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A Subspace-Tracking Approach to Interference
Nulling for Phased Array-Based Radio Telescopes

Steven W. Ellingson, Member, IEEE,and Grant A. Hampson

Abstract—Several next-generation radio telescopes, now in the
planning stages, are based on phased-array technology. One reason
for this is to make use of adaptive nulling techniques to combat
radio frequency interference, which is a growing problem for radio
astronomy. This paper presents a low-complexity approach to in-
terference nulling which is suitable for use in such systems. The
approach uses subspace tracking to identify interference, followed
by spatial projections to place deep nulls in the directions of inter-
ferers. This technique overcomes two limitations of power-mini-
mization algorithms (e.g., “minimum variance”), namely power in-
versionandpattern rumble, which create serious problems for radio
astronomy. Furthermore, this technique imposes a lower computa-
tional burden and provides side information which is useful in later
stages of data processing. Performance results from a phased array
demonstrator system and a simulation are presented.

Index Terms—Beamforming, phased arrays, radio astronomy,
spatial nulling, subspace tracking.

I. INTRODUCTION

SEVERAL next-generation radio telescopes, now in the
planning stages, are based on phased-array technology.

In fact, the astronomical community is now making detailed
plans for a radio telescope with 1 kmeffective aperture,
known as the square kilometer array (SKA) [1]. In one design
concept for SKA, the basic unit is a “one square meter array”
(OSMA). Fig. 1 shows a OSMA technology demonstrator that
is currently in operation [2]. In this concept, SKA would consist
of perhaps one million such systems working in unison. Other
SKA concepts are also based on arrays, the main differences
being the number and directivity of the elements. For example,
arrays consisting of small paraboloids or Luneburg lenses are
also being considered [3], [4]. In all cases, however, a very
large number of elements is needed.

Strong motivation for this architecture comes from the desire
to use adaptive nulling techniques to combat radio frequency
interference (RFI), which is a growing problem for radio as-
tronomy. Perhaps the best-known approach to adaptive nulling
for phased arrays is constrained power minimization, using al-
gorithms such as minimum variance (MV) [5]. For an-ele-
ment array with a beamformer of the form

(1)
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Fig. 1. The OSMA experimental phased array.

the MV weights are given by

(2)

where is the 1 vector of element outputs at time, is
the beamformer output, is the 1 steering vector which
defines the desired beam pointing direction andis the array
covariance matrix, defined as the expected value of the outer
product . The superscript denotes the conjugate
transpose.

MV is not suitable for astronomy applications, for several rea-
sons. First, thepower inversionproperty of MV limits null depth
to be proportional to the interference-to-noise ratio (INR) [6].
This is acceptable in many communications and radar applica-
tions, since traditional demodulation/detection algorithms per-
form well even as the INR approaches unity. In contrast, radio
astronomy involves no processing that is analogous to demod-
ulation, so it is important to eliminate any interference which
can be detected. For example, a common observation consists
of identifying a spectral line with power spectral density that
is many orders of magnitude weaker than the passband noise
power spectral density. Such an observation may require sec-
onds, minutes, or even hours of integration to achieve a positive
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detection. Thus, intermittent interference may have INR much
less than 1 and yet be orders of magnitude stronger than the de-
sired signal, with the potential to wreck the results for that inte-
gration period. MV is ineffective against such interference.

Second, MV is subject to a phenomenon known as “weight
jitter” or “pattern rumble.” MV relies on inversion of for es-
timation of the interference. However, also includes infor-
mation about the noise, which is represented by the high-order
eigenvalues of . Inversion causes the noise eigenvalues to be-
come large, allowing the noise eigenvectors—which are effec-
tively random—to make a significant contribution to the cal-
culated weights [7]. The resulting patterns exhibit considerable
variability between updates; even in the main beam. The use of
additional constraints as in the linearly-constrained minimum
variance technique [8] is not an effective solution since the ran-
domness of the noise subspace is not affected.

