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Abstract It is difficult to find the optimal sparse solution of a manifold learning
based dimensionality reduction algorithm. The lasso or the elastic net penalized man-
ifold learning based dimensionality reduction is not directly a lasso penalized least
square problem and thus the least angle regression (LARS) (Efron et al., Ann Stat
32(2):407–499, 2004), one of the most popular algorithms in sparse learning, cannot
be applied. Therefore, most current approaches take indirect ways or have strict set-
tings, which can be inconvenient for applications. In this paper, we proposed the man-
ifold elastic net or MEN for short. MEN incorporates the merits of both the manifold
learning based dimensionality reduction and the sparse learning based dimensionality
reduction. By using a series of equivalent transformations, we show MEN is equiva-
lent to the lasso penalized least square problem and thus LARS is adopted to obtain
the optimal sparse solution of MEN. In particular, MEN has the following advantages
for subsequent classification: (1) the local geometry of samples is well preserved for
low dimensional data representation, (2) both the margin maximization and the clas-
sification error minimization are considered for sparse projection calculation, (3) the
projection matrix of MEN improves the parsimony in computation, (4) the elastic net
penalty reduces the over-fitting problem, and (5) the projection matrix of MEN can
be interpreted psychologically and physiologically. Experimental evidence on face
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recognition over various popular datasets suggests that MEN is superior to top level
dimensionality reduction algorithms.

Keywords Manifold learning · Elastic net · Dimensionality reduction

1 Introduction

One of the primary focuses in data mining and machine learning is finding a succinct
and effective representation for original high dimensional samples (Hastie et al. 2009;
Kriegel et al. 2007; Ding and Li 2007; Ding et al. 2008; Li et al. 2008a; Tao et al.
2007a,b). Linear dimensionality deduction is such a tool that projects the original
samples from a high dimensional space to a low dimensional subspace. Meanwhile
some particular information, e.g., manifold structure and discriminative information,
of the original high dimensional samples will be well preserved while noises will be
removed in the selected subspace.

1.1 The state of the art

In the past decades, a dozen of algorithms have been developed and extensive experi-
mental results have demonstrated that duly selected subspace is effective and efficient
for subsequent utilizations. In this paper, we categorize popular dimensionality reduc-
tion algorithms into the following three groups:

1. Conventional linear dimensionality reduction algorithms, e.g., principal com-
ponents analysis (PCA) (Hotelling 1936), Fisher’s linear discriminant analysis
(FLDA) (Fisher 1936), regularized FLDA, and the geometric mean based subspace
selection (Tao et al. 2009). All of these algorithms assume samples are drawn from
different Gaussians. PCA maximizes the mutual information between original
high-dimensional Gaussian distributed samples and projected low-dimensional
samples. PCA, which is unsupervised, does not utilize the class label information.
While, LDA finds a projection matrix that maximizes the trace of the between-class
scatter matrix and minimizes the trace of the within-class scatter matrix in the pro-
jected subspace simultaneously. The same as PCA, FLDA and regularized FLDA
assume samples are drawn from homoscedastic Gaussians. Therefore, FLDA and
regularized FLDA cannot work well when Gaussians are heteroscedastic. Addi-
tionally, they always merge classes which are close in the high dimensional space.
Although the geometric mean based subspace selection and its harmonic mean
based extension (Bian and Tao 2008) assume samples are drawn from heterosced-
astic Gaussians and do not tend to merge close classes, they basically work for
Gaussian distributed samples.

2. Manifold learning based dimensionality reduction algorithms: e.g., locally lin-
ear embedding (LLE) (Roweis and Saul 2000), ISOMAP (Tenenbaum 2000),
Laplacian eigenmaps (LE) (Belkin and Niyogi 2001; Li et al. 2008b), Hessian
eigenmaps (HLLE) (Donoho and Grimes 2003), Generative Topographic Map-
ping (GTM) (Bishop and Williams 1998; Fyfe 2007) and local tangent space
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alignment (LTSA) (Zhang and Zha 2005). LLE uses linear coefficients, which
reconstruct a given measurement by its neighbours, to represent the local geome-
try, and then seeks a low-dimensional embedding, in which these coefficients are
still suitable for reconstruction. ISOMAP preserves global geodesic distances of
all pairs of measurements. LE preserves proximity relationships by manipulations
on an undirected weighted graph, which indicates neighbour relations of pairwise
measurements. LTSA exploits the local tangent information as a representation of
the local geometry and this local tangent information is then aligned to provide
a global coordinate. HLLE obtains the final low-dimensional representations by
applying eigen-analysis to a matrix which is built by estimating the Hessian over
neighbourhood. All these algorithms have the out of sample problem and thus
a dozen of linearizations have been proposed, e.g., locality preserving projec-
tions (LPP) (He and Niyogi 2004), neighborhood preserving embedding (NPE)
(He et al. 2005a), and orthogonal neighbourhood preserving projections (ONPP).
Recently, we provide a systematic framework, i.e., patch alignment (Zhang et al.
2008, 2009), for understanding the common properties and intrinsic difference in
different algorithms including their linearizations. In particular, this framework
reveals that: (i) algorithms are intrinsically different in the patch optimization
stage; and (ii) all algorithms share an almost-identical whole alignment stage.
Another unified view of popular manifold learning algorithms is the graph embed-
ding framework (Yan et al. 2007). Based on both frameworks, different algorithms
have been developed, e.g., the discriminative locality alignment (Liu et al. 2008),
manifold regularization (Belkin et al. 2006) and marginal Fisher’s analysis (Wang
et al. 2008).

