
nary variables (parameterized by the Ising model) [6], and
convert them into factor graphs. Random grids are cho-
sen because they are standard benchmarks for evaluating
BP algorithms. For real-world graphs, we consider Markov
Logic Networks (MLNs) [20]. Alchemy is leveraged to com-
pile the MLNs from the UW-CSE data collection [2] into
factor graphs. After compiling, the factor functions will be
adjusted if BP algorithms on the compiled graphs do not
converge. The factor graphs are summarized in Table 1. In
order to load the strongly connected vertices to the same
worker and thus reduce across-worker communication, we
utilizes METIS [11] to split a graph into partitions.

Each worker by default sets k& as 10% of the number of its
local vertices. The convergence criterion is set to ¢ = 107%.
Running times are averaged over 10 runs.

6.2 Efficiency of Prioritized Block Scheduling

30 =R 30
- P-B -
220 [ : 220
210 210
c =
5 5
c 0 - c 0

Basic Incr Basic Incr
(a) Sum-Product on grid-200 (b) Max-Product on grid-100

Figure 2: BP algorithms with different scheduling
schemes and update approaches.

We first show the running time of BP algorithms with
the prioritized block scheduling on the local cluster. The
running time is measured as the wall-clock time that BP
uses to reach the convergence criterion. The round-robin
scheduling is also evaluated as a reference point. For the
sum-product algorithm as well as the max-product algo-
rithm, the prioritized block scheduling is faster than the
round-robin scheduling with either the incremental-update
approach or the basic-update approach, as presented in Fig-
ure 2. For example, the prioritized block scheduling is 1.9x
faster for the sum-product algorithm on g¢rid-200 when the
incremental-update approach is utilized. In addition, the



incremental-update approach is always superior to the basic-
update approach. Note that, in all figures, “P-B” indicates
the prioritized block scheduling; “R-R” represents the round-
robin scheduling; “Incr” and “Basic” denote the incremental-
update approach and the basic-update approach, respec-
tively.

Table 2: Vertex degree comparison

can allow the prioritized block scheduling to have better per-
formance than the round-robin scheduling (when either the
incremental-update approach or the basic-update approach
is used), and that the optimal speedup happens at around
k/n = 0.1. This is also why we set k/n = 0.1 by default.

Graph overall avg. deg. | variable avg. deg.

gird-200 2.5 5.0
uw-theory 3.8 55.7
uw-systems 3.8 78.8

To further show the advantage of the prioritized block
scheduling, we evaluate both scheduling schemes for the
sum-product algorithm on real-world factor graphs. The
performance comparison for the max-product algorithm is
similar and therefore omitted here due to space limitations.
As plotted in Figure 3, the speedup of the prioritized block
scheduling over the round-robin scheduling is up to 2.1x on
real-world factor graphs (when the incremental-update ap-
proach is used). Moreover, compared with the basic-update
approach, the incremental-update approach allows the pri-
oritized block scheduling to achieve up to 4x speedup, much
higher than that on the synthetic factor graphs (Figure 2a).
The different speedups can be attributed to different struc-
tures of the factor graphs. For instance, the real-world fac-
tor graphs have much higher degrees for variable vertices, as
shown in Table 2.
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Figure 3: Prioritized block scheduling on real-world
graphs.

We also measure the convergence speed of the different
scheduling schemes (when the incremental-update approach
is used). The test is performed on the real-world factor
graph, uw-theory, and the max-norm (max; ; |[Ami_;(z;)|)
is used to measure the convergence progress. As shown in
Figure 4, the prioritized block scheduling converges much
more rapidly than the round-robin scheduling.
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Figure 4: Convergence progress vs. time.

