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Abstract— Caches in Embedded Systems improve average case 
performance, but they are a source of unpredictability, 
especially in the worst case software timing analysis with the 
consideration of data caches. This is a critical problem in real-
time systems, where tight Worst Case Execution Time (WCET) 
is required for their schedulability analysis. Several works have 
studied the data cache impacts on the WCET of programs, but 
they can only handle programs with no input dependent data 
accesses. To solve this problem, we have developed a novel 
architecture and a WCET analysis framework for this 
architecture. Our work classifies predictable and unpredictable 
accesses and allocates them into predictable caches and 
unpredictable caches respectively, using the CME (Cache Miss 
Equations) and reuse-distance based algorithms accordingly. 
The analysis framework produces a very good WCET tightness 
compared with simulations, and our architecture creates almost 
no hardware overhead or performance degradation. 

I. INTRODUCTION 
The Worst Case Execution Time (WCET) analysis is to 

estimate a priori (before execution) the WCET of a given 
program on a given architecture. It is important for the 
schedulability analysis of real-time systems, which requires 
the timing correctness on top of the functional correctness.  

Cache memories have created issues in real-time 
systems, because of their unpredictable nature of cache hits or 
misses. A conservative approach is to assume all memory 
accesses miss in the cache, which is obviously overly 
pessimistic, because some memory accesses are predictable. 
Whether or not they would be cache misses or hits, it could 
be determined even before the program is run in the absence 
of input data [1]. 

For a single task execution, the timing analysis for 
instruction caches has been extensively researched [2,3]. But 
for data cache analysis, the majority of work has been 
focused on predictable memory access patterns in [4,5,6]. 

The unpredictable memory access and predictable 
memory access of a program have been defined in [1], “An 
unpredictable memory access is a load or store access whose 
reference address is unknown during the estimation of the 
WCET. Conversely, a predictable memory access is a load or 
store access whose reference address is known during the 
estimation of the WCET”. An example program exchangesort 

is given in figure 1, which illustrates unpredictable memory 
accesses. The array (int a [ ]) to be sorted is the input to the 
program. Exchange of array elements for sorting is based on 
pos_min (line 14 and 15) variable which depends on input 
array a. (line 9 and 10). Array accesses to a[pos_min] in line 
14 and line 15 become unpredictable at analysis time. But 
array accesses to a[i] in line 13 and line 14 are predictable at 
analysis time.  

 
1 int main() 
2 { int MAX 1215; 
3   int a [1215]; 
4   int i,j,c, temp,pos_min; 
5   for (i = 0; i < MAX; i++) 
6   { pos_min=i; 
7 for (j = i+1; j < MAX; j++) 
8 { 
9     if (a[pos_min] > a[j])  
10     { pos_min = j; 
11     } 
12 } 
13 temp = a[i]; 
14 a[i] = a[pos_min]; 
15 a[pos_min] = temp; 
16  } 
17 } 
_____________________________________________________________ 
Figure 1.  Example of input-dependent access (C source for Exchangesort) 

     
We proposed a new architecture and an analysis 

framework, where data access is classified and analyzed 
separately so that the data cache timing behavior for 
programs with input dependent accesses can be accurately 
analyzed. In other words, our work classifies predictable and 
unpredictable accesses and allocates them into predictable 
caches and unpredictable caches respectively. For predictable 
accesses, we employ the CME framework [2] for the WCET 
analysis. For unpredictable accesses, we calculate array 
element reuse distance to examine the detailed unpredictable 
data cache behaviors, thus make the estimated WCET more 
accurate under this in-depth exploration. Our experimental 
results show that our data timing analysis in presence of 
unpredictable data accesses is very accurate with ignorable 
extra hardware complexity. 
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The remainder of the paper is organized as follows. 
Section II introduces the related work on software timing 
analysis with cache modeling. Section III describes the 
principle behind the new architecture. Section IV describes 
the theory and workflow of our analysis framework. Section 
V presents our experimental results and analysis. Finally 
section VI shows conclusions and future research work. 