Sources of RFI in radio astronomy include nongeosyn-
chronous satellites and land-mobile radio. To deal effectively
with these dynamic signals, it is expected that the weight
update period for nullforming algorithms will need to be on
the order of 10 ms. At the same time, there are numerous other
environmental and instrumental errors which must be corrected
in order to generate high-quality astronomical images. These
errors are mitigated using a process known as selfcalibration
[9]. This process is computationally intensive and is typically
updated on the order of once per minute. Current selfcalibration
methods require that the adapted patterns be approximately
stationary between selfcalibration updates; i.e., only the desired
nulls should be allowed to move. Therefore, MV-induced
pattern rumble greatly complicates the process of making
astronomical images.

To further clarify the reasons for the undesirable behavior
of MV and introduce alternative approaches, consider the fol-
lowing; it is well known that can be decomposed as follows:

(3)

where is an matrix whose columns are the eigenvectors
of and is an diagonal matrix whose elements are the
corresponding eigenvalues of. can be further decomposed
as follows:

(4)

where is a diagonal matrix whose elements are the
largest eigenvalues, is an matrix whose columns are
the associated eigenvectors, is a di-
agonal matrix whose elements are the remaining eigen-
values, and is an matrix whose columns are
the associated eigenvectors. Ifis selected appropriately, then
the term completely describes interference, whereas

describes only noise. In this case, we refer to the
column span of as the “interference subspace” and to the
column span of as the “noise subspace.” Since the eigen-
vectors of are orthogonal, is the rank of the interference
subspace. For readers who are unfamiliar with radio astronomy,
we wish to emphasize that there is only interference and noise
present in the observation; i.e., the “signals” are not apparent
over the timeframe of the weight update. Thus, it is the noise
subspace that we wish to preserve.

For MV, the properties of power inversion and pattern rumble
can be traced to the use of the entire covariance matrix, as op-
posed to simply the interference subspace, in the calculation of
the adaptive weights. An alternate approach, which is not sub-
ject to this liability, is to explicitly estimate the interference sub-
space and then to calculate weights corresponding to beams in
the orthogonal complement of this subspace. This method of
forming nulls is known as “spatial projection” or “orthogonal
projection” [7], [10]. A straightforward implementation of this
approach is to compute an estimate ofas in MV and then
identify the interference subspace using an eigendecomposition,
such as a singular value decomposition (SVD). This concept
has also recently been suggested for existing radio telescope ar-
rays consisting of small numbers of dish-type antennas [11]. For
large arrays, however, both the computation ofand the eigen-
decomposition impose very large computational burdens.

An attractive alternative to this approach issubspace tracking
[12]. Using subspace tracking, one can develop rank-ordered1

estimates of the eigenvectors and eigenvalues ofon a
sample-by-sample (iterative) basis, with no need to explicitly
estimate . The purpose of this paper is to demonstrate the
use of subspace tracking followed by spatial projections in
OSMA-type systems designed for radio astronomy. For illustra-
tion purposes, we use the “projection approximation subspace
tracking with deflation” (PASTd) method of Yang [13] in
this paper, which has relatively low complexity, is simple to
implement and yields the eigenvectors directly. However, other
subspace trackers can be used in place of PASTd.

The remainder of this paper is arranged as follows. Section II
describes a candidate implementation of this approach, based
on the PASTd method. In Section III, we describe an experiment
demonstrating the feasibility of subspace tracking using OSMA.
We also demonstrate in simulation the feasibility of accurate
interference subspace identification for 1. Section IV
considers the relative computational burden associated with the
proposed approach and MV. We conclude that this approach is
able to generate the desired nulls without pattern rumble and
with computational cost comparable to or better than MV.

II. SUBSPACE-TRACKING SPATIAL PROJECTIONS

In this section, we describe a specific implementation of
the proposed subspace-tracking spatial projections (STSP)
approach for a single-beam system of the form given in (1).
This implementation is shown in Fig. 2. The steps in this
implementation are as follows:

PASTd: Digitized complex data from the array is processed
using PASTd. For each new snapshot from the array, the PASTd
algorithm proceeds as follows:

For 1 to do

1By this we mean that eigenvalue-eigenvector pairs are obtained in sequence,
in descending order by eigenvalue.
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Fig. 2. One possible implementation of the STSP approach.