3. Sparse learning based dimensionality reduction algorithms: e.g., lasso (Tibshirani
1996), elastic net (Zou and Hastie 2005), the smoothly clipped absolute deviation
penalty (SCAD) (Fan and Li 2001), Sure independence screening (Fan and Lv
2008), Dantzig selector (Candes and Tao 2005) and Dantzig selector with sequen-
tial optimization (Dasso) (James et al. 2009). Conventional linear dimensionality
reduction algorithms and manifold learning based dimensionality reduction algo-
rithms produce a low dimensional subspace and each basis of the subspace is a
linear combination of all the original bases (i.e., variables or features) used for high
dimensional sample representation. Therefore, results cannot be interpreted psy-
chologically and physiologically. Sparse learning based dimensionality reduction
algorithms are developed not only to achieve the dimensionality reduction but also
to reduce the number of explicitly used variables. A direct method to reduce the
number of variables for representation is setting very small coefficients as zero.
However, this strategy is problematic because small coefficients could be very
important. Because each of new bases is a linear combination of original ones,
it is reasonable to consider each new basis as the response of several variables,
i.e., the original features. Then the problem of sparse learning becomes a similar
problem to variables selection and coefficients shrinkage. In linear regression, Lp
norm penalty is always combined with the loss function to reduce over-fitting. In
particular, �1-norm (or lasso) owns a good property to drive a good number of
coefficients to zero and lead to a sparse model between responses and variables
because of its singularity in the origin (Park and Hastie 2006; Huang and Ding
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2008). The number of lasso selected variables is no larger than the number of sam-
ples. Moreover, lasso randomly selects one from the group of variables that are
high correlated. Therefore, elastic net is proposed to address the above problems
and achieve the grouping effect by adding the �2 penalty to lasso.

In recent years, sparse learning becomes popular, because:

1. sparsity can make the data more succinct and simpler, so the calculation of the
low dimensional representation and the subsequent processing, e.g., classification
and regression, becomes more efficient. Parsimony is especially an important fac-
tor when the dimension of the original samples is very high and the number of
samples is very large;

2. sparsity can control the weights of original variables and decrease the variance
brought by possible over-fitting with the least increment of the bias. Therefore,
the learn model can generalize better; and

3. sparsity provides a good interpretation of a model, thus reveals an explicit relation-
ship between the objective of the model and the given variables. This is important
for understanding practical problems, especially when the number of variables is
larger than that of the samples.

However, it is not easy to find the optimal solution of a sparse learning model. In
the original lasso, the residue sum of squares is minimized subject to the sum of the
absolute value of the coefficients being less than a constant. The quadratic program-
ming is sequentially utilized to get the solution and thus the time cost is not acceptable
for practical applications. Recently, the least angle regression (LARS) is proposed
to seek a close form solution to the path of coefficients in each step without using
the quadratic programming, so it is more efficient and less greedy than the original
optimization algorithm used in lasso.

Hitherto, most of sparse dimensionality reduction algorithms are designed for lin-
ear regression and only a few can be applied for subsequent classification, e.g., sparse
principal component analysis (SPCA) (Zou and Hastie 2006), Nonnegative sparse
principal component analysis (Zass and Shashua 2007), sparse linear discriminant
analysis (SLDA), sparse projections over graph (SPOG) (Cai et al. 2007, 2008) and
SPCA using semi-definite programming (D’aspremont et al. 2007). Both SPCA and
SPCA using semi-definite programming do not consider the sample label information
and thus some discriminative information will be removed after dimensionality reduc-
tion. SLDA can work well for binary class classification but it cannot be applied for
multi-class classification. SPOG utilizes a particular manifold learning based dimen-
sionality reduction algorithm, e.g., locality preserving projections (LPP), to obtain
the dense projection matrix and then applies lasso to regress the corresponding sparse
projection matrix. Absolutely the problem is indirectly formulated to obtain the sparse
projection matrix. A direct formulation should be imposing the lasso penalty over a
loss function (i.e., a criterion) of a dimensionality reduction algorithm. However, it is
difficult to use LARS to obtain its optimal solution because the objective function is
not a direct regression problem. Therefore, researchers currently take indirect routs to
obtain sparse projection matrices.
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1.2 The proposed approach

In this paper, we propose the manifold elastic net (MEN), which obtains a sparse
projection matrix for subsequent classification. MEN directly imposes the elastic net
penalty (i.e., the combination of the lasso penalty and the �2-norm penalty) over the
loss (i.e., the criterion) of a discriminative manifold learning based dimensionality
reduction algorithm. By using a series of complex linear algebra equivalent transfor-
mations, the objective function of MEN can be rewritten as a lasso penalized least
square problem and thus LARS can be applied to obtain the optimal sparse solution
of MEN.

In detail, we first apply the part optimization of the patch alignment framework
to encode the local geometry of a set of training samples. In the second step, the
whole alignment of the patch alignment framework is applied to calculate the unified
coordinate system for local patches obtained in the first step. For low dimensional
data representation, the linearization or the linear approximation is adopted in MEN.
Although we can impose some discriminative information preservation criterion (e.g.,
margin maximization) over the part optimization stage, it is not directly relevant to
the classification error minimization. Therefore, we put a new item that minimizes
the classification error in the third step. To obtain a sparse projection matrix with the
grouping effect, in the fourth step, the elastic net penalty is adopted in MEN. So far,
the objective function of MEN is fully constructed.

With the well defined MEN, we then apply LARS to obtain the optimal solution
of MEN. We transform MEN into a form in which the correlation of basis can be
written as the correlation of coefficients. Active set is built according to LARS. In
each step, no more than one element of the basis is added to the active set according
to its correlation. All elements in the active set are changed in each step with special
direction and distance in the space of coefficients. The direction and distance of a path
in each step have closed form solution according to the extended simplex. The sparsity
of the projection matrix is controlled by the cardinality of the active set. Because the
LARS for MEN generates bases in an independent way, the same procedure is con-
ducted multiple times to obtain a set of bases. Under this procedure, these bases are
orthogonal. Thorough experiments on face recognition (Shakhnarovich and Moghad-
dam 2004) task based on popular face datasets show the effectiveness of the proposed
MEN by comparing against the top level dimensionality reduction algorithms.

