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Abstract—A comprehensive performance analysis of the energy
detector over fading channels with single antenna reception
or with antenna diversity reception is developed. For the no-
diversity case and for the maximal ratio combining (MRC)
diversity case, with either Nakagami-m or Rician fading, ex-
pressions for the probability of detection are derived by using
the moment generating function (MGF) method and probability
density function (PDF) method. The former, which avoids some
difficulties of the latter, uses a contour integral representation of
the Marcum-Q function. For the equal gain combining (EGC)
diversity case, with Nakagami-m fading, expressions for the
probability of detection are derived for the cases 𝐿 = 2, 3, 4
and 𝐿 > 4, where 𝐿 is the number of diversity branches. For
the selection combining (SC) diversity, with Nakagami-m fading,
expressions for the probability of detection are derived for the
cases 𝐿 = 2 and 𝐿 > 2. A discussion on the comparison between
MGF and PDF methods is presented. We also derive several
series truncation error bounds that allow series termination with
a finite number of terms for a given figure of accuracy. These
results help quantify and understand the achievable improvement
in the energy detector’s performance with diversity reception.
Numerical and simulation results are also provided.

Index Terms—Energy detection, MGF approach, cognitive ra-
dio, Rayleigh fading, Nakagami-m fading, Rician fading, maximal
ratio combining, equal gain combining, selection combining,
Marcum-𝑄 integrals.

I. INTRODUCTION

IN [1], the problem of energy detection of unknown signals
over a noisy channel, which has a myriad of applica-

tions in traditional communications and in emerging cognitive
radio networks and ultra-wideband (UWB) radio, has been
addressed. An energy detector may help cognitive radios to
determine whether or not a primary user signal is present.
Cognitive radio, UWB and other applications have heightened
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the need for a more comprehensive analysis of the energy
detector’s performance in different wireless environments.
Moreover, since diversity reception techniques can enhance the
performance of the energy detector, the resulting performance
improvement needs to be quantified.

The energy detector is a threshold device, whose output
decision depends on the comparison of the incoming signal
energy to the threshold. This decision problem is a binary
hypothesis test with a chi-square (𝜒2) distributed decision
variable [1]. The main performance metrics are the probability
of detection (𝑃𝑑) and the probability of false alarm (𝑃𝑓 ),
which require averaging over the fading statistics when the
energy detector is used for the detection of signals over a
fading channel. Several papers have previously attacked this
problem. For example, Kostylev [2] has derived the average
𝑃𝑑 and the average 𝑃𝑓 for Rayleigh, Rician and Nakagami-
m fading channels. But he considers only the integer values
of the Nakagami fading severity index 𝑚. Digham, Alouini
and Simon [3] derive the 𝑃𝑑 in Nakagami-m fading channel
limiting to integer 𝑚 and in Rician fading channel limiting
to unity time bandwidth product (𝑢 = 1 in our notation).
These prevailing results are neither completely general nor
comprehensive enough to analyze the energy detection with
and without diversity reception techniques.

For example, energy detection with maximal ratio combin-
ing (MRC), selection combining (SC), and switch-and-stay
diversity is analyzed in [3] [4] and with SC and MRC in
[5]. However, these results restricted to Rayleigh fading. This
restriction may be perhaps due to lack of direct integral results
of the Marcum-Q function [6], [7]. Our results presented
in [8] partially fulfill this gap by deriving exact 𝑃𝑑 and
𝑃𝑓 for an equal gain combining (EGC) detector with i.i.d.
Nakagami-m fading branches. Further, our work [9] proposes
an energy detection performance analysis technique based on
the moment generating function (MGF) while [10] considers
SC diversity over Nakagami-m channels.

Previous performance analysis studies [1]–[5] primarily
utilize the probability density function (PDF) based approach,
i.e. the conditional detection probability is integrated over the
PDF of the output signal-to-noise-ratio (SNR). All these works
assume that the channel state information is available at the
receiver.

In this paper, while using the very same conditions at the
receiver, a new performance analysis approach – based on
the contour integral representation of Marcum-Q function and
MGF of the SNR – is presented. This approach along with
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the conventional PDF approach provides a flexible, general
framework for analyzing the performance of the energy de-
tector. The MGF approach, which avoids some difficulties
of the PDF method, uses a contour integral representation
of the Marcum-Q function [11]. Several fading models and
diversity techniques are considered. For the no-diversity case
and for the MRC diversity case, with either Nakagami-m
or Rician fading, 𝑃𝑑 expressions are derived by using the
MGF and PDF approaches. For the EGC diversity case, with
Nakagami-m fading, 𝑃𝑑 expressions are derived for the cases
𝐿 = 2, 3, 4 and 𝐿 > 4, where 𝐿 is the number of diversity
branches. For the SC diversity case, with Nakagami-m fading,
𝑃𝑑 expressions are derived for the cases 𝐿 = 2 and 𝐿 > 2.
We also derive several truncation error bounds that allow series
termination with a finite number of terms for a given figure
of accuracy. These results help quantify and understand the
achievable improvement in the energy detector’s performance
with diversity reception. Numerical and simulation results are
also provided to complement theoretical formulations.

The rest of the paper is organized as follows. Section
II describes the system model. For the no-diversity case,
considered in section III derives 𝑃𝑑 over Nakagami-m and
Rician fading channels using the PDF and MGF approaches.
Section IV treats the detector performance with MRC diversity
over Nakagami-m and Rician fading. Section V presents the
detector performance with EGC diversity for independent and
identically distributed (i.i.d.) Nakagami-m diversity branches.
The number of diversity branches 𝐿 = 2, 3 and 𝐿 ≥ 4 cases
are treated separately, and the PDF approach is followed. The
results for 𝑃𝑑 and 𝑃𝑓 over SC with i.i.d. Nakagami-m fading
branches are derived in Section VI using the PDF approach.
The results are two fold. First, the dual SC performance is
analyzed by deriving an exact equation for average 𝑃𝑑. Sec-
ond, SC with an arbitrary number branches is considered, and
the Nakagami parameter 𝑚 is restricted to be an integer. The
truncation error bounds are derived where applicable. Section
VII discusses numerical and simulation results. Section VIII
provides concluding remarks.

II. SYSTEM MODEL AND DETECTION OVER FADING

CHANNEL

For the sake of brevity, only a brief discussion of the system
model is provided here. We refer the reader to [1], [2] for
detailed derivations of these fundamental results. The received
signal process 𝑦(𝑡), which contains an unknown deterministic
signal and noise or noise only, may be modeled as [1]:

𝑦(𝑡) =

{
𝑛(𝑡) : 𝐻0

ℎ𝑠(𝑡) + 𝑛(𝑡) : 𝐻1,

where ℎ is the complex channel gain, 𝑠(𝑡) is the unknown
transmit signal, 𝑛(𝑡) is an additive noise signal, and 𝐻0 and
𝐻1 refer to signal absence and signal presence, respectively.
The energy detector operates by filtering, squaring and in-
tegrating the received signal 𝑦(𝑡). We suppress the details of
these operations for brevity and note that the decision variable
(𝑌 ) of the energy detector may be represented as

𝑌 = 𝑐

∫
∣𝑦(𝑡)∣2 𝑑𝑡,

where 𝑐 is a constant. By using the sampling theorem rep-
resentation for bandlimited signals, we can approximate the
decision variable as a sum of squares of Gaussian random
variables [1], [2], [4]. Then 𝑌 has a non-central chi-square
distribution under𝐻1 and central chi-square distribution under
𝐻0. Thus, the PDF of 𝑌 under 𝐻0 and 𝐻1 can be written as
[4],

𝑓𝑌 (𝑦) =

⎧⎨
⎩

1
2𝑢Γ(𝑢)𝑦

𝑢−1𝑒−
𝑦
2 : 𝐻0

1
2

(
𝑦
2𝛾

)𝑢−1
2

𝑒−
2𝛾+𝑦

2 𝐼𝑢−1(
√
2𝛾𝑦) : 𝐻1

where Γ(.) is the gamma function and 𝐼𝑛(.) is the 𝑛𝑡ℎ order
modified Bessel function of the first kind. The parameter 𝑢
depends on the time-bandwidth product. The signal-to-noise
ratio (SNR) is defined by 𝛾 = ∣ℎ∣2 𝐸𝑠

𝑁0
where 𝐸𝑠 is the signal

energy and 𝑁0 is the noise-power spectral density. Hence
detection (𝑃𝑑) and false alarm (𝑃𝑓 ) probabilities conditional
on the fading channel gain may be expressed as [4]

𝑃𝑑 = 𝑄𝑢

(√
2𝛾,

√
𝜆
)
, (1)

𝑃𝑓 =
Γ
(
𝑢, 𝜆

2

)
Γ(𝑢)

, (2)

where 𝑄𝑢(., .) is the generalized Marcum-Q function and the
incomplete gamma function Γ(𝑎, 𝑥) =

∫∞
𝑥 𝑡𝑎−1𝑒−𝑡𝑑𝑡, with

Γ(𝑎, 0) = Γ(𝑎) [3]. Note that in (2), the false alarm probability
does not depend on SNR, fading or the diversity reception
scheme.