Above, is an estimate of the th eigenvector and is a
weighted estimate of theth eigenvalue ( 0.99 is recom-
mended). The number of eigenvectors and eigenvalues to
track is ana priori decision; thus, is also the maximum
rank of the interference subspace that can be correctly estimated.
The initial values of the ’s and ’s are not critical.

GSO: The eigenvectors produced by PASTd are not guar-
anteed to be orthonormal, whereas those of the trueare or-
thonormal. Therefore, orthonormalization tends to improve the
accuracy of the eigenvector estimates. The Graham–Schmidt or-
thonormalization (GSO) procedure [14] is suitable for this task.
It need be performed only once, after PASTd has finished.

Rank Estimation:There are a variety of methods by which
the rank of the interference subspace can be estimated from the
output of PASTd and GSO. A simple method, used in the sim-
ulation described in the next section, is as follows: First, im-
proved eigenvalue estimates are computed using the GSO-
processed eigenvector estimatesand a covariance matrix es-
timate computed from a small number (say,/10) of samples.
The minimum description length (MDL) approach [15] can then
be used to estimate the rankof the interference subspace, using
the . For this, we propose the algorithm of Wax and Kailath
[16]. Alternatively, various other criteria can be used to deter-
mine the rank of the signal subspace; for example, threshold
testing for the eigenvalues, or arbitrary limits on the rank; e.g.,
“choose to be at least 2.” Choice of an optimal rank estimator
for radio astronomy applications is an important problem, but
outside the scope of this paper.

Steering Vector Matching:In principle, there is no difficulty
in using the estimated eigenvectors directly to compute a
suitable nullspace projection. However, it may be of interest to
know the directions of arrival (DOA) associated with the var-
ious interferers. Such information is useful in radio astronomy
for the purposes of array calibration, RFI characterization, and
anticipating problems with pattern distortion, i.e., when inter-

ferers approach the main beam. In the absence of strongly-cor-
related multipath, the MUSIC technique can be used to estimate
the DOAs [17]. Otherwise, a maximum likelihood method, such
as that of Ziskind and Wax [18], can be used to estimate the
DOAs, , as follows:

Tr (5)

where is the estimate of constructed from eigenvectors and
eigenvalues obtained from the previous steps. is a ma-
trix whose columns are the steering vectors associated with the
set of “trial” DOA’s, which depend on the array geometry.

refers to the projection operator and “Tr”
denotes the trace; that is, the sum of the diagonal elements. For
the case of 1, this simplifies to a procedure in which one at-
tempts to maximize the inner product , in which
is the steering vector associated with look direction.

Furthermore, it may be desired to replace one or all of the
interference eigenvectors with steering vectors obtained using
the above procedure. In this way, one may generate nulls which
are guaranteed to be as deep as possible in the appropriate di-
rections. Thus (referring to Fig. 2), the selected vectorsmay
be either the estimated interference eigenvectors, the associated
steering vectors, or some combination thereof.

Also, it should be noted that this has implications for array
calibration. If the array is calibrated, then the interferer steering
vectors computed above infer the DOAs. If the array is not cal-
ibrated, but the interferer DOAs are known, then the computed
steering vectors can be used to aid in calibration of the array.
However, in no case is calibration required to null interference
using STSP.

Nulling Options: In addition to the possibility of using
steering vectors in lieu of the eigenvectors to represent the
interference subspace, there are other options to tailor the
“desired” interference subspace before nulling. If , it
may be practical to create additional nulls. This is useful, for
example, when a dangerous interferer is known to be present,
but has INR 1 and therefore cannot be reliably detected
or estimated in the short period between adaptive weight
updates. This process involves identifying the appropriate
steering vector and adding it to the list of vectors to include
in the nullspace projection. Alternatively, it may be desired
to delete vectors from the estimated interference subspace. In
radio astronomy, this might occur if the damage caused by an
unsuppressed interferer is preferable to the pattern distortion
resulting from a particular null. A simple method is to compute
the inner product of each interference steering vector with the
desired steering vector for beam pointing. If both vectors have
unit norm, than a result close to 1 indicates that the associated
null is too close to the main beam and so that vector should be
excluded. In practice, a threshold would be set based on the
user’s ability to tolerate distortion. More elegant algorithms are
of course possible, but beyond the scope of this paper.

