
Auton Robot (2013) 34:149–176
DOI 10.1007/s10514-012-9317-9

OpenRatSLAM: an open source brain-based SLAM system

David Ball · Scott Heath · Janet Wiles ·
Gordon Wyeth · Peter Corke · Michael Milford

Received: 28 May 2012 / Accepted: 29 December 2012 / Published online: 21 February 2013
© Springer Science+Business Media New York 2013

Abstract RatSLAM is a navigation system based on the
neural processes underlying navigation in the rodent brain,
capable of operating with low resolution monocular image
data. Seminal experiments using RatSLAM include map-
ping an entire suburb with a web camera and a long term
robot delivery trial. This paper describes OpenRatSLAM, an
open-source version of RatSLAM with bindings to the Robot
Operating System framework to leverage advantages such
as robot and sensor abstraction, networking, data playback,
and visualization. OpenRatSLAM comprises connected ROS
nodes to represent RatSLAM’s pose cells, experience map,
and local view cells, as well as a fourth node that provides
visual odometry estimates. The nodes are described with ref-
erence to the RatSLAM model and salient details of the ROS
implementation such as topics, messages, parameters, class
diagrams, sequence diagrams, and parameter tuning strate-
gies. The performance of the system is demonstrated on three
publicly available open-source datasets.

Keywords RatSLAM · OpenRatSLAM · SLAM ·
Navigation · Mapping · Brain-based · Appearance-based ·
ROS · Open-source · Hippocampus

D. Ball (B)· G. Wyeth · P. Corke · M. Milford
School of Electrical Engineering and Computer Science,
Queensland University of Technology, Brisbane, Australia
e-mail: david.ball@qut.edu.au

S. Heath · J. Wiles
School of Information Technology and Electrical Engineering,
The University of Queensland, Brisbane, Australia

M. Milford
e-mail: michael.milford@qut.edu.au

1 Introduction

Appearance-based Simultaneous Localization And Mapping
(SLAM) systems have advanced rapidly in recent years
(Maddern et al. 2012; Sibley et al. 2010; Cummins and New-
man 2010; Milford and Wyeth 2008; Konolige et al. 2008;
Konolige and Agrawal 2008; Strasdat et al. 2010; Davison
et al. 2007; Newman et al. 2009; Cummins and Newman
2009; Andreasson et al. 2008; Labbe and Michaud 2011).
These appearance-based systems rely on the visual simi-
larity between images taken of the environment from dis-
crete locations. At their core, most approaches are based on
detecting conventional visual features, such as SIFT (Lowe
1999) or SURF (Bay et al. 2006), extracted from rela-
tively high resolution monocular or stereo vision images.
RatSLAM (Milford 2008) is an alternative SLAM sys-
tem based on the neural processes underlying navigation
in the rodent brain, and functions with both low resolution
(Milford et al. 2011) or intensity profile visual data
(Milford and Wyeth 2008). The system’s neural filtering—
which builds localization hypotheses by accumulating sen-
sory evidence—enables it to function even with perceptual
ambiguity. Consequently, RatSLAM works with a wide range
of visual processing systems which would cause some con-
ventional appearance-based SLAM systems to degrade or
fail completely. Seminal results achieved using RatSLAM
include the vision-only mapping of an entire suburb using
only a web camera (Milford et al. 2011; Milford and Wyeth
2008) and a two week long service robot experiment in
which a robot performed SLAM and deliveries at all times of
day and night over a period of 2 weeks (Milford and Wyeth
2010).

The original RatSLAM codebase has been developed for
almost a decade with few software design or sustainability
considerations. The code base is relatively large, partly due to

123

150 Auton Robot (2013) 34:149–176

the diverse number of environments and vehicles RatSLAM
has been applied to, and also because frameworks and tools
such as OpenCV and Robot Operating System (ROS) did
not exist. Consequently, the resultant system, while func-
tional for both offline and online applications, is unsuitable
for distribution to the wider research community. As a result
of increasing interest in the RatSLAM approach, researchers
from a range of laboratories (see Table 1) have coded seg-
ments of the original system using information provided
in RatSLAM research papers, with varying levels of con-
tact with the RatSLAM creators. There are also other par-
tial implementations of RatSLAM components which have
been used in research but never released (Smith and Dodds
2009; Kyprou 2009). However, most are incomplete, and
only one MATLAB version has been properly released as
an open source project. This MATLAB version (Ball 2009)
is an offline-only implementation and is too slow to apply
in real-time to large environments. Most critically, it doesn’t
support generic robot frameworks such as the ROS (Quigley
et al. 2009) which would allow other researchers to more
readily integrate RatSLAM into their existing systems. ROS
offers many advantages such as hardware abstraction, trans-
parent online or offline operation, transparent networking and
the ability to mix and match user contributed modules.

In this paper we present OpenRatSLAM, an open source,
easily reconfigurable modular version of RatSLAM inte-
grated with ROS and capable of online and offline oper-
ation. Using OpenRatSLAM we repeat the seminal
suburb mapping experiment (Milford and Wyeth 2008),
present new results running RatSLAM on Oxford’s well
known New College dataset (Smith et al. 2009) and on a

rat-like robot called the iRat (Ball et al. 2010). The demon-
stration of an open source rat-based navigation system on
a commercially available rat-like robot is of particular rel-
evance to a number of biological laboratories around the
world which are conducting interdisciplinary work combin-
ing aspects of robotics and neuroscience. The paper and open
source software package make the following specific contri-
butions:

• an open source, modular implementation of RatSLAM
for both online and offline use, integrated with ROS and
its visualization tools such as rviz,

• a planning system that returns the quickest path to a user
supplied goal position,

• detailed UML class and sequence diagrams showing the
inner workings of RatSLAM,

• intuitive and technical explanations of the key parameters
that drive the RatSLAM algorithms, and the means to
easily change these through a single configuration file,

• a step by step process for tuning the parameters to func-
tion optimally for a given dataset,

• visualization scripts for MATLAB that recreate the key
figures used to present and analyze the results of an exper-
iment, including analyzing spatial matching errors using
ground truth information,

• demonstration of OpenRatSLAM on the St Lucia 2007
dataset, on the Oxford New College 2008 dataset and
on a new iRat rodent-sized robot platform in a rat-like
maze (the Australia iRat 2011 dataset), with visualization
and analysis of the results using the provided MATLAB
scripts,

Table 1 Publically available versions of RatSLAM

Institution Programming language Description License

Rowland Institute at
Harvard

Python In progress offline Python
port of the algorithms

Undefined

URL http://github.com/coxlab/ratslam-python

Originally the University of
Queensland, now
Queensland University of
Technology

MATLAB Offline only vision and
odometry datasets

GNU GPL v3

URL http://wiki.qut.edu.au/display/cyphy/RatSLAM+MATLAB

University of Queensland RobotC For use on a LEGO NXT
brick using sonar sensors

(a) GNU GPL (b) Artistic
License

URL http://code.google.com/p/rsnxt08/

Queensland University of
Technology

C++ with ROS bindings Online and offline version
integrated into ROS.
Also includes MATLAB
scripts to generate plots
for results.

GNU GPL v3

URL http://code.google.com/p/ratslam/

This paper describes the release of the final entry in the table (in bold)

123

http://github.com/coxlab/ratslam-python
http://wiki.qut.edu.au/display/cyphy/RatSLAM+MATLAB
http://code.google.com/p/rsnxt08/
http://code.google.com/p/ratslam/

Auton Robot (2013) 34:149–176 151

• provision of the St Lucia 2007, New College 2008,
andiRat 2011 datasets in an accessible form ready to
be processed with the provided software, and accessory
information such as ground truth for the iRat dataset, and

• discussion of several modules currently in development
and areas of future work.

The datasets are available online as ROS bag files, which is
the standardized method for storing ROS message data. There
are a variety of tools to record, play, analyze and visualize
the message data in ROS bag files.

The paper proceeds as follows. In Sect. 2 we describe the
core RatSLAM components, before describing the software
implementation of these components in Sect. 3. Section 4
describes the key system parameters and their effect on sys-
tem behavior, and provides a parameter tuning process. Sec-
tion 5 presents the two experimental datasets processed in
this paper, with results and the relevant configuration infor-
mation given in Sect. 6. Section 7 discusses current and future
work, with a brief conclusion in Sect. 8.

2 RatSLAM

In this section we describe the RatSLAM algorithms on
which OpenRatSLAM is based. RatSLAM is a SLAM sys-
tem based on computational models of the navigational
processes in the hippocampus, a part of the mammalian brain.
The system consists of three major modules—the pose cells,
local view cells, and experience map. We provide an overview

of the function of each of these modules, including math-
ematical descriptions of the major algorithms, in order to
contextualize the modular structure employed in OpenRat-
SLAM. Further technical details on RatSLAM can be found
in Milford and Wyeth (2008, 2010).

