
A Fuzzy Genetic Algorithm Approach to an Adaptive
Information Retrieval Agent

Marı́a J. Martı́n-Bautista* and Marı́a-Amparo Vila
Department of Computer Science and A. Intelligence, Granada University, Avenida Andalucı́a s/n, 18071
Granada, Spain. E-mail: {mbautis, vila}@decsai.ugr.es

Henrik Legind Larsen
Department of Computer Science, Roskilde University, P.O. Box 260, DK-4000 Roskilde. E-mail: hll@ruc.dk

We present an approach to a Genetic Information Re-
trieval Agent Filter (GIRAF) for documents from the In-
ternet using a genetic algorithm (GA) with fuzzy set
genes to learn the user’s information needs. The popu-
lation of chromosomes with fixed length represents
such user’s preferences. Each chromosome is associ-
ated with a fitness that may be considered the system’s
belief in the hypothesis that the chromosome, as a
query, represents the user’s information needs. In a
chromosome, every gene characterizes documents by a
keyword and an associated occurrence frequency, rep-
resented by a certain type of a fuzzy subset of the set of
positive integers. Based on the user’s evaluation of the
documents retrieved by the chromosome, compared to
the scores computed by the system, the fitness of the
chromosomes is adjusted. A prototype of GIRAF has
been developed and tested. The results of the test are
discussed, and some directions for further works are
pointed out.

Introduction

With the explosive growth of the amount of information
resources available over the Internet, the information over-
load for the user has become overwhelming. With the cor-
responding dramatic increase of the number of users, the
difficulty in assisting users in finding the best and newest
information has increased exponentially. The absence of
suitable alternatives in the functionality of most of current
information systems can be framed as follows:

● Lack of filtering: A user looking for some topic on the
Internet retrieves too much information.

● Lack of ranking of retrieved documents:The system
provides no qualitative distinction between the docu-
ments.

● Lack of support of relevance feedback:The user can not
tell his subjective evaluation of the relevance of the
document.

● Lack of personalization:There is a need of personal
systems that serve the specific interest of the users and
build users’ profiles (Maes, 1994).

● Lack of adaptation:The system should notice when the
user changes his/her interests.

The agent approach (Etzioni & Weld, 1995; Maes, 1995)
is now getting attention because it may help to solve the
problem. We need personal search agents that do the dirty
work, namely reading lots of documents to identify and
display only those that are of interest to the user.

In this paper, we present an approach to such an agent,
the Genetic Information Retrieval Agent Filter (GIRAF),
which consists of a soft-intelligent agent that can work
off-line to filter and rank the retrieved information accord-
ing to the user’s preferences by using Soft Computing
techniques: (1) A Genetic Algorithm (GA) (Goldberg,
1989) keeps the knowledge about the user’s preferences,
adapts the changes in these preferences and gets the feed-
back from the user; and (2) Fuzzy Set theory (Zadeh, 1965)
handles the imprecision of the user’s preferences and the
user’s evaluation of the retrieved documents.

We describe the functionality and architecture of GIRAF,
and explain the combination of GAs and Fuzzy Sets in the
adaptive learning process. The empirical test of the model
was made using case sets; the test measure and the results
are presented. Finally, conclusions and some further re-
search topics are pointed out in the last section.

Related Work

Recently, besides the traditional Internet search engines
such as Yahoo, Lycos, AltaVista, etc., there have been

* To whom all correspondence should be addressed.

Received January 8, 1998; revised August 3, 1998; accepted December 16,
1998.

© 1999 John Wiley & Sons, Inc.

JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE. 50(9):760–771, 1999 CCC 0002-8231/99/090760-12

several systems developed to assist the user more closely to
find information on the Internet. Regarding the user–system
interaction, we can distinguish between two categories of
systems. Those which are merely general services to help
the user to gather information from the net, and those
presenting an intelligent behavior, which can properly be
considered as agents (Riecken, 1994). The difference be-
tween the two categories is mainly in the system’s response
of feedback from the user. The capabilities to learn and
adapt to the user’s needs are only provided by systems in the
second category. These capabilities are, precisely, two of
the main characteristics that make the system have intelli-
gent behavior, as is proposed in the work (Maes, 1995).

The MetaCrawler (Selberg & Etzioni, 1995) is a service
belonging to the first category that can access multiple
databases and provide a larger number of potential higher
quality references than any search service tied to a single
database. It can be considered, just as the authors men-
tioned, as a meta-service over the traditional services, to
gather the best references from them, and give the user a
final ranked list. However, this system is a general service,
and not a personal service since no user profile is built, and
there is no feedback from the user to the system. Thus, we
do not consider the behavior of MetaCrawler intelligent.

In the second category, the intelligent agents, we shall
mention in particular two systems. The LIRA system (Bala-
banovic, Shoham, & Yun, 1997) uses a standard best-first
search to find the best pages, based on a comparison be-
tween the user profile and the terms representing the docu-
ments. The user reads the retrieved documents and gives a
feedback to the system. Another approach, the Smart Itsy
Bitsy Spider (Chen, Chung, Ramsey, & Yang, 1998) also
uses a best-first search for a local search, but the searching
process is complemented by a genetic algorithm that devel-
ops a global stochastic search. A fitness function based on
the Jaccard’s similarity function (Rasmussen, 1992) is ap-
plied to determine the goodness of a given new homepage in
the mutation process. The central differences between their
approach and ours are the following. First, regarding the
definition of the GA, they define individuals of the popula-
tion are homepages, while in our system the individuals are
keywords extracted from the documents. As for the func-
tionality of the system, the main difference lays in the user
evaluation in the “spider.” The use of user-supplied starting
pages as initialization of the population, and the lack of a
real feedback to be considered as a part of the evolution
process, make the modification of a query quite difficult,
since the system can not adapt to the changes in the user
preferences. Likewise, the personalization of the spider does
not seem to imply the construction of a user profile.