6.3 Impact of k

The block size (i.e., k) balances the tradeoff between the
gain from the prioritized block scheduling and the cost of
preparing the prioritized list. Figure 5 shows the conver-
gence speedup results with different k. The speedup is mea-
sured over the running time when k is the number (n) of
a worker’s local vertices (i.e., the round-robin scheduling).
From the figures, we can see that a quite large range of k
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2
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2 1.6 2 14t
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(a) Sum-Product on grid-200 (b) Max-Product on grid-100

Figure 5: The impact of k (varying k/n).

6.4 Comparison with Other Schedules

To further demonstrate the efficiency of its built-in pri-
oritized block scheduling, Prom is also compared with an-
other distributed implementation of the sum-product algo-
rithm, MPI Splash [8], on the local cluster. MPI_Splash uti-
lizes the DBRSplash scheduling, a distributed version of the
ResidualSplash scheduling [7]. The ResidualSplash schedul-
ing applies a variation of the residual scheduling in a sin-
gle machine (multiple-core) environment, and it has been
shown that ResidualSplash is more efficiently than the orig-
inal residual scheduling. By recognizing the high overhead
of the residual scheduling, ResidualSplash also defines the
residual over vertices instead of messages and selects a set
of vertices to update at a time via a Splash operation. The
Splash operation uses the vertex with the largest residual
as a root and updates vertices around the root. However,
not all vertices covered by the Splash operation have large
residuals, and thus some updates might not be useful. Resid-
ualSplash defines a vertex’s priority as the maximum of the
residuals of its incoming messages. To differentiate this pri-
ority with our sum priority, we refer to it as the max priority.
The DBRSplash scheduling is the state-of-the-art dynamic
scheduling for BP in a distributed environment.

80 ax priority
ﬁGO Sum priority
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£
= 40
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(a) Different schedules

uw-theory

uw-theory

uw-systems
(b) Different priorities

Figure 6: Performance comparison with the state-
of-the-art dynamic scheduling.

For fairness, Prom uses the same priority and termination
condition as MPI_Splash. To compare scheduling schemes
only, we leverage the basic-update approach to implement
the sum-product algorithm on Prom. As presented in Figure
6a, Prom can be up to 2x faster than MPI _Splash, indicat-
ing that the prioritized block scheduling outperforms DBR-
Splash. In order to verify that the superiority of Prom over
MPI_Splash stems from its scheduling scheme, we implement
both the prioritized block scheduling and the ResidualSplash
scheduling (single machine version of DBRSplash) in a sin-
gle machine environment and evaluate them with the same



settings. The prioritized block scheduling is 1.8x faster on
grid-200 and 2.3x faster on uw-theory than the Residual-
Splash scheduling.

In order to show the performance of our sum priority,
we compare it with the max priority. We evaluate these
two priorities (when both are utilized by the prioritized
block scheduling) for the sum-product algorithm on real-
world graphs. As presented in Figure 6b, the prioritized
block scheduling with our sum priority is 1.2x faster on uw-
theory and 1.5x faster on ww-systems than that with the
max priority.

6.5 Accuracy

We also assess accuracy of the beliefs computed by Prom
(using the prioritized block scheduling with the incremental-
update approach) for the sum-product algorithm. We first
compare with the exact result. Since exact inference is in-
tractable on large graphical models, we here use a small fac-
tor graph, grid-10. The beliefs (of all variable vertices) com-
puted by Prom are compared against the exact beliefs com-
puted by the junction tree algorithm [14]. We use MPI_Splash
as a reference point. Kullback-Leibler (KL) divergence is
leveraged to measure the difference. From Figure 7, we can
see that both Prom and MPI _Splash achieve high accuracy.
For example, for more than 90% variable vertices, the KL
divergence of the beliefs computed by Prom from the exact
beliefs is less than 0.01.
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Figure 7: Cumulative percentage of variable vertices
as a function of the KL divergence.

For large graphs, since exact inference is intractable, we
only compare Prom with MPI _Splash. We evaluate both
Prom and MPI Splash on grid-200. Beliefs from both sys-
tems are compared by calculating the L' difference averaged
over all variable vertices. The difference in beliefs computed
by the two systems is less than 0.02 in terms of averaged L*
per variable vertex.