The rest of the paper is organized as follows. Section 2 presents the proposed
manifold elastic net (MEN) including the objective function of MEN and the LARS
optimization for MEN. Section 3 shows the effectiveness of MEN for face recognition
over different face datasets. Section 4 concludes.

2 Manifold elastic net

Consider in the discriminative dimensionality reduction problem with training sam-
ples and corresponding class labels. Let X = [x1, x2, . . . , xn]T ∈ R

n×p be a given
training set in a high dimensional space R

n×p and C = [c1, c2, . . . , cn]T ∈ R
n be

the corresponding class label vector. The objective here is to find a projection matrix
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W = [w1, w2, . . . , wd ]T ∈ R
p×d that projects samples xT ∈ R

p in the high dimen-
sional space onto a low dimensional subspace, i.e., zT = xT W , such that samples from
different classes can be well separate, i.e., the classification error can be extremely
minimized.

Manifold learning based dimensionality reduction aims to find the corresponding
low dimensional representation z in a low dimensional Euclidean space of x to preserve
(actually approximate) the data intrinsic structure. Popular manifold learning based
dimensionality reduction algorithms, however, have the following two problems: (1)
the classification error is not directly and explicitly considered, although some algo-
rithms compound discriminative information preservation criteria, e.g., margin max-
imization; and (2) the obtained low dimensional representation linear combines of all
variables in the high dimensional space, so it is difficult to clear interpret and efficiently
represent data.

Sparse learning provides sparse data representation via variable selection, and has
the following advantages: (1) the sparsity improves the parsimony in computation, i.e.,
the computational cost can be significantly reduce; (2) the penalties and the constraints
introduced in a learning model discourage the possible over-fitting of the model; and
(3) the learned model can be well interpreted. However, existing sparse learning algo-
rithms are designed for linear regression problems and the data intrinsic structure is
usually ignored.

To achieve the merits of manifold learning based dimensionality reduction and
the advantages of sparse learning, in this paper, we propose the manifold elastic net
(MEN), which is a general framework to obtain the sparse solution of the manifold
learning based discriminative dimensionality reduction. There are few research results
on combining sparse learning and discriminative dimensionality reduction because the
projection matrix of a lasso penalized model cannot be obtained directly by using the
least angle regression (LARS).

MEN is not a direct combination of the manifold learning based dimensionality
reduction and the sparse learning. It however finds the optimal sparse solution of
every manifold learning based discriminative dimensionality reduction algorithm via
the patch alignment framework and a new classification error minimization based cri-
terion. In particular, MEN encodes the local geometry of a set of samples and finds an
aligned coordinate system for data representation under the patch alignment frame-
work; MEN utilizes the classification error minimization criterion to directly link the
classification error with the selected subspace; and MEN incorporates the elastic net
regularization to sparsify the projection matrix.

2.1 Part optimization

Different manifold learning algorithms encode different types of local geometry of
samples, e.g., locally linear embedding (LLE) applies linear coefficients to reconstruct
a sample by its neighbors. The patch alignment framework has well demonstrated
that different algorithms have different optimization criteria to encode different local
geometry over patches.
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In MEN, the same as the part optimization in the patch alignment framework, each
patch is constructed by a particular sample xi and its k related ones xi1 , xi1 , . . . , xik .

The patch is denoted by Xi =
[
xT

i , xT
i1

, xT
i2

, . . . , xT
ik

]T ∈ R
(k+1)×p. MEN finds a

linear mapping fi that projects the patch Xi ∈ R
p to a low dimensional subspace

R
d , i.e., fi : Xi �−→ Zi , where Zi =

[
zT

i , zT
i1
, zT

i2
, . . . , zT

ik

]T ∈ R
(k+1)×d . The part

optimization maximizes the similarity of the local geometry represented by Xi and
that described by Zi :

arg min
Zi

tr
(

Z T
i Li Zi

)
, (1)

where Li ∈ R
(k+1)×(k+1) encodes the local geometry of the patch Xi and it is different

over different dimensionality reduction algorithms.
For a given sample xi , its k related ones are divided into two groups: the k1 ones in

the same class with xi and the k2 ones from different classes with xi . These two groups

are selected independently and denoted by
{

xi1 , xi2 , . . . , xik1

}
and

{
xi1 , xi2 , . . . , xik1

}

respectively. Therefore, the patch for xi is defined by

Xi =
[
xT

i , xT
i1 , xT

i2 , . . . , xT
ik1

, xT
i1

, xT
i2

, . . . , xT
ik1

]T ∈ R
(k1+k2+1)×p.

The corresponding the low dimensional representation is

Zi =
[
zT

i , zT
i1 , zT

i2 , . . . , zT
ik1

, zT
i1
, zT

i2
, . . . , zT

ik1

]T ∈ R
(k1+k2+1)×d .

Let Fi =
{
i, i1, i2, . . . , i k1 , i1, i2, . . . , ik2

}
to be the index set. In the low dimensional

subspace, we expect that the distances between the given sample and the group of
related samples from different classes are as large as possible, while the distances
between the sample and the group of related samples in the same class are as small as
possible. Therefore the part optimization is:

arg min
Zi

k1∑
j=1

‖zi − zi j ‖22 − κ

k2∑
p=1

‖zi − zi p‖22, (2)

where κ is a trade-off parameter to control the impacts of the two parts. Define the
coefficient vector:

ωi =
⎡
⎣

k1︷ ︸︸ ︷
1, 1, ..., 1,

k2︷ ︸︸ ︷−κ,−κ, ...,−κ

⎤
⎦

T

, (3)

then we can obtain the part optimization matrix,
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Li =
[∑k1+k2

j=1 (ωi ) j −ωT
i

−ωi diag (ωi )

]
. (4)

2.2 Whole alignment

Each patch Xi for 1 ≤ i ≤ n has a corresponding low dimensional representation Zi .