The Functionality of the System

GIRAF is a personal search agent between the user and
an Internet search engine. The agent can work off-line from
the user and filter documents night and day. When the user
interrupts, the documents are directly accessible from the

hard disk of the user machine or a local server. There is no
delay for connection. In this sense, the system functions as
a support tool for information gathering.

Looking at the system as a black box, the input consists
of some documents from the Internet while the output
consists of only the better documents, listed according to the
user preferences (Figure 1).

This functionality may be characterized as follows:

● The user has needs of information in a specific topic area
that he/she communicates to the search engine by a query.

● These needs must be satisfied by documents from the
Internet.

● The system provides the user with a ranked list of the
documents that best satisfy the needs.

● The user selects in the list the documents of interest for
reading, and gives feedback on their relevance.

The goal of the system should be to give the user an
update on new information about a specific topic area for a
long period of time. The philosophy of the interaction
between the user and the system builds on the observation
that users are unable to express the exact criteria that are
satisfied by, and only by, documents of interest. This is due
to the unsettled nature of human preferences, the changes of
the available information, and the human mental model that
is highly complex, and therefore difficult to communicate.

To derive the answer to the user’s information need, the
systems first retrieve a set of potentially relevant documents
from the Internet. This retrieval is efficient in terms of high
recall from the Internet, and a fast response time at the cost
of poor precision. Recall is the percentage of relevant doc-
uments that are retrieved, while precision is the percentage
of documents retrieved that are considered relevant (Salton
& McGill, 1983). When the relevance is treated as a fuzzy
concept, as in our case, the recall and precision must be
considered in terms of ranked documents, as is suggested in
Kraft, Petry, Buckles, & Sadasivan (1995). In order to
increase the precision, the retrieved high-recall set is filtered
through ranking by the scores of its documents. These
scores are given by the population of the GA, which repre-
sents the information needs of the user. The result to be
presented to the user is a subset characterized by a high
recall and precision for these information needs. This subset

FIG. 1. Functionality of the system.

JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE—July 1999 761

may then be stored as the answer that the user can browse
and read as desired.

The capability of the system is to approach an exact
representation of the user’s information needs automati-
cally. For this purpose, the user evaluates the relevance of
the retrieved documents, and gives feedback to the system,
which utilizes it to adapt to the evolving information needs.
By means of the GA, the agent adjusts the representation of
these needs when confronted with user feedback. Hence, the
agent should be adaptive in the sense that it learns a repre-
sentation of the user’s information needs and maintains this
representation to keep track of the evolution of these needs
(Mitchell & Forrest, 1994).

In order to adjust the representation of the needs when
confronted with the user feedback, we propose a specially
designed GA. Every chromosome in the population of the
genetic algorithm contains a set of genes. Each gene char-
acterizes a fuzzy subset of the document set by means of a
keyword (term) and its occurrence frequency in a document.
The occurrence frequency is represented by a fuzzy subset
of the set of non-negative integers. This process is based on
the concept of relevance feedback (Salton & Buckley,
1990), where those genes with terms in documents that are
evaluated as good are rewarded, while those ones that the
user considers without relevance are penalized. Each chro-
mosome is associated with a fitness value representing the
system’s belief in the hypothesis that the chromosome, as a
query, represents the information needs. The user evaluates
the relevance of the documents retrieved, and the system
uses this relevance feedback to adjust the fitness of the
chromosomes that contain these genes.

The Architecture of GIRAF

The GIRAF system contains four main modules, one for
each of the central functionality maintained by the system:
parsing, learning, evaluation, and man-machine interaction
(user interface). An overview of the architecture of GIRAF
is shown in Figure 2. To start the system, the user selects
and evaluates one or more documents. This information is
applied to the system to provide a starting point for the
population adaptation to the information needs of the user.
The modules are described in the following:

The Parser Moduleextracts the words (terms) from the
documents and maintains statistics on word occurrences in
the documents.

The Learning Moduleis the central element of the ar-
chitecture and is composed of a genetic algorithm for mod-
eling adaptive and exploratory behavior. The main function-
ality of this module is to adjust the representation of the
information needs of the user so it is consistent with the
latest feedback values of the user, and yet retains the essen-
tial knowledge from the past. This knowledge is kept in a
population of chromosomes, which is processed by the
genetic algorithm. Each chromosomeis a hypothesis on
how to evaluate a document according to the information
needs. All the chromosomes in the population are compet-

ing to predict the user’s satisfaction from a document. The
chromosome’s evaluation of a document is called thechro-
mosome scoreand the ability of a chromosome to classify a
document is called thefitnessof the chromosome. Each
gene of a chromosome is specified by a triple (t, g, c), where
t is a term (a word extracted from some document),g is the
gene type, to be introduced in next section, andc is a
positive real number. The pair (g, c) determines a fuzzy
subset of the non-negative integers characterizing the term
occurrence frequency in interesting documents. The same
term may be applied in more than one gene in the same
chromosome, as well as in different chromosomes. The
chromosome scoreis calculated as the average of the gene
evaluation of a document. In the following section, we give
a more detailed description of the learning module.