2.1 Pose cells

The pose cells are a Continuous Attractor Network (CAN)
of units (Samsonovich and McNaughton 1997), connected
by excitatory and inhibitory connections, similar in char-
acteristics to a navigation neuron found in many mam-
mals called a grid cell (Hafting et al. 2005). The network
is configured in a three-dimensional prism (Fig. 1), with
cells connected to nearby cells by excitatory connections,
which wrap across all boundaries of the network. The dimen-
sions of the cell array nominally correspond to the three-
dimensional pose of a ground-based robot—x, y, and θ.

The pose cell network dynamics are such that the stable
state is a single cluster of activated units, referred to as
an activity packet or energy packet. The centroid of this
packet encodes the robot’s best internal estimate of its cur-
rent pose. This dynamical behavior is achieved with locally
excitatory, globally inhibitory connectivity, described by
the distribution ε:

εa,b,c = e−(a2+b2)/kexc
p e−c2/kexc

d − e−(a2+b2)/kinh
p e−c2/kinh

d

(1)

Fig. 1 The major modules of the RatSLAM system reproduced from
Milford and Wyeth (2010). The local view cells represent learnt unique
scenes in the environment. The pose cells represent the belief about

the current pose. The experience map is a topological representation
encoding the pose cells and local view cells in nodes and links

123

152 Auton Robot (2013) 34:149–176

where kp and kd are the variance constants for place and
direction respectively, and a, b and c represent the distances
between units in x ′, y′ and θ ′ co-ordinates respectively. The
variance constants are fixed as a result of extensive tuning
and should not require tuning. Connections wrap across all
six faces of the pose cell network, as indicated by the longer
arrows in Fig. 1. The change in a cell’s activity level ΔP due
to internal dynamics is given by:

�Px ′,y′,θ ′ =
Sxy−1∑

i=0

Sxy−1∑

j=0

35∑

k=0

Pi, j,kεa,b,c − ϕ (2)

where sxy is the side length of the square (x, y) plane of the
pose cell network and φ is a global inhibition amount.

Self-motion information provided by odometry input
shifts activity in the pose cells to represent the robot’s move-
ment based on a nominal spatial scale for each pose cell.
Injection of activity by local view cells provides a mechanism
to perform loop closure. This vision-driven activity injection
is one of the critical processes on which system performance
depends and tuning details are provided in Sect. 4.

2.1.1 Local view cells

The local view cells are an expandable array of units, each of
which represents a distinct visual scene in the environment.
When a novel visual scene is seen, a new local view cell is
created and associated with the raw pixel data in that scene.
In addition, an excitatory link β is learnt (one shot learning)
between that local view cell and the centroid of the dominant
activity packet in the pose cells at that time. When that view
is seen again by the robot, the local view cell is activated and
injects activity into the pose cells via that excitatory link:

�Px ′,y,′θ ′ = δ
∑

i

βi,x ′,y′,θ ′ Vi (3)

where the δ constant determines the influence of visual cues
on the robot’s pose estimate. A saturation process ensures
each visual template can only inject activity for a short period
of time, to avoid spurious re-localizations when the robot is
stationary. If a sufficiently long sequence of familiar visual
scenes is experienced in the correct sequence, the constant
injection of activity into the pose cells will result in
re-localization, that is, the dominant activity packet occur-
ring at the same pose as the first time the scene was viewed.

2.1.2 Experience map

Initially the representation of space provided by the pose cells
corresponds well to the metric layout of the environment a
robot is moving through. However, as odometric error accu-
mulates and loop closure events occur, the space represented
by the pose cells becomes discontinuous—adjacent cells in

the network can represent physical places separated by great
distances. Furthermore, the pose cells represent a finite area
but the wrapping of the network edges means that in theory
an infinite area can be mapped, which implies that some pose
cells represent multiple physical places. The experience map
is a graphical map that estimates a unique estimate of the
robot’s pose by combining information from the pose cells
and the local view cells. Each node in the experience map
can be defined as a 3-tuple:

ei =
{

Pi , V i , pi
}

(4)

where Pi and V i are the activity states in the pose cells
and local view cells respectively at the time the experience
is formed, and pi is the location of the experience in the
experience map space (the space in which graph relaxation
is performed).

A new experience is created when the current activity state
in the pose cells Pi and local view cells V i is not closely
matched by the state associated with any existing experi-
ences. A score metric S is used to compare how closely the
current pose and local view states match those associated
with each experience, given by:

Si = μp

∣∣∣Pi − P
∣∣∣ + μv

∣∣∣V i − V
∣∣∣ (5)

where μp and μv weight the respective contributions of pose
and local view codes to the matching score. If min(S) ≥
Smax, a new experience is created, defined by the current
pose and local view cell activity states.

As the robot transitions between experiences, a link li j is
formed between the previously active experience ei to the
new experience e j :

li j =
{
�pi j ,�t i j

}
(6)

where � p i j is the relative odometry pose between the two
experiences, and �t i j is the time taken to move between the
two experiences. The robot uses this temporal information to
plan paths from its current location to a desired goal location.
Using Dijkstra’s algorithm (Knuth 1977) with an edge path
cost set to the stored transition times �t i j , the system can
find the quickest path to a goal location.

A graph relaxation algorithm distributes odometric error
throughout the graph, providing a map of the robot’s envi-
ronment which can readily be interpreted by a human. The
change in an experience’s location is given by:

�pi = α

⎡

⎣
N f∑

j=1

(p j − pi−�pi j) +
Nt∑

k=1

(pk − pi−�pki)

⎤

⎦

(7)

where α is a correction rate constant set to 0.5, N f is the
number of links from experience ei to other experiences

123

Auton Robot (2013) 34:149–176 153

and Nt is the number of links from other experiences to
experience ei .

3 OpenRatSLAM

This section describes the OpenRatSLAM implementation of
RatSLAM, which consists of four nodes. This split enhances
the modularity of the algorithms and permits each node to run
in a separate process, and therefore in a continuous pipeline,
making efficient use of multi-core CPUs. The four nodes and
the connections between them are shown in Fig. 2.

• Pose Cell Network—This node manages the energy
packet that represents pose in response to odometric and
local view connections. In this implementation this node
also makes decisions about experience map node and link
creation.

• Local View Cells—This node determines whether a scene
given by the current view is novel or familiar by using
image comparison techniques.

• Experience Map—This node manages graph building,
graph relaxation and path planning.

• Visual Odometry—For image only datasets, this node
provides an odometric estimate based on changes in the
visual scene. The other nodes are unaware of the source
of the odometric information.

In previous descriptions of RatSLAM, the decision process
for creation of nodes and links was handled by the experience

mapping module. In OpenRatSLAM, the Pose Cell Network
node handles the decision on when to create new nodes and
links because it requires knowledge of the internal workings
of the Pose Cell Network, which is no longer available due
to the split into separate nodes.

The RatSLAM system has several configurable parame-
ters which affect system performance. Parameter descrip-
tions and a tuning process are given in following sections.

3.1 Visual odometry

The Visual Odometry node determines camera motion by
comparing successive images. The node makes implicit
assumptions that the camera motion is limited to the pos-
sible motion of a car, and that the car travels at a relatively
constant speed. It allows for separate regions in the image to
be specified for determining forward translational and rota-
tional speeds. Full details on how the node determines trans-
lational and rotational speeds are provided in Milford and
Wyeth (2008).

The rotational velocity is estimated by determining what
relative horizontal offset of two consecutive scanline pro-
files minimizes the mean of absolute differences between the
two profiles. Scanline profiles are generated by summing the
images in the vertical direction. The translational velocity is
estimated by multiplying the minimum difference by a scal-
ing factor, and limited to a maximum value to prevent spu-
rious results from large changes in illumination. This visual
odometry implementation is cruder than many other popular
packages such as libvisio2, and in particular favors simplic-
ity and lack of camera parameterization over accuracy and

Fig. 2 The node and message
structure for OpenRatSLAM for
the St Lucia 2007 dataset
configuration. When the
odometry is already provided by
the dataset or robot, the Visual
Odometry node will not be
required as indicated by the
dotted lines. In this case the
odometry messages will come
directly from the sensors or
dataset file. The St Lucia 2007
dataset is an image only dataset,
hence the need for the Visual
Odometry node. As the iRat
2011 and New College 2008
datasets provide a topic with
odometric messages that are
derived from the robot’s wheel
encoders, it does not require the
Visual Odometry node

123

154 Auton Robot (2013) 34:149–176

Fig. 3 Place recognition using
view templates for the iRat
dataset. The bottom half of the
image is discarded by cropping,
as it contains perceptually
ambiguous black floor. The
Local View node compares the
copped, sub-sampled and
grayscale current view to all of
the stored view templates to find
the best match. The delta
operator indicates that
comparisons are made while
shifting the current view and
visual templates relative to each
other. The result is the currently
active view template, which may
be a new view template

calibration. However, as demonstrated in Milford and Wyeth
(2008) when used with SLAM system it is sufficient to yield
a topological map that is representative of the true environ-
ment.

The visual odometry node subscribes to a sensor
_msgs::CompressedImage topic using the image_transport
library and registers a topic that publishes nav_msgs::
Odometry.

3.2 Local view match

The local view match node preprocesses the current image
into a visual template representation and then decides if this
is a new or previously seen visual template. The following
preprocessing steps, also shown in Fig. 3, produce the visual
template.