III. PROBABILITY OF DETECTION OVER FADING

CHANNELS – NO-DIVERSITY CASE

A. Nakagami-m Fading - PDF approach

Here the instantaneous SNR is a Gamma random variable.
The PDF of a Gamma 𝒢(𝛼, 𝛽) variable is given by

𝑓(𝑥) =
1

Γ(𝑚)

(
1

𝛽

)𝛼

𝑥𝛼−1e−𝑥/𝛽, 𝑥 ≥ 0, (3)

where the shape parameter 𝛼 > 0 and the scale parameter
𝛽 > 0. When the received signal amplitude follows Nakagami-
m fading, the SNR 𝛾 is Gamma 𝒢(𝑚, 𝛾/𝑚) where 𝛾 is the
average SNR and 𝑚 ≥ 1

2 is the fading severity index.
The average detection probability over Nakagami-m fading

(𝑃 𝑑,𝑁𝑎𝑘) can be evaluated by substituting the alternative
series representation of Marcum-𝑄 function [12, (4.63)] in
(1) and integrating over 𝒢(𝑚, 𝛾/𝑚) as

𝑃 𝑑,𝑁𝑎𝑘 = 1− 𝑒−
𝜆
2

Γ(𝑚)

(
𝑚

𝛾

)𝑚 ∞∑
𝑛=𝑢

(
𝜆

2

)𝑛
2

(4)

×
∫ ∞

0

𝑒−(1+
𝑚
𝛾 )𝛾 𝛾𝑚−1−𝑛

2 𝐼𝑛(
√
2𝜆𝛾) 𝑑𝛾.

Using [13, (6.643-2)], [13, (9.220-2)] and appropriately se-
lecting terms to satisfy the condition therein, 𝑃 𝑑,𝑁𝑎𝑘 can be
expressed as

𝑃 𝑑,𝑁𝑎𝑘 = 1−𝑒−𝜆
2

(
𝑚

𝛾 +𝑚

)𝑚 ∞∑
𝑛=𝑢

1

𝑛!

(
𝜆

2

)𝑛

(5)

× 1𝐹1

(
𝑚; 𝑛+ 1;

𝜆𝛾

2(𝛾 +𝑚)

)
.



HERATH et al.: ENERGY DETECTION OF UNKNOWN SIGNALS IN FADING AND DIVERSITY RECEPTION 2445

The function 1𝐹1(., ., .) is a special case (𝑝 = 1, 𝑞 = 1) of
generalized Hypergeometric function given in (6), [14, pp. 19]:

𝑝𝐹𝑞(𝑎1, ..., 𝑎𝑝; 𝑏1, ..., 𝑏𝑞; 𝑥) =

∞∑
𝑛=0

(𝑎1)𝑛...(𝑎𝑝)𝑛
(𝑏1)𝑛...(𝑏𝑝)𝑛

𝑥𝑛

𝑛!
. (6)

By expanding 1𝐹1(.; .; .) in (5) using (6) and constructing the
Hypergeometric function of two variables of the form given
in (7) [14, pp. 25]:

Φ2(𝛽, 𝛽; 𝛾; 𝑥, 𝑦) = (7)
∞∑

𝑚,𝑛=0

(𝛽)𝑚(𝛽)𝑛
(𝛾)𝑚+𝑛

𝑥𝑚𝑦𝑛

𝑚!𝑛!
, ∣ 𝑥 ∣<∞, ∣ 𝑦 ∣<∞,

we can express 𝑃 𝑑,𝑁𝑎𝑘 as

𝑃 𝑑,𝑁𝑎𝑘 = 1− 𝑒−
𝜆
2

(
𝑚

𝛾 +𝑚

)𝑚
[
Φ2

(
𝑚, 1; 1;

𝜆𝛾

2(𝛾 +𝑚)
,
𝜆

2

)

−
𝑢−1∑
𝑛=0

1

𝑛!

(
𝜆

2

)𝑛

1𝐹1

(
𝑚; 𝑛+ 1;

𝜆𝛾

2(𝛾 +𝑚)

)]
. (8)

The average probability of detection expressions (5) and (8)
are more general than [3, (20)], which is restricted to integer
values of𝑚. Moreover, these expressions numerically coincide
with [3, (20)] for integer values of 𝑚.

Although the series form of special function
Φ2(𝛽, 𝛽; 𝛾; 𝑥, 𝑦) can be implemented easily in common
mathematical software such as Mathematica, series truncation
is required. Thus, the error result in truncating the infinite
series in (5) by 𝑁 terms (∣ 𝐸𝑁𝑎𝑘 ∣) is shown in (9). This
bound is derived by using the monotonically decreasing
property of 1𝐹1

(
𝑚; 𝑛+ 1; 𝜆𝛾

2(𝛾+𝑚)

)
over 𝑛 for given values

of 𝑚, 𝛾 and 𝜆 [15]:

∣ 𝐸𝑁𝑎𝑘 ∣<
(

𝑚

𝛾 +𝑚

)𝑚

1𝐹1

(
𝑚; 𝑁 + 1;

𝜆𝛾

2(𝛾 +𝑚)

)

×
[
1− 𝑒−

𝜆
2

𝑁∑
𝑛=0

(
𝜆
2

)𝑛
𝑛!

]
. (9)

Using the bound in (9), the number of terms (𝑁̃) required to
compute 𝑃 𝑑,𝑁𝑎𝑘 to a given figure of accuracy can be found
(Table I).

B. Nakagami-m fading - MGF approach

Using the contour integral representation of generalized
Marcum-𝑄 function [11], (1) can be written as

𝑃𝑑 =
𝑒−

𝜆
2

2𝜋𝑗

∮
Δ

𝑒((
1
𝑧−1)𝛾+𝜆

2 𝑧)

𝑧𝑢(1− 𝑧)
𝑑𝑧, (10)

where Δ is a circular contour of radius 𝑟 that encloses origin
and 0 < 𝑟 < 1. The MGF of 𝛾 is 𝑀(𝑠) = 𝐸(𝑒−𝑠𝛾) where
𝐸(.) is the expected value. Thus, by taking the average of (10)
over the distribution of 𝛾, we find that the average detection
probability (𝑃 𝑑) as

𝑃 𝑑 =
𝑒−

𝜆
2

2𝜋𝑗

∮
Δ

𝑀

(
1− 1

𝑧

)
𝑒

𝜆
2 𝑧

𝑧𝑢(1− 𝑧)
𝑑𝑧. (11)

This expression in (11) is fairly general and holds for any case
where the MGF is available in suitable form. From residue

calculus, we know that the integral in (11) depends on the
residues at the poles of the integrand inside the contour Δ. The
residues can be computed readily using mathematical software
and are exact. We are going to employ this approach for
Nakagami and Rician cases. For a Nakagami fading channel,
the MGF of SNR can be written as

𝑀𝛾𝑁𝑎𝑘
(𝑠) =

1(
1 + 𝛾𝑠

𝑚

)𝑚 , 𝑚 ≥ 1

2
. (12)

Hence by (11), the expression for the probability of detection
over Nakagami fading is

𝑃 𝑑,𝑁𝑎𝑘 =

(
𝑚

𝑚+ 𝛾

)𝑚

𝑒−
𝜆
2 × 1

2𝜋𝑗

∮
Δ

𝑓(𝑧) 𝑑𝑧, (13)

where 𝜃𝑁 = 𝛾
𝑚+𝛾 and

𝑓(𝑧) =
𝑒

𝜆
2 𝑧

(𝑧 − 𝜃𝑁 )
𝑚
𝑧𝑢−𝑚(1− 𝑧)

. (14)

The contour integral in (13) is evaluated for an integer value of
𝑚. Suppose that 𝑓(𝑧) has a pole of order 𝑘 ≥ 1 at 𝑧 = 𝑧0. We
need ∣𝑧0∣ < 1, otherwise the pole will be outside the contour
and need not be considered at all. The residue of the pole at
𝑧 = 𝑧0 of order 𝑘 ≥ 1 is given by

Res (𝑓 ; 𝑧0, 𝑘) =
1

(𝑘 − 1)!

𝑑𝑘−1

𝑑𝑧𝑘−1

[
𝑓(𝑧)(𝑧 − 𝑧0)

𝑘
] ∣∣∣∣∣

𝑧=𝑧0

.

