
Tighter WCET Analysis of Input Dependent Programs
with Classified-Cache Memory Architecture

Yanhui Li, Shakith Devinda Fernando, Heng Yu, Xiaolei Chen, Yajun Ha and Teng Tiow Tay

Department of Electrical and Computer Engineering
National Univeristy of Singapore, Singapore 119260

Email: {liyanhui, shakith, h.yu27, g0600118, elehy, eletaytt}@nus.edu.sg

Abstract— Caches in Embedded Systems improve average case
performance, but they are a source of unpredictability,
especially in the worst case software timing analysis with the
consideration of data caches. This is a critical problem in real-
time systems, where tight Worst Case Execution Time (WCET)
is required for their schedulability analysis. Several works have
studied the data cache impacts on the WCET of programs, but
they can only handle programs with no input dependent data
accesses. To solve this problem, we have developed a novel
architecture and a WCET analysis framework for this
architecture. Our work classifies predictable and unpredictable
accesses and allocates them into predictable caches and
unpredictable caches respectively, using the CME (Cache Miss
Equations) and reuse-distance based algorithms accordingly.
The analysis framework produces a very good WCET tightness
compared with simulations, and our architecture creates almost
no hardware overhead or performance degradation.

I. INTRODUCTION
The Worst Case Execution Time (WCET) analysis is to

estimate a priori (before execution) the WCET of a given
program on a given architecture. It is important for the
schedulability analysis of real-time systems, which requires
the timing correctness on top of the functional correctness.

Cache memories have created issues in real-time
systems, because of their unpredictable nature of cache hits or
misses. A conservative approach is to assume all memory
accesses miss in the cache, which is obviously overly
pessimistic, because some memory accesses are predictable.
Whether or not they would be cache misses or hits, it could
be determined even before the program is run in the absence
of input data [1].

For a single task execution, the timing analysis for
instruction caches has been extensively researched [2,3]. But
for data cache analysis, the majority of work has been
focused on predictable memory access patterns in [4,5,6].

The unpredictable memory access and predictable
memory access of a program have been defined in [1], “An
unpredictable memory access is a load or store access whose
reference address is unknown during the estimation of the
WCET. Conversely, a predictable memory access is a load or
store access whose reference address is known during the
estimation of the WCET”. An example program exchangesort

is given in figure 1, which illustrates unpredictable memory
accesses. The array (int a []) to be sorted is the input to the
program. Exchange of array elements for sorting is based on
pos_min (line 14 and 15) variable which depends on input
array a. (line 9 and 10). Array accesses to a[pos_min] in line
14 and line 15 become unpredictable at analysis time. But
array accesses to a[i] in line 13 and line 14 are predictable at
analysis time.

1 int main()
2 { int MAX 1215;
3 int a [1215];
4 int i,j,c, temp,pos_min;
5 for (i = 0; i < MAX; i++)
6 { pos_min=i;
7 for (j = i+1; j < MAX; j++)
8 {
9 if (a[pos_min] > a[j])
10 { pos_min = j;
11 }
12 }
13 temp = a[i];
14 a[i] = a[pos_min];
15 a[pos_min] = temp;
16 }
17 }

Figure 1. Example of input-dependent access (C source for Exchangesort)

We proposed a new architecture and an analysis

framework, where data access is classified and analyzed
separately so that the data cache timing behavior for
programs with input dependent accesses can be accurately
analyzed. In other words, our work classifies predictable and
unpredictable accesses and allocates them into predictable
caches and unpredictable caches respectively. For predictable
accesses, we employ the CME framework [2] for the WCET
analysis. For unpredictable accesses, we calculate array
element reuse distance to examine the detailed unpredictable
data cache behaviors, thus make the estimated WCET more
accurate under this in-depth exploration. Our experimental
results show that our data timing analysis in presence of
unpredictable data accesses is very accurate with ignorable
extra hardware complexity.

978-1-4244-2182-4/08/$25.00 ©2008 IEEE. 410

The remainder of the paper is organized as follows.
Section II introduces the related work on software timing
analysis with cache modeling. Section III describes the
principle behind the new architecture. Section IV describes
the theory and workflow of our analysis framework. Section
V presents our experimental results and analysis. Finally
section VI shows conclusions and future research work.

II. RELATED WORKS
To obtain an accurate WCET, past efforts have been

made in two directions. One direction tries to develop new
architectures that are more predictable. The other tries to
develop new analysis approaches to obtain more accurate
WCET results.
A. Predictable Cache Architectures

Cache partitioning [8] is a mechanism developed to
reserve blocks of cache for individual tasks such that cache
hits becomes predictable. But this can significantly affect
cache performance because of its fragmented address space.