1. If required, the image is converted into a mono grayscale
format.

2. The image may then be cropped to bias the templates
towards visually interesting areas of the camera images.
Visual interesting areas are those that will bias towards
areas that are visually unique across the environment. For
example, this process is used to remove visually bland
features such as roads.

3. The cropped region may then be subsampled to defined
height and width parameters. The scanline intensity pro-
file is a generalization by subsampling with the height
parameter equal to one.

4. The subsampled region may then undergo global and
local normalization steps which attempt to alleviate
changes in illumination. Global normalization considers
the mean and range of the entire image and addresses
global changes in illumination. Local normalization pre-
serves contrast in small patch regions by subtracting from
each pixel the mean intensity of the surrounding patch

region and then dividing by the patch’s pixel intensity
standard deviation (Zhang and Kleeman 2009).

After pre-processing, the local view match node compares
the visual template that represents the current camera image
with all previously learnt templates. A similarity measure
based on the Sum of Absolute Differences (SAD) between
the current visual template and each previously learnt visual
template is calculated. If the smallest difference is less than a
threshold, then the corresponding learnt template is selected.
Otherwise, the current visual template is added to the data-
base of templates.

For forward facing cameras, the comparison process han-
dles small rotational offsets by finding the minimum SAD
while shifting the stored templates relative to the current
view in the horizontal direction by a parameterized amount.
For the panoramic camera’s views SAD is calculated while
shifting the visual templates and current view through a full
rotation.

The local view match node subscribes to a topic that
publishes sensors_msgs::CompressedImage (using ROS’s
image_transport library) and publishes a custom ratslam_ros::
ViewTemplate message that is listed below. This custom mes-
sage includes a header and template id, where the template
id refers to the currently active local view cell. The message
also includes a relative angle, which for panoramic images, is
the angle between the original stored template and the agent’s
current angle.

ViewTemplate.msg

Header header

uint32 current_id

float64 relative_rad

123

Auton Robot (2013) 34:149–176 155

3.3 Pose cell network

The pose cell network node responds to two types of input;
odometry and view templates. This input is received as ROS
messages.

The action on a view template input depends on whether
this is a new or existing view template. For new view tem-
plates the id is associated with the centroid of the cur-
rent peak activity packet in the pose cell network. For
existing view templates, activity is injected into the pre-
viously associated location in the pose cells. The injected
activity for consecutive matches of the same view tem-
plate decays rapidly but is gradually restored over time.
Because RatSLAM has no explicit motion model, this
decay process is necessary to avoid potentially incorrect
re-localizations when the robot is motionless for long periods
of time.

For odometry input these steps are performed in the fol-
lowing order. Note that the Pose Cell node is unaware of
the source of the odometry input, and for example could be
from visual odometry or wheel odometry, and either from
the dataset file or calculated live. Also note that each of the
flowing steps account for the wrapping across each face of
the pose cell network rectangular prism.

1. Local excitation where energy is added around each
active pose cell.

2. Local inhibition where energy is removed around each
active pose cell. These first two steps ensure the stabi-
lization of the energy packets.

3. Global inhibition where energy is removed from all active
pose cells but not below zero.

4. Network energy normalization to ensure the total energy
in the system is equal to one. This stage ensures stability
of the global pose cell system.

5. Use the odometric information for path integration by
shifting the pose cell energy.

6. Identify the centroid of the dominant activity packet in
the network.

After performing these steps, the node must determine an
action for the experience map’s topological graph. The possi-
ble actions are: create a new node (which implicitly includes
creating an edge from the previous node), create an edge
between two existing nodes or set the location to an exist-
ing node. This action is sent within a new custom message,
ratslam_ros::TopologicalAction.

TopologicalAction.msg

actions

uint32 CREATE_NODE=1

uint32 CREATE_EDGE=2

uint32 SET_NODE=3

Header header

uint32 action

uint32 src_id

uint32 dest_id

float64 relative_rad

3.4 Experience map

The Experience Map node uses the received actions to create
nodes and links, or to set the current node. In this imple-
mentation, each experience has an associated position and
orientation. Creating a new node also creates a link to the pre-
viously active node. Graph relaxation is performed on each
action interaction. A link encapsulates the pose transforma-
tion and time between nodes based the odometric messages.
The agent’s state is given by the current experience map node
and the agent’s rotation relative to the node’s orientation.

The experience map node publishes three messages to
expose the state of the experience map. The first is a complete
representation of the experience map as a topological map in
a custom message as described below, which consists of a
list of nodes and edges. The second is the pose of the robot
within the experience map. The third message is a Marker
message suitable for rendering the map within rviz.

The experience map node will also generate a path to a
user supplied goal pose message, connecting with the rviz
2D goal nav command. The experience map node responds
with a Path message which includes the path from the
robot to the goal. Generating the path works transparently
in offline and online mode. The node and edge count para-
meters are included to address the limitation in using ROS’s
rostopic command to export the data in a plotting friendly

123

156 Auton Robot (2013) 34:149–176

format where no information is provided on the size of the
array.

TopologicalMap.msg

Header header

uint32 node_count

TopologicalNode[] node

uint32 edge_count

TopologicalEdge[] edge

TopologicalNode.msg

uint32 id

geometry_msgs/Pose pose

TopologicalEdge.msg

uint32 id

uint32 source_id

uint32 destination_id

duration duration

geometry_msgs/Transform transform

3.5 Visualization

There are several options available to visualize the live state
of the OpenRatSLAM system, as shown in Fig. 4. As shown
in Fig. 4e, the ROS tool rviz can be used to visualise the
experience map, robot’s pose and (not shown in the figure) the
path from the robot to a goal. Apart from the visual odometry
node, each node has an associated visualization. Although
not shown in the figure, we use the ROS command rxplot for
visualizing the live state of variables. In particular, we use
this tool to visualize the growth of templates and experiences
to help investigate false loop closures.

3.5.1 Post visualization

We provide one shell script file and four MATLAB script
files for post experiment visualization and analysis. Dur-
ing processing, the messages sent from the OpenRatSLAM
nodes can be recorded into ROS bag files. This recording is
enabled by default in the included ROS launch files. The shell
script file is used to export the recorded messages in a MAT-
LAB readable format. A brief description of the MATLAB
scripts is given in Table 2, while more extensive comments
can be found in the body of the script. The files provide the

means to visualize many of the key figures provided in Rat-
SLAM research papers (Milford and Wyeth 2008; Milford
et al. 2011; Milford and Wyeth 2010).

3.6 Software architecture

This section describes the technical software engineering
details of the ROS nodes that comprise OpenRatSLAM and
the interactions between these nodes at both a message pass-
ing and major function call level of detail. Figure 5 shows a
UML diagram of the classes, associate wrapper interface and
underlying data structures. Figures 6 and 7 contain sequence
diagrams that show the creation of new experience nodes and
links through the interaction between OpenRatSLAM nodes.
The three main classes (LocalViewMatch, PosecellNetwork,
and ExperienceMap) are independent of each other and may
be individually compiled without including ROS or any other
OpenRatSLAM components. ROS interfaces to each class
are then provided as abstractions, allowing OpenRatSLAM
to interact with other ROS packages. Callback functions pro-
vide a ROS wrapper interface to each class, so that the classes
do not depend on ROS. Each class and associated ROS inter-
faces are compiled into an executable ROS node.

3.7 Code specifications

The OpenRatSLAM source is released under the GNU GPL
version 3 license and is available at Google code (http://
code.google.com/p/ratslam/). In the repository is an imple-
mentation with bindings for ROS and another version with
bindings for OpenCV. The technical description in this paper
describes only the ROS version. The ROS code is written in
C++ and uses the Irrlicht engine (http://irrlicht.sourceforge.
net) for rendering and the boost library for configuration.
The code has been tested against ROS Electric and Fuerte
on Ubuntu 11.10 and 12.04. Full instructions for down-
loading, compiling and running the code are described in
Appendix B.

4 OpenRatSLAM parameters and tuning

In this section we list the names of all the key system parame-
ters and give an intuitive description of their purpose and the
effect of changing their value. These parameters are parsed
using boost’s parameter tree library. Using the parameter tree
library over the ROS parameter is required to maintain the
multiple bindings between interface and the core RatSLAM
code. The parameters are listed in Table 3.

