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Biometric systems including keystroke-dynamics based authentication have been well

studied in the literature. The attack model in biometrics typically considers impersonation

attempts launched by human imposters. However, this attack model is not adequate, as

advanced attackers may utilize programs to forge data. In this paper, we consider the

effects of synthetic forgery attacks in the context of biometric authentication systems. Our

study is performed in a concrete keystroke-dynamic authentication system.

The main focus of our work is evaluating the security of keystroke-dynamics authen-

tication against synthetic forgery attacks. Our analysis is performed in a remote authen-

tication framework called TUBA that we design and implement for monitoring a user’s

typing patterns. We evaluate the robustness of TUBA through experimental evaluation

including two series of simulated bots. The keystroke sequences forged by the two bots are

modeled using first-order Markov chains. Support vector machine is used for classification.

Our results, based on 20 users’ keystroke data, are reported. Our work shows that keystroke

dynamics is robust against the two specific types of synthetic forgery attacks studied,

where attacker draws statistical samples from a pool of available keystroke dataset other

than the target.

We also describe TUBA’s use for detecting anomalous activities on remote hosts, and

present its use in a specific cognition-based anomaly detection system. The use of TUBA

provides high assurance on the information collected from the hosts and enables remote

security diagnosis and monitoring.

ª 2011 Elsevier Ltd. All rights reserved.
1. Introduction et al., 2001; Yu and Cho, 2003). Most of the attack models
Keystroke-dynamics based authentication is a cheap

biometric mechanism that has been proven accurate in dis-

tinguishing individuals (Bleha et al., 1990; Ilonen, 2003;

Killourhy and Maxion, 2008; Monrose and Rubin, 2000; Song
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considered in keystroke-dynamics literature assume the

attackers are humans, e.g., a colleague of Alice trying to log in

as Alice. However, there has been little effort on studying the

robustness of this technique against synthetic and automatic

attacks and forgeries.

We evaluate the robustness of keystroke-based biometric

authentication systems against a new type of forgery

attacks. In the context of biometrics, a synthetic forgery

attack is carried out by submitting generated or synthesized

credentials to an authentication module. For example, an

attacker writes a program that performs statistic manipu-

lation and synthesis to produce keystroke sequences in

.
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order to spoof others. These types of forgery attacks pose

a serious threat. However, the research community has not

extensively investigated on possible anti-forgery techniques.

It is unclear from the current literature how robust

keystroke dynamics is against forgery attacks. Synthetic

forgery attacks may also be possible in other types of

biometric systems as well.

The technical enabler for our investigation is a remote

authentication framework that we design and implement. The

framework called TUBA (Telling hUman and Bot Apart) moni-

tors a user’s typing patterns in a client-and-server architec-

ture. We systematically study the robustness of TUBA through

comprehensive experimental evaluation including two simu-

lated bots. We perform a user study with 20 users and use the

collected data to simulate and evaluate the difficulty and

impact of synthetic forgeries.

Another contribution of this paper is that we describe the

use of TUBA and keystroke dynamics to identify anomalous

activities on a personal computer, e.g., activities that may be

due tomalware.We consider amodelwhere a user’s computer

in an organization or enterprise may be infected with mali-

cious software that may stealthily launches attacks. This

model ismotivated by the increasing number of infected hosts

caused by organized malicious botnets. Our solution provides

strong assurance of authentication results. We provide

a practical solution that effectively allows a remote trusted

server to monitor the integrity of a computer. The main

application of TUBA is to detect stealthy malware residing on

a user’s computer such as application-level spyware.

Our study uniquely combines techniques from system and

network security, biometrics, machine learning, and usability

engineering. Our technical contributions are summarized as

follows.

1. We design and implement a simple and easy-to-adopt

protocol for authenticating a computer owner that utilizes

the user’s keyboard activities as an authentication metric.

We present our protocol in a lightweight client-server

architecture using the X Windows System (X11 for short).

2. We analyze the keystroke data from a group of users on

a diverse set of inputs, including email addresses, a pass-

word, andweb addresses.We find that performance results

vary according to the strings used for authentication. We

find that different types of strings give different classifica-

tion accuracy when used for authentication.

3. We evaluate the robustness of keystroke-dynamics based

authentication against automated bot attacks. We imple-

ment two bot programs, called GaussianBot and NoiseBot,

respectively, which are capable of injecting statistically-

generated keystroke event sequences on a (victim)

machine. The bot programs aim to pass our keystroke

authentication tests by mimicking a particular user’s

keystroke dynamics. The bots are capable of launching

forgery attacks drawn upon the statistical analysis of

collected keystroke data. Experiments show that our clas-

sification is robust against these specific attacks, and is able

to correctly classify the attacks by GaussianBot and Noise-

Bot with low false positive rates. The GaussianBot and

NoiseBot forge keystroke sequences following simple first-

order Markov models.
TUBA is particularly suitable for detecting extrusion in

enterprises and organizations, and protecting the integrity of

hosts. Our work gives the indication that certain human

behaviors, namely user inputs, may be suitable for malware

detection purposes. We also give examples that illustrate the

preventionofmalware forgery in suchhuman-behavior driven

security systems. This study is the result of an on-going effort

towards designing human-inspired security solutions. Our

work also suggests the need for studying the robustness of

other biometrics against synthetic forgery attacks beyond the

studied keystroke-authentication problem. Because of the

wide use biometrics in government, military, and enterprise

environments, the better understanding of their security

against sophisticated attacks is important.