Finally, we note that it may be desired to modify the vectors
defining the interference subspace to shape the pattern in some
way other than to form a deep null. For example, if the inter-
ference is fast-moving, it may be desirable to create a pattern
depression or “flat null” as opposed to a zero in the pattern.
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Beamforming: Referring again to Fig. 2, we now form
the matrix , representing the interference subspace, by
concatenating the selected vectorsobtained from the pre-
vious steps. The nullspace projection is then defined as the
matrix which, when applied to an input snapshot, yields
another snapshot which lies in the nullspace of. Therefore,

. If the desired steering vector for beam-pointing
is , then the desired adaptive weights are .

III. M EASURED AND SIMULATED RESULTS

An important test for the feasibility of STSP for OSMA-like
systems is to verify the operation of subspace tracking in actual
hardware. For this purpose, we used the OSMA technology
demonstrator shown in Fig. 1. This system consists of 64
bow-tie elements connected to a dual hierarchical beamforming
system consisting of RF and digital beamforming. Four column
antennas are combined into one RF signal (frequency range
1.5–3.5 GHz) which is frequency down converted and digitized
using a sample rate of 8 MHz. The resulting array configuration
for the digital beamformer is eight columns by two rows. The
effective column and row spacing is then half and double
wavelength, respectively, at the test frequency of 2 GHz.

The 16 complex signals obtained from the array are then
processed using PASTd with 5. In this experiment,
the array is illuminated by an interferer with INR 32 dB
incident from 70 with respect to broadside in the H-plane.
Due to the limited size of the test chamber, the array oper-
ates in the near field of the source (source distance is 4 me-
ters, whereas the physical aperture of the array is 0.525 meters).
Fig. 3 shows the eigenvalue estimates from PASTd. Note that the
largest eigenvalue converges to the true INR of32 dB within
about 200 samples, whereas the remaining eigenvalues assume
various values around 0 dB. In this case, these eigenvalues rep-
resent not only noise but also the combined effects of wavefront
curvature and spurious signals inside the test chamber. In Fig. 4,
we show convergence of the eigenvectors in the same experi-
ment. In this case, we are plotting the magnitude of the inner
product of each eigenvector computed by PASTdGSO with
the associated eigenvector computed from the SVD of the array
covariance matrix , obtained from the same snapshots. Refer-
ring back to the figure, it is clear that the primary eigenvector has
converged to the appropriate value with high accuracy within
the first 32 samples. Interestingly, subsequent eigenvectors also
converge, one after another, separated by about 350 samples.
In terms of interference suppression performance, however, it
should be noted that the comparison is meaningful only for the
primary eigenvector; i.e., the one associated with the interfer-
ence.

As mentioned previously, the convergence of the PASTd al-
gorithm used here is controlled by the parameter. We found
that the value of 0.99 used here consistently yielded reli-
able performance as demonstrated in the scenarios above. How-
ever, other subspace trackers are known to outperform PASTd;
see [12] for some general insights and [19] for more recent
findings, including comparisons between PASTd and other sub-
space trackers.

Fig. 3. Eigenvalue convergence in the OSMA experiment.

Fig. 4. Eigenvector convergence in the OSMA experiment.

Fig. 5. Eigenvalue convergence from the INR= 0 dB simulation.

Due to instrumental limitations of the OSMA test facility,
it is not possible to test at low INR, or to accurately measure
array patterns. For this, we conducted a simulation with planar
wavefronts and 0 dB. The simulation is conducted
in two dimensions with an 8 uniform linear array with
elements having identical omnidirectional patterns. The element
spacing is identical to the column spacing in the above study.