123

http://code.google.com/p/ratslam/
http://code.google.com/p/ratslam/
http://irrlicht.sourceforge.net
http://irrlicht.sourceforge.net

Auton Robot (2013) 34:149–176 157

Fig. 4 Screenshots of
OpenRatSLAM in action. a
Local View Cells showing the
robot’s camera image and
current-matched template pair, b
Experience Map, c Pose Cell
Network showing the activity
packet wrapped across the prism
faces, and tracking of the
activity packet’s centroid
movement in the (x, y) plane in
green, d overhead image
rendered by ROS image_viewer,
e the topological map and pose
rendered by ROS rviz. The red
arrow shows the pose of the
robot which matches the robot’s
location in the overhead image
and in the experience map
(Color figure online)

Table 2 Offline post-processing scripts

Script name Description

export_bag f ile.sh A shell script that exports the view template, topological action, robot pose and map messages out of the recorded ROS bag data
file given an input file and topic root. The data is exported in a format suitable for the following MATLAB scripts to process

show_id.m Plots the active experience and visual template ID against time over the course of the experiment

show_em.m Plots the experience map on an (x, y) plane. Run once to generate indices into the large map.dat file, then run again to generate
the actual plot

plot_matches.m Plots any false positive matches on a ground truth plot and provides statistical data on the false positive matches including mean
and maximum error and number. Synchronizes any asynchronous logging timestamps

f rame_matches.m Extracts the frame match pairs from the video using the reported visual matches, visualizes them side by side and saves to
separate numbered image files which can then be imported into video creation software such as Virtualdub

123

158 Auton Robot (2013) 34:149–176

Fig. 5 UML diagram of the classes and structures of the three ROS
nodes comprising OpenRatSLAM. Each node has a ROS callback wrap-
per around its class for incoming messages. This wrapper abstracts ROS
away from the OpenRatSLAM classes. The diagram shows each node’s

data structures in detail. The ExperienceMap class has the Links and
Experiences stored in separate vectors for performance reasons. This
diagram serves as a reference for the signal flow diagrams in Fig. 6

123

Auton Robot (2013) 34:149–176 159

Fig. 6 Sequence diagram showing how interactions between Open-
RatSLAM nodes create a new experience. Data flow through the three
nodes is initiated by asynchronously arriving image and odometry ROS
messages. The ROS callbacks process the messages (shown as solid
white rectangles) and then transfer them to the OpenRatSLAM class
methods (solid black rectangles). Cylinders represent data storage that

relate to the structure shown in the previous UML diagram. Plus signs
indicate new data is being added to storage. The creation of a new expe-
rience starts with the creation of a new visual template, followed by the
creation of pose cell representations for both new visual templates, and
lastly the creation of a new node and link to the previously active node
in the experience map

Fig. 7 Sequence diagram showing new link creation between existing
experiences through interactions between OpenRatSLAM nodes. This
process is similar to sequence shown in Fig. 6. The major difference is
that the current view is matched to a previously learnt visual template,

which activates a previously learnt experience node, in this case cre-
ating a new link. Note that the matching of a previously learnt visual
template doesn’t guarantee that a new link is created

123

160 Auton Robot (2013) 34:149–176

Table 3 Parameter descriptions

Parameter name Description and properties

Visual odometry

[vtrans_image_x_min, vtrans_image_y_min],
[vtrans_image_x_max, vtrans_image_y_max]

These four parameters allow the specification of the cropping region for translational velocity

[vrot_image_x_min, vrot_image_y_min],
[vrot_image_x_max, vrot_image_y_max]

These four parameters allow the specification of the cropping region for rotational velocity

camera_fov_deg The horizontal camera field of view which is used to scale the rotational velocity

camera_hz The camera frame rate which is used to scale the velocities by accounting for the time between
frames

vtrans_scaling This parameter directly scales the translation velocity into meters per second

vtrans_max This parameter limits the maximum translation velocity to handle large changes in illumination

Local view parameters

vt_panoramic Set this to 1 if the images are panoramic

vt_shift_match The range (in pixel units) of horizontal offsets over which the current image is compared to all
learnt image templates. Unused in panoramic mode

vt_step_match The number of pixels to increment the shift match offset

[image_crop_x_min, image_crop_y_min],
[image_crop_x_max, image_crop_y_max]

These four parameters allow a cropping region of the original camera image to be specified.
Cropping is a useful tool for specifying image regions that are salient for place localization.
For example, carpet or road can be removed from the image. Note these are defined from the
top left of the image

[template_x_size, template_y_size] The horizontal and vertical size in pixels of the ‘subsampled’ template that represents the
camera view. For a single intensity profile set template_y_size to 1

vt_match_threshold The sensitivity parameter that determines the boundary between the current visual scene being
considered novel and being matched to an already learnt visual template

vt_normalisation All templates are normalized by scaling their mean to this parameter. This addresses global
changes in illumination. Note that values are clipped between zero and one

vt_patch_normalisation This effectively increases the local contrast of patch regions across the current view to handle
local changing light conditions and bring out more image details. The parameter sets the size
of the patch in pixels from its centre

Pose cell parameters

pc_dim_xy, sxy The side length of the square (x, y) plane of the pose cell network. The larger the network size,
the greater the computation, but the lower the likelihood of a hash collision in the pose cell
network and local view cells resulting in a false positive loop closure in the experience map

exp_delta_pc_threshold The radius within the pose cell network which can be associated with a single experience—if
the centroid of the pose cell activity packet moves more than this distance a new experience is
generated, regardless of whether the visual scene has changed

pc_cell_x_size A scaling factor that can be adjusted to suit the translational velocity range of the robot or
sensor platform. For efficiency reasons the pose cell dynamics do not scale ad infinitem and
as such this parameter can be adjusted to ensure the pose cell network is within its normal
operating range. The normal operating range for this implementation of OpenRatSLAM is to
limit the movement of the energy in the network to one cell per iteration

pc_vt_inject_energy Determines the amount of energy that is injected into the pose cell network when a familiar
visual scene is recognized. Setting this to a very high value ensures one shot localization but
makes the system brittle to false positive visual matches. Conversely, setting this parameter
low means the system is very robust to false positive matches but may require long sequences
of familiar visual input in order to perform loop closure

vt_active_decay A local view cell saturation mechanism uses this parameter to rapidly attenuate the amount of
activity that is injected by repeated exposure to the same visual scene. This mechanism
ensures the robot is less likely to perform false positive loop closures while stationary. The
higher the value, the shorter period of time over which a single local view cell will inject
activity into the pose cell network, and the longer the sequence of different visual matches
required to perform loop closure

pc_vt_restore Determines the rate at which a local view cell is restored to its original state after being
attenuated due to repeated activations

Experience map parameters

exp_loops The number of complete experience map graph relaxation cycles to perform per system iteration

123

Auton Robot (2013) 34:149–176 161

4.1 Parameter tuning

The current RatSLAM implementation is the result of years
of tuning, especially of the pose cell network parameters,
in order to generate stable system dynamics that appropri-
ately filtered ambiguous visual sensory input. The parame-
ters given for the experiments performed in this paper serve
as a good basis for experiments in large outdoor and smaller
indoor environments. Most importantly, the core pose cell
parameters do not need to be changed unless one is interested
in investigating the effect of varying network dynamics. In
general, the only parameters that may need tuning from the

defaults given in this paper are the vt_match_threshold (M)

and, in some circumstances, pc_vt_inject_energy (δ).
Here we outline a brief general tuning procedure for pro-

ducing functional OpenRatSLAM performance for a generic
dataset. The following process first ensures that the velocity
scaling constant Vs is approximately correct, before tuning
the relative rate at which new experiences and visual tem-
plates are generated to be between 1:1 and 2:1, and finally
ramps up the amount of activity injected into the pose cells by
an active visual template until loop closure is achieved over
the shortest distance the user expects the system to close a
loop.

123

162 Auton Robot (2013) 34:149–176

5 Using OpenRatSLAM

In this section we describe the experimental setup for the
three datasets. These datasets are available online as ROS
bag files.

5.1 St Lucia Suburb Dataset

The St Lucia 2007 dataset (Fig. 8) was first used in Milford
and Wyeth (2008) and has since been used in other biolog-
ically inspired or GIST-based mapping such as Sunderhauf
(2012), Sunderhauf and Protzel (2010). The dataset consists
of web camera footage from a 66 km car journey around
an Australian suburb, through a wide range of environment
types (Fig. 8b–d) at a variety of speeds. The bag file for this
dataset contains the large majority of the original video as
a set of compressed images. The dataset is slightly trimmed
at the start and end to remove the operators working on the
computer and a particularly washed out brightly white sec-
tion due to massive illumination changes.

5.2 Oxford’s New College 2008 dataset

The New College dataset is a well known dataset from
the Oxford University taken in England in 2008 (Smith et

al. 2009). The full dataset includes, laser, odometry, stereo
camera images, panoramic images, and GPS recordings in a
custom format. Data collection was performed outdoors on
the 2.2 km path shown in Fig. 9 using a Segway RMP200
robot. In order to run the dataset with OpenRatSLAM the
panoramic images and odometric information have been re-
encoded into a ROS bag file. Timestamps were extracted from
the original dataset to ensure proper timing. The odomet-
ric information has been integrated to match the panoramic
image rate of 3 Hz.

5.3 iRat 2011 Australia dataset

The iRat—intelligent Rat animat technology—is a small
mobile robot that has a similar size and shape to a large
rodent (Fig. 10). The robot has differential wheel drive, a for-
ward facing wide field of view camera, speakers and micro-
phone, IR proximity sensors, and wheel encoders. It also
has an onboard 1 GHz ×86 256 MB RAM computer running
Ubuntu and 802.11 g/n WLAN. The iRat has center and wall
following algorithms that allow it to autonomously explore
this environment. For this dataset, the iRat’s exploration was
guided by a human who gave directives on which way to turn
at each intersection.