1.1. Organization of the paper

We describe our design of a remote authentication framework

and our security model in Section 2, where a use case of using

TUBA to detect anomalous network activities is also

described. Details of our implementation including data

collection, keystroke logging, feature extraction, and classifi-

cation can be found in Section 3. We implement two bots that

are capable of injecting synthetic keystroke events, which are

presented in Section 4. Our experimental evaluation results

and user study are described in Section 5. A specific applica-

tion of TUBA for liveliness detection as well as an open

problem are presented in Section 6. Related work is described

in Section 7. In Section 8, we conclude the paper and describe

plans for future work.
2. Overview and security model

TUBA is a remote biometric authentication system based on

keystroke-dynamics information. We use machine-learning

techniques to detect intruders merely based on keystroke

dynamics, i.e., timing information of keyboard events. We

allow for certain types of key event injection by bots.

2.1. Security assumptions and malware attack model

We assume that the host operating system kernel, our client-

side keystroke-collection modules, and cryptographic keys

are secure and not compromised. The remote server for

issuing keystroke challenge and data analysis is trusted and

secure. Client-side malware may run as a user-level applica-

tion, e.g., spyware implemented as Firefox extensions. Mal-

ware is active in making outside connections for command &

control or attacks. We allow malware to inject arbitrary

keystroke events and sequences synthesized from the data

other than that of the owner. Thus, under thismalware-attack

model we assume that keylogging by spyware or by human

intruders (Zhang and Wang, 2009) on the owner’s computer

does not exist. An attacker may also carry out conventional

network attacks such as eavesdropping on the communica-

tion channel between client and server, or replaying network

packets.

We note that with hardware chip TPM (trusted platform

module) enabled, fakekey events canbedetectedand removed

http://dx.doi.org/10.1016/j.cose.2011.10.001
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Fig. 1 e TUBA architecture in a client-server model. The

keystroke events are collected on the client (left), and sent

to the server (right) in a secure communication channel.

The classification is performed on the server.
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with reasonable overhead (Gummadi et al., 2009; Stefan et al.,

2010). In comparison, we consider a relaxed environment

where TPM is not enabled or available e referred to by us as

a non-TPM environment. Our security assumption on the

kernel integrity can be relaxed through the use of TPM attes-

tation (Sailer et al., 2004) or virtualization based introspection

(Payne and Lee, 2007), which are not considered in this paper.

2.2. Definitions and design overview

We introduce definitions used in our model. We refer to an

individual who has legitimate access to the computer as the

owner. Without loss of generality, we assume that

a computer has one owner, as our solutions can be easily

generalized to a multi-owner setting. Our TUBA framework

can be realized with a stand-alone program on the client’s

local machine. The program is responsible for collecting

training keystroke data, building learning models,

analyzing, and classifying TUBA challenges. This type of

stand-alone architecture is easy to deploy and implement. It

is, however, required that the user ensure that the program

is running and that proper measures are taken if TUBA

issues warnings or alerts.

The use of keystroke-dynamic authentication requires

a training phase, where the remote authentication server

collects keystroke data from a legitimate user. We assume

that the user’s computer is not infected during training. The

user and the remote server authenticate each other and set

up a secure connection. The user then types M strings

si; i ¼ 1;.;M, as specified by the server, n times each. Both

M and n are parameters of the model. The authentication

server records the keystroke data from the user, which is

possible using the X Window System. The user runs X

server with a XTrap extension, which intercepts the user’s

keystroke events and sends the information to the appli-

cation on the remote authentication server. Once a suffi-

cient number of samples have been collected, the

authentication server processes the user’s keystroke data by

training a support vector machine, the details of which are

presented in Section 3.

When a suspicious network event is observed, TUBA

prompts the user with a TUBA challenge e a window

requesting him/her to type in a server-chosen string. Based on

this user’s keystroke timing data and the classification model

built during the training phrase, TUBA decides whether the

user is the legitimate owner or not. The suspicious events

mentioned above may be triggered by existing bot detection

solutions, such as BINDER (Cui et al., 2005), DeWare (Xu et al.,

2011), or according to other pre-defined policies.

A TUBA authentication test can be triggered periodically or

when one or more suspicious events are observed. Our TUBA

authentication model can also run in a non-intrusive mode

where the user’s keystroke timing is analyzed without

explicitly prompting an authentication window for the user to

type into. We define an event as a set of network and/or input

activities (keyboard ormouse). Suspicious events are activities

that are pre-defined and related to malicious bot activities,

such as sending a large number of email messages (potential

spam) or making a large number of HTTP requests to a single

target host (potential DoS attacks). A suspicious event can be
related to external inputs, such as the computer sending email

(i.e., SMTP traffic) without any prior keyboard or mouse

activities. Some additional examples of trigger events that can

be used to start a TUBA challenge including: HTTP requests

without a browser process (easily identified using lsof or

netstat), certain user-initiated network activities such as

sending email without keyboard/mouse inputs or with an

active screensaver, listening sockets on suspicious ports,

sending high-volume traffic to a single target host, attempting

to disable the bot detection program, etc. For example, if the

computer is used to send email with spam-like characteris-

tics, having an unusual chat application running (possible

IRC-based C&C channel), or periodically visiting a server in

a foreign country with no hostname or other records (possible

HTTP-based C&C channel).

Next, we describe the technical details of our TUBA

framework, including feature extraction, classification, and

comprehensive evaluation.
2.3. Prototype implementation

The architecture of TUBA in client-server model is illustrated

in Fig. 1. We describe the use of X server for keystroke for-

warding from the client to the trusted server next. In TUBA,

a trusted remote server is responsible for the data collection

and analysis in a remote fashion, e.g., using SSH (Secure Shell)

the client remotely logins to the server with X11-forwarding

enabled so that the keystroke events are monitored by the

server. The connection and storage of the remote server are

assumed to be secure. Various keylogging methods for the

GNU/Linux operating system exist. Common implementa-

tions include user-space programswhichmonitor privileged I/

O ports (Keylogger, 2001), kernel modules that intercept the

sys_read and sys_write functions (Kernel, 2001), and kernel

modules that intercept the keyboard driver’s interrupt

handler (linux kernel keylogger, 2001). However, most of the

currently-available keyloggers were not designed with the

intention to extract timing information from a user’s typing

pattern, and require superuser privileges to be installed or

used. Addressing these issues and the need for a platform-

independent utility, we implemented a keylogger for the X

Windows System using the XTrap extension. The X Windows

System (X or X11 for short) is a powerful graphical user

interface composed of the X server and X clients. The X server

http://dx.doi.org/10.1016/j.cose.2011.10.001
http://dx.doi.org/10.1016/j.cose.2011.10.001