Another approach—cache locking is to lock frequently
used cache blocks [11]. Selected data is loaded into cache and
locked in place so that it may not be replaced until the cache
is explicitly unlocked. There could be performance loss if
data is too big for the locked cache, then the whole cache
must be unloaded it to be predictable.
 Scratch-pad SRAM [12] also has been introduced to hold
frequently used cache blocks to make it more predictable. But
this is at significant area and power cost. This also requires
compiler support for additional address space and context
switching.
B. WCET Analysis for Data Caches

Extensive researches have been performed on WCET
analysis for programs with only predictable data accesses.
Wolfe et al [13] proposed an integer linear problem (ILP)
formulation and data flow analysis techniques on data cache
analysis. Unknown data references are not considered and
array ranges would have to be annotated by the user. Gosh et
al [4] proposed CME framework, which computes re-use
vectors to calculate cache accesses hit or miss within loops.

Few researches have analyzed input-dependent accesses
but they either (1) restrict these input dependent accesses as
un-cacheable and eliminate the interface between these
accesses and the predictable data accesses or (2) assume the
input dependent accesses spanning the whole data caches and
analyze them as input independent accesses. These models
simplify the analysis at the cost of WCET tightness and
accuracy. For example, Lundqvist et al [1] introduced a
symbolic simulation technique to classify predictable and
unpredictable memory accesses, but unpredictable data
structures are tagged as non-cacheable and consequently
always require a cache miss. Ferdinand et al [14] introduced
an abstract interpretation to predict data cache behavior. For
an unpredictable array access, it assumes that all cache blocks
of an array are accessed. Staschulat et al [15] introduced a
theoretical framework to classify data accesses predictable
and unpredictable in a single direct mapped data cache and
perform cache analysis on the two patterns using ILP.

III. CLASSIFIED CACHE ARCHIECTURE
Our novel classified cache architecture is proposed such

that the interface between input dependent accesses and input
independent accesses is eliminated. With compiler support,
the data accesses are mapped into two classified caches:
predictable cache and unpredictable cache. And data accesses
are fed into the processor from the two caches independently
assisted by annotating the load and store instructions. For
example, when an annotated unpredictable load instruction
‘ff’ is executed; the processor would try to fetch the data in
this instruction from the unpredictable data cache. The
advantage is that there exists no interference between the
input dependent data accesses and input independent data
accesses because they don’t compete each other for the same
cache blocks.

This new architecture was implemented by extending
the Sim-outorder Model in SimpleScalar to include two
parallel level data caches. Unpredictable data accesses are put
as annotations in the 64 bit PISA instruction set. Original
benchmark source is converted to assembly and then
manually annotated with unpredictable data access and
converted to SimpleScalar executable to be run on the new
architecture.

IV. OUR ANALYSIS FRAMEWORK

Figure 2. Flow Diagram of the Analysis Framework

Our analysis framework is show in Figure 2. From C

source programs, the desired information for further analysis
of both unpredictable and predictable memory accesses is
extracted using the parser and extractor. Then CME
framework [2] is used to analyze our predictable data cache
behavior for predictable memory accesses. Our proposed
reuse distance algorithm is then employed to deal with the
unpredictable accesses for our predictable data cache. Finally,
we combine results from these two independent parts to yield
the overall cache misses and estimated WCET. The above
steps will be introduced in the following subsections.
A. Classification and Reuse Distance Extraction

Figure 3 is our algorithm for memory access classification into
predictable or unpredictable access. By determining the input-
dependency of array memory accesses, unpredictable memory
accesses are identified. Then the unpredictable array element
reference order can be extracted by simulating the program once, as
though their respective address could not be decided at compile
time, the relative order of unpredictable accesses is often
determined, which is luckily true for typical programs. Then reuse
distances of unpredictable array elements can be calculated for
unpredictable data cache behavior analysis. The reuse distance of an
array element is the number of unique unpredictable array elements
referenced since the last access to that array element. We will
elaborate its usage in later sections.

Source
code

Classifier/
Info

Extractor

Predictable
Access Info

Unpredictable
Access Info

CME
Based

Analyzer

Reuse
Distance
Analyzer

WCET +

411

1 Memory accesses by scalar variables are predictable (as memory address
is constant)
2 Memory accesses by predefined array accesses are classified as
predictable.
3 Look at the index expression of other arrays
4 If all the variables in it are input independent
5 {
6 memory accesses by this array is predictable
7 }

Figure 3. Memory access classification algorithm

B. WCET for Input Independent References: CME
CMEs platform [4] develops a miss equation providing the

number of misses for each reference in a set of nested loops,
and shows how to obtain the WCET for input independent
references. To reduce computing complexity, X. Vera et al
[6] proposed an analytical method based on CMEs to
calculate cache misses efficiently using statistical sampling.