The dataset was obtained while the iRat explored a
road movie set based on Australian geography, contain-

Fig. 8 a The St Lucia 2007
Dataset, and b representative
frames from the video dataset
showing the variety of places
encountered in the dataset.
Imagery ©2012 Cnes/Spot
Image, DigitalGlobe, GeoEye,
Sinclair Knight Merz & Fugro,
Map data ©2012 Google,
Whereis(R), Sensis Pty Ltd

123

Auton Robot (2013) 34:149–176 163

Fig. 9 This figure shows the
Oxford New College dataset.
The path the robot follows is
marked in yellow. Image
reproduced from Smith et al.
(2009) (Color figure online)

Fig. 10 a–b The labeled iRat robot internals. c The iRat alongside a standard computer mouse to show scale

ing prominent Australian landmarks such as the Sydney
Opera House and Uluru. A camera mounted overhead
provided images that allowed us to extract ground truth
information. The iRat ROS bag dataset is ∼16 min long and
includes the iRat’s camera images (shown in Fig. 11b–c,
range and odometry messages, the overhead camera’s images
(shown in Fig. 11a) and tracked pose information.

6 Experimental results

In this section we present experimental results for the two
datasets. Table 4 provides the values of the key parameters
that we used to generate the results. Parameters relating to
visualization are not listed here as they do not influence the
map. All figures and results are generated using the MATLAB

123

164 Auton Robot (2013) 34:149–176

Fig. 11 The iRat 2012 dataset
a overhead view and b–c sample
frames from the onboard camera

Table 4 Parameter values

Parameter St Lucia New College iRat

image_crop_x_min 40 N/A (0) N/A (0)

image_crop_x_max 600 N/A (image width) N/A (image width)

image_crop_y_min 150 N/A (0) N/A (0)

image_crop_y_max 300 N/A (image height) 150

template_x_size 60 60 60

template_y_size 10 10 20

vt_panoramic 0 1 0

vt_shift_match 5 N/A 4

vt_step_match 1 1 1

vt_match_threshold 0.085 0.054 0.03

vt_active_decay 1.0 1.0 1.0

vt_normalisation 0.4 N/A (0) N/A (0)

vt_patch_normalisation N/A (0) 2 N/A (0)

pc_dim_xy 30 30 11

pc_vt_inject_energy 0.15 0.2 0.1

pc_cell_x_size 2.0 1.0 0.015

exp_delta_pc_threshold 1.0 2.0 2.0

exp_loops 20 100 20

exp_initial_em_deg N/A (90) N/A (90) 140

vtrans_image_x_min 195 N/A N/A

vtrans_image_x_max 475 N/A N/A

vtrans_image_y_min 270 N/A N/A

vtrans_image_y_max 430 N/A N/A

vrot_image_x_min 195 N/A N/A

vrot _image_x_max 475 N/A N/A

vrot _image_y_min 75 N/A N/A

vrot _image_y_max 240 N/A N/A

camera_fov_deg 53 N/A N/A

camera_hz 10 N/A N/A

vtrans_scaling 1000 N/A N/A

vtrans_max 20 N/A N/A

123

Auton Robot (2013) 34:149–176 165

script files accompanying this paper. For each dataset we
present an experience map plot, a template-experience ID
plot, showing the growth over time of visual templates and
experience nodes, and sample scene matches. In addition,
for the iRat dataset, we show a false positive plot overlaid
on ground truth, identifying minor place recognition errors
in the vision system.

6.1 St Lucia 2007 dataset

Figure 12 shows the evolution of the experience map for
the St Lucia 2007 dataset, for intervals of one quarter of the
dataset, ending in the final map show in Fig. 12d.

Figure 13 shows a graph of the active experience and visual
template over the duration of the experiment. Experiences are
learnt at approximately double the rate of visual templates,
consistent with the tuning process indicated in Sect. 4.1.
Figure 14 shows that the simple method of comparing images
works despite traffic.

6.2 Oxford New College dataset

Figure 15 shows the evolution of the experience map over
time for the New College 2008 dataset. The final experience
map matches approximately to the ground truth path marked
in yellow on Fig. 9. While the map is topologically correct,

the rightmost loop, Epoch B—Parkland, is twisted relative
to the rest of the map. This twist is because of the reliance on
odometry through a single path through a gate that provides
the only link between the two map sections. The experience
map shows that the Local View panoramic matches during
traversals of the same path in different directions.

Figure 16 shows a graph of the active experience and visual
template over the duration of the experiment. As in the St
Lucia dataset, experiences are learnt at approximately dou-
ble the rate of visual templates, consistent with the tuning
process indicated in Sect. 4.1. The forward backward match-
ing of the panoramic images can be seen by the segments
of increasing and decreasing visual templates and experi-
ences. An example of panoramic image matching is shown
in Fig. 17.

6.3 iRat 2011 Australia dataset

Figure 18 shows the evolution of the experience map over
time for the iRat 2011 dataset. Although the iRat has wheel
encoders, the nature of the maze floor surface means that
wheel odometry is error prone, in particular due to wheel
slip, and this is apparent when looking at the shape of the map
before and after loop closures. Once the entire environment
has been explored, the map becomes more stable and there
are only minor adjustments (Fig. 18c–d).

Fig. 12 Experience map,
showing the topological map at
regular intervals up to the (d)
final map. The final map is
similar to that in the original
paper (Milford and Wyeth 2008)
and the map in Fig. 8a

123

166 Auton Robot (2013) 34:149–176

Fig. 13 Graph of the active
experience (blue) and visual
template (red) over the duration
of the experiment. Experiences
are learnt at approximately
double the rate of visual
templates. The graph shows the
continuous creation of new
experiences and view templates
as the upper ‘bounding line’.
The graph shows the
recognition of previously learnt
experiences and view templates
as the short segments under the
bounding line. The beginning
and end of the experience
segments correspond to where
new links, typically loop
closures, will be added between
the previous experience and a
previously learnt experience
(Color figure online)

Fig. 14 Sample frame matches
from the St Lucia dataset, as
output by the vision system.
Scenes are recognized despite
traffic and the simple visual
matching process

123

Auton Robot (2013) 34:149–176 167

Fig. 15 Experience map, a showing the topological map after epoch
A then b at the end of the experiment. The final map is similar to the
ground truth map, except for a twist at the single entry point between
the large loop on the right and the rest of the map

Figure 19 shows a plot of the active experience and visual
templateover thedurationof theexperiment. In the laterstages
of thedataset therearemultiplequite short sequencesof image
template matches, caused by the robot’s path taking it only
momentarily over a previously traversed path (Fig. 20).

The final map is similar to the ground truth trajectory
shown in Fig. 21. Figure 21a shows a plot of false positive
image template matches, generated using the ground truth
data and MATLAB script files provided with this paper. For
illustrative purposes we have set the error threshold to only

Fig. 16 Graph of the active experience and visual template over the
duration of the experiment. OpenRatSLAM has learnt approximately
double the number of experiences as visual templates. See the Fig. 13
caption for a full explanation of the graph. Specific to this graph due
to the panoramic matching are the segments of decreasing IDs which
show the robot traversing in the other direction along a previously learnt
path

Fig. 17 Sample frame matches
from the New College 2008
dataset. The panoramic images
have been matched despite at
different orientations

123

168 Auton Robot (2013) 34:149–176

Fig. 18 Experience map evolution for the AusMap iRat 2012 dataset. The wheel odometry is poor due to the slippery floor and regularly leads to
large localisation errors which are corrected by loop closures

Fig. 19 Graph of the active
experience and visual templates
over the duration of the
experiment. See the Fig. 13
caption for a full explanation of
the graph

123

Auton Robot (2013) 34:149–176 169

Fig. 20 Sample frame matches from the iRat 2011 dataset, as output by the vision system. a–b Turning very close to a wall and c–d moving down
a slightly curved corridor. There were no significant false positives in the this dataset (see Fig. 21)

0.05 m (the robot is 0.18 m long)—each of the thicker solid
black lines indicates the ‘false’ match between two places
as suggested by the visual template system. The zoomed in
section in Fig. 21b shows how the visual template system has
some local spatial generalization—the place where the image
template was first learned is matched over a short range of
places during subsequent visits to that place. The MATLAB
script files also provide general statistics for the dataset—
there were 575 ‘false’ positives out of 16656 frames ana-
lyzed, but the maximum error was only 0.13 m and the mean
was 0.063 m. This mean error is approximately the same as
the iRat’s width.

6.4 Compute

The datasets presented in this paper can be processed
at real-time speed or faster by the OpenRatSLAM sys-
tem on a standard modern desktop computer. The current
implementation scales linearly with the number of image
templates and experience nodes in the experience map
(experience maps are sparsely connected leading to only lin-
ear growth in the computation required).

Base runtime performance is primarily dependent on the
following three parameters. The first is that the size of the
visual template effects the time to calculate the SAD between
the current and all the previously stored visual templates.
Optimizations have been added that first compare template
means as well as checks during the comparison process to
see if the error is already larger that minimum error already

found. The second is that the pose cell computation time is
linearly related to the size of the pose cell environment due to
the dense implementation. A sparse pose cell implementation
is possible, however at the cost of a dramatic increase in code
complexity. The third is that the experience map computa-
tion time is linearly related to the number of correction loops
per cycle. While the speed of the correction process doesn’t
affect the topological correctness, it is directly related to the
metric accuracy.