The initialization of the population occurs as follows:
For every new gene created in a chromosome, a random
term t is selected from the pool of all the indexing terms
extracted from a set of documents. These documents may be
either the most relevant ones retrieved from the net, or an
ideal document supplied by the user to the system. The type
g of the gene with the selected term is determined randomly
as well, but based on an initially fixed distribution of genes
on gene types. In the present system, the value ofc will be
initially determined by the average of the occurrence fre-
quency of the termt in all the documents analyzed. How-
ever, the normalization of the parameterc was not consid-
ered in the initial model, being calculated by the average of
the number of occurrences of the termt in all the docu-
ments.

TheEvaluation Moduleassigns ascoreto documents by
using the present information in the population of chromo-
somes. The set of retrieved documents is assumed to rep-
resent an answer with high recall but low precision. The
evaluation module then applies the genetic evolution to
evaluate the documents in this answer to retain a subset that
represents both high recall and high precision.

The User Interface Module presents documents found by
the system, based on the current hypotheses. The user is
asked to give relevance feedback on presented documents
by rating, for each document read, how satisfying he finds it.
For this purpose we may provide a set of feedback buttons,
for instance, four buttons representing the four linguistic
labels, respectively, “poor,” “moderate,” “good,” and “very
good” (Yager, 1996). The feedback is transformed into a
numeric value for further processing. From the resulting
best hypotheses (represented by the fittest chromosomes),
the Internet Interface may construct queries, based on the
terms of the best chromosome, to be submitted to an exter-
nal search engine (somewhere on the Internet) to retrieve a
number of potential relevant documents. Therefore, a query
may be an AND aggregation of the terms of the chromo-
some. The terms provided by genes of type 2 must not
appear in the document, thus, they will be represented as
negated terms (NOT) in the query.

762 JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE—July 1999

The Learning Module

The learning module incorporates the adaptive compo-
nent of the system by means of a GA with fuzzy set genes.
GAs are adaptive search and optimization algorithms that
work by mimicking the principles of natural genetics (Deb,
1996). In our case, the function to be optimized is a hypo-
thetical representation of the needs of a user looking for
information in the Internet.

In the following, we present central elements of the GA
model applied in GIRAF, namely: the fuzzy gene types, the
GA operators and the fitness function.

The Fuzzy Set Genes

A geneG (t, g, c) characterizes documents by occur-
rence frequency of the term (word)t in the document.
The parametersg andc determine a fuzzy set character-
ization of the number of occurrences, namely as a fuzzy
subset of the set of non-negative integers. The parameter
g identifies the gene type, that is the basic shape of the
fuzzy set as described below for the four basic shapes
applied in GIRAF. Finally, the parameterc is a non-
negative real number that determines the fuzzy set in
combination with the gene type.

FIG. 2. Architecture of GIRAF.

JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE—July 1999 763

The normalization of the parameterc has not been con-
sidered in these preliminary tests. This problem may be
studied in future experiments. In the following, we present
the four gene types, wherex is the occurrence frequency of
the termt in the document.

Gene Type 1: G (t,',c). This gene type represents the
occurrences of a term that the user likes. In this casec is the
number of times that the termt must appear in the document
to satisfy this gene completely. The shape and definition of
the membership function applied by this gene type are
shown in Figure 3.

We notice that the membership function for this gene
type is not symmetric. This is mainly due to the deviation
sizes of the considered occurrences of a term, depending on
whether they are right or left deviation. This asymmetry
emphasizes right deviations, which are more desirable since
they imply occurrences of the term in the document greater
than the ideal number of timesc. The effect of the shape of
the function is that the term represented has to appear close
to the ideal to influence the chromosome evaluation with the
maximum degree.

Gene Type 2: G (t,,,c). This gene type is completely
satisfied by documents that have no occurrences of the term
t. The satisfaction is linearly decreasing from one to zero, as
the number of occurrences increases from zero toc, as
presented in Figure 4.

The function of this gene type is to eliminate documents
dealing with topics in which the user is not interested.

Gene Type 3: G (t,$,c). Genes of this type are satisfied
completely by documents with at leastc occurrences of the
term t. The gene type 3 is similar to gene type 1, except that
the satisfaction does not decrease, as the number of occur-
rences increases abovec, but remain “complete” (Figure 5).

Gene Type 4: G (t,'OR,c). By this gene type, we allow
to take account for the situation that the significance of term

occurrences is different in the first part, the central part, and
the last part of a document (Bordogna, Carrara, & Pasi,
1995). The division of the documents into three parts has
been considered in a general way, without taking into ac-
count, at first, the amount of different information represen-
tations with which the system can deal. In future works, the
structure of different types of documents may be consid-
ered, and a specific division for every one could be estab-
lished. In the present system, for a general purpose, we
define the first part, P1, as the first 10% of words in the
document, the central part, P2, as the 80% of the words, and
the last part, P3, as the remaining 10% of them. The satis-
faction of a geneG (t,'OR,c) is defined as a weighted
OR-aggregation of satisfaction ofG (t,',c) by the three
parts.

The GA Operators

The GA operators are selection, crossover, and mutation.
Selection deals with the choice of chromosomes of the
population that will reproduce. The crossover takes se-
quences of genes from each of two parent chromosomes
selected and combines them to create an offspring chromo-
some. The mutation is the random alteration of a gene in the
chromosome selected. Crossover and mutation are needed
for exploitation, respectively, exploration of the search
space (Davis, 1991; Goldberg, 1989; Spears, 1993). The
three operators are described in the following.