To unify all low dimensional patches Zi =
[
zT

i , zT
i1 , zT

i2 , . . . , zT
ik1

, zT
i1
, zT

i2
, . . . , zT

ik1

]T

for 1 ≤ i ≤ n together into a consistent coordinate system, according to the patch
alignment framework, we assume that the coordinate of Zi is selected from the global

coordinate Z = [
zT

1 , zT
2 , . . . , zT

n

]T ∈ R
n×d by a using sample selection matrix Si ∈

R
(k1+k2+1)×n :

Zi = Z Si , (5)

where the selection matrix Si is defined by

(Si )pq

{
1, if q = Fi {p};
0, else.

. (6)

According to Eq. 5, the part optimization defined in Eq. 1 can be rewritten as:

arg min
Z

tr
(

Z T ST
i Li Si Z

)
. (7)

After summing over all part optimizations together, the whole alignment is given by:

arg min
Z

n∑
i=1

tr
(

Z T ST
i Li Si Z

)

= arg min
Z

tr

(
Z T

n∑
i=1

(
ST

i Li Si

)
Z

)

= arg min
Z

tr
(

Z T L Z
)

, (8)

where L is the alignment matrix. It is obtained by an iterative procedure:

L (Fi , Fi )← L (Fi , Fi )+ Li . (9)

It is worth emphasizing that the mapping f : X �→ Z from the high dimensional
space to the low dimensional subspace can be nonlinear and implicit. However, the
linear approximation Z = X W is adopted, i.e., we expect the difference between Z
and X W is minimized. In particular, W = [w1, w2, . . . , wd ] ∈ R

p×d . Therefore, the
objective function is:
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arg min
Z ,W

tr
(

Z T L Z
)
+ β‖Z − X W‖22. (10)

2.3 Classification error minimization

In MEN, although the discriminative information for classification is considered duly
in Eq. 10, the classification error is not directly modeled. To further enhance the per-
formance of MEN for classification problems, it is necessary to provide an explicit
way to represent the classification error minimization in the objective function. The
least square error minimization is usually adopted in binary classification,

arg min
W
‖Y − X W‖22. (11)

However, it is very challenging to apply Eq. 11 to multi-class classification. This
is mainly because the class label vector C cannot be directly utilized as the output
(response) Y .

Recently, the least squares linear discriminant analysis (Ye 2007; Sun et al. 2008)
or LS-LDA for short is proposed and presents the equivalence relationship between
the least square formulation and the conventional linear discriminant analysis (LDA)
for multi-class classification under a mild condition. However, the dimension of the
indicator matrix is the number of classes c. Therefore, LS-LDA can only reduce the
original data to a c−1 dimensional subspace. It is pretty fine when samples are drawn
from homoscedastic Gaussians because the Bayes optimal is achieved iff the dimen-
sion of the subspace is c− 1. However, for practical applications, samples are usually
not sampled from homoscedastic Gaussians and a dozen of experimental evidences
show that we usually achieve the best classification performance in a subspace lower
than c − 1 when c is large.

In this paper, we propose a flexible method to design the indicator matrix Y and the
dimension of the selected subspace is allowed to be any number between 1 and c− 1.
In comparing with LS-LDA, the proposed indicator design method is more flexible
and powerful to gain a lower dimensional representation and higher recognition rate.
Therefore, the new method meets most demands for practical applications, e.g., face
recognition.

The nearest-neighbor (NN) rule is commonly applied in classification problmes. In
NN, it would be perfect when samples in the same class are projected onto the same
point after dimensionality reduction, and this point is the low dimensional represen-
tation of the corresponding class center. Because the within-class distances are zeros
in this situation. Meanwhile the variance of these different projected class centers is
expected to be maximized. Because the between-class distances are maximized in
this situation. As a consequence, the low dimensional projection of class centers can
be conveniently obtained by a weighted principal component analysis (PCA) of class
centers. Thus, PCA of classes is used to maximize the variance between different clas-
ses, then the labels of the samples in the same class are encoded to the low dimensional
projection of their center.
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In detail, suppose the given n samples belong to c classes, and there are ci samples
in the i th class. The i th class center is oi = (1/ci )

∑mi
j=1 x j , wherein x j is the j th

sample in the i th class and is a row vector in R
p. The proportion of the i th class is

pi = ci/n. Therefore, the weighted covariance matrix of class centers is given by:

V =
m∑

i=1

pi o
T
i oi . (12)

Suppose we expect to find a d dimensional subspace. The d eigenvectors associated
with the largest d eigenvalues η = [η1, η2, . . . , ηd ] of V are selected to calculate the
low dimensional representation of the class center oi according to

ôi = oiη. (13)

Therefore, the indicator matrix Y = [y1, y2, . . . , yn]T is given by y j = ôi . On com-
bining Eq. 10 and Eq. 11, we have

arg min
Z ,W
‖Y − X W‖22 + αtr

(
Z T L Z

)
+ β‖Z − X W‖22, (14)

where α and β are trade-off parameters to control the impacts of different parts.