Fig. 2 e Screenshots of our data collection program at it starts in (a), and during the recording in (b). Participants report their

familarity with the strings to be typed, and are given the opportunity to practice them. Each correct string is entered 35

times. Incorrect strings are ignored.
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runs on the machine where the keyboard, mouse and screen

are attached, while X clients are common applications (e.g.,

Firefox, KPDF or XTerm) that run on either the local machine

or a remote machine, due to the architecture design of X11.
The X server can be extended with modules, such as the

XTrap server extension used in our event collection. One of

the capabilities of the XTrap extension is to intercept the core

input events and forward them to XTrap client applications.

http://dx.doi.org/10.1016/j.cose.2011.10.001
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As such, our keylogger (client application) contains a callback

function which is executed whenever a KeyPress or Key-

Release event occurs to record the event information. Some

supplementary data, such as the current location of the

mouse pointer and the name of the current window in focus,

are obtained and formatted to be easily parsed by the feature

extractor. The communication channel between the client

and server can be securedwith SSL. Below is an example of the

partial output of the keylogger when typing the word “bot”.

1 Event¼KeyPressjchar¼bjscreen¼0jrootXY¼(1236,

370)jroot¼0jstate¼0jtime¼86474468

2 Event¼KeyPressjchar¼bjscreen¼0jrootXY¼(1236,

370)jroot¼0jstate¼0jtime¼86474562

3 Event¼KeyPressjchar¼ojscreen¼0jrootXY¼(1236,

370)jroot¼0jstate¼0jtime¼86474626

4 Event¼KeyPressjchar¼tjscreen¼0jrootXY¼(1236,

370)jroot¼0jstate¼0jtime¼86474683

5 Event¼KeyPressjchar¼ojscreen¼0jrootXY¼(1236,

370)jroot¼0jstate¼0jtime¼86474692

6 Event¼KeyPressjchar¼tjscreen¼0jrootXY¼(1236,

370)jroot¼0jstate¼0jtime¼86474785

The key events are parsed by the feature extractor, which

contains a small buffer of the lastC KeyPress and KeyRelease

events. Given a database of words ðsi; i ¼ 1;.;MÞ and feature

descriptions (i.e., keystroke durations, total time to type

aword, press-to-press times, etc.), when the buffer contents of

the keyboard input matches a database word, the features are

extracted. The parameter C is adjusted to match the largest

word in the database. An example of outputs from the feature

extractor by typing bot 6 times is shown below, where PP, PR,

RR, and duration respectively refer to the press-to-press time,

press-to-release time, release-to-release time, and the dura-

tion of each character (see Table 1). The numbers are in milli-

seconds. Negative press-to-release time means that

a character is pressedbefore theprevious character is released.

1 @word¼botjPP¼227,63jPR¼100,�28jRR¼191,92j
duration¼127,91,120jtotal¼410
Table 1 e An example of features extracted from keystroke da

Feature name # Dimensions

Total duration 1

Total duration 1

Duration of each character (D(a)) 14

Duration of a key being of character (D(xi)) 14

Press-to-press time (PP(a,b)) 13

Press-to-press time (PP(xi�1,xi)) 13

Press-to-release time (PR(a,b)) 13

Press-to-release time (PR(xi�1,xi)) 13

Release-to-release time (RR(a,b)) 13

Release-to-release time (RR(xi�1,xi)) 13

Release-to-press time (RP(a,b)) 13
2 @word¼botjPP¼190,56jPR¼105,�10jRR¼171,83j
duration¼85,66,93jtotal¼339

3 @word¼botjPP¼117,84jPR¼32,9jRR¼107,103j
duration¼85,75,94jtotal¼295

4 @word¼botjPP¼107,82jPR¼6,�6jRR¼94,83j
duration¼101,88,89jtotal¼278

5 @word¼botjPP¼123,130jPR¼16,56jRR¼90,141j
duration¼107,74,85jtotal¼338

6 @word¼botjPP¼125,125jPR¼5,31jRR¼99,115j
duration¼120,94,84jtotal¼334
3. Feature extraction and classification

In this section, we describe the feature extraction and classi-

fication performed in TUBA on keystroke data, as well as our

Markov chain model used for simulating keystroke-forgery

attacks. We illustrate how the dimensionality affects the

classification results and its security implications.

3.1. Features and dimension reduction

Givena sequenceof key-press andkey-release events, features

represent various temporal aspects of the user’s typing

patterns. Features may include the total typing time of the

word and inter-key timings such as the interval between two

adjacent press or release events. Even for a short string such as

www.amazon.com, the dimensionality of all possible features is

quite high. We give a concrete example to illustrate the high

dimensionality of the extracted keystroke features. Consid-

ering the string www.cooper.edu that contains N ¼ 14 char-

acters, TUBA extracts the group of features shown in Table 1.

Utilizing a large number of features is desirable because it

typically results in a better (more specific) prediction model.

More importantly, a high-dimensional feature vector used in

the classification makes it difficult for adversaries to

successfully simulate keyboard events that pass our classifi-

cation test.We illustrate an examplewith keystroke data from

two real users (collected in our user study, as described in

Section 5), in which classification results improve with the
ta for the string www.cooper.edu.