Selection. For a crossover, we select two different
chromosomes as parents, to produce a new chromosome as
their offspring. For the selection, we first order the chromo-
somes in decreasing order of their fitness. For the first of the
two parents, we select a chromosome in a random position
in the ordered set. For the second parent, we select the
chromosome in a random position between position of the
fittest chromosome and the position of the first parent. By
this selection strategy, we obtain that chromosomes with a
higher fitness are more likely to become parents than chro-
mosomes with a lower fitness, as in most of selection
strategies (Goldberg & Deb, 1991).

For a mutation, we select one chromosome randomly
from the whole population. The size of the population is
maintained constant by deleting the chromosome with the
lowest fitness each time a new chromosome is generated by
crossover or by mutation.

Crossover. For a crossover, we first randomly choose
the gene positions to be applied as crossover positions. In

FIG. 3. Membership function applied by gene type 1.

FIG. 4. Membership function applied by gene type 2.

FIG. 5. Membership function applied by gene type 3.

764 JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE—July 1999

GIRAF, each gene position in the chromosome is chosen
with the probability 0.2. Thus, if the length of the chromo-
some isn, the expected number of positions chosen as
crossover points is 0.2n. The crossover is now completed as
follows: starting at the first gene position, we copy all genes
from the first parent to the same position in the offspring
chromosome, until we have met and copied the gene at the
first crossover position. We now repeat the procedure from
the following position until the next crossover position,
except that we now copy from the second of the two parent
chromosomes, and so on.

The chromosome described above is a general case of the
multi-point crossover operator in the sense that the number
of cross points changes for every two chromosomes, and the
number of cross points may be at most the length of the
chromosome (DeJong & Spears, 1992).

Mutation. In GIRAF, the mutation is performed as
follows: in the chromosome selected for mutation, we
choose randomly a gene position for the mutation. The gene
G (t,g,c) in the chosen position is replaced by another gene
G (t9,g9,c9) where t9 is chosen randomly from the terms
occurring in a document from the pool of all the terms
considered in the parser tree, the gene type is unchanged
(g9 5 g), and the parameterc9 is set to number of occurrences
of t9 in the document from which it was chosen. In a future
work, the most frequent term (different from the one to be
replaced) from the considered document may be introduced
as a new term in the mutation operator.

The Fitness Function

The fitness function measures the adaptation of every
chromosome of the population in each iteration of the
evolution process. Let us suppose a population ofm chro-
mosomes that evolves fork generations; and in thej‘th
generation, a new document (is retrieved from the net. The
i9th chromosome, which is supposed to containl genes with
the terms closest to the user needs, evaluates the document
in order to predict the user’s satisfaction from that docu-
ment. The value that the chromosome gives to a document
is calledchromosome score, considered as the result of the
evolution of a query. As the chromosome is set of genes,
which may be considered as the weighted terms of the
query, this value must be calculated as some kind of aggre-
gation of the fuzzy values from every gene. Specifically, we
use the arithmetic average of the genes, as follows:

Ci
j ~v! 5

1

l
z Ol

h51
mg

h ~x! , i 5 1,. . .,m; j 5 1,. . .,k

where:

● Ci
j (v) is thei’th chromosome score of the documentv in

the generationj.

● l represents the length of the chromosome, that is, the
number of the genes that the chromosome contains.

● mg
h is the value of the membership function of theh’th

gene of typeg.

Initially, the chromosome score establishes the fitness
value (f i

j) of the chromosomei in the generationj. The
result of the evolution process through a generation is a new
generation where the chromosomes with higher fitness are
expected to appear more frequently than those with lower
fitness. However, in this way the population may contain
several copies of the same chromosomes with high fitness,
which rapidly push chromosomes with lower fitness out of
the population. Therefore, the population loses diversity.
This may provide an undesired effect when the fitness of the
chromosomes is only based on documents and scores that
are being updated when the user interacts with the system,
because chromosomes with lower fitness tend to be pushed
out immediately, although they may have the potential to
increase their fitness in later generations.

In order to allow such chromosomes to survive through
several generations, we keep the fitness of every chromo-
some through the generations, but modifying it by means of
the addition of apayoff (P) to increase the accumulated
fitness of every chromosome, and the subtraction of a cer-
tain lifetax (L) which prohibit to survive forever if the
payoff continues to be low. Therefore, the general expres-
sion of the fitness function is as follows:

f i
j 5 f i

j21 1 Pi
j 2 Li

j (1)

wheref i
j is the fitness of thei’ th chromosome (i 5 1,2, . . .,

m) in the j’th generation (j 5 1,2, . . .,k), P i
j andLi

j are the
payoff and the lifetax of chromosome, respectively. For the
initial generation, (j 5 0) we setf i

j 5 fi
0 5 0, and for new

chromosomes created in a generation shift (from mutation
or crossover), we apply a special initialization: the fitness of
the new chromosome is set to the half of the maximum
fitness in the generation in which the chromosome was
created, and the updating function (1) is first applied from
the following generation.

The lifetaxLi
j is represented by the minimum fitness of

the chromosomes in the population. As for the payoffP i
j,

several expressions have been set during the development of
the system.

Initially, the payoff may be calculated by the relation
between the chromosome score and the user feedback of the
document, so the smaller the distance between these values
is, the higher the payoff the chromosome will be. Therefore,
the first payoff function may be defined by:

Pi
j 5 1 2 Ci

j 2 Uj ~v! (2)

whereCi
j (v) is thei’th chromosome score, andUj(v) is the

user’s evaluation of the documentv evaluated, i.e., the

JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE—July 1999 765

feedback that the user gives to the system about the docu-
mentv.