2.4 Elastic net penalty

In MEN, we expect to obtain a sparse projection matrix for explicit data representa-
tion and effective interpretation, i.e., control the number of nonzero elements in each
column of the projection matrix. This nonzero number of the entries of the projection
matrix can be characterized by the �0-norm of the projection matrix. We can impose
it over the objective function defined in Eq. 14 as a penalty. However, it turns to be
an NP-hard problem and thus it is always impossible to be solved in a polynomial
time, because the penalty is nonconvex (Lv and Fan 2009). Therefore, the �1-norm of
the projection matrix, i.e., lasso, is usually adopted as a relaxation of the �0 penalty.
Although lasso is convex, it is difficult to find the solution of the lasso regularized
model. This is because the lasso term is not differentiable. Least angle regression
or LARS for short has been proposed to greedily search the optimal solution of the
lasso penalized linear regression problem. LARS continuously shrinks the particular
coefficients (entries of the projection matrix W) towards zeros, while simultaneously
preserves high prediction accuracy.

However, the lasso penalty has the following two disadvantages: (1) the number of
selected variables is limited by the number of observations and (2) the lasso penalized
model can only selects one variable from a group of correlated ones and does not care
which one is selected. By imposing an �2-norm of the projection matrix on the lasso
penalized problem, similar to the elastic net, we can overcome the aforementioned two
disadvantages and retain the favorable properties of the lasso penalty. In detail, the
�2-norm of the projection matrix is helpful to increase the dimension (and the rank) of

123



350 T. Zhou et al.

the combination of the data matrix and the response. In addition, the combination of
the �1 and �2 of the projection matrix is convex with respect to the projection matrix
and thus the obtained projection matrix has the grouping effect property.

Therefore, to obtain a sparse projection matrix W with the grouping effect, both
�1-norm and �2-norm of the projection matrix are added as penalties to the objective
function defined in Eq. 14 and we obtain the full definition of MEN:

arg min
Z ,W
‖Y − X W‖22 + αtr

(
Z T L Z

)
+ β‖Z − X W‖22 + λ1‖W‖1 + λ2‖W‖22.

(15)

2.5 LARS for MEN

It has been demonstrated that LARS is effective and efficient to find the optimal solu-
tion of the lasso or the elastic net (the combination of �1 and �2) penalized multiple
linear regression. Therefore, it can be directly applied to penalized least squares only.
However, the proposed MEN defined in Eq. 15, at the first glance, is not a penalized
least square.

In this Section, we detail utilizing LARS to obtain the optimal solution of MEN.
Although LARS is designed to solve the penalized multiple linear regression where
the coefficients are a vector rather than a matrix, the column vectors of the projection
matrix W in MEN are independent bases. Therefore, we can calculate them one by
one. In the following analysis, we consider a particular column of W , i.e., wi , and the
corresponding vector yi in the indicator matrix Y . To simplify the notations below, we
keep using W and Y instead of wi and yi .

Because the low dimensional representation Z and the projection matrix W are
independent, we can eliminate Z in the objective function. In detail, Z is obtained by
setting the differentiate of the objective function F with respect to Z as 0, i.e.,

∂ F

∂ Z
= α

(
L + LT

)
Z + 2β (Z − X W ) = 0. (16)

Therefore, we have

Z = β (αL + β I )−1 X W. (17)

According to Eq. 17, we can eliminate Z in the objective function defined in Eq. 15,
and thus we have:

arg min
Z ,W

W T X T AX W − 2W T X T Y + λ1‖W‖1 + λ2‖W‖22. (18)

where this A is an asymmetric matrix computed from L:
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A = α
(
β (αL + β I )−1

)T
L (β (αL + I ))+

β
(
β (αL + β I )−1 − I

)T
(β (αL + β I )− I )+ I. (19)

To apply LARS to obtain the optimal solution of Eq. 18, we expect the first item in it to
be a quadratic form. Because 2X T AX = X T

(
A + AT

)
X and the eigenvalue decom-

position of
(

A + AT
)
/2 can be written as U DU T , the objective function defined in

Eq. 18 without the elastic net penalty can be rewritten as:

W T X T AX W − 2W T X T Y

= W T X T
(

D1/2U T
)T (

D1/2U T
)

X W

−2W T X T
(

D1/2U T
)T

((
D1/2U T

)T
)−1

Y

=
∥∥∥∥∥
((

D1/2U T
)T

)−1

Y −
(

D1/2U T
)

X W

∥∥∥∥∥
2

2

. (20)

The constant item can be ignored in optimization without loss of generality. We further
set

X∗ = (1+ λ2)
−1/2

[ (
D1/2U T

)
X√

λ2 I p×p

]
∈ R

(n+p)×p and (21)

Y ∗ =
[((

D1/2U T
)T
)−1

Y

0p×1

]
∈ R

(n+p)×1 (22)

in Eq. 18, and then we get

arg min
W ∗
‖Y ∗ − X∗W ∗‖22 + λ‖W ∗‖1, (23)

where λ = λ1/ (1+ λ2) and W ∗ = √1+ λ2W .
According to Eq. 23, the LARS algorithm can be applied to obtain the optimal solu-

tion of the proposed MEN. LARS provides an efficient algorithm to solve the lasso
penalized multiple linear regression. Though some other �1 least square algorithms,
e.g., block coordinate descent and fixed-point algorithm presented recently may have
advantages in speed, we choose LARS in in MEN because it satisfies KKT conditions
at each step and thus it can obtain the global solutions on different sparse levels in one
run.

Below we sketch LARS for the transformed MEN defined in Eq. 23 and provide
novel viewpoints to LARS, which are helpful to better understand the proposed MEN.