II. RELATED WORKS 
To obtain an accurate WCET, past efforts have been 

made in two directions. One direction tries to develop new 
architectures that are more predictable. The other tries to 
develop new analysis approaches to obtain more accurate 
WCET results.  
A.  Predictable Cache Architectures 

Cache partitioning [8] is a mechanism developed to 
reserve blocks of cache for individual tasks such that cache 
hits becomes predictable. But this can significantly affect 
cache performance because of its fragmented address space.   

Another approach—cache locking is to lock frequently 
used cache blocks [11]. Selected data is loaded into cache and 
locked in place so that it may not be replaced until the cache 
is explicitly unlocked. There could be performance loss if 
data is too big for the locked cache, then the whole cache 
must be unloaded it to be predictable.  
    Scratch-pad SRAM [12] also has been introduced to hold 
frequently used cache blocks to make it more predictable. But 
this is at significant area and power cost. This also requires 
compiler support for additional address space and context 
switching.  
B. WCET Analysis for Data Caches 

Extensive researches have been performed on WCET 
analysis for programs with only predictable data accesses. 
Wolfe et al [13] proposed an integer linear problem (ILP) 
formulation and data flow analysis techniques on data cache 
analysis. Unknown data references are not considered and 
array ranges would have to be annotated by the user. Gosh et 
al [4] proposed CME framework, which computes re-use 
vectors to calculate cache accesses hit or miss within loops.  

Few researches have analyzed input-dependent accesses 
but they either (1) restrict these input dependent accesses as 
un-cacheable and eliminate the interface between these 
accesses and the predictable data accesses or (2) assume the 
input dependent accesses spanning the whole data caches and 
analyze them as input independent accesses. These models 
simplify the analysis at the cost of WCET tightness and 
accuracy. For example, Lundqvist et al [1] introduced a 
symbolic simulation technique to classify predictable and 
unpredictable memory accesses, but unpredictable data 
structures are tagged as non-cacheable and consequently 
always require a cache miss. Ferdinand et al [14] introduced 
an abstract interpretation to predict data cache behavior. For 
an unpredictable array access, it assumes that all cache blocks 
of an array are accessed. Staschulat et al [15] introduced a 
theoretical framework to classify data accesses predictable 
and unpredictable in a single direct mapped data cache and 
perform cache analysis on the two patterns using ILP. 

III. CLASSIFIED CACHE ARCHIECTURE  
Our novel classified cache architecture is proposed such 

that the interface between input dependent accesses and input 
independent accesses is eliminated. With compiler support, 
the data accesses are mapped into two classified caches: 
predictable cache and unpredictable cache. And data accesses 
are fed into the processor from the two caches independently 
assisted by annotating the load and store instructions. For 
example, when an annotated unpredictable load instruction 
‘ff’ is executed; the processor would try to fetch the data in 
this instruction from the unpredictable data cache. The 
advantage is that there exists no interference between the 
input dependent data accesses and input independent data 
accesses because they don’t compete each other for the same 
cache blocks.  

This new architecture was implemented by extending 
the Sim-outorder Model in SimpleScalar to include two 
parallel level data caches. Unpredictable data accesses are put 
as annotations in the 64 bit PISA instruction set. Original 
benchmark source is converted to assembly and then 
manually annotated with unpredictable data access and 
converted to SimpleScalar executable to be run on the new 
architecture. 

IV. OUR ANALYSIS FRAMEWORK 
 

 
 
 
 
 
 
 

 
Figure 2. Flow Diagram of the Analysis Framework 

 
Our analysis framework is show in Figure 2. From C 

source programs, the desired information for further analysis 
of both unpredictable and predictable memory accesses is 
extracted using the parser and extractor. Then CME 
framework [2] is used to analyze our predictable data cache 
behavior for predictable memory accesses. Our proposed 
reuse distance algorithm is then employed to deal with the 
unpredictable accesses for our predictable data cache. Finally, 
we combine results from these two independent parts to yield 
the overall cache misses and estimated WCET. The above 
steps will be introduced in the following subsections. 
A. Classification and Reuse Distance Extraction 