In order to deal with the premature convergence of the
GA to a local optimum, we may give extra credit to high
payoff values. This may be done by modifying (2) to:

~Pi
j! 5 1 2 ~Ci

j ~v! 2 Uj ~v!!2 (3)

Furthermore, we would like to give a special reward for
handling “problematic documents,” characterized as docu-
ments in which global evaluation of the whole population
(in the last generation, applied to rank the documents) is far
from the user’s evaluation. The value representing the
global population’s evaluation of a document is calledpop-
ulation score (S), and to calculate it, an arithmetic average
of the best chromosomes is obtained. The percentage of
chromosomes to be considered as the best may be variable,
and initially, is fixed to the best 40 percent chromosomes of
the population. The ability of the population to classify a
document is estimated by the following measure of the
ability in the j-19th generation (i.e., in the previous itera-
tion):

Aj21 5 ~Sj21 ~v! 2 Uj ~v!!2 (4)

whereSj-1(v) is the population’ score of the document in the
j21’th generation, andUj(v) is the user’s evaluation of the
document inj’th (i.e., the current) generation.

As the final payoff function, we propose (P i
j)0—a

weighted combination of (3) and (4), namely:

~Pi
j!0 5 ~~Pi

j!9!w1 ~Aj21!w2 (5)

where w1 and w2, both from the unit interval, are the
importances of satisfying (P i

j)’ and Ai
j-1 (Yager, 1978), and

may be set by an expert.

The Test of the System

System Parameters Tested

The parameters of the system for testing are:

● sizem of the population of chromosomes
● numbern of genes in each chromosome
● probability of a gene to be a cross point
● probability of a chromosome to be selected to mutate
● probability of a gene to mutate in the chromosome
● the payoff function
● the distribution of genes over the gene types

We tested the effect of changing each of these parame-
ters, as well as certain combinations of them, leaving the
other parameters unchanged.

Performance Measures Considered

Two performance qualities of central importance for
evaluation purposes are prediction precision and recapitu-
lation ability:

The Prediction Precisionmeasures the ability to, as
accurately as possible, predict the feedback from the user.
To test the system, we have to expose it to a number of
situations that should reveal its ability to reason and learn in
such a way that it satisfies this requirement. Thus, the
system should be able to spot the similarities between
documents despite their apparent differences, be able to spot
the differences between documents despite their apparent

TABLE 1. Search history in the test example. Preferences: “agents-general information.” (U5 user evaluation).

Document title Http address U

1 IBM Intelligent Agent Strategy http://activist.gpl.ibm.com/WhitePaper/ptc2.htm 0.9
2 Letizia: An Agent That Assists Web Browsing http://lcs.www.media.mit.edu/people/lieber/Lieberary/Letizia/Letizia.html 0.9
3 The TkWWW Robot: Beyond Browsing http://www.ncsa.uiuc.edu/SDG/IT94/Proceedings/Agents/spetka/spetka.html 0.9
4 Technical rationale http://www.osf.org/ri/contracts/6.Rationale.frame.html 0.8
5 The @gency http://www.info.unicaen.fr/;serge/sma.html 0.8
6 Free Agent 1.0 Tech Notes July 1995 http://phonebk.duke.edu/clients/tnfagent.html 0.7
7 WEBDOGGIE Personalized http://webhound.www.media.mit.edu/projects/webhound/doc/Webhound.html 0.7
8 MMM—a WWW based tool for using remote http://mmm.wiwi.hu-berlin.de/MMM/cebit engl.html 0.6
9 Adaptive Agents for Information http://www.cs.umbc.edu/;cikm/iia/submitted/viewing/chen.html 0.6
10 Autonomous Agents http://www.psychology.nottingham.ac.uk:80/aigr/research/agents/agents.html 0.6
11 Autonomous Agents http://www.elet.polimi.it/section/compeng/air/agents/ 0.6
12 International Society for Adaptive http://netq.rowland.org/isab/isab.html 0.5
13 Web Links http://www.cs.bham.ac.uk/;ämw/agents/links/ 0.5
14 Julia’s utility: simple examples http://foner.www.media.mit.edu/people/foner/Julia/subsection3_2_2.html 0.4
15 Extended Abstract Pramod Jain http://www.cs.umbc.edu/;cikm/1994/iia/papers/jain.html 0.4
16 Agents Info http://www.cs.bham.ac.uk/;ämw/agents/index.html 0.4
17 Distributed Agent-Based approach http://groucho.gsfc.nasa.gov/Code_520/Code_522/Projects/Agents/ 0.4
18 Firefly http://www.ffly.com/html/About1.html 0.2
19 Agent Gallery http://www.hinet.com/realty/edge/gallery.html 0.1
20 Sales Agents Needed http://maple.net/gbd/salagnts.html 0.1

766 JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE—July 1999

similarities, and be able to classify new types of documents
close to the user’s evaluation of the documents.

TheRecapitulation Abilitymeasures the degree to which
the system adjusts itself with precision and speed to changes
in the environment, that is, changes in user preferences
(information needs) and available information. Of particular
importance for this measure is how the system is able to
improve itself when confronted with a user’s surprising
feedback value.