(15)

Case I: 𝑢 > 𝑚

In this case, the integrand (13) contains 𝑚 and (𝑢 − 𝑚)
order poles at 𝑧 = 𝜃𝑁 and 𝑧 = 0. From residue calculus,
𝑃 𝑑,𝑁𝑎𝑘 can be derived as

𝑃 𝑑,𝑁𝑎𝑘 =

(
𝑚

𝑚+ 𝛾

)𝑚

𝑒−
𝜆
2 (16)

×
[
Res (𝑓 ; 𝜃𝑁 ,𝑚) + Res (𝑓 ; 0, 𝑢−𝑚)

]
,

where Res (𝑓 ; 𝑧0, 𝑘) denotes the residue of the pole at 𝑧 = 𝑧0
of order 𝑘 ≥ 1 for function 𝑓(𝑧) - given in (15) above.

Case II: 𝑢 ≤ 𝑚

In this case, there is no pole at the origin, and only the pole
at 𝑧 = 𝜃𝑁 needs to be considered

𝑃 𝑑,𝑁𝑎𝑘 =

(
𝑚

𝑚+ 𝛾

)𝑚

𝑒−
𝜆
2 Res (𝑓 ; 𝜃𝑁 ,𝑚) . (17)

The evaluation of residues yields simpler expressions over
Nakagami-m fading. However, these results are limited to
integer values of 𝑚, while the results of the PDF approach
are not. Further, this result is numerically equivalent to the
(5), [3], [4] for integer values of 𝑚.

As a by product, the average probability of detection
over Rayleigh fading channel (𝑃 𝑑,𝑅𝑎𝑦) can be obtained by
substituting 𝑚 = 1 in (16) and (17) as given in (18) (top of
the next page). The result in (18) is numerically equivalent to
the expressions given in [3]–[5].
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𝑃 𝑑,𝑅𝑎𝑦 =

⎧⎨
⎩

𝑒−
𝜆

2(1+𝛾) for 𝑢 = 1(
𝑒−

𝜆
2

1+𝛾

)(
𝑒
𝜆𝜃𝑁

2

𝜃𝑢−1
𝑁 (1−𝜃𝑁 )

+ 1
(𝑢−2)!

𝑑𝑢−2

𝑑𝑧𝑢−2

[
𝑒

𝜆
2

𝑧

(𝑧−𝜃𝑁 )(1−𝑧)

]) ∣∣∣∣∣
𝑧=0

for 𝑢 > 1
(18)

C. Rician Fading Channel

For Rician fading, the MGF of the SNR is given by

𝑀𝛾𝑅𝑖𝑐(𝑠) =
1 +𝐾

(1 +𝐾 + 𝑠𝛾)
exp

(
− 𝑠𝐾𝛾

(1 +𝐾 + 𝑠𝛾)

)
(19)

where 𝐾 is the Rice factor. Hence, using (11), the average
detection probability (𝑃 𝑑,𝑅𝑖𝑐) can be written as

𝑃 𝑑,𝑅𝑖𝑐 =
(1 +𝐾) 𝜃𝑅

𝛾
exp

(
−
(
𝜆

2
+𝐾𝜃𝑅

))

× 1

2𝜋𝑗

∮
Δ

exp
(

𝑎
𝑧−𝜃𝑅

+ 𝜆𝑧
2

)
(𝑧 − 𝜃𝑅) 𝑧𝑢−1(1− 𝑧)

𝑑𝑧, (20)

where 𝜃𝑅 = 𝛾
𝛾+𝐾+1 and 𝑎 = 𝐾𝜃𝑅(1 − 𝜃𝑅). For the special

case of 𝐾 = 0 (Rayleigh fading), (20) reduces to Rayleigh in

(13). Applying Laurent series expansion for
exp

(
𝑎

𝑧−𝜃𝑅

)

(𝑧−𝜃𝑅) when
𝐾 ∕= 0 and using the Residue theorem to integrate term by
term, 𝑃 𝑑,𝑅𝑖𝑐 for 𝑢 > 1 can be expressed as in (21) (top of the
next page). When 𝑢 = 1, the pole at 𝑧 = 0 disappears. Hence
the result can be obtained by setting the limit value of first
derivative in (21) to 0. For 𝑢 = 1, the result given in (21) is
numerically equivalent to the result given in [3]. However, it
is difficult to derive the error result in truncating the infinite
series in (21).

IV. PROBABILITY OF DETECTION OVER FADING

CHANNELS – MRC DIVERSITY CASE

In the following study of energy detection with diversity
reception, we assume the availability of channel state infor-
mation (CSI) at the receiver. Although this assumption appears
at odds with the notion of energy detection, the main aim of
this assumption is to derive the gold standard of achievable
performance. Other practical setups can then be compared
against the gold standard. Thus, the following results clarify
the fundamental performance limits of the energy detector
with diversity reception.

Moreover, in cognitive radio applications, the CSI may be
available to secondary users over a control channel or over
a broadcast channel through an access point. Several such
setups have recently been investigated [16], [17]. The more
recent work [17] supports this setup where the CSI is assumed
known to the secondary user access point. Further in [18], [19],
soft combining of instantaneous SNR values of the secondary
users is considered where CSI of individual secondary user
is assumed available at a decision center which combines
individual soft decisions coherently. References [20], [21]
assume perfect CSI is available where the energy detector is
employed in UWB systems.

A. Decision Variable Formulation

In MRC reception, the received signals {𝑦𝑙(𝑡)}𝐿
𝑙=1 where

𝐿 is the number of diversity branches, are weighted and
combined to yield a new signal 𝑦𝑚𝑟(𝑡) =

∑𝐿
𝑙=1 ℎ

∗
𝑙 𝑦𝑙(𝑡). The

𝐿 branch MRC output under 𝐻1 can thus be expressed as

𝑦𝑚𝑟(𝑡) = 𝑔𝑠(𝑡) + 𝑛(𝑡) (22)

where 𝑔 =
∑𝐿

𝑙=1∣ℎ𝑙∣2 and 𝑛(𝑡) =
∑𝐿

𝑙=1 ℎ
∗
𝑙 𝑛𝑙(𝑡). Here 𝑛𝑙(𝑡)

is the noise process in 𝑙th indexed branch with 𝒩 (0, 𝑁0𝑊 )
and ℎ𝑙 is the channel coefficient in 𝑙th index branch. Hence
𝑛(𝑡) is a random process with 𝒩 (0,

∑𝐿
𝑙=1∣ℎ𝑙∣2𝑁0𝑊 ). Thus,

it is easy to show the effective SNR in this case is given by

𝛾𝑚𝑟 = 𝑔
𝐸𝑠

𝑁0
. (23)

B. Nakagami-m Fading Channel - PDF Approach

The conditional detection probability 𝑃𝑑,𝑁𝑎𝑘,𝑚𝑟 is given
in (1) with 𝛾𝑚𝑟 replacing 𝛾. The output SNR of the MRC
receiver with i.i.d. Nakagami-m branches is 𝒢(𝐿𝑚, 𝛾/𝑚). By
averaging (1) over the PDF of 𝛾𝑚𝑟, similar to (5), we find

𝑃 𝑑,𝑁𝑎𝑘,𝑚𝑟 =1− 𝑒−
𝜆
2

(
𝑚

𝛾 +𝑚

)𝐿𝑚 ∞∑
𝑛=𝑢

1

𝑛!

(
𝜆

2

)𝑛

(24)

× 1𝐹1

(
𝐿𝑚; 𝑛+ 1;

𝜆𝛾

2(𝛾 +𝑚)

)
.

Following a similar procedure as in (8) and constructing
Φ2(𝛽, 𝛽; 𝛾; 𝑥, 𝑦) given in (7), 𝑃 𝑑,𝑁𝑎𝑘,𝑚𝑟 is expressed as

𝑃 𝑑,𝑁𝑎𝑘,𝑚𝑟 = 1− 𝑒−
𝜆
2

(
𝑚

𝛾 +𝑚

)𝐿𝑚

(25)

×
[
Φ2

(
𝐿𝑚, 1; 1;

𝜆𝛾

2(𝛾 +𝑚)
,
𝜆

2

)

−
𝑢−1∑
𝑛=0

1

𝑛!

(
𝜆

2

)𝑛

1𝐹1

(
𝐿𝑚; 𝑛+ 1;

𝜆𝛾

2(𝛾 +𝑚)

)]
.

The computation of Φ2(𝛽, 𝛽; 𝛾; 𝑥, 𝑦) requires the use of
a software package such as Mathematica. The error result in
truncating the infinite series in (24) by 𝑁 terms (∣ 𝐸𝑁𝑎𝑘,𝑚𝑟 ∣)
is derived similar to (9) as

∣ 𝐸𝑁𝑎𝑘,𝑚𝑟 ∣<
(

𝑚

𝛾 +𝑚

)𝐿𝑚

1𝐹1

(
𝐿𝑚; 𝑁 + 1;

𝜆𝛾

2(𝛾 +𝑚)

)

×
[
1− 𝑒−

𝜆
2

𝑁∑
𝑛=0

(
𝜆
2

)𝑛
𝑛!