Figure 3 is our algorithm for memory access classification into 
predictable or unpredictable access. By determining the input-
dependency of array memory accesses, unpredictable memory 
accesses are identified. Then the unpredictable array element 
reference order can be extracted by simulating the program once, as 
though their respective address could not be decided at compile 
time, the relative order of unpredictable accesses is often 
determined, which is luckily true for typical programs. Then reuse 
distances of unpredictable array elements can be calculated for 
unpredictable data cache behavior analysis. The reuse distance of an 
array element is the number of unique unpredictable array elements 
referenced since the last access to that array element. We will 
elaborate its usage in later sections. 
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1  Memory accesses by scalar variables are predictable (as memory address 
is constant) 
2  Memory accesses by predefined array accesses are classified as 
predictable.  
3  Look at the index expression of other arrays 
4  If all the variables in it are input independent 
5  { 
6     memory accesses by this array is predictable 
7  } 
 

Figure 3. Memory access classification algorithm 
 

B. WCET for Input Independent References: CME 
CMEs platform [4] develops a miss equation providing the 

number of misses for each reference in a set of nested loops, 
and shows how to obtain the WCET for input independent 
references. To reduce computing complexity, X. Vera et al 
[6] proposed an analytical method based on CMEs to 
calculate cache misses efficiently using statistical sampling.  

 In our predictable memory access modeling, we gather 
related information about loops, variables and references in 
loops and build CME as follows. There are three steps to 
obtain the cache hit or miss information for every reference 
using CMEs. (1) Compute reuse vector: if a memory 
reference has the same memory line for two iteration points 
then the vector deduction of the later iteration point from the 
earlier one is a reuse vector. (2) Build CME: (a) Cold Miss 
Equations—build equations for iteration points where the 
reuse did not hold because reuse from point outside the 
iteration space or reuse from data that is mapped to a different 
cache lines (cache-aligned); (b) Replacement Miss 
Equations—build equations for iteration points where the 
reuse did not hold because multiple references (include self-
interference) map to the same cache set. (3) Solve CMEs: to 
find the total number of misses of a loop nest by traversing 
the iteration space and check whether a point is solution or 
not of the equations.  

 
C. WCET for Input Dependent References 
    This section presents the reuse-distance and the algorithm 
that we use to obtain the cache timing behavior of input 
dependent memory accesses. 

1) Reuse Distance  
The reuse distance is a metric for measuring program’s 

cache behavior [5]. Further research explored the method of 
reducing the reuse distance and cache misses based on reuse 
distance visualization. It has been observed that in a fully 
associative LRU cache with n cache lines, a reference will hit only if 
the reuse distance d is smaller than n. Further, reuse distance may 
help identify the type of a cache miss as listed in table I. 

TABLE I.  CACHE MISS TYPES AND REUSE DISTANCE 

Miss Type Relation between d and n 
Conflict miss d < n 
Capacity miss n d≤ ≤ ∞  
Cold miss d = ∞  
2) Timing Analysis Based on Reuse Distance 

Based on the above findings in section IV C 1), we 
developed an algorithm for the timing analysis of input-

dependent memory accesses. As illustrated in Figure 4, we 
keep a record of all the reuse distances of cache lines in the 
input dependent data cache at the current state. Each cache 
line's reuse distance is the minimum reuse distance of all data 
elements in this line. And when a new reference comes, we 
first check if this reference is already in the current data 
cache, if so we have a cache hit, otherwise it would be a 
cache miss and we need to decide if this data item would go 
into the input dependent data cache. We first check if its 
reuse distance is smaller than the maximum reuse distance of 
all the current cache lines. If true, the cache line containing 
the maximum reuse distance gets replaced out with the cache 
line that reference lies in., and the reuse distance of the cache 
is updated accordingly. 
 