For the test of the prediction precision, we deal with sets
of documents comprising two classes, namely “bad” and
“good” documents (concerning the information needs). The
bad documents have the user’s evaluation of 0.1, while the
good documents have the user evaluation of 0.9. The system
should provide the same classification, approaching the
user’s evaluation as much as possible. This quality is mea-
sured by theclassification predictability (CP), and is de-
fined as one minus the dispersion of the “error”uS(v) 2
U(v)u whereS(v) andU(v) are the system evaluation (the
population’ score) and the user’s evaluation, respectively, of
the i’th document in the evaluated set:

CPp 5 1 2 Î 1

d 2 1O
i51

d~Si ~v! 2 Ui ~v!!2 (6)

where the subscriptp of CP refers to the set of parameters
applied by the system, andd is the number of documents in
the evaluated set.

Test Example

By a systematic test, we emulated a period with a user
interacting with the system. Some of the documents were
carefully selected in the topic area of “Intelligent Internet
Information Systems”; later the system was supplemented
by other documents. The total case sets comprised 20 doc-

uments, to which we assigned the score 0.1 or 0.9 manually,
modeling the user’s evaluation of the document. As the
initial information needs, we assumed the topic “software
agents.” As in a realistic situation, the needs were refined
and modified as we received more information.

The Virtual User Search History

The test should not begin before the system has devel-
oped a set of chromosomes of a certain quality. This will
minimize the risk of initial incidents to have a great impact
on the test results. The less developed the structure of the
GA, the greater is the possibility that small events have
greater impact on the evolution.

In order to avoid initial disturbances, the test module is
programmed to feed a virtual history into the learning
module, so that the system can build up a reliable mapping
of the virtual user preferences before the system is tested.

The search history (Table 1) consists of 20 documents
with an assigned score. The scores have been assigned
between 0.1 and 0.9, and the documents have been carefully
chosen to make the most complex and realistic test.

Hence, the virtual user therefore can be specified as a
person that wants information on the topic of software
agents. As a real person, the user preferences change as the
user receives information. In other words, the user does not
initially know his specific preferences on the topic; his
preferences evolve as the user receives more and more
information.

The parameter combination undergoes a first test; a pop-
ulation that adapts to the documents and their assigned
scores is created. An ability threshold and an iteration
threshold are fixed; when any of them is reached for all the
documents, the search history is complete and the popula-
tion is ready to test.

TABLE 2. Test set 1. Preferences: “agents-general information.”

Document title Http address U

21 Intelligent Software Agents http://www.cs.umbc.edu/agents/ 0.9
22 What’s an Intelligent Agent? http://www.yourcommand.com/ia int.htm 0.7
23 Agent theory—philosophy, formalisms, . . . http://www.cs.umbc.edu/agents/theory/ 0.6
24 Multi-Agent Systems http://www.sd.monash.edu.au/;bdurnota/agents.html 0.3
25 Bus Pass Agent http://ursu.uregina.ca/Services/SUServices.html 0.1

TABLE 3. Test set 5. Preferences: “adaptive agents.”

Document title Http address U

41 An Endogenous Fitness Paradigm for Adaptive http://www-cse.ucsd.edu/users/fil/agents/info-spiders.html 0.9
42 The SodaBot Homepage http://www.ai.mit.edu/people/sodabot/sodabot.html 0.6
43 Agents of Change http://www.byte.com/art/9503/sec10/art1.htm 0.6
44 The Development of Intelligent Autonomous http://www.ai.univie.ac.at/oefai/agents.html 0.3

45 Software agents are on-line pseudo-people
http://www.ai.mit.edu/people/mhcoen/agents/subsection2 1 1
1.html#SECTION0011100000000000000 0.3

JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE—July 1999 767

Test Procedure

In this example, let us suppose that the system is fed with
13 test sets, each one with five documents. Once the search
history is formed, a set of five new documents comes from
the Internet (see Table 2), and the evaluation module has
then to assess them without any information about the
virtual user feedback value. The closer the evaluations are to
the assigned scores, the better will be the Prediction Preci-
sion performance of the parameter combination will be.
When the virtual user receives these documents, its gives
the feedback to the system, and the population evolve to
reach again the ability or the iteration threshold again.

The first four test sets are chosen so that they emulate
that the user preferences have not changed since the search
history. However, in order to test the Recapitulation Ability,
we emulate a change in the user preferences (see Table 3).
Let’s suppose that the user has received enough general
information about “software agents,” and the utility from
such information is decreasing because a new document on
more specific “adaptation” techniques for “software agents”
appears in test set 1, and triggers the user curiosity, so he
now feels that he would like to delve deeply into this new
topic. So the virtual user assigns scores to the documents,
giving max value (0.9) on good information about “adaptive
agents,” and less value to more general information about
software agents. The population should now be able to
modify it’s chromosomes quickly. The higher the diversity
of the population is, the higher the Recapitulation Ability
will be, and the less information it already contains about
“adaptation,” the slower it will recapitulate.

In test set 9 (Table 4), the virtual user’s preferences are
changed towards agent mobility and communication be-
cause a document (number 61) announces new possibilities
in this area.

When the last five documents are received (see Table 5),
the virtual user feels updated in most topics concerning
agents. He decides to change his preferences to get more

information about machine learning techniques usable in
agents. The user finds a document concerning GAs and
agents, and gives it the highest score. This topic has been
touched before in a more general manner in test set 5–8
(which have not been included in this paper), so the system
should be able to recapitulate quickly and evolves towards
these new preferences.