]
. (26)

The bound is used to determine the number of terms (𝑁̃)
required to compute 𝑃 𝑑,𝑁𝑎𝑘,𝑚𝑟 to a given figure accuracy.
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𝑃 𝑑,𝑅𝑖𝑐 =
(1 +𝐾) 𝜃𝑅 𝑒

−(𝜆
2 +𝐾𝜃𝑅)

𝛾

∞∑
𝑛=1

𝑎𝑛−1

(𝑛− 1)!

(
1

(𝑢− 2)!

𝑑𝑢−2

𝑑𝑧𝑢−2

[
𝑒

𝜆𝑧
2

(1− 𝑧)(𝑧 − 𝜃𝑅)𝑛

] ∣∣∣∣∣
𝑧=0

+
1

(𝑛− 1)!

𝑑𝑛−1

𝑑𝑧𝑛−1

[
𝑒

𝜆𝑧
2

𝑧𝑢−1(1− 𝑧)

] ∣∣∣∣∣
𝑧=𝜃𝑅

) (21)

C. Nakagami-m Fading Channel - MGF approach

The output SNR of 𝐿 branch MRC combiner (𝛾𝑚𝑟) is
𝛾𝑚𝑟 =

∑𝐿
𝑙=1 𝛾𝑙 where 𝛾𝑙 is the 𝑙th indexed branch SNR.

Thus, for i.i.d. branch statistics, the MGF of output SNR
(𝑀𝛾𝑚𝑟,𝑁𝑎𝑘

(𝑠)) is given by (27).

𝑀𝛾𝑚𝑟,𝑁𝑎𝑘
(𝑠) =

1(
1 + 𝛾𝑠

𝑚

)𝐿𝑚
, 𝑚 ≥ 1

2
(27)

The 𝑃 𝑑,𝑚𝑟,𝑁𝑎𝑘 is

𝑃 𝑑,𝑚𝑟,𝑁𝑎𝑘 =

(
𝑚

𝑚+ 𝛾

)𝐿𝑚

𝑒−
𝜆
2

1

2𝜋𝑗

∮
Δ

𝑓(𝑧) 𝑑𝑧, (28)

where 𝑓(𝑧) is given by (14) with 𝑚 replaced by 𝐿𝑚 except
in 𝜃𝑁 . Following a similar line of arguments as in subsection
(III-B), 𝑃 𝑑,𝑚𝑟,𝑁𝑎𝑘 can be expressed in closed form for integer
values of 𝐿𝑚. For the cases 𝑢 > 𝐿𝑚 and 𝑢 ≤ 𝐿𝑚, integral
in (28) can be evaluated similar to (16) and (17), respectively.
In computing the residues at 𝜃𝑁 and 0, 𝑚 should be replaced
by 𝐿𝑚 in (16) and (17). Note that the results are limited to an
integer of 𝐿𝑚 and allow us to compute 𝑃 𝑑,𝑚𝑟,𝑁𝑎𝑘 for certain
non-integer values of 𝑚. For example, 𝑃 𝑑,𝑚𝑟,𝑁𝑎𝑘 over a dual
branch combiner can be computed for 1

2 multiples of𝑚 values.

D. Rician Fading Channel - MGF Approach

Following a similar procedure as in subsection (IV-C) and
by means of (19), the MGF of the output SNR of MRC
receiver over i.i.d. Rician fading channel can easily be found.
After substituting this MGF in (11), we arrive at an integral
similar to (20). By following similar lines of arguments as in
section (III-C), detection probability over a MRC combined
Rician fading branches (𝑃 𝑑,𝑚𝑟,𝑅𝑖𝑐) can be derived as in (29)
(top of the next page) for 𝑢 > 𝐿 where 𝜃𝑅 = 𝛾

𝛾+𝐾+1 and
𝑎 = 𝐾𝜃𝑅𝐿(1 − 𝜃𝑅). When 𝑢 ≤ 𝐿, the pole at 0 disappears
and thus the result can be obtained by setting the limit value
of first derivative in (29) to 0. It is easy to verify that when
𝐿 = 1, (29) reduces to (21).

V. PROBABILITY OF DETECTION OVER FADING

CHANNELS – EGC DIVERSITY CASE

A. Received SNR

Note that MRC reception requires full channel knowledge
(i.e., both channel amplitude and phase) for all diversity
branches. However, EGC offers a somewhat reduced com-
plexity alternative. In EGC reception, the received signals
{𝑦𝑙(𝑡)}𝐿

𝑙=1 where 𝐿 is the number of diversity branches are
weighted by phase only and combined to yield a new signal
𝑦𝑒𝑔(𝑡) =

∑𝐿
𝑙=1 𝑒

−𝑗𝜙𝑙𝑦𝑙(𝑡) where 𝜙𝑙 is the phase of the 𝑙th

channel gain. Then the 𝐿 branch equal gain combiner output
under 𝐻1 can be expressed as

𝑦𝑒𝑔 = 𝑔𝑠(𝑡) + 𝑛(𝑡) (30)

where 𝑛(𝑡) =
∑𝐿

𝑙=1 𝑛𝑙(𝑡)𝑒
−𝑗𝜙𝑙 and 𝑔 =

∑𝐿
𝑙=1∣ℎ𝑙∣ [22, (6.32),

pp. 285]. Here 𝑛𝑙(𝑡) is a random process with 𝒩 (0, 𝑁0𝑊 ) and
ℎ𝑙 is the channel coefficient of 𝑙th diversity branch. Hence 𝑛(𝑡)
is a normal random process with 𝒩 (0, 𝐿𝑁0𝑊 ). Therefore 𝑌
defined under 𝐻0 is a sum of square of 2𝑢 Gaussian random
variables with 𝒩 (0, 1) and hence follows 𝜒2

2𝑢. The output
SNR of 𝐿 branch EGC (𝛾𝑒𝑔) is defined by

𝛾𝑒𝑔 =

(
𝐿∑

𝑙=1

∣ℎ𝑙∣
)2

𝐸𝑠

𝐿𝑁0
.

See for example [22, (6.33), pp.285]. The PDF of 𝛾𝑒𝑔 is re-
quired to calculate the average detection probability. Reference
[23] derives the PDF of a sum of Nakagami-m variables, which
we use next for our performance analysis.

B. Nakagami-m Fading Channel - PDF Approach

The detection probability when 𝐿 diversity branches are
used 𝑃 𝑑,𝑒𝑞,𝐿 can be calculated by averaging (1) over PDF of
𝛾𝑒𝑔 (≥ 0), i.e. 𝑓𝐿(𝛾𝑒𝑔), 𝐿 = 1, 2, . . . as

𝑃 𝑑,𝑒𝑞,𝐿 =

∫ ∞

0

𝑄𝑢(
√

2𝛾𝑒𝑔 ,
√
𝜆)𝑓𝐿(𝛾𝑒𝑔)𝑑𝛾𝑒𝑔 (31)

= 1− 𝑒−
𝜆
2

∞∑
𝑛=𝑢

(𝜆
2

)𝑛
2

∫ ∞

0

𝛾−𝑛
2 𝑒−𝛾𝐼𝑛(

√
2𝜆𝛾)𝑓𝐿(𝛾)𝑑𝛾.

C. Two i.i.d. branches (𝐿 = 2)

When the received signals in i.i.d. diversity branches are
Nakagami-m, the PDF of the amplitude of the combined signal
is given by [23, (4)]. Hence by following the same procedure
for (3), 𝑓2(𝛾) can be derived as

𝑓2(𝛾) =
2
√
𝜋𝛾2𝑚−1𝑒−

2𝑚𝛾
𝛾

24𝑚−1

Γ(2𝑚)

Γ2(𝑚)Γ(2𝑚+ 1
2 )

(
2𝑚

𝛾

)2𝑚

× 1𝐹1

(
2𝑚; 2𝑚+

1

2
;
𝑚𝛾

𝛾

)
, 𝛾 ≥ 0. (32)

By substituting (31) in (32) and doing some manipulations,
𝑃 𝑑,𝑒𝑔,2 can be expressed as

𝑃 𝑑,𝑒𝑔,2 =1− 𝜌2(𝑚)𝑒−
𝜆
2

(
2

𝛾

)2𝑚

(33)

×
∞∑

𝑛=𝑢

(
𝜆

2

)𝑛
2
∫ ∞

0

𝛾2𝑚−𝑛
2 −1𝑒−(

2𝑚
𝛾 +1)𝛾

× 𝐼𝑛(
√
2𝜆𝛾)1𝐹1

(
2𝑚; 2𝑚+

1

2
;
𝑚𝛾

𝛾

)
𝑑𝛾
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𝑃 𝑑,𝑚𝑟,𝑅𝑖𝑐 = 𝑒−
𝜆
2

(
(1 +𝐾) 𝜃𝑅 𝑒

−𝐾𝜃𝑅

𝛾

)𝐿 ∞∑
𝑛=1

𝑎𝑛−1

(𝑛− 1)!