Description

Time for keying the entire string

Time difference between xN,r and x1,p
Duration of a key being pressed

Time difference between xi,r and xi,p
Time between the beginning of a being pressed and the beginning

of b being pressed

Time difference between xi,p and xi�1,p

Time between the beginning of a being pressed and the beginning

of b being released

Time difference between xi,p and xi�1,r

Time between the beginning of a being released and the beginning

of b being released

Time difference between xi,r and xi�1,r

Time between the beginning of a being released and the beginning

of b being pressed

http://www.amazon.com
http://www.cooper.edu
http://www.cooper.edu
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Fig. 3 e (Left) Distribution of two keystroke features between two users, i.e., (1) keystroke duration (in milliseconds) of

individual characters from the string “botnet” in X-axis and (2) total time spent to type the word in Y-axis. (Right)

Distribution of three keystroke features between two users, i.e., (1) and (2) as in (left) and (3) the press-to-press time in Z-

axis. One user’s data is shown with the red circles, and the other user’s with blue triangles. D(b), D(o), D(t), . represent the

keystroke duration of character b, o, t,., respectively. (For interpretation of the references to colour in this figure legend, the

reader is referred to the web version of this article.)
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increasing number of features used. The word “botnet” is

typed by two individuals and as shown in Fig. 3.

Two features are considered in Fig. 3 (left) e key durations

of individual characters and the total typing time of a word.

With these two keystroke features, the two users’ samples are

somewhat differentiated from each other, but there still exists

significant overlap between the data sets. In Fig. 3 (right), three

keystroke features are used, including the press-to-press time

of two adjacent characters, key durations of individual char-

acters, and the total typing time of a word. The two users’

samples are well-separated using a 3-dimensional feature

vector in this example. This series of experiments show the

importance of using multi-dimensional keystroke features for

user classification, compared to previous studies that rely on

a small number of features for identification (Bleha et al., 1990;

Ilonen, 2003).

However, the high-dimensional feature space makes clas-

sification worse if not enough samples are collected, as the

model tends to overfit the training data and therefore produce

a classification model which incorrectly classified new data e

overfitting problem. The TUBA classification algorithm uses

principle component analysis (PCA) to reduce the dimensions

of the feature vectors as a preprocessing step. PCA is an

existing data mining and statistical technique which is

commonly used to condense high-dimensional data to lower

dimensions in order to simplify analysis. The premise of PCA
is to reduce the dimensions of and transform the original

multi-dimensional dataset so that high variations within the

data are retained, i.e., the principal components are retained.

In our experiments, running PCA reduces the number of

dimensions to, on average, one third of the original value.

Using SVM with PCA-preprocessed features nearly doubles

the classification accuracy; without PCA-preprocessing, our

classification results were roughly 60%. We note that all the

computations, including classification, are performed on the

server-end. Hence, when a compromised machine is detected

and the owner can be notified in a timely fashion.

3.2. SVM-based classification

Once keystroke features are collected and processed, we train

and classify the data using support vectormachine (SVM). The

use of SVM is appropriate as the technique can be used to

classify both linearly-separable (i.e., classes which are sepa-

rable into two or more groups using hyperplanes) and non-

linearly separable data (Hastie and Tibshirani, 1997; Keerthi

et al., 2001; Platt, 1998). To classify a set of data points in

a linear model, support vector machines select a small

number of critical boundary points from each class, which are

called the support vectors of the class. Then, a linear function is

built based on the support vectors in order to separate the

classes as much as possible; a maximum margin hyperplane,

http://dx.doi.org/10.1016/j.cose.2011.10.001
http://dx.doi.org/10.1016/j.cose.2011.10.001


Fig. 4 e Comparisons between the typing abilities of a person and a bot modeled by using a first-order Markov chain of

keystroke events. Nodes xi;p and xi;r denote the i -th letter press and release events, respectively. Linear combinations of the

fk elements represent the timing features used for the classification. Solid lines represent a bot’s typing sequence in a first-

order Markov model, and a user’s sequence may be represented by both solid and dotted lines, allowing consecutive press

events.
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i.e., a high-dimensional generalization of a plane, is used to

separate the different classes. An SVM model can classify

non-linear data by transforming the feature vectors into

a high-dimensional feature space using a kernel function (e.g.,

polynomial, sigmoid, or radial basis function (RBF)) and then

performing the maximum-margin separation. As a result, the

separating function is able to produce more complex bound-

aries and therefore yield better classification performance. In

our authentication system, we use the WEKA (Witten et al.,

2005) SVM implementation with a Gaussian RBF kernel.

Our data analysis and classification tools used, including

those for principle component analysis and support vector

machines, are from WEKA (Witten et al., 2005). WEKA is

a widely-used open-source data mining toolkit written in

Java. The graphic user interface provided by WEKA,

Knowledge Flow, makes the tool user-friendly to

researchers. We refer readers to data mining and machine

learning literature such as the book by Witten and Frank

(Witten et al., 2005) or Bishop (Bishop, 2006) for detailed

descriptions of SVM techniques. During our experiments,

the SVM parameters were manually tuned to obtained the

optimal classification results. For every user and every word

we created a model e for a total of 120 models e we

however did not find a general approach or intuition to

finding the SVM and RBF parameters; instead, our tuning

approach was more along the lines of brute-force, and we

thus do not show the final chosen parameters.

3.3. Assessing the difficulty of impersonation attacks

Existing literature on keystroke-dynamics based authentica-

tion does not consider programs or bots as the potential type

of adversaries when analyzing the security. We assess the

difficulty for an attacker to program a bot to impersonate

a target’s typing patterns. To pass our classification, the bot

needs to mimic the target’s typing behaviors in a way such

that the extracted features are similar as well.

Humans are imperfect typists and may create negative

timing features in a sequence of keystroke events. For

example, when typing the string “abc”, a user may create

negative press-to-release (PR) time by pressing ‘c’ before

having released ‘b’. More formally, if we denote the state at i�
1 as xi�1 ¼ b, and that at i as xi ¼ c, given that ‘c’ is pressed
before ‘b’ is released then PRðxi�1; xiÞ ¼ xi;p � xi�1;r < 0. From

our experimental data, we find that a large number of users

have negative press-to-release timings in their dataset.