6.6 Scaling Performance
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Figure 8: Scalability test on us-systems.

Figure 8 presents the scaling performance of the priori-
tized block scheduling (for the sum-product algorithm) on

Prom as the number of workers increases from 10 to 50 on
the Amazon EC2 cloud. The real-world factor graph, us-
systems, is used. The speedup is calculated over the run-
ning time of 10 workers. We can see that the prioritized
block scheduling exhibits nearly linear speedup, and that
it always converges faster when the incremental-update ap-
proach is utilized than when the basic-update approach is
utilized.

7. RELATED WORK

Several works [6-8,22] have shown that BP algorithms
with the dynamic scheduling converge faster than those with
the static scheduling. The earliest work [6] proposes the
residual scheduling, which selects the outgoing message with
largest residual to update each time. It uses a priority queue
to order messages. Besides the large priority queue main-
tenance overhead, the problem of the residual scheduling is
that it determines an outgoing message’s residual by actu-
ally computing it. Later, Sutton and McCallum [22] propose
to approximate the residual of an outgoing message rather
than compute it in order to reduce the computation over-
head. However, the cost of ordering messages so as to select
the one with the largest residual is still high. Our prioritized
block scheduling scheme selects a set of messages to update
each time in order to reduce the cost.

The ResidualSplash scheduling [7] applies a variation of
the residual scheduling in the multiple-core environment. It
defines the residual over vertices instead of messages. The
residual of a vertex is used to determine the Splash ordering,
and a Splash operation uses the vertex with the largest resid-
ual as a root and propagates messages around the root (i.e.,
among the neighbors within fixed number hops). That is, it
selects a set of messages to update at a time. The Residual-
Splash scheduling outperforms the residual scheduling, since
it reduces the cost of selecting one single message. However,
not all vertices covered by the Splash operation have large
residuals, and thus some updates might not be useful. The
DBRSplash scheduling [8] extends the idea of the Residual-
Splash scheduling to a distributed environment. In contrast,
our prioritized block scheduling selects vertices with high
residuals uniformly, and therefore all scheduled updates are
potentially useful.

Since massive graphs become increasingly popular, a se-
ries of parallel frameworks have emerged to scale graph pro-
cessing. Among them, Priter [30], Maiter [31], GRACE
[24], and GraphLab [15,16] support prioritized execution.
Priter is a MapReduce-based framework, which requires syn-
chronous iterations. Maiter presents asynchronous execu-
tion but assumes that each vertex (or message) has only one
scalar value. As a result, none of them supports BP with dy-
namic scheduling. GRACE and GraphLab can support BP.
GRACE relies on users to implement their own scheduling
schemes and its prototype is built on a shared-memory ar-
chitecture. GraphLab is the first framework to use a general
asynchronous model for graph algorithms and provides the
Splash scheduling (based on ResidualSplash) for BP. In com-
parison, Prom provides a more efficient scheduling scheme,
the prioritized block scheduling.

8. CONCLUSIONS

In this paper, we propose an efficient dynamic scheduling
scheme, the prioritized block scheduling, with a novel prior-



ity for BP algorithms. In order to efficiently compute the
priority and update messages, we introduce an incremental-
update approach, which is much more efficient than the tra-
ditional basic-update approach. In addition, to facilitate
the implementation of BP algorithms and other graph algo-
rithms in a distributed environment, we design and imple-
ment an asynchronous distributed framework, Prom. Prom
uses the prioritized block scheduling as its default scheduling
scheme. We implement two BP algorithms, the sum-product
algorithm and the max-product algorithm, on Prom. With
both synthetic and real-world data, the evaluation results
show that the prioritized block scheduling outperforms the
state-of-the-art dynamic scheduling scheme, and that the
incremental-update approach can further accelerate the pri-
oritized block scheduling.
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