Experimentation

Test Case Formulation

Preliminary tests have been made due to the several
possible combinations of parameters to find a reasonable
starting point for the systematic test, which comprised 220
runs with different parameter sets. The starting parameter
combination is:

● number of iterations: 200
● size of the population (N): 80
● number of genes in the chromosome (L): 40
● probability of crossover (Pc): 0.01
● probability to select a chromosome for mutation (Pm):

0.01
● probability of a gene to mutate: 1/chromosome length
● proportion of genes for every type (%g): 25%.
● ability threshold to stop: 0.9
● iteration threshold to stop: 200

Summary of Test Results

In the following, we present some interesting results and
observations from the prediction precision and the recapit-
ulation ability tests.

Prediction Precision Test. To test the prediction preci-
sion on all parameter combinations we use the measure
calledClassification Predictabilitydescribed in the previous

TABLE 4. Test set 9. Preferences: “mobile agents and agent communication.”

Document title Http address U

61 Mobile Unstructured Business Object (MuBot) http://www.crystaliz.com/logicware/mubot.html 0.9
62 INTELLIGENT SOFTWARE AGENTS http://www.csd.abdn.ac.uk/research/intelligent_agents.html 0.7
63 Learning Agents for Information Filtering http://www.csd.abdn.ac.uk/;pedwards/res/filter.html 0.6
64 Cooperative Research http://mizo01.ia.noda.sut.ac.jp/Research/Coop/Coop_index_e.html 0.4
65 Autonomous system project http://www-iiia.unine.ch/IA.GRP/autonomous.html 0.4

TABLE 5. Test set 13. Preferences: “agent learning.”

Document title Http address U

81 The Genetic Algorithms Group http://www.cs.gmu.edu/gag/index.html 0.9
82 Online Workshop on EVOLUTIONARY http://www.bioele.nuee.nagoya-u.ac.jp/wec/papers/index.html 0.7
83 MAPS—Multi-Agent Problem Solver http://expasy.hcuge.ch/sgaico/html/olb/Sources/Maps/Maps.html 0.4
84 Expersys paper abstract http://expasy.hcuge.ch/sgaico/html/olb/Sources/Publications/Expersys.html 0.1
85 COALA—COoperative Agent Language http://expasy.hcuge.ch/sgaico/html/olb/Sources/Coala/Coala.html 0.1

768 JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE—July 1999

section. The results of the test—referring to the genetic
parameters such as the probability of mutation (Pm), prob-
ability of crossover (Pc), the size of the population (N) and
the length of the chromosomes (L)—can be observed in
Figure 6, while those parameters referred to the payoff
function and the percentage of gene of every type can be
observed in Figure 7. Findings to be mentioned are:

● Changing the crossover and mutation probabilities
showed no significant changes in the classification pre-
dictability.

● An increase in the occurrence of gene type 2 showed the
poorest performance.

● Gene type 3 showed the best performance.
● We expected payoff functionP0 to perform better thanP9

and payoff functionP to be the worst. However, payoff
functionP presents the best performance , whileP9 andP0
performed equally well.

● Specially, a lowering of the crossover probability, an
increasing of the occurrence of gene types 3 and 4 and the
use the fitness function with payoff functionP increase
the classification predictability.

Recapitulation Ability Test. To test the recapitulation
ability we look only at the performance after the parameter

combinations has been through several changes of prefer-
ences. Since in the Prediction Precision Test, the results
concerning the genetic parameters show no significant
changes in the performance of the system, we have focused
this part of the test in the payoff function and the type of the
genes. In general, as the number of documents increases, the
system improves its performance with a lowering of the
probability of the crossover, and with an increasing of the
probability of the mutation.

Other new results appear now (see Fig. 8):

● Gene type 1 now has the best performance.
● Payoff functionP0 has better recapitulation ability than

payoff functionP9 and this one is better thanP. This is the
reverse of the prediction precision, and it is probably due
to the combined effect obtained by formula (5).

Concluding Remarks

Important conclusions can be drawn from the experi-
ments. The first is that the presented approach to an adaptive
information retrieval agent is a potential viable approach to
a system that can learn the information needs of the user,

FIG. 6. Search history in the test example. Preferences: “Agents-General Information.” (U5User Evaluation).

FIG. 7. Test set 1. Preferences: “Agents-General Information.”

JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE—July 1999 769

and keep up with the evolution of these needs, utilizing only
relevance feedback from the user.

The second conclusion is that, in general, gene type 3 is
the best gene to predict the users’ preferences on docu-
ments, but considering the recapitulation ability test, we
also can conclude that gene type 1 has some advances.

Preliminary tests showed that, when the appearance of
gene types in chromosomes were not fixed, genes of type 2
would drive out all other gene types. The problem only
increases with the very bad performance of gene type 2 in
the systematic tests. The gene type appears to utilize “loop
holes” by assigning medium evaluation to all documents
and thereby surviving by “not putting anything at stake.”
Future developments must try to punish this kind of behav-
ior because it leads to poor system answers. As mentioned,
the easy way to avoid the spreading of gene type 2 was to
fix the number of genes of each type in the chromosomes.

Another conclusion is that the changes from fewer doc-
uments in our preliminary tests to the larger number in our
systematic tests in connection with a performance increase
when the crossover probability is lowered, may indicate
some connection between this probability and the size of the
set of documents processed by the system. The test indicates
that a higher probability mutation than traditional one (Hol-
land, 1992) is needed as the number of documents increases.
This shows a higher need for exploration than exploitation
in our search space system (Spears, 1993).

Finally, we can conclude that by an appropriate param-
eter setting, it is possible to satisfy both quality require-
ments, prediction precision, and recapitulation ability, to a
higher degree. This includes satisfying the central issue of
prediction precision, namely that the system’s ranking of
the documents is close to the ranking determined by the
user’s evaluation of these documents.