Although an adversary can synthesize arbitrary keystroke

events, we find that it is considerably more difficult to create

an intelligent bot which can inject keystroke events that result

in negative inter-key timings. Bot writers typically care more

about infecting new machines than addressing all defensive

issues; thus spending the time to build advanced models and

write a complex bot is often not a worthy pursuit for them.

Fig. 4 illustrates the differences in the capabilities

between human and bots in the first-order Markov model.

Assuming that keystroke events can be modeled accurately

by a first-order Markov chain, a human’s key event path

can be a combination of the dashed and solid lines shown

in the figure. It is, however, difficult for a bot to simulate

certain events, as is the case of negative timing features

(paths including dashed lines in Fig. 4). First-order Markov

chain is memoryless, and the transition to the next state is

determined solely based on the current state. In higher-

order Markov chains, the previous states also affect the

transition and can support more sophisticated keystroke

sequences.

When considering higher-order Markov chains, it is even

more challenging for the attackers or bots to successfully

mimic typing patterns with negative timing; a personmay, for

example, press ‘c’ before both ‘a’ and ‘b’ are released. Using

high-dimensional data leads to higher authentication accu-

racy and stronger security guarantees. We note that if the

complexity of the model is increased (e.g., to a second- or

third-order Markov chain), it is important to collect additional

training instances as to avoid overfitting the data.

Based on our analysis, negative inter-key timings and

durations showed to be the most distinguishing features. The

latter feature is apparent in long words, as users tend to take

pauses in different positions. Moreover, this information is

apparent to a bot only in the variance, effectively making it

less useful. As the bots we consider do not support negative

inter-key timings, this feature is particularly distinguishing. It

is important to note, however, that a bot using negative

timings in the Markov model will still have a key difference

from humans: a person typing is physically constrained and

will thus finish writing a word; conversely, a bot has no such

http://dx.doi.org/10.1016/j.cose.2011.10.001
http://dx.doi.org/10.1016/j.cose.2011.10.001
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physical limitations and could, at least in principle, not

terminate. A simple Markov model is not sufficient to model

a human, constrained by a physical environment, as

explained above. Although with sufficient effort a sophisti-

cated, terminating bot can be implemented, we believe that,

for the target problem, there is little incentive for bot herders

to develop such complex bots as opposed to simply compro-

mising other machines.
4. Bot simulation and events injection

We find that even if we allow for certain types of key event

injection by bots under our security model, classification

based on keystroke dynamics is able to identify intruders with

high accuracy. We play the devil’s advocates and create two

bots, the algorithms of which are described next. We assume

that the goal of an adversary in our model is to create

keystroke events that pass our classification tests. That is, the

attacker creates fake keystroke events expecting them to be

classified as the owner’s. Under our adversary model, we

assume that bots possess keystroke data of any users except

the owner’s. As described in Section 2, replaying the owner’s

keystroke sequence is disallowed (see (Stefan et al., 2010) for

an extension which considers an attack model that includes

replay attacks).

We implement a program in C which injects keyboard

events with specific timing information in order to simu-

late forgeries. Our attack simulator has two components:

the data synthesizer and typing event injection. To simulate

a bot’s attack, we write a program to create fake keyboard

events and inject them into the X server core-event-stream

(using the XTrap extension) as if typed on the actual

keyboard. From the application’s (or X client’s) perspective,

the fake keyboard events cannot be distinguished from

actual key events (even though the keyboard is not

touched). To test the performance of a bot injecting fake

events we implemented two bots which simulate human

typing patterns according to the first-order Markov model

shown in Fig. 4. That is, bots consider only keystroke
durations and positive inter-key timings (paths shown by

the solid lines in Fig. 4).

In our simulations, the keystroke duration of the i -th

character in a word is modeled as a random variable Xi � 0,

where Xi is:

1. Gaussian with mean mi and variance s2i : XiwN ðmi; s
2
i Þ in

GaussianBot, or

2. Constant with additive uniform noise ðmean 0Þ : Xi

wmi þU ð�hi;hiÞ in NoiseBot.

The parameter mi is calculated as the mean key duration of

the i -th character from selected instances of the user study.

For example, to calculate m1 for the first character (‘1’) in the

string 1calend4r, we take the 1calend4r instances from the

user study and calculate the sample mean and variance of the

keystroke durations. Similarly, the press-to-release inter-key

timing feature between the i -th and ði� 1Þ -th character is

modeled as a random variable X0
i, whose parameters are also

calculated from the user study instances. Algorithm 1 below

shows the pseudocode for the bots, which inject n instances of

the given string. The classification performance of these bots

against users are further presented later.

It is important to note that a more complex bot would

additionally consider negative inter-key timing and therefore

a high-order Markov model may be implemented. This

advanced bot would require considerably greater effort from

the bot designer, as the order of events would have to be

calculated a priori. For example, if the bot were to correctly

simulate theword “botnet” typedbya person, the probability of

injecting a KeyPress event for the character ‘o’ before injecting

a KeyRelease event of ‘b’ would have to be considered and

therefore our bot Algorithms would need to be modified.

Similar to Algorithm 1, the pseudocode for a bot which

generates noisy instances (i.e., mean � noise) is shown in

Algorithm 2. The parameters for Experiment 3were calculated

as those for GaussianBot in Experiment 2, with the noise

parameters hi ¼ si=2 and h0i ¼ s0i=2.