We begin with a coefficient vector W ∗ (a column in the projection matrix with i th

entry (W ∗)i with all zero entries. A variable (a column vector in X , i.e., a particular
feature) in R

n is most correlated with the objective function is added to the active
set A. Then the corresponding coefficient in W ∗ increases as large as possible until a
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second variable (another column vector in X , i.e., another feature) in R
n has the same

correlation as the first variable. Instead of continuously increasing the coefficient vec-
tor in the direction of the first variable, LARS proceeds on a direction equiangular over
all variables in the active set A until a new variable earns its way into A. To make the
coefficient vector W ∗ becomes K -sparse (at most K nonzero entries), we conduct the
above procedure for K loops. The optimization path direction and the corresponding
path length (step size) in LARS are determined by the correlations, which are the
negative gradient of the objective function defined in Eq. 23 without the lasso penalty,
i.e.,

C = − ∂ F

∂W ∗
= 2

(
X∗

)T (
Y ∗ − X∗W ∗

) = [
c1, c2, . . . , cp

]T
. (24)

The constant 2 can be simply ignored without loss of generality in the following
analysis.

Let A be the active set of “most correlated” variables whose coefficients are non-
zero, while the other variables form an inactive set I . Initially, all the variables are in
inactive set I and thus the corresponding coefficients are all zero.

To make W ∗ K -sparse, we need to conduct the following three steps for K loops.
In the first step, the variable in the inactive set I with the largest correlation is added
to the active set A, i.e.,

Ĉ = max
j

{∣∣ĉ j
∣∣} and A =

{
j : ∣∣ĉ j

∣∣ = Ĉ
}

, (25)

where ĉ j is the current correlation of the j th variable.
In the second step, the direction of the coefficient vector W ∗ is calculated. The cor-

relations of the active variables are required to decrease equally in preferred direction.
In the kth loop, if the direction vector is ω, then the current correlation is given by

Ck =
(
X∗A

)T (
Y ∗ − X∗W ∗k

)

= (
X∗A

)T (
Y ∗ − X∗

(
W ∗k−1 + ρω

))

= Ck−1 + ρ
(
X∗A

)T
X∗AωA, (26)

where X∗A contains all variables in A and each its column is sampled from X∗, Ck−1
is the correlation in the (k− 1)th loop, ρ is a constant that is irrelevant to the direction
computation, ωA stores directions associated with variables in A, and the change of
the correlation at this step is

(
X∗A

)T
X∗AωA. The sign of ωA, i.e., s, is identical to that

of Ck−1, so we can calculate the magnitude of ωA directly and then assign its sign as s.
This X∗AωA is an extended simplex with vertices defined by active variables. We pro-
ject the i th column of X∗, i.e., (X∗)i , onto X∗AωA and thus we get (X∗)T

i X∗AωA.
Because the correlations of the active variables are required to decrease equally in
preferred direction, i.e., (X∗)T

i X∗AωA equals to each other over the index i , the only
possible solution of X∗AωA is the normal vector through the origin in the simplex space.
Therefore, we have
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ωA = s ·
(

X∗TA X∗A
)−1

1A = s · G−1
A 1A, (27)

where G A = X∗TA X∗A is the Gram matrix of X∗A. In LARS (Efron et al. 2004), ωA is
obtained by minimizing the squared distance between the point X∗AωA on the simplex
and the origin, subject to ‖ωA‖1 = 1.

To normalize the change of the correlation X∗TA X∗AωA to a unit vector u A, we need
to update AA and ωA, and thus we obtain a normalized u A, i.e.,

AA = ←
(

1T
AG−1

A 1A

)−1/2
, (28)

ωA ← s · AAG−1
A 1A and (29)

u A ← X∗AωA. (30)

In the third step, we calculate the distance or magnitude of changes ρ. ρ is increased
until the correlation of a particular variable in I is equivalent to the correlations of
active variables, i.e.,

ρ1 = min+
j∈AC

{
Ĉ − ĉ j

AA − a j
,

Ĉ + ĉ j

AA + a j

}
, (31)

where AC is the complement of A, a = X∗TA u A, a j is the j th entry of a, Ĉ is the
largest correlation defined in Eq. 25 and obtained in the first step, and ρ1 is a possible
candidate of ρ mentioned in Eq. 26.

According to LARS, to obtain an identical solution to MEN defined in Eq. 23, the
lasso modification is considered, i.e., the argument of the distance ρ stops increasing
when a coefficient of variables in A is zero, or mathematically,

W ∗Ak = W ∗Ak−1 + ρ2sAωA = 0, (32)

where ρ2 is another possible candidate of ρ defined in Eq. 26. According to Eq. 32,
we can obtain

ρ2 = min+
{−W ∗Ak−1/sAωA

}
. (33)

Therefore, the distance of W ∗, i.e., ρ, is the minimum of ρ1 and ρ2, i.e.,

ρ = min+ {ρ1, ρ2} . (34)

In each loop, one new variable is added to the active set A according to Eq. 25, the
direction and distance of the coefficient vector W ∗ are calculated according to Eq. 30
and Eq. 34. After K loops, W ∗ is K -sparse. According to the elastic net, to eliminate
the double shrinkage, the optimal W should be corrected:

W = √
1+ λ2W ∗. (35)
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2.6 Fast LARS

LARS is inefficient when the size of the training set is large, because the time cost
for calculating the inverse of the Gram matrix G A defined in Eq. 27 is huge. Because
the dimension of this G A is increasing at each of the K loops, according to (Golub
and Van Loan 1996), the inverse of G A can be obtained incrementally, i.e., the inverse
of the Gram matrix

(
G Ak

)−1 in the kth loop can be updated from
(
G Ak−1

)−1 in the
previous loop. Particularly, in the kth loop, a new variable (X)i ∈ R

n is added to the
active set A, and thus we have

G Ak = X∗TAk
X∗Ak
= X T

Ak
X Ak + 2λ2 I

=
[

X T
Ak−1

(X)T
i

] [
X Ak−1 (X)i

]+ 2λ2 I

=
[

X T
Ak−1

X Ak−1 X T
Ak−1

(X)i

(X)T
i X Ak−1 (X)T

i (X)i

]
+ 2λ2 I

=
[

X T
Ak−1

X Ak−1 + 2λ2 I X T
Ak−1

(X)i

(X)T
i X Ak−1 (X)T

i (X)i + 2λ2

]
. (36)