6.5 Comparison with the original code

This section has results of software engineering metrics for
comparison between the OpenRatSLAM code base and the
original code base. Table 5 compares the two code bases
across several metrics. The results show the more that order
of magnitude reductions in the number of functions, defines,
lines of code and sources files between the two code bases
which implies that the new OpenRatSLAM code base is eas-
ier to understand and manage. The other metrics demonstrate
that the new code base is more portable and due to the ROS
wrapper, is designed to work with a wider range of robot
platforms.

7 Discussion and future work

In this paper the performance of OpenRatSLAM has been
demonstrated across three different datasets. The datasets
are from three different robot platforms with varying sensor

123

170 Auton Robot (2013) 34:149–176

Fig. 21 Automated true-false positive analysis of the iRat dataset using the provided ground truth and MATLAB .m script files. a ‘False’ positive
image matches based on a small 0.05 m threshold, and b a zoomed in section showing the local spatial generalization of a single image template

Table 5 Comparison of the original RatSLAM and OpenRatSLAM
code base demonstrating the software engineering and usability
improvements

Metric Original RatSLAM OpenRatSLAM

Functions 1099 135

Defines 580 13

Lines of code ∼32, 000 ∼3, 000

Source files 85 19

Compiler Visual Studio gcc using ROS

OS platform Windows Windows, Linux

Robot platform Offline, Pioneer Offline, robots
conforming to ROS
(only confirmed on iRat
and Pioneer)

Lines of code and source files calculated using CLOC
(cloc.sourceforge.net); functions and defines determined using
CTAGS (ctags.sourceforge.net) only considering C/C++ source and
header files

suites operating in indoor and outdoor environments with
significant scale variation. The St Lucia 2007 dataset was
taken outdoors on a road network using a laptop with a cheap
inbuilt webcam, mounted on an Ackermann steer vehicle,
travelling at tens of meters per second across an area cov-
ering several million square meters, with no wheel odome-
try. The New College 2008 dataset was taken outdoors along
paths in a university campus environment, using a panoramic
camera sensor mounted on a rocking mobile robot travelling
at approximately a meter per second across an area cover-
ing several thousand square meters. The iRat 2011 dataset
is taken indoors on a custom embedded computer using a
cheap camera, mounted on a small custom robot, travelling
at tenths of a meter per second, across an area covering only
a few square meters.

This paper has demonstrated that OpenRatSLAM is able
to successfully build topological maps across these sig-

nificantly different datasets with only minimal parameter
changes. Most of the parameters are directly related to mea-
surable and known properties of the data. For example, there
is a physical relationship between the size of the environ-
ment and vehicle and the parameters that represent the num-
ber and size of the cells in the Pose Cell network. The image
normalization parameters are directly related to the different
lighting conditions between the datasets; the St Lucia 2007
has large ambient light changes hence requiring global image
normalization, the New College 2008 dataset has dull over-
cast lighting and hence requires local contrast enhancement
to bring out features in some areas, and the iRat 2011 dataset
has controlled indoor lighting conditions and hence requires
no extra preprocessing.

The OpenRatSLAM system released with this paper
implements the majority of features published across more
than two dozen RatSLAM publications. Although this paper
does not include results for the path planning algorithm, the
underlying code base is relatively unchanged from what was
used in prior studies such as Heath et al. (2011) and Radish.
These studies have tested the experience map’s ability to plan
a path to hundreds of goal locations. While these studies
report that the robot sometimes fails to reach a goal, this is
a limitation of having local obstacle avoidance using three
noisy proximity sensors on the robot and an incomplete topo-
logical map.

To generate the results for the St Lucia 2007 dataset, we
used a different set of parameters than previously published
in Milford and Wyeth (2008), in particular using a 2D tem-
plate instead of the 1D scanline profile. During the parameter
tuning process we found that a 2D template gave more robust
scene matching results. While we attempted to make Open-
RatSLAM as similar as possible to the original code base
there were inevitably a number of minor differences. How-
ever, the recreation of past results with different parameters

123

http://cloc.sourceforge.net
http://ctags.sourceforge.net

Auton Robot (2013) 34:149–176 171

suggests the differences are not detrimental to system per-
formance. In the following discussion we highlight several
areas of future work.

Various map maintenance algorithms will be implemented
to facilitate online operation over long periods of time. A sim-
ple pruning scheme was implemented in Milford and Wyeth
(2010), but there is the potential to integrate other map con-
solidation algorithms in this rapidly developing field. We are
also investigating the feasibility of an autonomous or super-
vised process for tuning the key system parameters based
on a user providing a representative dataset, similar in over-
all process to (Fast Appearance Based Mapping) FAB-MAP
codebook generation (Cummins and Newman 2008). The
system would optimize two or three parameters to close the
loop on a loop closure segment manually chosen by a user.
While the tuning process described in this paper provides
a standardized method for achieving good mapping perfor-
mance, the introduction of such a training scheme would
enable complete “hands-off” operation in a range of envi-
ronments, without the user requiring any understanding of
system parameters.

Current work is also enabling multisensory input to Open-
RatSLAM and automatic weighting of sensor readings based
on their utility for localization (Jacobson and Milford 2012).
Results indicate that OpenRatSLAM is capable of suc-
cessful performing SLAM in changing environments by
dynamically weighting sensor readings without any explicit
knowledge of the number or type of sensors on a robot plat-
form. In addition to adding new features to OpenRatSLAM,
we intend to continue to release existing and new datasets
and associated configuration parameters, in order to increase
the variety of dataset types and sensory processing schemes
that can be handled by the system.

OpenRatSLAM is intended for use not only by roboticists
but also by scientists in other fields such as neuroscience
and cognitive science. Cognitive scientists have developed
a range of neural algorithms for components of navigation,
including models of visual cortex, head direction calibra-
tion and functional regions of the hippocampus and sur-
rounding areas. The modular nature of OpenRatSLAM will
enable researchers to incorporate custom modules into a
fully functioning navigation system, and compare perfor-
mance against the standards reported here. For example, the
implementation of a hexagonal pose cell structure result-
ing in grid-cell-like hexagonal firing fields (Milford et al.
2010) should be easily replicable using the OpenRatSLAM
codebase—edits to the pose cell module can take place in
isolation, as opposed to requiring an in-depth understanding
of the entire original RatSLAM codebase. We believe that
one of the most interesting areas for future research will be
the incorporation of biologically plausible visual processing
algorithms into the local view cell node. The relatively sim-
ple vision processing system could be replaced with more

sophisticated computational models of rodent vision and
object recognition, such as those developed by the Cox lab-
oratory (Zoccolan et al. 2009). Again, researchers wishing
to incorporate changes like these need only edit the rele-
vant module. The combination of OpenRatSLAM with the
iRat will allow the development and testing of high-fidelity
neural and behavioral models for use in computational
neuroscience.

8 Conclusion

This paper has described an open-source version of Rat-
SLAM with bindings to the increasingly popular ROS frame-
work. RatSLAM has the particular advantage of being
an appearance-based navigation system that works well
with low resolution monocular image data, in contrast to
other available navigation systems that focus on probabilis-
tic methods, occupancy grids and laser range sensors. To
date there has been no complete open-source implementa-
tion of RatSLAM, which has inhibited investigation of its
merits for different applications and comparisons with other
SLAM systems. This is also the first publication to pro-
vide in depth technical detail about how RatSLAM algo-
rithm internally works, which will facilitate its use by others
on their own datasets and robot platforms. The paper also
provides ground truth data and analysis tools for the iRat
dataset.

OpenRatSLAM is modular, easy to visualize, tune and
integrate into larger robotic systems. We demonstrated the
scalable performance of the system with three publicly avail-
able datasets (two of which we provide and support); an out-
door suburb scale environment on a full-size car, an outdoor
university campus environment on a medium size robot, and
an indoor environment on a small custom robot. OpenRat-
SLAM development and support will continue with the aim
of growing an interdisciplinary user base amongst a variety
of research fields including robotics, cognitive science and
neuroscience.

Acknowledgments This work was supported in part by the Australian
Research Council under a Discovery Project Grant DP0987078 to GW
and JW, a Special Research Initiative on Thinking Systems TS0669699
to GW and JW and a Discovery Project Grant DP1212775 to MM.
We would like to thank Samuel Brian for coding an iRat ground truth
tracking system.

Appendix A: Included datasets

The three datasets described in this paper are available online
at http://wiki.qut.edu.au/display/cyphy/OpenRatSLAM+dat
asets . Details of the ROS bag files are provided below.