Algorithm 1. GaussianBot simulation of a human typing.

http://dx.doi.org/10.1016/j.cose.2011.10.001
http://dx.doi.org/10.1016/j.cose.2011.10.001
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Algorithm 2. NoiseBot simulation of a human typing.
Fig. 5 e The age distribution of participants in our user

study.
5. Evaluation of classification accuracy

We collect keystroke timing data from 20 user subjects, 10

females and 10 males on M ¼ 5 different strings. We imple-

ment a program with a graphic user interface (GUI) that

records the keystroke dynamics of the participants. Screen-

shots of the GUI are shown in Fig. 2. The user is asked to type

in the following strings, n ¼ 35times each: google.com, www.

amazon.com, 1calend4r, yao.danfeng@gmail.com, and

deianstefan@gmail.com. The gender and age of each

participant are recorded, as well as their familiarity (‘high’,

‘medium’, or ‘low’) with each string. This data is later used for

analyzing the correlation between demographic data and

keystroke dynamics. Before the recording begins, each user

has a chance to practice typing each string up to five times

each. The study is carried out one user at a time in a controlled

environment where the user can concentrate and focus on

what he or she is typing. Experimental variables, such as the

keyboard, monitor and computer used are also kept constant.

5.1. Analysis on the user group

The participants were mostly college students who interact

with computers on a daily basis and proficient with typing in

general. The age distribution of participants is shown in Fig. 5.

We required the participants to categorize their familiarity

levels with the six strings into high, medium, or low. Partici-

pantsmostly have the high familiaritywithwebsite URLs such

as google.com and www.cooper.edu. We quantify the means

and standard deviations of their familiarity levels, after

assigning 1 to low, 2 to medium, and 3 to high in Fig. 6. We

expect that the classification results may differ for a group of

less sophisticated users.

We perform three sets of experiments to test the feasibility

and the performance of TUBA in classifying keystroke timing

features.We illustrate the setup of the experiments in Table 2.
5.2. Experiment 1 (Human vs. Human)

The goal of Experiment 1 is to confirm our ability to distin-

guish different individuals’ keystroke patterns with good

prediction results, as has been shown in the existing litera-

ture. We are able to achieve a high accuracy in classifying

individual humans.

Among the 20 users, we set up a basic test to see if our

classification algorithm can distinguish each user from the

others. Three different classification sets ci; i ¼ 1; 2; 3 for each

word were created according to the users’ gender:

c1 ¼ fall male instancesg, c2 ¼ fall female instancesg, and

c3 ¼ c1Wc2. The class i experimental setup of word sl for user uj

was then performed as follows:

� Label each of the user’s 35 instances as owner,

� Pick 5 random instances for every user uksuj whose

instances are in the set fcig and label them as unknown,

� Given the relabeled instances, perform a 10-fold cross-

validation for SVM classification (manually adjusting the

model parameters).

� Calculate the average true positive (TP) and false positive

(FP) rates.

http://google.com
http://www.amazon.com
http://www.amazon.com
mailto:yao.danfeng@gmail.com
mailto:deianstefan@gmail.com
http://google.com
http://www.cooper.edu
http://dx.doi.org/10.1016/j.cose.2011.10.001
http://dx.doi.org/10.1016/j.cose.2011.10.001


Fig. 6 e The means and standard deviations of users’

familiarity levels for the six strings evaluated. 3 is for high

familiarity, 2 for medium, and 1 for low. The order of

strings is as shown in Fig. 2.
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The classification analysis was repeated for all the user

subjects, and words in the database and classification sets.

Finally, the average TP and FP rates for everyword and class (1.

male, 2. female, and 3. both) were calculated. The results are

summarized in Table 3e the average false positive rate of 4.2%

confirms the robustness of using keystroke dynamics for

authentication.

In general, the performance across the different classes

had little effect on the performance of the SVM classifier. We

note, however, that the familiarity and length do affect the

results. In our work, a true positive represents a correctly

classified user (e.g., Alice is correctly being recognized), and

a false positive means that a user is wrongfully classified (e.g.,

Bob or an adversary is classified as Alice). As shown in Table 3

less familiar strings such as 1calend4r, have a lower true

positive rate than themore familiar strings, like www.amazon.

com. This is because the user is still not very comfortable with

the string, and the variance (which in this casemay effectively

be considered noise) in the feature vectors is quite high.

On average, the true positive and false positive rates of the

longer strings (such as yao.danfeng@gmail.com perform

better because the users have an additional “freedom” to

demonstrate their unique typing style; since the strings are

very long some users pause (unconsciously) mid-word, which

is reflected by some of the inter-key timings.
5.3. Experiments 2 & 3 (Human vs. Bots)

Existing literature on keystroke authentication does not

provide any analysis of attacks that are based on statistical

and synthetic keystroke timing; to our knowledge, there are

currently no bots which are able to perform the attacks that
Table 2 e The setup of three series of experiments.We evaluate
1calend4r, deianstefan@gmail.com. For human vs. human e
gender groups and also evaluate additional strings: google.co

# Experiment series

1 Human vs. Human To distinguish between two use

2 Human vs. GaussianBot To distinguish between a user a

3 Human vs. NoiseBot To distinguish between a user a
we consider. Therefore, we design two sets of experiments to

simulate relatively sophisticated bot attacks. We evaluate the

robustness of keystroke analysis against artificially created

sequences of events. As auxiliary information for the attacker,

we give the adversary access to the keystroke data of all 19

users excluding the owner’s data. Results from Experiment 2

and 3 are presented below.

In the bot experiments, only 10 user cases andM¼ 3 strings

are used, with extended focus on tuning the model parame-

ters. The chosen strings ðsj; j ¼ 1;.MÞ included a URL (www.

amazon.com), an email address (deianstefan@gmail.com)

and a password (1calend4r). Similar to the results of Exper-

iment 1, gender classes only affect the results very slightly,

and therefore only the class containing both genders was

considered for Experiments 2 and 3. The detailed setup for

Experiment 2, for word sj of user uj was performed as follows:

� Label each of the user’s 35 instances as owner,

� For each character xi; i ¼ 1;.N in string sj, calculate the

parameters mi and si, and similarly the average and standard

deviation of the press-to-release times ( m0
i and s0i) using the

remaining users’ ( uksuj) instances,

� Using the parameters as arguments for GaussianBot,

Algorithm 1, generate n ¼ 35 bot instances and label them

unknown

� Perform a 10-fold cross-validation for SVM classification

using the owner and unknown data sets,

� Calculate the average true positive and false positive rates.