(
1

(𝑢 − 𝐿− 1)!

𝑑𝑢−𝐿−1

𝑑𝑧𝑢−𝐿−1

[
𝑒

𝜆𝑧
2

(1− 𝑧)(𝑧 − 𝜃𝑅)𝐿+𝑛−1

] ∣∣∣∣∣
𝑧=0

(29)

+
1

(𝐿+ 𝑛− 2)!

𝑑𝐿+𝑛−2

𝑑𝑧𝐿+𝑛−2

[
𝑒

𝜆𝑧
2

𝑧𝑢−𝐿(1− 𝑧)

] ∣∣∣∣∣
𝑧=𝜃𝑅

)

where 𝜌2(𝑚) is defined by

𝜌2(𝑚) =
2
√
𝜋 Γ(2𝑚)𝑚2𝑚

Γ2(𝑚)Γ(2𝑚+ 1
2 )2

4𝑚−1
. (34)

Using [13, (6.643-2), pp.709], (6) and (33), 𝑃 𝑑,𝑒𝑔,2 can be
evaluated as in (35)

𝑃 𝑑,𝑒𝑔,2 = 1−√
𝜋𝑒−

𝜆
2

∞∑
𝑛=𝑢

∞∑
𝑘=0

(
𝜆

2

)𝑛(
𝑚

𝛾 + 2𝑚

)2𝑚+𝑘

× 𝜓2(𝑚,𝑛, 𝑘)

22𝑚−2 𝑘!
1𝐹1

(
2𝑚+ 𝑘; 𝑛+ 1;

𝜆𝛾

2(𝛾 + 2𝑚)

)
(35)

where

𝜓2(𝑚,𝑛, 𝑘) =
Γ2(2𝑚+ 𝑘)

Γ2(𝑚)Γ(𝑛+ 1)Γ(2𝑚+ 𝑘 + 1
2 )
. (36)

In simplifying (35), well known relation of Pochhammer
symbol to Gamma function i.e. (𝑎)𝑘 = Γ(𝑎+𝑘)

Γ(𝑎) is used.
Replacing 1𝐹1(.; .; .) using (6) and constructing two variable
Hypergeometric function of the form Ψ1(𝛼, 𝛽; 𝛾, 𝛾; 𝑥, 𝑦) in
(37) [14, pp. 26], 𝑃 𝑑,𝑒𝑔,2 can be expressed as in (38).

Ψ1(𝛼, 𝛽; 𝛾, 𝛾; 𝑥, 𝑦) (37)

=

∞∑
𝑚,𝑛=0

(𝛼)𝑚+𝑛(𝛽)𝑚
(𝛾)𝑚(𝛾)𝑛

𝑥𝑚

𝑚!

𝑦𝑛

𝑛!
, ∣ 𝑥 ∣< 1, ∣ 𝑦 ∣<∞

𝑃 𝑑,𝑒𝑔,2 = (38)

1− 𝑒−
𝜆
2

22𝑚−2

Γ2(2𝑚) Γ
(
1
2

)
Γ2 (𝑚) Γ

(
2𝑚+ 1

2

) ( 𝑚

𝛾 + 2𝑚

)2𝑚 ∞∑
𝑛=𝑢

1

𝑛!

(
𝜆

2

)𝑛

×Ψ1

(
2𝑚, 2𝑚; 2𝑚+

1

2
, 𝑛+ 1;

𝑚

𝛾 + 2𝑚
,

𝜆𝛾

2(𝛾 + 2𝑚)

)
.

Ψ1 (., .; ., .; ., .) in (38) monotonically decreases as 𝑛 in-
creases for fixed values of 𝑚 and 𝛾. Hence, the error result
in truncating the infinite series in (38) by 𝑁 terms (∣ 𝐸𝑒𝑔,2 ∣)
can be bounded as in (39).

∣ 𝐸𝑒𝑔,2 ∣ ≤ 𝑒−
𝜆
2

22𝑚−2

Γ2(2𝑚) Γ
(
1
2

)
Γ2 (𝑚) Γ

(
2𝑚+ 1

2

) (39)

×
(

𝑚

𝛾 + 2𝑚

)2𝑚
(
𝑒

𝜆
2 −

𝑁∑
𝑛=0

1

𝑛!

(
𝜆

2

)𝑛
)

×Ψ1

(
2𝑚, 2𝑚; 2𝑚+

1

2
, 𝑁 + 1;

𝑚

𝛾 + 2𝑚
,

𝜆𝛾

2(𝛾 + 2𝑚)

)
.

Using the bound (39), the number of terms (𝑁̃) required to
compute 𝑃 𝑑,𝑒𝑔,2 to a given figure of accuracy can be found.

D. Three i.i.d. branches (𝐿 = 3)

When the received signal follows Nakagami-m distribution,
the PDF of the amplitude of the combined signal is given by
[23, (8)] and by following the similar procedure, 𝑓3(𝛾) can be
expressed as in (40).

𝑓3(𝛾) =
4
√
𝜋 Γ(2𝑚)𝑒

− 3𝑚𝛾
𝛾

Γ3(𝑚)24𝑚−1

∞∑
𝑛=0

Γ(2𝑚+ 𝑛)

Γ(2𝑚+ 𝑛+ 1
2
)

× Γ(4𝑚+ 2𝑛) 𝛾3𝑚+𝑛−1

Γ(6𝑚+ 2𝑛) Γ(𝑛+ 1) 2𝑛

(
3𝑚

𝛾

)3𝑚+𝑛

(40)

× 2𝐹2

(
2𝑚, 4𝑚+ 2𝑛; 3𝑚+ 𝑛+

1

2
, 3𝑚+ 𝑛;

3𝑚𝛾

2𝛾

)
, 𝛾 ≥ 0.

Using the form of 2𝐹2(., .; ., .; .) in (6) (𝑞 = 2, 𝑝 = 2) and
by using (31) and (40), 𝑃 𝑑,𝑒𝑞,3 can be shown as in (41)

𝑃 𝑑,𝑒𝑞,3 = (41)

1− 𝜌3(𝑚)𝑒−
𝜆
2

∞∑
𝑛=𝑢

∞∑
𝑝,𝑘=0

(
𝜆

2

)𝑛
2 (𝑚

2

)𝑝+𝑘
(
3

𝛾

)3𝑚+𝑝+𝑘

× Γ(2𝑚+ 𝑝)Γ(4𝑚+ 2𝑝)(2𝑚)𝑘(4𝑚+ 2𝑝)𝑘

Γ(6𝑚+ 2𝑝)Γ(2𝑚+ 𝑝+ 1
2 )(3𝑚+ 𝑝)𝑘

(
3𝑚+ 𝑝+ 1

2

)
𝑘

× 1

𝑝!𝑘!

∫ ∞

0

𝛾3𝑚+𝑝+𝑘−𝑛
2 −1 𝑒−(

3𝑚
𝛾 +1) 𝐼𝑛(

√
2𝜆𝛾)𝑑𝛾

where

𝜌3(𝑚) =
4
√
𝜋 Γ(2𝑚)𝑚3𝑚

Γ3(𝑚)24𝑚−1
. (42)

Using [13, (6.643-2)] and [13, (9.220-2)], 𝑃 𝑑,𝑒𝑞,3 can be
computed as in (43)

𝑃 𝑑,𝑒𝑞,3 = (43)

1−√
𝜋𝑒−

𝜆
2

∞∑
𝑛=𝑢

∞∑
𝑝,𝑘=0

(
𝜆

2

)𝑛 (
3𝑚

3𝑚+ 𝛾

)3𝑚+𝑝+𝑘

× 𝜓3(𝑚,𝑛, 𝑝, 𝑘)

24𝑚+𝑝+𝑘−3 𝑛!𝑝!𝑘!
1𝐹1

(
3𝑚+ 𝑝+ 𝑘; 𝑛+ 1;

𝜆𝛾

2(3𝑚+ 𝛾)

)

where 𝜓3(𝑚,𝑛, 𝑝, 𝑘) is given in (44).