Figs. 5 and 6 are analogous to Figs. 3 and 4, respectively.
Note that the primary eigenvalue converges to the correct value
of 3 dB within about 300 samples, whereas the remaining
values are clustered close to 0 dB, as expected. Similarly, the
primary eigenvector has converged with high accuracy within
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Fig. 6. Eigenvector convergence from the INR= 0 dB simulation.

Fig. 7. Adapted patterns for MV (dashed) and STSP (solid) from the INR=

0 dB simulation.

300 samples. Fig. 7 shows the pattern resulting from the STSP
procedure suggested in the previous section, using the proposed
MDL-based procedure to estimate the rank of the interference
subspace. In this example, the desired beam is pointed at broad-
side, which corresponds to 90in the figure. We found that MDL
consistently estimates the correct value 1 and that the re-
sulting pattern has a zero at the correct location (20, as shown
on the plot). For comparison, we also show one trial of the MV
algorithm for the same scenario, using a covariance matrix es-
timate using 1000 samples. Note the weak suppression of the
interference (characteristic of power inversion) and also the per-
turbed sidelobe structure, due to the extraneous noise subspace
information included in the MV weights. Fig. 8 illustrates the
values of the weights for this same experiment, for both the
STSP and MV algorithms. For reference, note that the ideal nor-
malized quiescent weights for broadside pointing would all have
the value 0.25 0. Note that STSP makes the minimum mod-
ification necessary to form the null, which consequently results
in negligible perturbation of the pattern elsewhere. MV, on the
other hand, yields weights which deviate excessively from the
quiescent values, leading to the observed pattern rumble.

IV. COMPUTATIONAL BURDEN

In this section we compare the computational burden of the
STSP approach (using PASTd) to that of MV. The basis for the
comparison is an asymptotic estimate of the number of floating

Fig. 8. Values of the adapted weights for MV (+) and STSP () from the
INR = 0 dB simulation.

point operations (FLOPs) required to compute an update of the
beamforming weights. If a FLOP is defined as a single real-
valued addition or multiplication, then a single complex addi-
tion requires 2 FLOPs and a single complex multiplication re-
quires 6 FLOPs. Then, the inner product of two length-com-
plex-valued vectors requires 8 2 FLOPs. Using these rules,
one quickly finds that a single iteration of the PASTd procedure
requires 22 3 FLOPs. In STSP, this is repeated
times per weight update. If , then PASTd dominates the
number of FLOPs required for a single STSP update, so that the
approximate result for an STSP update is 22 3 .

To compute the number of FLOPs required for an MV up-
date, we first note that a single outer product of two length
complex vectors requires 6 FLOPs. Exploiting the Herme-
tian property of , this can be reduced to 3 3 FLOPs
to compute compute from snapshots. If , then this
cost dominates the number of FLOPs required for a single MV
weight update, so that the approximate cost is 3 3 .

For arrays with 4 or so, the ratio of the FLOPs required
for an STSP update to FLOPs required for an MV update, based
on the above analysis, is approximately 7.3 . Thus, the
computational burden of the two methods is the about the same
for 8 and 1. In general, the computational burden
of STSP will be favorable to MV whenever 7.3. In the
case of large arrays with small numbers of interferers, it is clear
that STSP (using PASTd) will have an enormous advantage in
terms of computational burden.

V. CONCLUSION

In the context of radio astronomy, use of constrained min-
imization interference suppression algorithms, such as MV,
presents several problems. Among these are power inversion
and pattern rumble. We have introduced an alternative approach
to interference suppression using subspace tracking to identify
interference and spatial projections to form nulls. This approach
is not subject to power-inversion limitations. Despite the lack
of a pointing constraint in null forming, this approach results in
much less main beam distortion and pattern rumble than MV.
The STSP implementation described above is computationally
more efficient than MV, especially for large arrays. Because
this approach divides the problems of interference estimation
and interference suppression into separate steps, useful side
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information is generated and greater user control is possible
over the behavior of the algorithm. Measurements from a
prototype demonstrator system were used to illustrate the via-
bility of subspace tracking for a proposed array configuration.
Simulations indicate excellent performance even at low INR.
Further research is required to develop suitable interference
subspace rank estimators for radio astronomy applications.
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