Let A, B, C and D be the blocks of G A, i.e., A = X T
Ak−1

X Ak−1 + 2λ2 I , B =
X T

Ak−1
(X)i , C = (X)T

i X Ak−1 , and D = (X)T
i (X)i + 2λ2. Let SA to be the Schur

complement of A, i.e., SA = D − C A−1 B. According to rules of the block matrix
calculation,

(
G Ak

)−1 is given by:

(
G Ak

)−1 =
[

A−1 + A−1 BS−1
A C A−1 −A−1 BS−1

A
−S−1

A C A−1 S−1
A

]
, (37)

where A−1 = (
G Ak−1

)−1 is the inverse of the Gram matrix obtained in the previous
loop. The time cost for calculating the inverse of the Gram matrix in the kth loop can
be reduced from O(p3) to O(p2 + 5p) (p is the size of active set in the kth loop)
when the inverse of the Gram matrix in the previous loop is available.

We can further accelerate the computation of LARS for MEN by taking the advan-
tage of the sparse structure of X∗. For example, when calculating the equiangular
vector a and the inner product G A, the block matrix calculation can reduce the time
cost as well.

2.7 Algorithm

In this paper, we propose an efficient framework MEN for discriminative dimen-
sionality reduction with sparse projection. Based on the discussion in the above six
subsections, MEN is shown in Algorithm 1.

In MEN, after necessary initializations, we first build patches for all training sam-
ples by calculating Li of each patch in the part optimization according to Eq. 4 in
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Algorithm 1 Manifold Elastic Net (MEN)
Input: Training data matrix X = [x1, x2, . . . , cn ] ∈ R

n×p ;
Class label vector C = [c1, c2, . . . , cn ]T ;
W = [

w1, w2, . . . , wd
] ∈ 0p×d , where d is the dimensions of subspace;

The maximum number of zeros K , large K induces sparser W .
Output: Sparse projection matrix W = [

w1, w2, . . . , wd
] ∈ R

p×d .
Initialize: k := 0.
repeat

Step 1: Optional PCA reconstruction of original data X .
Step 2: Part optimization: build n patches for the n given samples according to definition of

manifold, calculate matrix Li for each patch using Eq. 3 and Eq. 4.
Step 3:Whole alignment: unify the patches in a global coordinate, compute big matrix L

using Eq. 9.
Step 4: Classification error minimization: Calculate the indicator matrix Y using scaled

PCA for class centers using Eq. 13.
Step 5: New data matrix and indicator matrix: Calculate X∗ and Y ∗ from X and Y using

Eq. 21 and Eq. 22.
Step 6: Column by column loops for W ,k := k + 1.
repeat

Update active set: add the variable with largest correlation to A using Eq. 24 and Eq. 25.
Direction calculation using Eq. 29, Eq. 30 and fast LARS Eq. 37.
Distance calculation using Eq. 27, Eq. 33 and Eq. 34.
Update wk using Eq. 35.

until the number of zeros in wk=K.
Step 7: Update projection matrix W by adding wk into W .

until k=d.
return W .

Subsect 2.1. Then these Li matrixes are unified in a global coordinate system into one
matrix L according to Eq. 9 in whole alignment step explained in Subsect 2.2. After-
wards, the indicator matrix Y is computed according to the weighted PCA over class
centers defined in Eq. 13 in Subsect 2.3. A matrix A defined in Eq. 15 in the objective
function can be obtained from L and other parameters. The eigenvalue decomposi-
tion is conducted over

(
A + AT

)
/2 to construct the new data matrix X∗ and the new

indicator matrix Y ∗ according to Eq. 21 and Eq. 22, respectively.
Then the LARS algorithm is applied to calculate a sparse projection matrix. The

direction and distance of each loop are computed according to Eq. 30 and Eq. 34.
The incremental method to obtain the inverse of the Gram matrix defined in Eq. 37
is considered speeding up LARS. This process is conducted several times and the
projection matrix is computed column by column. Finally a sparse projection matrix
is obtained as the output of MEN. This matrix is ready to project a given sample in
R

p to a low dimensional subspace R
d with K -sparse.

There are four parameters, i.e., α, β, λ1 and λ2 in the objective function of MEN,
i.e., Eq. 15 and one parameter κ in the construction of matrix L . In practical algorithm,
we use K and λ2/λ1 to substitute the effects of λ1 and λ2. In these parameters, α is
the weight of manifold regularization, β is the weight of minimization of reconstruc-
tion error, K is the weight of sparsity, λ2/λ1 is the weight of grouping effect and κ

is the weight of discrimination. Though all of these parameters can be obtained by
cross-validation, we usually set these parameters according to their physical mean-
ings in practice. α and β are always be assigned as the same value because the two
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corresponding terms in Eq. 15 are both the second order function of Z . K reveals the
trade-off between sparsity and the training error and thus can be decided both by given
data and application requirement. λ1 and λ2 is also decided by the given data, it should
be large when the features are strongly correlated, and vice versa. κ is usually more
than 1 in classification tasks. In our experiments, we set α = β = 1, λ2/λ1 = 0.3,
K = 0.6p and κ = 3.

MEN is an efficient algorithm with high convergence velocity, because the com-
putation in LARS explained in Subsects. 2.5 and 2.6 is equivalent to the cost of a
least square fit. Given a training set X ∈ R

n×p, to obtain a sparse matrix W ∈ R
p×d

each column of which contains K nonzero elements, d times of LARS are required
in MEN. Most steps in LARS are simple matrix computations. For p 
 n, MEN
requires O(d K 3 + dpK 2) operations.