𝜓3(𝑚,𝑛, 𝑝, 𝑘) =
Γ(2𝑚+ 𝑝)Γ(2𝑚+ 𝑘)Γ(3𝑚+ 𝑝)

Γ3(𝑚)Γ(2𝑚+ 𝑝+ 1
2 )

× Γ(3𝑚+ 𝑝+ 1
2 )Γ(4𝑚+ 2𝑝+ 𝑘)

Γ(3𝑚+ 𝑝+ 𝑘 + 1
2 )Γ(6𝑚+ 2𝑝)

(44)

E. Four or more i.i.d. branches (𝐿 ≥ 4)

When the received signal follows Nakagami-m distribution,
the PDF of the amplitude of the combined signal is given by
[23, (9)] and 𝑓4(𝛾) can be derived as given in (45).
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𝑓4(𝛾) =
8
√
𝜋 Γ(2𝑚)𝑚4𝑚𝑒

− 4𝑚𝛾
𝛾

Γ4(𝑚)24𝑚−1
(45)

∞∑
𝑝,𝑞=0

Γ(2𝑚+ 𝑝)Γ(2𝑚+ 𝑞)Γ(4𝑚+ 2𝑝+ 𝑞)

Γ(𝑝+ 1)Γ(𝑞 + 1)Γ(2𝑚+ 𝑝+ 1
2
)Γ(8𝑚+ 2𝑝+ 2𝑞)

𝛾(4𝑚+𝑝+𝑞−1)2(𝑞−𝑝)𝑚(𝑝+𝑞)

(
4

𝛾

)(4𝑚+𝑝+𝑞)

2𝐹2

(
2𝑚, 2(3𝑚 + 𝑝+ 𝑞); 4𝑚+ 𝑝+ 𝑞 +

1

2
, 4𝑚+ 𝑝+ 𝑞;

2𝑚𝛾

𝛾

)

Following a similar procedure, 𝑃 𝑑,𝑒𝑔,4 can be evaluated as
given in (46)

𝑃 𝑑,𝑒𝑔,4 = 1−√
𝜋 𝑒−

𝜆
2

∞∑
𝑛=𝑢

∞∑
𝑝,𝑞,𝑘=0

(
𝜆

2

)𝑛

(46)

×
(

4𝑚

4𝑚+ 𝛾

)(4𝑚+𝑝+𝑞+𝑘)
Ψ4(𝑚,𝑛, 𝑝, 𝑞, 𝑘)

2(4𝑚+𝑝+𝑘−𝑞−4) 𝑝! 𝑞! 𝑛! 𝑘!

× 1𝐹1

(
4𝑚+ 𝑝+ 𝑞 + 𝑘; 𝑛+ 1;

𝜆𝛾

2(4𝑚+ 𝛾)

)
where, 𝜓4(𝑚,𝑛, 𝑝, 𝑞, 𝑘) is defined in (47).

𝜓4(𝑚,𝑛, 𝑝, 𝑞, 𝑘) = (47)

Γ(2𝑚+ 𝑝)Γ(2𝑚+ 𝑞)Γ(2𝑚+ 𝑘)Γ(4𝑚+ 𝑝+ 𝑞)

Γ4(𝑚)Γ(2𝑚+ 𝑝+ 1
2 )Γ(4𝑚+ 𝑝+ 𝑞 + 𝑘 + 1

2 )

× Γ(4𝑚+ 2𝑝+ 𝑞)Γ(4𝑚+ 𝑝+ 𝑞 + 1
2 )Γ(6𝑚+ 2𝑝+ 2𝑞 + 𝑘)

Γ(6𝑚+ 2𝑝+ 2𝑞)Γ(8𝑚+ 2𝑝+ 2𝑞)

When the received signal follows Nakagami-m distribution,
the PDF of the amplitude of the combined signal is given by
[23, (10)] for 𝐿 ≥ 4. By following the same line of arguments,
𝑓𝐿(𝛾) can be evaluated as given in (48) (top of the next page).
Hence, 𝑃 𝑑,𝑒𝑔,𝐿 can be evaluated as given in (49) (top of the
next page) and 𝛼𝐿 = 1 + 𝑚𝐿

𝛾 .
Replacing 𝑘1 by 𝑝, 𝑘2 by 𝑞, 𝑝 by 𝑘 and 𝐿 = 4 in (49),

we can easily verify (46). Further simplification and deriving
bounds for 𝑃 𝑑,𝑒𝑔,𝑖 where 𝑖 ≥ 3 is a difficult task.

VI. PROBABILITY OF DETECTION OVER FADING

CHANNELS – SC DIVERSITY CASE

The selection combiner picks the diversity branch with the
maximum SNR. The PDF of output SNR of SC (𝛾𝑠𝑐) can
hence be obtained for i.i.d. branch statistics [24, (6)] as

𝑓𝛾𝑠𝑐(𝑦) =
𝐿

Γ𝐿(𝑚)

(
𝑚

𝛾

)𝑚

𝑦𝑚−1𝑒−(𝑚𝑦
𝛾 )

[
𝐺

(
𝑚,

𝑚𝑦

𝛾

)]𝐿−1

(50)
where 𝐺(., .) is the lower incomplete gamma function defined
by the integral form 𝐺(𝑎, 𝑥) =

∫ 𝑥

𝑜
𝑡𝑎−1𝑒−𝑡𝑑𝑡. Thus, the av-

erage detection probability of 𝐿 branch SC receiver (𝑃 𝑑,𝑠𝑐,𝐿)
can be calculated averaging (1) over (50) as shown in (51)
below.

𝑃 𝑑,𝑠𝑐,𝐿 =
𝐿

Γ𝐿(𝑚)

(𝑚
𝛾

)𝑚
∫ ∞

0

𝑦𝑚−1𝑒−(𝑚𝑦
𝛾 )

×
[
𝐺

(
𝑚,

𝑚𝑦

𝛾

)]𝐿−1

𝑄𝑢(
√

2𝑦,
√
𝜆) 𝑑𝑦 (51)

By setting 𝐿 = 1, it is easy to show that (51) reduces to
(4), which is the no-diversity case for a Nakagami-m fading
channel.

A. Dual Diversity Combiner (𝐿 = 2)

The special function 𝐺(., .) can be written as in (52) with
the aid of [13, (8.351-2), pp. 899].

𝐺(𝑎, 𝑥) =
𝑥𝑎

𝑎
𝑒−𝑥

1𝐹1(1; 1 + 𝑎; 𝑥) (52)

Substituting (52) in (51), 𝑃 𝑑,𝑠𝑐,2 (i.e. L=2) can be expressed
as

𝑃 𝑑,𝑠𝑐,2 =1− 2𝑒−
𝜆
2

𝑚 Γ2(𝑚)
(53)

×
∞∑

𝑛=𝑢

∞∑
𝑘=0

(
𝑚

𝛾

)𝑘+2𝑚(
𝜆

2

)𝑛
2 Γ(𝑚+ 1)

Γ(𝑘 +𝑚+ 1)

×
∫ ∞

0

𝑦(𝑘+2𝑚−𝑛
2 −1)𝑒−(

2𝑚
𝛾 +1)𝑦𝐼𝑛(

√
2𝛾𝑦)𝑑𝑦.

Using [13, (6.643-2)] and [13, (9.220-2)], 𝑃 𝑑,𝑠𝑐,2 can be
derived as

𝑃 𝑑,𝑠𝑐,2 =1− 2𝑒−
𝜆
2

𝑚 Γ2(𝑚)

∞∑
𝑛=𝑢

∞∑
𝑘=0

(
𝜆

2

)𝑛 (
𝑚

𝛾𝛽2

)𝑘+2𝑚

(54)

Γ(𝑚+ 1)Γ(2𝑚+ 𝑘)

Γ(𝑚+ 𝑘 + 1)𝑛!
1𝐹1

(
2𝑚+ 𝑘; 𝑛+ 1;

𝜆

2𝛽2

)

where 𝛽2 = 1+ 2𝑚
𝛾 . Expanding 1𝐹1(.; .; .) by using (6) and

constructing the Hypergeometric function of two variables of
the form given in (37), 𝑃 𝑑,𝑠𝑐,2 can also be expressed as

𝑃 𝑑,𝑠𝑐,2 = 1− 2𝑒−
𝜆
2

𝑚

Γ(2𝑚)

Γ2(𝑚)

(
𝑚

𝛾 + 2𝑚

)2𝑚 ∞∑
𝑛=𝑢

1

𝑛!

(
𝜆

2

)𝑛

×Ψ1

(
2𝑚, 1; 𝑚+ 1, 𝑛+ 1;

𝑚

𝛾 + 2𝑚
,

𝜆𝛾

2(𝛾 + 2𝑚)

)
. (55)

Ψ1 (., .; ., .; ., .) in (55) monotonically decreases as 𝑛 in-
creases for fixed values of 𝑚,𝜆 and 𝛾. Hence, the error result
in truncating the infinite series in (55) by 𝑁 terms (∣ 𝐸𝑠𝑐,2 ∣)
can be bounded as

∣ 𝐸𝑠𝑐,2 ∣ ≤ 2𝑒−
𝜆
2

𝑚

Γ(2𝑚)

Γ2(𝑚)
(56)

×
(

𝑚

𝛾 + 2𝑚

)2𝑚
(
𝑒

𝜆
2 −

𝑁∑
𝑛=0

1

𝑛!

(
𝜆

2

)𝑛
)

×Ψ1

(
2𝑚, 1; 𝑚+ 1, 𝑁 + 1;

𝑚

𝛾 + 2𝑚
,

𝜆𝛾

2(𝛾 + 2𝑚)

)

Using the bound given in (56), number of terms (𝑁̃) required
to compute 𝑃 𝑑,𝑠𝑐,2 to given figure accuracy can be found.