123

http://wiki.qut.edu.au/display/cyphy/OpenRatSLAM+datasets
http://wiki.qut.edu.au/display/cyphy/OpenRatSLAM+datasets

172 Auton Robot (2013) 34:149–176

path: irat_aus_28112011.bag

version: 2.0

duration: 15:53s (953s)

start: Nov 28 2011 15:41:38.37 (1322458898.37)

end: Nov 28 2011 15:57:31.47 (1322459851.47)

size: 861.0 MB

messages: 116603

compression: none [1111/1111 chunks]

types: geometry_msgs/PoseStamped [d3812c3cbc69362b77dc0b19b345f8f5]

nav_msgs/Odometry [cd5e73d190d741a2f92e81eda573aca7]

sensor_msgs/CompressedImage [8f7a12909da2c9d3332d540a0977563f]

sensor_msgs/Range [c005c34273dc426c67a020a87bc24148]

topics: /irat_red/camera/image/compressed 16657 msgs : sensor_msgs/CompressedImage

/irat_red/odom 16658 msgs : nav_msgs/Odometry

/irat_red/proximity/range0 16658 msgs : sensor_msgs/Range

/irat_red/proximity/range1 16658 msgs : sensor_msgs/Range

/irat_red/proximity/range2 16658 msgs : sensor_msgs/Range

/overhead/camera/image/compressed 16657 msgs : sensor_msgs/CompressedImage

/overhead/pose 16657 msgs : geometry_msgs/PoseStamped

path: stlucia_2007.bag

version: 2.0

duration: 1hr 36:00s (5768s)

start: Jan 01 1970 10:00:00.10 (0.10)

end: Jan 01 1970 11:36:09.00 (5769.00)

size: 2.3 GB

messages: 57690

compression: none [3070/3070 chunks]

types: sensor_msgs/CompressedImage [8f7a12909da2c9d3332d540a0977563f]

topics: /stlucia/camera/image/compressed 57690 msgs : sensor_msgs/CompressedImage

path: oxford_newcollege.bag

version: 2.0

duration: 43:57s (2637s)

start: Nov 03 2008 23:43:32.69 (1225719812.69)

end: Nov 04 2008 00:27:29.98 (1225722449.98)

size: 1.2 GB

messages: 16002

compression: none [1458/1458 chunks]

types: nav_msgs/Odometry [cd5e73d190d741a2f92e81eda573aca7]

sensor_msgs/CompressedImage [8f7a12909da2c9d3332d540a0977563f]

topics: /newcollege/camera/image/compressed 7854 msgs : sensor_msgs/CompressedImage

/newcollege/odom 8148 msgs : nav_msgs/Odometry

Note that the data in the New College dataset belongs to the original authors from Oxford University.

123

Auton Robot (2013) 34:149–176 173

Appendix B: Installation instructions and tutorial

Installing dependencies

OpenRatSLAM depends on ROS packages: opencv2 and topological_nav_msgs and also on 3D graphics library Irrlicht. Irrlicht can be installed
on Ubuntu with apt-get

sudo apt-get install libirrlicht-dev

Build instructions

Checkout the source from SVN:

svn checkout http://ratslam.googlecode.com/svn/branches/ratslam_rosratslam_ros

Setup ROS environment variables by typing:

. /opt/ros/fuerte/setup.sh

The OpenRatSLAM directory needs to be added to the environment variable ROS_PACKAGE_PATH.

export ROS_PACKAGE_PATH=$ROS_PACKAGE_PATH:/path/to/OpenRatSLAM

Then build OpenRatSLAM with

rosmake

Running OpenRatSLAM

To use one of the provided pre-packaged bag files, download the bag file for either:

• iRat 2011 in Australia

• Car in St Lucia 2007

• Oxford New College 2008 dataset

All datasets are available at https://wiki.qut.edu.au/display/cyphy/OpenRatSLAM+datasets.

Place the dataset in the OpenRatSLAM directory.

Run the dataset and RatSLAM by typing either

roslaunch irataus.launch

rosbag play irat_aus_28112011.bag

or

roslaunch stlucia.launch

rosbag play stlucia_2007.bag

or

roslaunch oxford_newcollege.launch

rosbag play oxford_newcollege.bag

Using rviz

The map created by OpenRatSLAM will be periodically published to rviz. To run rviz:

rosrun rviz rviz

Click on the ”Add” button down the bottom left of the window. Choose ”MarkerArray” from the list. In the field ”Marker Array Topic” on the
left, click on the button with 3 dots. Choose the topic <my_robot>/ExperienceMap/MapMarker

Using OpenRatSLAM with a custom dataset

Creating a bag file

The easiest way to tune RatSLAM is using an offline dataset. Any robot providing camera images as sensor_msgs/CompressedImage and
odometry as nav_msgs/Odometry can be used to create a dataset. The images and odometry must be in the form <my_robot>/camera/image
and<my_robot>/odom.

To convert topic names to the correct format run:

rostopic echo <path/to/my/robot/camera> | rostopic pub <my_robot>/camera/image sensor_msgs/CompressedImage & rostopic echo
<path/to/my/robot/odom> | rostopic pub <my_robot>/odom nav_msgs/Odometry &

Start recording into a bag file:

rosbag record -O <my_robot> .bag <my_robot>/camera/image <my_robot>/odom

Start the robot and collect the dataset. Press Ctrl-C at the terminal to finish recording.

123

http://ratslam.googlecode.com/svn/branches/ratslam_ros ratslam_ros
https://wiki.qut.edu.au/display/cyphy/OpenRatSLAM+datasets

174 Auton Robot (2013) 34:149–176

Running the bag file

To run a custom bag file, a new config file and launch file are required.

Creating a new config file

In a terminal type

cd ratslam_ros

cp config/config_stlucia.txt config/config_<my_robot> .txt

gedit config/config_<my_robot> .txt

Change the first line

topic_root=stlucia

to

topic_root=<my_robot>

Creating a new launch file In the same terminal type

cp stlucia.launch <my_robot> .launch

gedit <my_robot> .launch

Replace all references to ”../config/config_stlucia.txt” with ”../config/config_<my_robot> .txt”

Comment out the visual odometry node to prevent it from running. Replace

<node name=”RatSLAMVisualOdometry” pkg=”ratslam_ros” type=”ratslam_vo” args=”../config/config_<my_robot> .txt
_image_transport:=compressed” cwd=”node” required=”true” />

with

<!– <node name=”RatSLAMVisualOdometry” pkg=”ratslam_ros” type=”ratslam_vo” args=”../config/config_<my_robot> .txt
_image_transport:=compressed” cwd=”node” required=”true” />–>

Running your dataset Your dataset can now be run the same way is the provided datsets:

roslaunch <my_robot> .launch

rosbag play <my_robot> .bag

Tuning parameters

Open the created config file

gedit config/config_<my_robot> .txt

Edit the settings under [ratslam]. Refer to Sect. 4 for parameter details.

123

Auton Robot (2013) 34:149–176 175

References

Andreasson, H., Duckett, T., & Lilienthal, A. (2008). A minimalistic
approach to appearance-based visual SLAM. IEEE Transactions on
Robotics, 24, 1–11.

Ball, D. (2009). RatSLAM, 1.0 ed. ratslam.itee.uq.edu.au. The Univer-
sity of Queensland, Brisbane.

Ball, D., Heath, S., Wyeth, G., & Wiles, J. (2010). iRat: Intelligent
rat animal technology. In Australasian conference on robotics and
automation. Brisbane, Australia.

Bay, H., Tuytelaars, T., & Van Gool, L. (2006). SURF:
Speeded up robust features. In Computer Vision—ECCV 2006
(pp. 404–417).

Cummins, M., & Newman, P. (2008). FAB-MAP: Probabilistic localiza-
tion and mapping in the space of appearance. International Journal
of Robotics Research, 27, 647–665.

Cummins, M., & Newman, P. (2009). Highly scalable appearance-only
SLAM—FAB-MAP 2.0, in Robotics: Science and Systems, Seattle,
United States.

Cummins, M., & Newman, P. (2010). Appearance-only SLAM at large
scale with FAB-MAP 2.0. The International Journal of Robotics
Research, 30(9), 1100–1123.

Davison, A. J., Reid, I. D., Molton, N. D., & Stasse, O.
(2007). MonoSLAM: Real-time single camera SLAM. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 29,
1052–1067.

Hafting, T., Fyhn, M., Molden, S., Moser, M.-B., & Moser, E. I. (2005).
Microstructure of a spatial map in the entorhinal cortex. Nature, 11,
801–806.

Heath, S., Cummings, A., Wiles, J., & Ball, D. (2011). A rat in the
browser. In Australasian conference on robotics and automation.
Melbourne, Australia.

Jacobson, A., & Milford, M. (2012). Towards brain-based sensor fusion
for navigating robots, presented at the Australasian conference on
robotics and automation. Wellington, New Zealand.

Knuth, D. (1977). A generalization of Dijkstra’s algorithm. Information
Processing Letters, 6.

Konolige, K., & Agrawal, M. (2008). FrameSLAM: From bundle
adjustment to real-time visual mapping. IEEE Transactions on
Robotics, 24, 1066–1077.

Konolige, K., Agrawal, M., Bolles, R., Cowan, C., Fischler, M., &
Gerkey, B. (2008). Outdoor mapping and navigation using stereo
vision (pp. 179–190).

Kyprou, S. (2009). Simple but effective personal localisation using com-
puter vision. London: Department of Computing, Imperial College
London.