1  cache_miss=0; 
2  while not end_of_file 
3  { 
4    get array element; 
5    get reuse distance (r.d.); 
6    
7    if array element in cache 
8   { 
9       if array element r.d. < its cache line r.d. 
10     { 
11     its cache line r.d. = array element r.d.; 
12      } 
13    } 
14    else 
15   { 
16    cache_miss++; 
17       { 
18       //replace out the cache line with largest reuse distance and update 
information 
19         cache line (with largest r.d. in cache) = its cache line; 
20         its cache line r.d. = array element r.d.; 
21         cache r.d. = max(cache line r.d.); 
22         } 
23    } 
24  } 
   

Figure 4. Reuse-distance based algorithm 

We illustrate this pseudo code using the following 
example memory access sequence: a[1], a[2], a[3], a[4], a[1], 
a[4]. For a fully associative cache with cache line size of 4 
bytes, and n=3 cache sets, we compute first each data item’s 
reuse distance and then output the miss condition for each 
reference table II. 

TABLE II.  REUSE DISTANCE TABLE EXAMPLE 

Reference Reuse distance (d) Hit/miss type 
a[1] ∞ cold miss (cm) 
a[2] ∞ Cm 
a[3] ∞ Cm 
a[4] ∞ Cm (replace a[1]) 
a[1] 3 replacement miss 
a[4] 1 Hit 

 
V. EXPERIMENT AND RESULTS 

Table III shows the benchmarks with its number of 
unpredictable data accesses per iteration and its number of 
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loop iterations. If the loop time is not easily determined, we 
describe both the instruction memory and data memory sizes.   

To observe the necessary cache misses, the following 
sets of configurations were set. For exchangesort, small and 
quart benchmarks, we set the predictable data cache 4KB and 
the unpredictable data cache 4KB. For cover, the predictable 
data cache is 512B and the unpredictable data cache is 512B 
for a 1KB total. For count it is set as predictable: 4KB and 
unpredictable: 512B for a 4.5KB in total. For FFT and 
FIRfilter, the predictable and unpredictable caches are direct-
mapped and fully associative respectively and each is 512B. 

TABLE III.  BENCHMARK DESCRIPTION 

Benchmark No. of instructions with 
unpredictable accesses 
per iteration 

No. of loop 
iterations/ 
Code/data 
size (bytes) 

Exchangesort 2 737505 
Smallexample 1 300 
Quart 1 1000 
Cover 1 2000 
Count 2 1000 
FFT 8 1852(code)25

6(data) 
FirFilter 1 240(code) 

80(data) 
 

We denote WCET as the time to access the two caches. 
The core execution time of the processor is not considered for 
our comparison. We define,  

* 100%
t tanalysis simulation

overestimation tsimulation

−
=  

Where analysist means the analysis WCET, simulationt refers the 
observed WCET from simulation using human observed 
worst case input data set.  

TABLE IV.  OUR CACHE ANALYZER RESULTS 

Benchmark 
analysist  simt  

Overestimation% 

Exchangesort 1597536 1546740 3.28 
Small 8632 8074 6.91 
Quart 18749 18065 3.79 
Cover 18654 18609 0.24 
Count 16045 16009 0.22 
FFT 254027 205136 23.83 

FirFilter 60793 56028 8.50 

Table IV shows our experimental results, from which we 
can see that the classified analysis platform renders very tight 
WCET. Please note that the only exception one FFT, its main 
overestimation comes from the limitation of CME where the 
loops should be well designed (bounded iteration time, index 
expression is affine function of the variables) and it’s 
improved a lot than previous data at around 40% 
overestimation.  

To define our architecture performance, we define the 
deviation from perfect cache as: 

Our platform simulation-Chronos simulation*100%
Chronos simulation  

For exchangesort, the observed deviation is 0.621% 
compared to the Chronos architecture (which has no data 
cache miss) in simulation WCET. Our new architecture is 
nearly perfectly cache, close to no cache miss case in 
Chronos (no data cache but main memory access time is 1 
cycle). The cache size is reasonably small (1KB instruction 
cache, 4KB predictable cache, 4KB unpredictable cache). 

VI. EXPERIMENT AND RESULTS 
In this paper, we have proposed a new classified-cache 

architecture and its software timing analysis framework to 
accurately analyze the input dependent memory accesses. 
Experimental results show quite small WCET over-
estimations ranging from 0.22% to 6.91% compared to our 
simulation results. In the future work, we would like to 
extend our framework to analyze the interaction between the 
data cache and other micro-architectural factors such as 
pipelining, branch prediction and instruction cache.  
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