B. Integer m

By means of series form expansion of 𝐺(., .) [13, (8.352-6),
pp. 900], the relation Γ(𝑚) = (𝑚 − 1)! and the well known

binomial expansion,
[
𝐺
(
𝑚, 𝑚𝑦

𝛾

)]𝐿−1

can be written as

[
𝐺

(
𝑚,

𝑚𝑦

𝛾

)]𝐿−1

= Γ𝐿−1(𝑚) (57)

𝐿−1∑
𝑘=0

(
𝐿− 1

𝑘

)
(−1)

𝑘

[
𝑒−

𝑚𝑦
𝛾

𝑚−1∑
𝑖=0

(
𝑚

𝛾

)𝑖
𝑦𝑖

𝑖!

]𝑘

.
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𝑓𝐿(𝛾) =
2𝐿−1

√
𝜋 Γ(2𝑚)𝑚𝐿𝑚𝑒−

𝑚𝐿𝛾
𝛾

24𝑚−1Γ𝐿(𝑚)

∞∑
𝑘1=0

∞∑
𝑘2=0

...

∞∑
𝑘𝐿−2=0

𝐿−2∏
𝑖=1

(
Γ(2𝑚+ 𝑘𝑖)

Γ(1 + 𝑘𝑖)

)
Γ(4𝑚+ 2𝑘1 + 𝑘2)

Γ(2𝑚+ 𝑘1 +
1
2 )Γ(6𝑚+ 2𝑘1 + 2𝑘2)

×
Γ(6𝑚+ 2𝑘1 + 2𝑘2 + 𝑘3) ... Γ

(
2𝑚(𝐿− 2) + 2

∑𝐿−3
𝑖=1 𝑘𝑖 + 𝑘𝐿−2

)
Γ(8𝑚+ 2𝑘1 + 2𝑘2 + 2𝑘3) ... Γ

(
2𝐿𝑚+ 2

∑𝐿−2
𝑖=1 𝑘𝑖

) Γ

(
2𝑚(𝐿− 1) + 2

𝐿−2∑
𝑖=1

𝑘𝑖

)
(48)

× Γ

(
2𝑚(𝐿− 2) + 2

𝐿−3∑
𝑖=1

𝑘𝑖 + 𝑘𝐿−2

)
𝑚(

∑𝐿−2
𝑖=1 𝑘𝑖)𝛾(𝐿𝑚+

∑𝐿−2
𝑖=1 𝑘𝑖−1)

(
𝐿

𝛾

)(𝐿𝑚+
∑𝐿−2

𝑖=1 𝑘𝑖)
2(

∑𝐿−2
𝑖=2 𝑘𝑖−𝑘1)

× 2𝐹2

(
2𝑚, 2𝑚(𝐿− 1) + 2

𝐿−2∑
𝑖=1

𝑘𝑖; 𝐿𝑚+

𝐿−2∑
𝑖=1

𝑘𝑖 +
1

2
, 𝐿𝑚+

𝐿−2∑
𝑖=1

𝑘𝑖;
𝑚𝐿𝛾

2𝛾

)
, 𝐿 ≥ 4

𝑃 𝑑,𝑒𝑔,𝐿 = 1−√
𝜋𝑒−

𝜆
2

∞∑
𝑛=𝑢

∞∑
𝑘1=0

∞∑
𝑘2=0

...
∞∑

𝑘𝐿−2

∞∑
𝑝=0

𝐿−2∏
𝑖=1

(
Γ(2𝑚+ 𝑘𝑖)

Γ(1 + 𝑘𝑖)

)
Γ(4𝑚+ 2𝑘1 + 𝑘2)

Γ(2𝑚+ 𝑘1 +
1
2 )Γ(6𝑚+ 2𝑘1 + 2𝑘2)

×
Γ(6𝑚+ 2𝑘1 + 2𝑘2 + 𝑘3) ... Γ

(
2𝑚(𝐿− 3) + 2

∑𝐿−4
𝑖=1 𝑘𝑖 + 𝑘𝐿−3

)
Γ(8𝑚+ 2𝑘1 + 2𝑘2 + 2𝑘3) ... Γ

(
2𝐿𝑚+ 2

∑𝐿−2
𝑖=1 𝑘𝑖

) (49)

×
Γ2
(
2𝑚(𝐿− 2) + 2

∑𝐿−3
𝑖=1 𝑘𝑖 + 𝑘𝐿−2

)
Γ(2𝑚+ 𝑝)Γ

(
𝐿𝑚+

∑𝐿−2
𝑖=1 𝑘𝑖

)
Γ
(
𝐿𝑚+

∑𝐿−2
𝑖=1 𝑘𝑖 +

1
2

)
Γ(𝑛+ 1)Γ𝐿(𝑚)Γ

(
𝑚𝐿+

∑𝐿−2
𝑖=1 𝑘𝑖 + 𝑝+ 1

2

)

×
Γ
(
2𝑚(𝐿− 1) + 2

∑𝐿−2
𝑖=1 𝑘𝑖 + 𝑝

) (
𝜆
2

)𝑛 ( 𝑚𝐿
𝛼𝐿𝛾

)(𝐿𝑚+
∑𝐿−2

𝑖=1 𝑘𝑖+𝑝)

2(4𝑚+𝑘1−
∑𝐿−2

𝑖=2 𝑘𝑖−𝐿+𝑝) 𝑝!
1𝐹1

(
𝑝+ 𝐿𝑚+

𝐿−2∑
𝑖=1

𝑘𝑖; 𝑛+ 1;
𝜆

2𝛼𝐿

)
, 𝐿 ≥ 4

Using [12, (4.63)] and (50) and applying multinomial expan-
sion in (57), (51) can be written as

𝑃 𝑑,𝑠𝑐,𝐿 = 1− 𝐿 𝑒−
𝜆
2

Γ(𝑚)

(
𝑚

𝛾

)𝑚

(58)

×
∞∑

𝑛=𝑢

𝐿−1∑
𝑘=0

(
𝐿− 1

𝑘

)
(−1)

𝑘

(
𝜆

2

)𝑛
2

𝑘(𝑚−1)∑
𝑖=0

𝜁𝑖 (𝑚, 𝑘, 𝛾)

×
∫ ∞

0

𝑦(𝑖+𝑚−𝑛
2 −1)𝑒−(

𝑚(𝑘+1)
𝛾 +1)𝑦 𝐼𝑛

(√
2𝜆𝑦

)
𝑑𝑦

where 𝜁𝑖 (𝑚, 𝑘, 𝛾) is the coefficient of multinomial expansion

of

[∑𝑚−1
𝑖=0

(
𝑚
𝛾

)𝑖
𝑦𝑖

𝑖!

]𝑘

. Hence, using [13, (6.643-2)] and with

simplifications using [13, (9.220-2)], 𝑃 𝑑,𝑠𝑐,𝐿 can be derived
as in (59) where 𝛽𝐿 = 1 + 𝑚(𝑘+1)

𝛾 .

𝑃 𝑑,𝑠𝑐,𝐿 = 1− 𝐿𝑒−
𝜆
2

(
𝑚

𝛾

)𝑚 ∞∑
𝑛=𝑢

𝐿−1∑
𝑘=0

(
𝐿− 1

𝑘

)
(−1)

𝑘

𝑛!

(
𝜆

2

)𝑛

×
𝑘(𝑚−1)∑

𝑖=0

𝜁𝑖 (𝑚, 𝑘, 𝛾) (𝑚)𝑖

𝛽
(𝑖+𝑚)
𝐿

1𝐹1

(
𝑖+𝑚; 𝑛+ 1;

𝜆

2𝛽𝐿

)
(59)

The multinomial expansion in (59) reduces to 1 for 𝑚 = 1 and
to binomial expansion for𝑚 = 2. Under the constraint of𝑚 =
1, results in (54), (55) and (59) are numerically equivalent to
[5, (24)] and [3, (30)] with the correction given in [4, pp. 22].

For fixed values of 𝑚,𝜆 and 𝛾, 1𝐹1

(
𝑖+𝑚; 𝑛+ 1; 𝜆

2𝛽𝐿

)
in (59) monotonically decreases as 𝑛 increases [15]. Hence,
the error result in truncating the infinite series in 𝑃 𝑑,𝑠𝑐,𝐿 by
𝑁 terms (∣ 𝐸𝑠𝑐,𝐿 ∣) can be bounded as in (60).

∣ 𝐸𝑠𝑐,𝐿 ∣ ≤ 𝐿 𝑒−
𝜆
2

(
𝑚

𝛾

)𝑚
(
𝑒

𝜆
2 −

𝑁∑
𝑛=0

1

𝑛!