The procedure for Experiment 3 is the same for the

NoiseBot. Table 4 shows the results of Experiments 2 and 3. In

summary, the successes of the GaussianBot and NoiseBot in

breaking the model are negligible, as indicated by the

extremely low (average 1.5%) FP rates. Furthermore, these

experiments support the results of Experiment 1 and confirm

the robustness of keystroke authentication to the two specific

types of forgery attacks.

We note that replay attacks are only possible in the weak

adversary model (defined in Section LABEL:definitions) when

the TUBA integrity service is not deployed. Nevertheless, we

carry out the bot simulation and event injection studies to

investigate the robustness of classification algorithms.
6. Discussion and open question

In this section, we describe how TUBA can be integrated with

an existing anomaly detection model that leverages the

cognitive ability of users for security. We also describe an
the following strings in all experiments: www.amazon.com,
xperiments, we also perform separate analysis on different
m and yao.danfeng@gmail.com.

Purpose Tests on gender

rs Yes

nd a GaussianBot (Algorithm GaussianBot) No

nd and a NoiseBot (Algorithm NoiseBot) No

http://www.amazon.com
http://www.amazon.com
mailto:yao.danfeng@gmail.com
http://www.amazon.com
http://www.amazon.com
mailto:deianstefan@gmail.com
http://www.amazon.com
mailto:deianstefan@gmail.com
http://google.com
mailto:yao.danfeng@gmail.com
http://dx.doi.org/10.1016/j.cose.2011.10.001
http://dx.doi.org/10.1016/j.cose.2011.10.001


Table 3 e Human vs. human true positive (TP) and false positive (FP) SVM classification results.

String Female Male Both

TP FP TP FP TP FP

google.com 93.68% 5.56% 92.00% 5.50% 91.86% 4.53%

www.amazon.com 94.00% 4.46% 94.71% 4.62% 91.71% 2.89%

1calend4r 92.29% 5.69% 92.57% 7.51% 89.29% 4.48%

yao.danfeng@gmail.com 96.26% 2.90% 95.14% 3.17% 94.00% 2.26%

deianstefan@gmail.com 95.29% 3.68% 96.00% 2.90% 94.43% 2.79%
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open question in TUBA about how to further strengthen its

security against a stronger adversary model.

6.1. TUBA application: keystroke-based liveliness
detection

TUBAcanbeusedas apractical tool for liveliness detectionand

integrated with host-based tools for security monitoring. The

purpose of host-based liveliness detection is to ensure that the

computer is beingusedby ahumanuser. Suchdetection canbe

utilized to remotely diagnose and monitor a networked

computer and identify anomalous activities. A simple liveli-

ness detection by leveraging keystroke activities of users is for

a server to observe whether there exists any keystroke events

on the host. However, malware may inject fake keystroke

events as we demonstrated in our experiments, and pass the

test. In TUBA, the liveliness detection on the client is triggered

by the remote server upondetecting certain types of suspicious

network activities. The policies specifying suspicious patterns

can be defined based on external network sensors or anomaly

detection tools. The analysis on keystroke-dynamics provides

high assurance to the test results.

Xiong et al. (2009) proposed a cognition-based anomaly

detectionmechanism that requires a user to answer cognitive

questions in pop-up windows. Specifically, the questions

require the user to recognize her own network activities upon

detecting suspicious events. The user answers the questions

by clicking on the Yes or No buttons in the dialog window. For

example, if the user does not initiate the suspicious connec-

tion to the URL, then the user enters No. However, that system

does not provide any authenticationmechanism for the users’

inputs, and may be vulnerable as malware may intercept the

questions and spoof the user’s answers.

TUBA can be integrated with this cognition-based anomaly

detectionsystemtoimprove itsassurance.Specifically, theuser’

questions are accompanied with TUBA challenges. The user

responses not only to the question regarding the suspicious

network activities, but also enters a sequence of characters for

keystroke-dynamic based authentication. The server first
Table 4 e Human vs. bots SVM classification results.

String GaussianBot NoiseBot

TP FP TP FP

www.amazon.com 96.29% 2.00% 100.0% 0.00%

1calend4r 93.74% 3.43% 97.71% 1.43%

deianstefan@gmail.com 96.57% 1.71% 99.71% 0.29%
verifies that the keystroke events can be correctly classified and

then processes the user’s response to the cognitive questions.

Such a framework is simple and can effectively allow the server

to obtain trustworthy information from participating users at

real time for anomaly detection. In comparison to CAPTCHA

test, our keystroke authentication is more fine grained and

personalized. Compared to password-based authentication,

keystroke-dynamics biometric is more difficult to forge.
6.2. Open problem

Keyloggers are, in general, difficult to remove (Ortolani et al.,

2010). There exists the demonstration of soft-timer based

keyloggers that do not need to change any kernel code or data

(Wei et al., 2008). Our model assumes that the attacker is

unable to log and replay the target’s keystroke sequences. One

approach to relax this assumption is to strengthen the host

security by utilizing specialized hardware namely trusted

platform module. For example, in (Stefan et al., 2010) each

keystroke event is cryptographically signed on the client and

verified by a remote server. Due to hardware constraints and

complexity of such solutions, the TPM-based approach may

not be practical in some scenarios.

A simple mitigation is for the server to generate one-time

challenges for the client that are never reused. The chal-

lenge is a string that the user needs to type, the timing

patterns of which are evaluated by the server for authentica-

tion. Even if the client is infected with stealthy keylogger, the

keylogger is unable to replay old sequences of logged

keystroke events. However, such a scheme requires a large

amount of training data e the server keeps a record of

keystroke data from the user corresponding to the one-time

challenges to be issued at the setup phase. Without the

proper training data for specific challenges, the classification

cannot be performed accurately. Gathering a large amount of

training data a priori can be cumbersome.