Future Work

Some directions for further research and future work
may be:

● To reduce the size of the chromosome, by giving higher
priority to terms with a high degree of discrimination, that
is, ability to differentiate the documents, in selection of
terms for the new genes.

● To control the large amount of system parameters applied
by the agent system.

● To develop pattern recognition genes, in order to extend
the capability of the agent from search in text to search for
patterns in graphics, video, and voice.

● To associate a set of terms with a certain user, and build
a profile of the user with different populations, each
related to a general topic with the options to start a new
agent or to run an old one.

References

Balabanovic´, M., Shoham, Y., & Yun, Y. (1997). An adaptive agent for
automated web browsing. Stanford University Technical Report CS-TN-
97-52.

Bordogna, G., Carrara, P., & Pasi, G. (1995). Fuzzy approaches to extend
Boolean information retrieval. In P. Bosc, & J. Kacprzyck (Eds.),
Fuzziness in database management systems (pp. 231–274), Germany:
Physica-Verlag.

Chen, H., Chung, Y., Ramsey, M., & Yang, C.C. (1998). A smart Itsy Bitsy
Spider for the Web. Journal of the American Society for Information
Science, 49, 604–618.

Davis, L. (Ed.). (1991). Handbook of genetic algorithms. New York: Van
Nostrand Reinhold.

Deb, K. (1996). Genetic algorithms for function optimization. In F. Herrera
& J.L. Verdegay (Eds.), Genetic algorithms and soft computing (pp.
3–29), Germany: Physica-Verlag.

DeJong, K.A., & Spears, W.M. (1992). A formal analysis of the role of
multi-point crossover in genetic algorithms. Annals of Mathematics and
Artificial Intelligence Journal, 5, 1–26.

Etzioni, O & Weld, D.S. (1995). Intelligent agents on the internet: Fact,
fiction, and forecast. IEEE Expert, August 1995, 44–49.

Goldberg, D.E. (1989). Genetic algorithms in search, optimization and
machine learning. Addison-Wesley.

Goldberg, D.E., & Deb, K. (1991). A comparative analysis of selection
schemes used in genetic algorithms. In G.J.E. Rawlins (Ed.), Founda-
tions of Genetic Algorithms (pp. 69–93). California: Morgan Kaufmann.

Holland, J.H. (1992). Adaption in natural and artificial systems. Massa-
chusetts: MIT Press.

Kraft, D.H., Petry, F.E., Buckles, B.P., & Sadasivan, T. (1995). Applying
genetic algorithms to information retrieval systems via relevance feed-

FIG. 8. Test set 5. Preferences: “Adaptive Agents.”

770 JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE—July 1999

back. In P. Bosc & J. Kacprzyk (Eds.), Fuzziness in database manage-
ment systems (pp. 330–344), Germany: Physica-Verlag.

Kraft, D.H., Petry, F.E., Buckles, B.P., & Sadasivan, T. (1997). Genetic
algorithms for query optimization in information retrieval: Relevance
feedback. In E. Sanchez, T. Shibata, & L. Zadeh (Eds.), Advances in
fuzzy systems: Applications and theory, vol.7 (pp. 155–173), Singapore:
World Scientific.

Maes, P. (1994). Agents that reduce work and information overload.
Communications of the ACM, 37, 30–40.

Maes, P. (1995). Modeling adaptive autonomous agents, In C.G. Langton
(Ed.), Artificial Life (pp. 135–162), Massachusetts: MIT Press.

Mitchell, M., & Forrest, S. (1994). Genetic algorithms and artificial life.
Artificial Life, 1, 267–289.

Rasmussen, E. (1992). Clustering algorithms. In W.B. Frakes & R. Baeza-
Yates (Eds.), Information retrieval: Data structures and algorithms,
Englewood Cliffs, NJ: Prentice Hall.

Riecken, D. Intelligent agents. Communications of the ACM, 37, 18–21.

Salton, G., & Buckley, C. (1990). Improving retrieval performance by
relevance feedback. Journal of the American Society for Information
Science, 41, 288–297.

Salton, G. & McGill, M.J. (1983). Introduction to modern information
retrieval. New York: McGraw-Hill.

Selberg, E. & Etzioni, O. (1995). Multi-engine search and comparison
using the MetaCrawler. Proceedings of the 4th World Wide Web Con-
ference (pp. 195–208).

Spears, W.M. (1993). Crossover or Mutation? In L.D. Whitley (Ed.),
Foundations of Genetic Algorithms 2 (pp. 221–237), California: Morgan
Kaufmann.

Yager, R.R. (1978). Fuzzy decision making including unequal objectives.
Fuzzy Sets and Systems, 1, 87–95.

Yager, R.R. (1996). Intelligent agents on the World Wide Web. Proceed-
ings of the 1996 Workshop on Flexible Query-Answering Systems
(FQAS’96) (pp. 289–306). Denmark: Roskilde University.

Zadeh, L.A. (1965). Fuzzy sets. Information and Control, 83, 338–353.

JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE—July 1999 771

	Introduction
	Related Work
	The Functionality of the System
	FIG. 1.

	The Architecture of GIRAF
	The Learning Module
	FIG. 2.
	FIG. 3.
	FIG. 4.
	FIG. 5.

	The Test of the System
	TABLE 1.
	TABLE 2.
	TABLE 3.
	TABLE 4.

	Experimentation
	TABLE 5.
	FIG. 6.

	Concluding Remarks
	FIG. 7.
	FIG. 8.

	Future Work
	References