 In our predictable memory access modeling, we gather
related information about loops, variables and references in
loops and build CME as follows. There are three steps to
obtain the cache hit or miss information for every reference
using CMEs. (1) Compute reuse vector: if a memory
reference has the same memory line for two iteration points
then the vector deduction of the later iteration point from the
earlier one is a reuse vector. (2) Build CME: (a) Cold Miss
Equations—build equations for iteration points where the
reuse did not hold because reuse from point outside the
iteration space or reuse from data that is mapped to a different
cache lines (cache-aligned); (b) Replacement Miss
Equations—build equations for iteration points where the
reuse did not hold because multiple references (include self-
interference) map to the same cache set. (3) Solve CMEs: to
find the total number of misses of a loop nest by traversing
the iteration space and check whether a point is solution or
not of the equations.

C. WCET for Input Dependent References
 This section presents the reuse-distance and the algorithm
that we use to obtain the cache timing behavior of input
dependent memory accesses.

1) Reuse Distance
The reuse distance is a metric for measuring program’s

cache behavior [5]. Further research explored the method of
reducing the reuse distance and cache misses based on reuse
distance visualization. It has been observed that in a fully
associative LRU cache with n cache lines, a reference will hit only if
the reuse distance d is smaller than n. Further, reuse distance may
help identify the type of a cache miss as listed in table I.

TABLE I. CACHE MISS TYPES AND REUSE DISTANCE

Miss Type Relation between d and n
Conflict miss d < n
Capacity miss n d≤ ≤ ∞
Cold miss d = ∞
2) Timing Analysis Based on Reuse Distance

Based on the above findings in section IV C 1), we
developed an algorithm for the timing analysis of input-

dependent memory accesses. As illustrated in Figure 4, we
keep a record of all the reuse distances of cache lines in the
input dependent data cache at the current state. Each cache
line's reuse distance is the minimum reuse distance of all data
elements in this line. And when a new reference comes, we
first check if this reference is already in the current data
cache, if so we have a cache hit, otherwise it would be a
cache miss and we need to decide if this data item would go
into the input dependent data cache. We first check if its
reuse distance is smaller than the maximum reuse distance of
all the current cache lines. If true, the cache line containing
the maximum reuse distance gets replaced out with the cache
line that reference lies in., and the reuse distance of the cache
is updated accordingly.

1 cache_miss=0;
2 while not end_of_file
3 {
4 get array element;
5 get reuse distance (r.d.);
6
7 if array element in cache
8 {
9 if array element r.d. < its cache line r.d.
10 {
11 its cache line r.d. = array element r.d.;
12 }
13 }
14 else
15 {
16 cache_miss++;
17 {
18 //replace out the cache line with largest reuse distance and update
information
19 cache line (with largest r.d. in cache) = its cache line;
20 its cache line r.d. = array element r.d.;
21 cache r.d. = max(cache line r.d.);
22 }
23 }
24 }

Figure 4. Reuse-distance based algorithm

We illustrate this pseudo code using the following
example memory access sequence: a[1], a[2], a[3], a[4], a[1],
a[4]. For a fully associative cache with cache line size of 4
bytes, and n=3 cache sets, we compute first each data item’s
reuse distance and then output the miss condition for each
reference table II.

TABLE II. REUSE DISTANCE TABLE EXAMPLE

Reference Reuse distance (d) Hit/miss type
a[1] ∞ cold miss (cm)
a[2] ∞ Cm
a[3] ∞ Cm
a[4] ∞ Cm (replace a[1])
a[1] 3 replacement miss
a[4] 1 Hit

V. EXPERIMENT AND RESULTS

Table III shows the benchmarks with its number of
unpredictable data accesses per iteration and its number of

412

loop iterations. If the loop time is not easily determined, we
describe both the instruction memory and data memory sizes.

To observe the necessary cache misses, the following
sets of configurations were set. For exchangesort, small and
quart benchmarks, we set the predictable data cache 4KB and
the unpredictable data cache 4KB. For cover, the predictable
data cache is 512B and the unpredictable data cache is 512B
for a 1KB total. For count it is set as predictable: 4KB and
unpredictable: 512B for a 4.5KB in total. For FFT and
FIRfilter, the predictable and unpredictable caches are direct-
mapped and fully associative respectively and each is 512B.

TABLE III. BENCHMARK DESCRIPTION

Benchmark No. of instructions with
unpredictable accesses
per iteration

No. of loop
iterations/
Code/data
size (bytes)

Exchangesort 2 737505
Smallexample 1 300
Quart 1 1000
Cover 1 2000
Count 2 1000
FFT 8 1852(code)25

6(data)
FirFilter 1 240(code)

80(data)

We denote WCET as the time to access the two caches.
The core execution time of the processor is not considered for
our comparison. We define,

* 100%
t tanalysis simulation

overestimation tsimulation

−
=

Where analysist means the analysis WCET, simulationt refers the
observed WCET from simulation using human observed
worst case input data set.