An open problem is how orwhether it is possible to classify

keystroke-dynamic data for authentication with a small (e.g.,

sublinear) amount of training data. For example, is it possible

to recognize and classify keystroke data of new n strings each

with m characters with training dataset of size OðmlognÞ or

OðnlogmÞ, which are much smaller than OðnmÞ ?
7. Related work

Keystroke-dynamics based authentication has been exten-

sively studied in the security and machine learning literature.

http://google.com
http://www.amazon.com
mailto:yao.danfeng@gmail.com
mailto:deianstefan@gmail.com
http://www.amazon.com
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Existing work on this topic mainly focuses on the use of

keystroke-dynamics analysis for biometric authentication.

Recently, Killourhy and Maxion performed thorough

comparative analysis on state-of-the-art keystroke dynamics

solutions, and presented a methodology for predicting classi-

fication error rates (Killourhy and Maxion, 2010). What differs

our work from existing keystroke-dynamics work (Bleha et al.,

1990; Ilonen, 2003; Killourhy and Maxion, 2008; Monrose and

Rubin, 2000; Song et al., 2001; Yu and Cho, 2003) or mouse-

movement based continuous authentication such as in

(Pusara and Brodley, 2004) is that we analyze the robustness of

keystroke-dynamics authentication against automatic

synthetic forgery attacks, as opposed to impersonation attacks

launched by other persons. We also describe the practical

challenges and solutions in applying keystroke-dynamic

analysis for remote diagnosing the computer integrity and

detecting stealthy malware. Our empirical investigation indi-

cates the feasibility and security of keystroke authentication

against two bot attacks, as opposed to just human impostors.

It is worth mentioning that there exists a fundamental

difference between TUBA and CAPTCHA, which is a technique

that attempts to differentiate between humans andmachines

on visual ability (von Ahn et al., 2004). TUBA’s challenges are

personalized, whereas CAPTCHA challenges are generic. TUBA

is a fine-grained authentication and identification framework,

where CAPTCHA is a coarse-grained classification mecha-

nism. Attacks on CAPTCHA typically are based on computer

vision techniques and can be quite successful, as demon-

strated in (Mori and Malik, 2003) for example. However,

a successful attack on TUBA requires forging a specific

person’s keystroke patterns, which represents a personalized

type of attack as the attacker needs to learn about the typing

patterns of the target.

Our work also belongs to the new line of research that

utilizes behavior-based characteristics of human users for

enforcing security properties of systems and networks. The

element of human behavior has not been extensively studied

in the context of malware detection, with a few notable

exceptions including solutions such as Cui et al. (2005) and

Gummadi et al. (2009). Gummadi et al. (2009) proposed a bot

detection solution on a personal computer that used

hardware-assisted certification mechanism to distinguish

human-generated traffic from malware-generated activities.

Their solution requires a trusted proxy server to certify

keystroke events entered by the user. Shirley and Evans (2008)

proposed to generate and enforce access-control policies for

file systems based on user intentions that are inferred from

the context of a transaction on a host. The BINDER work (Cui

et al., 2005) describes the correlation of inputs and network

traffic based on timestamps. Recently, mouse-click behaviors

are leveraged to detect drive-by download exploits (Xu et al.,

2011). The work on behavior-driven malware detection

approaches presents new technical challenges, but also may

hold promises for producing next generation cyber defenses.
8. Conclusions and future work

This paper addressed the important problem of biometric

security, in particular the robustness of keystroke-based
biometric authentication against automatically generated

keystroke sequences from attackers. Our work recognizes the

security gap that exists in the current biometric research,

where adversaries are limited to human users. In order to

evaluate the impact of synthetic forgery in the keystroke-

dynamic authentication, we presented our design and

implementation of a remote authentication framework called

TUBA for monitoring a user’s keystroke-dynamics patterns

and identifying intruders. We evaluated the robustness of

TUBA through comprehensive experimental evaluation

including two series of simulated bots. Our analysis is based

on data collected from 20 users in a focused user study. We

used support vector machine for classification in all our

experiments. We performed experiments and found that

given the first-order Markov chain model, our classification is

robust against synthetic forgery attacks studied. The bot-

generated keystroke sequences are detected with high true

positive rates (>93%). We described how TUBA can be inte-

grated with other anomaly detection systems to achieve

remote monitoring and diagnosis of hosts with high assur-

ance. The uniqueness of such security tools is the leveraging

of human-behavior characteristics for enforcing system and

network security properties.

Our work is a first step towards understanding the robust-

ness of biometric techniques against synthetic forgeries.

Because of the sophistication and adaptivity of modern mal-

ware, our future work requires more thorough and compre-

hensive evaluation of other advanced forgery patterns

including higher-order Markov chains. We will also carry out

more investigation on the continuous and liveliness authen-

tication problem in our future work. The TUBA model can be

adopted to be used for continuous and non-intrusive authen-

tication in both, the stand-alone and client-server, architec-

tures by monitoring frequently typed strings, such as

usernames, passwords, email addresses, URLs, etc. A database

of these strings and corresponding SVM models is created

during an initial training phase. After the training phase we

assume TUBA to be running in the background (non-intru-

sively) checking the stream of typed characters for matching

strings in the database and only extracting features for eval-

uation against the trainedmodelswhenamatch occurs.When

amatch occurs the features of the typed string are classified as

either owner or unknown. After a number of instances are

incorrectly classified, the user is notified of the suspicious

behavior and (depending on the chosen configuration) the

computermay be automatically locked, under the assumption

that it’s under attack. Conversely, if the majority of the

instances are classified as owner then no suspicion arises.
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