(
𝜆

2

)𝑛
)

×
𝐿−1∑
𝑘=0

(
𝐿− 1

𝑘

) 𝑘(𝑚−1)∑
𝑖=0

𝜁𝑖 (𝑚, 𝑘, 𝛾) (𝑚)𝑖

𝛽
(𝑖+𝑚)
𝐿

× 1𝐹1

(
𝑖+𝑚; 𝑁 + 1;

𝜆

2𝛽𝐿

)
(60)

Using the bound given in (60), the number of terms (𝑁̃)
required to compute 𝑃 𝑑,𝑠𝑐,𝐿 to a given figure of accuracy can
be found.

VII. RESULTS AND DISCUSSION

The proposed MGF method along with the PDF approach
provide a general frame work for performance analysis of
energy detector with diversity reception over Nakagami-m
and Rician fading. The results can be used to determine
the energy threshold value of the detector and the minimum
number of samples required to meet a given false alarm rate.
In evaluating the detection probabilities, the choice between
MGF or PDF methods depends on the limitations imposed
in derivations and the complexity. For example, for given 𝑢,
𝑚 values, residues (MGF method) give simpler expressions
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TABLE I
NUMBER OF TERMS REQUIRED TO OBTAIN A FIVE FIGURE ACCURACY

(𝑁̃ )

∣ 𝐸𝑁𝑎𝑘 ∣
𝑢 1 5 1 1 1 5

𝑃𝑓 0.01 0.01 0.01 0.01 0.0001 0.0001

𝑆𝑁𝑅(𝑑𝐵) 10 10 20 10 10 10
𝑚 1 1 1 4 1 1

𝑁̃ 14 27 13 12 23 36

∣ 𝐸𝑁𝑎𝑘,𝑚𝑟 ∣
𝑢 1 5 1 1 1 1

𝑃𝑓 0.01 0.01 0.01 0.01 0.0001 0.01

𝑆𝑁𝑅(𝑑𝐵) 10 10 20 10 10 10

𝐿 2 2 2 2 2 4
𝑚 1 1 1 4 1 1

𝑁̃ 13 25 9 10 21 9

∣ 𝐸𝑒𝑔,2 ∣
𝑢 1 5 1 1 1 5

𝑃𝑓 0.01 0.01 0.01 0.01 0.0001 0.0001

𝑆𝑁𝑅(𝑑𝐵) 10 10 20 10 10 10
𝑚 1 1 1 4 1 1

𝑁̃ 15 29 11 12 24 41

∣ 𝐸𝑠𝑐,2 ∣
𝑢 1 5 1 1 1 5

𝑃𝑓 0.01 0.01 0.01 0.01 0.0001 0.0001

𝑆𝑁𝑅(𝑑𝐵) 10 10 20 10 10 10
𝑚 1 1 1 4 1 1

𝑁̃ 15 30 11 14 25 41

∣ 𝐸𝑠𝑐,𝐿 ∣
𝑢 1 5 1 1 1 1

𝑃𝑓 0.01 0.01 0.01 0.01 0.0001 0.01

𝑆𝑁𝑅(𝑑𝐵) 10 10 20 10 10 10

𝐿 2 2 2 2 2 4
𝑚 1 1 1 4 1 1

𝑁̃ 16 28 14 16 24 18

(16, 17) compared to that of the PDF method, which involves
a double Hypergeometric function. But the former result is
restricted to integer values of 𝑚 ≥ 1

2 and latter handles any
value of 𝑚 ≥ 1

2 . Mathematical software packages can readily
implement both the MGF and PDF methods.

Table I is constructed to illustrate the number of terms re-
quired in evaluating the infinite series form expressions. These
error bound expressions derived for no-diversity, SC, EGC and
MRC cases can easily be implemented and computed with
Mathematical software package Mathematica. The minimum
number of terms required to obtained a five figure accuracy
(𝑁̃) is shown in the Table I.

To provide an insight to the performance of the detector,
several complementary receiver operating characteristic (ROC)
curves are provided [4]: 𝑃𝑚 versus 𝑃𝑓 where 𝑃𝑚 = 1 − 𝑃𝑑.
The Nakagami channel gains are generated as in [25]. EGC
and MRC reception results are provided. We assume perfect
channel estimates are available for diversity reception similar
to [3], [5]. The detector binary decision is taken by comparing
𝑌 and respective 𝜆 values and average 𝑃𝑚 and average 𝑃𝑓

are calculated. Simulation results of average 𝑃𝑓 are within the
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Fig. 1. Complementary ROC curves over Nakagami-m fading channel (𝑢 =
1, 𝑚 = 2).
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Fig. 2. Complementary ROC curves over Nakagami-m and Rician fading
channels (𝑢 = 1, 𝑆𝑁𝑅 = 20 𝑑𝐵).

range specified for that particular set up. Simulation results
exactly match the theoretical results.

Fig. 1 shows the complementary ROC curves for non-
diversity reception over a Nakagami channel (𝑚 = 2),
parameterized over the average SNR (𝛾). The probability of
miss improves rapidly with increasing 𝛾; roughly a gain of one
order of magnitude is achieved when 𝛾 increases from 15 dB to
20 dB. Fig. 2 plots complementary ROC performance curves
for signals over Rayleigh, Nakagami-m and Rician fading
channels. Rayleigh and Rician 𝐾 = 0 curves coincide with
the Nakagami 𝑚 = 1 curve and therefore not shown. Roughly
of about ten times performance improvement is observed for
𝑚, 1 to 2 and 𝐾 , 3 to 7. Similar to Fig. 2, MRC, EGC and
SC diversity receivers show better performance over higher
𝑚 values and are therefore not shown here. However, the
performance improvement for higher 𝑚 and 𝐾 values at lower
SNR region is not significant. It is observed from Fig. 3 that at
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Fig. 3. Complementary ROC curves over Nakagami-m fading channel (𝑚 =
1.5).
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Fig. 4. Complementary ROC curves of MRC receiver over Rician fading
channel (𝑢 = 2, 𝐾 = 3, 𝑆𝑁𝑅 = 10 𝑑𝐵).

these values of 𝛾 (10 dB and 20 dB), the detector performance
curves of 𝑢 = 1 and 𝑢 = 5 sketch closer and therefore, higher
𝑢 values have no significant performance reduction in this 𝛾
region. Further, the Rician fading channel and the diversity
combiners considered show similar variations over 𝑢.

How does diversity reception improve the performance of
the energy detector? This question is investigated in Figs.
4-6. Fig. 4 shows the complementary ROC performance of
the energy detector with MRC reception over Rician fading.
The number of diversity branches varies for two to four. The
dual and triple branch diversity detectors performance over
all three combining schemes shown in Fig. 5 and Fig. 6
respectively (over a Nakagami-m fading channel). Observe that
the slopes of the curves in Fig. 4 are steeper than those Fig.
5 and Fig. 6. The highest diversity gain is observed from no
diversity fading case to the dual branch combiner in all the
three combining schemes considered. The best performance
of MRC is observed in Fig. 5, Fig. 6 and there is a gain of
one order of magnitude improvement in 𝑃𝑚 compared to the
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Fig. 5. Complementary ROC curves of dual branch diversity receivers over
Nakagami-m fading channel (𝑢 = 2,𝑚 = 2, 𝑆𝑁𝑅 = 13 𝑑𝐵).
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Fig. 6. Complementary ROC curves of triple branch diversity receivers over
Nakagami-m fading channel (𝑢 = 2,𝑚 = 2, 𝑆𝑁𝑅 = 10 𝑑𝐵).

no-diversity case. It is interesting to note that EGC and MRC
perform nearly identical. Note that Fig. 5 and Fig. 6 are for 𝛾
of 13 dB and 10 dB respectively, but the curves of the MRC
of each plot are closer to each other. Hence, in this special
case 3 dB SNR penalty is incurred by increasing the combiner
branches from 2 to 3. When the no-diversity case is compared
to the respective dual branch MRC energy detector, the SNR
gain is higher than 3 dB. Therefore, diversity reception is
a promising method of combating the inherent performance
deterioration of the energy detector at moderately-low SNR
region. However, the gain through diversity combining alone
is not sufficient to operate the detector at low SNR values
around, say, 0 dB, which are not uncommon in situations
like shadowing environments. To use energy detection in
such conditions, diversity reception and cooperative sensing
schemes may be combined.
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VIII. CONCLUSION

The performance of the energy detector with diversity re-
ception has been studied. A new performance analysis method
based on the contour integral representation of Marcum-Q
function and MGF has been developed. This methods yields
the energy detector’s performance over Rician and Nakagami-
m fading channels, whereas the conventional PDF method
fails for Rician fading. As a by product of MGF approach,
an alternative simple closed-form result over Rayleigh fading
channel is also derived. Comprehensive performance results
for energy detection with SC, MRC and EGC schemes have
been derived. These results help quantify the performance
gains for energy detection with diversity reception, which can
help emerging applications such as cognitive radio and ultra
wide-band radio.
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