Labbe, M., & Michaud, F. (2011). Memory management for real-time
appearance-based loop closure detection, presented at the IEEE/RSJ
International Conference on Intelligent Robots and Systems. San
Francisco, United States.

Lowe, D. G. (1999). Object recognition from local scale-invariant fea-
tures, presented at the proceedings of the international conference
on computer vision (Vol. 2).

Maddern, W., Milford, M., & Wyeth, G. (2012). CAT-SLAM: Prob-
abilistic localisation and mapping using a continuous appearance-
based trajectory. The International Journal of Robotics Research,
31, 429–451.

Milford, M. J. (2008). Robot navigation from nature: Simultaneous
localisation, mapping, and path planning based on hippocampal
models (Vol. 41). Berlin: Springer.

Milford, M., & Wyeth, G. (2008). Mapping a suburb with a single cam-
era using a biologically inspired SLAM system. IEEE Transactions
on Robotics, 24, 1038–1053.

Milford, M., & Wyeth, G. (2008). Single camera vision-only SLAM
on a suburban road network. In International conference on robotics
and automation. Pasadena, United States.

Milford, M., & Wyeth, G. (2010). Persistent navigation and mapping
using a biologically inspired SLAM system. International Journal
of Robotics Research, 29, 1131–1153.

Milford, M.J., Wiles, J., & Wyeth, G. F. (2010). Solving navigational
uncertainty using grid cells on robots. PLoS Computational Biol-
ogy, 6.

Milford, M., Schill, F., Corke, P., Mahony, R., & Wyeth, G. (2011). Aer-
ial SLAM with a single camera using visual expectation. In Interna-
tional conference on robotics and automation. Shanghai, China.

Newman, P., Sibley, G., Smith, M., Cummins, M., Harrison, A., Mei,
C., et al. (2009). Navigating, recognizing and describing urban
spaces with vision and lasers. The International Journal of Robotics
Research, 28, 1406–1433.

Quigley, M., Gerkey, B., Conley, K., Fausty, J., Footey, T., Leibs, J.,
et al. (2009). ROS: an open-source Robot Operating System, pre-
sented at the IEEE international conference on robotics and automa-
tion. Kobe, Japan.

Radish: The Robotics Data Set Repository [Online]. Available: http://
radish.sourceforge.net/

Samsonovich, A., & McNaughton, B. L. (1997). Path integration and
cognitive mapping in a continuous attractor neural network model.
The Journal of Neuroscience, 17, 5900–5920.

Sibley, G., Mei, C., Reid, I., & Newman, P. (2010). Vast-scale outdoor
navigation using adaptive relative bundle adjustment. International
Journal of Robotics Research, 29, 958–980.

Smith, D., & Dodds, Z. (2009). Visual navigation: Image profiles for
odometry and control. Journal of Computing Sciences in Colleges,
24, 168–179.

Smith, M., Baldwin, I., Churchill, W., Paul, R., & Newman, P. (2009).
The new college vision and laser data set. The International Journal
of Robotics Research, 28, 595–599.

Strasdat, H., Montiel, J. M., & Davison, A. J. (2010). Scale drift-aware
large scale monocular SLAM, in robotics science and systems. Spain:
Zaragoza.

Sunderhauf, N. (2012). Towards a robust back-end for pose graph
SLAM. In IEEE international conference on robotics and automa-
tion. St Paul, United States.

Sunderhauf, N., & Protzel, P. (2010). Beyond RatSLAM: Improvements
to a biologically inspired SLAM system. In IEEE international con-
ference on emerging technologies and factory automation (pp. 1–8).
Bilbao, Spain.

Zhang, A. M., & Kleeman, L. (2009). Robust appearance based visual
route following for navigation in large-scale outdoor environments.
The International Journal of Robotics Research, 28, 331–356.

Zoccolan, D., Oertelt, N., DiCarlo, J. J., & Cox, D. D. (2009). A rodent
model for the study of invariant visual object recognition. Proceed-
ings of the National Academy of Sciences of the United States of
America, 106, 8748–8753.

Author Biographies

David Ball is currently a
Research Fellow at the Queens-
land University Technology in
Australia working on robotic
solutions for agriculture. He
completed his undergraduate
degree in Computer Systems
Engineering in 2001 and his PhD
titled “Reading the Play: Adap-
tation by prediction in robot soc-
cer” in Mechatronic Engineering
in 2008, both at the University
of Queensland. His first research
position was on an Australian

123

http://radish.sourceforge.net/
http://radish.sourceforge.net/

176 Auton Robot (2013) 34:149–176

Special Research Initiative, Thinking Systems, a cross-disciplinary
team which investigated navigation across real and conceptual spaces.

Scott Heath received a dual
degree in Engineering (Elec-
trical) and Information Tech-
nology from the University of
Queensland in 2010. He is cur-
rently a graduate student at
the University of Queensland
where he works on the Lingo-
droids project—an investigation
of robots evolving language for
space and time. His research
interests include symbol ground-
ing, computational modelling
and telerobotics.

Janet Wiles received the B.Sc.
Hons. and Ph.D. degrees from
the University of Sydney, Syd-
ney, Australia, in 1983 and 1989,
respectively. She is currently a
Professor of Complex and Intelli-
gent Systems at the University of
Queensland, Brisbane, Australia.
She is the Project Leader of the
Thinking Systems Project, super-
vising a cross-disciplinary team
studying fundamental issues in
how information is transmitted,
received, processed, and under-
stood in biological and artificial

systems. Her research interests include complex systems biology, com-
putational neuroscience, computational modeling methods, artificial
intelligence, and artificial life, language, and cognition.

Gordon Wyeth is Head of the
School of Electrical Engineering
and Computer Science and Pro-
fessor of Robotics at the Queens-
land University of Technology.
Prior to 2010 he was at the Uni-
versity of Queensland where he
was co-Director of Mechatronic
Engineering. Professor Wyeth’s
main interests are in spatial cog-
nition and biologically inspired
robotics, with more than 150
papers published in leading jour-
nals and conferences. He has
served as President of the Aus-

tralian Robotics and Automation Association 2004–2006, chaired the
Australasian Conference on Robotics and Automation in 1999, 2004
and 2011, chaired the IEEE Robotics and Control Systems Queensland
Chapter 2010–2011, and is currently Chair of the Research and Educa-
tion College of the Cooperative Research Centre for Spatial Information.

Peter Corke is Professor of
Robotics and Control at the
Queensland University of Tech-
nology. Previously he was a
Senior Principal Research Sci-
entist at the CSIRO ICT Cen-
tre where he founded and led
the Autonomous Systems lab-
oratory, the Sensors and Sen-
sor Networks research theme and
the Sensors and Sensor Net-
works Transformational Capa-
bility Platform. He is a Fellow of
the IEEE; Editor-in-Chief of the
IEEE Robotics and Automation

magazine; founding editor of the Journal of Field Robotics; member of
the editorial board of the International Journal of Robotics Research,
and the Springer STAR series. He has over 300 publications in the field
and has held visiting positions at the University of Pennsylvania, Uni-
versity of Illinois at Urbana-Champaign, Carnegie-Mellon University
Robotics Institute, and Oxford University.

Michael Milford holds a PhD
in Electrical Engineering and a
Bachelor of Engineering from
the University of Queensland,
awarded in 2006 and 2002
respectively. He recently joined
the Queensland University of
Technology as member of Fac-
ulty, having previously worked
as a Postdoctoral Research Fel-
low at QUT and before that for
three years as a Research Fellow
at the Queensland Brain Institute
and in the Robotics Laboratory
at the University of Queensland.

His research interests include Simultaneous Localisation And Mapping,
vision-based navigation, cognitive modelling of the rodent hippocam-
pus and entorhinal cortex, biologically inspired robot navigation and
computer vision. In January 2012 he commenced a fellowship on
enabling visual navigation for “sunny summer days and stormy win-
ter nights”, and is also leading a project on Brain-based Sensor Fusion
for Navigating Robots.

123

	OpenRatSLAM: an open source brain-based SLAM system
	Abstract
	1 Introduction
	2 RatSLAM
	2.1 Pose cells
	2.1.1 Local view cells
	2.1.2 Experience map

	3 OpenRatSLAM
	3.1 Visual odometry
	3.2 Local view match
	3.3 Pose cell network
	3.4 Experience map
	3.5 Visualization
	3.5.1 Post visualization

	3.6 Software architecture
	3.7 Code specifications

	4 OpenRatSLAM parameters and tuning
	4.1 Parameter tuning

	5 Using OpenRatSLAM
	5.1 St Lucia Suburb Dataset
	5.2 Oxford's New College 2008 dataset
	5.3 iRat 2011 Australia dataset

	6 Experimental results
	6.1 St Lucia 2007 dataset
	6.2 Oxford New College dataset
	6.3 iRat 2011 Australia dataset
	6.4 Compute
	6.5 Comparison with the original code

	7 Discussion and future work
	8 Conclusion
	Acknowledgments
	Appendix A: Included datasets
	Appendix B: Installation instructions and tutorial
	References