TABLE IV. OUR CACHE ANALYZER RESULTS

Benchmark
analysist simt

Overestimation%

Exchangesort 1597536 1546740 3.28
Small 8632 8074 6.91
Quart 18749 18065 3.79
Cover 18654 18609 0.24
Count 16045 16009 0.22
FFT 254027 205136 23.83

FirFilter 60793 56028 8.50

Table IV shows our experimental results, from which we
can see that the classified analysis platform renders very tight
WCET. Please note that the only exception one FFT, its main
overestimation comes from the limitation of CME where the
loops should be well designed (bounded iteration time, index
expression is affine function of the variables) and it’s
improved a lot than previous data at around 40%
overestimation.

To define our architecture performance, we define the
deviation from perfect cache as:

Our platform simulation-Chronos simulation*100%
Chronos simulation

For exchangesort, the observed deviation is 0.621%
compared to the Chronos architecture (which has no data
cache miss) in simulation WCET. Our new architecture is
nearly perfectly cache, close to no cache miss case in
Chronos (no data cache but main memory access time is 1
cycle). The cache size is reasonably small (1KB instruction
cache, 4KB predictable cache, 4KB unpredictable cache).

VI. EXPERIMENT AND RESULTS
In this paper, we have proposed a new classified-cache

architecture and its software timing analysis framework to
accurately analyze the input dependent memory accesses.
Experimental results show quite small WCET over-
estimations ranging from 0.22% to 6.91% compared to our
simulation results. In the future work, we would like to
extend our framework to analyze the interaction between the
data cache and other micro-architectural factors such as
pipelining, branch prediction and instruction cache.

REFERENCES
[1] T. Lundqvist and P. Stenstr¨om. A method to improve the estimated

worst-case performance of data caching. In Intl Conference on Real-
Time Computing Systems and Applications (RTCSA), 1999.

[2] 1955 S. Malik and Y.-T. S. Li. Performance Analysis of Real-Time
Embedded Software. Kluwer Academic Publishers, 1999.

[3] Xianfeng Li, T. Mitra, and A. Roychoudhury. Accurate timing analysis
by modeling caches, speculation and their interaction. 40th ACM/IEEE
Design Automation Conference (DAC), June 2003.

[4] S. Ghosh, M. Martonosi, and S. Malik. Cache miss equations: a
compiler framework for analyzing and tuning memory behavior. ACM
Transactions on Programming Languages and Systems, 21(4), 1999.

[5] H. Ramaprasad and F. Mueller. Bounding worst-case data cache
behavior by analytically deriving cache reference patterns. In IEEE
RTAS, pages 148–157, 2005.

[6] X. Vera, B. Lisper, and J. Xue. Data caches in multitasking hard real-
time systems. In IEEE Real-Time Systems Symposium, 2003.

[7] J. Liedtke, H. H¨artig, and M. Hohmuth. Os-controlled cache
predictability for real-time systems. In IEEE Real-Time Technology
and Applications Symposium, Montreal, Canada, June 9-11 1997.

[8] Mueller, F. 1995. Compiler support for software-based cache
partitioning. In Proceedings of the ACM SIGPLAN 1995 Workshop on
Languages, Compilers, &Amp; Tools For Real-Time Systems (La Jolla,
California, United States). NY, 125-133

[9] I. Puaut and D. Decotigny. Low-complexity algorihtms for static cache
locking in multitasking hard real-time systems. In IEEE RTSS, 2002.

[10] B. Lisper and X. Vera. Data cache locking for higher program
predictability. In ACM SIGMETRICS international conference on
Measurement and modeling of computer systems, pages 272–282, 2003.

[11] M. Campoy, A. P. Ivars, and J. V. Busquets-Mataix. Static use of
locking caches in multitask preemptive real-time systems. In IEEE
Real-Time Embedded System Workshop, December 2001.

[12] Marwedel, P., Wehmeyer, L., Verma, M., Steinke, S., and Helmig, U.
2004. Fast, predictable and low energy memory references through
architecture-aware compilation. In Proceedings of the 2004 Conference
on Asia South Pacific Design Automation: Electronic Design and
Solution Fair (Yokohama, Japan, January 27 - 30, 2004).

[13] Y.-T. S. Li, S. Malik, and A. Wolfe. Cache Modeling for Real-Time
Software: Beyond Direct Mapped Instruction Caches. In Proceedings
of the IEEE Real-Time Systems Symposium, Dec. 1996.

[14] C. Ferdinand and R. Wilhelm. On predicting data cache behaviour for
real-time systems. In ACM SIGPLAN Workshop 1998 on Languages,
Compilers, and Tools for Embedded System, 1998.

[15] Jan Staschulat, Rolf Ernst. Worst case timing analysis of input
dependent data cache behavior. Proceedings of the 18th Euromicro
Conference on Real-Time Systems (ECRTS). 06.

413