2.8 Discussions

MEN integrates the merits of both manifold learning and sparse learning via a uni-
fied framework. It is not a direct combination of these two popular learning schemes
but a complementary embedding of both. Through the patch alignment framework,
the local geometry of a given dataset is retained in MEN. The weighted lasso and �2
penalties are added to produce a sparse projection matrix with the grouping effect.
The combined lasso and �2 is also termed as the elastic net. Therefore, we term the
proposed framework as the manifold elastic net. As a consequence, MEN is supe-
rior to existing dimensionality reduction algorithms, because of its powerful variable
selection function and consideration of the intrinsic structure of the dataset.

It has been well demonstrated that LARS is effective and efficient to solve a lasso
regularized least square problem. Therefore, to apply LARS to find the optimal solu-
tion of MEN, it is essential to prove that MEN is equivalent to a lasso regularized least
square problem and LARS converges for optimization. In particular, we prove that
LARS can optimize a general form of the lasso regularized problem, which contains
both MEN and the lasso regularized least square problem as special cases.

Theorem 1 LARS can solve a general form of the lasso regularized problem defined
below:

arg min
β

βT Aβ + βT B + C + t‖β‖1, (38)

where β ∈ R
p×1 and A ∈ R

p×p (could be an asymmetric square matrix), B ∈ R
p×1,

and C and t are constants.

Proof It is equivalent to prove that the problem defined in Eq. 38 is equivalent to a
lasso regularized least square problem.

The objective function defined in Eq. 38 without the lass penalty can be written as:

βT Aβ + βT B + C = βT
(

A + AT

2

)
β + βT B + C, (39)
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where
(

A + AT
)
/2 ∈ R

p×p is a symmetric matrix and its eigenvalue decomposition
is
(

A + AT
)
/2 = U DU T .

Therefore, we have:

βT
(

A + AT

2

)
β + βT B + C

= βT
(

D1/2U T
)T (

D1/2U T
)

β

−2βT
(

D1/2U T
)T

(
−1

2

((
D1/2U T

)T
)−1

B

)
+ C

=
∥∥∥∥∥

(
−1

2

((
D1/2U T

)T
)−1

B

)
−
(

D1/2U T
)

β

∥∥∥∥∥
2

2

+ const. (40)

To simply represent the above objective function, without loss of generality, let

Y = −1

2

((
D1/2U T

)T
)−1

B, X =
(

D1/2U T
)

, (41)

and ignore the constant. Therefore, we can transform the problem defined in Eq. 38 to

arg min
β
‖Y − Xβ‖22 + t‖β‖1, (42)

which is a lasso regularized least square problem. It is not difficult to prove that MEN
is a special case of the problem defined in Eq. 38. Therefore, LARS can be applied to
solve MEN and the problem defined in Eq. 38. ��
Theorem 2 LARS converges in optimizing the problem defined in Eq. 38 in Theorem 1.

Proof Let the objective function defined in Eq. 38 without the lasso penalty be F .
After the kth loop, assume the estimate of the objective function becomes Fk . If F is
smooth in each loop, we have:

Fk − Fk−1

ωi
∈
[
min

{
∂ Fk
∂βi

∣∣∣βi=βk
i
,

∂ Fk
∂βi

∣∣∣βi=βk−1
i

}
,

max
{

∂ Fk
∂βi

∣∣∣βi=βk
i
,

∂ Fk
∂βi

∣∣∣βi=βk−1
i

}]
, (43)

where βi is the i th element in coefficient vector β, and ω is the change of β between
two consecutive loops, i.e., ω = βk − βk−1 = [

ω1, ω2, . . . , ωp
]T .

In LARS for the problem defined in Eq. 38, the sign of ω is the negative gradient
of objective function F on βk−1, i.e.,

sign (ωi ) = sign

(
−∂ Fk

∂βi

∣∣∣βi=βk−1
i

)
. (44)
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In each loop of LARS, when correlation of one active variable becomes zeros,
the length of the coefficient path will stop increasing. Therefore, the sign vector of
correlations will not change in one loop, i.e.,

sign

(
−∂ Fk

∂βi

∣∣∣βi=βk
i

)
=sign

(
−∂ Fk

∂βi

∣∣∣βi=βk−1
i

)
= sign

(
Fk − Fk−1

ωi

)
= −sign (ωi )

According to the analyses, we can obtain the sign of (Fk − Fk−1):

sign (Fk − Fk−1) = −sign (ω) · sign (ω) = −1. (45)

According to the above equation, the objective function F is monotonic. In addition,
F is bounded. Therefore, we can safely draw the conclusion that LARS converges in
optimizing the problem defined in Eq. 38. ��

3 Experiments

In this section, we evaluate the performance of MEN by comparing against six rep-
resentative dimensionality reduction algorithms, i.e., principal component analysis
(PCA), Fisher’s linear discriminant analysis (FLDA), discriminative locality alignment
(DLA) (Zhang et al. 2008, 2009), supervised locality preserving projection (SLPP),
neighborhood preserving embedding (NPE), and sparse principal somponent analysis
(SPCA), on three standard face image databases, i.e., UMIST (Graham and Allinson
1939), FERET (Phillips et al. 2000) and YALE (Belhumeur et al. 1997).

PCA is an unsupervised linear dimensionality reduction algorithm which projects
the data along the direction of maximal variance. FLDA is a supervised linear dimen-
sionality reduction method. SLPP is a supervised modification of the locality preserv-
ing projections, which is a linearization of the Laplacian Eigenmap. NPE is a linear
approximation to the locally linear embedding (LLE). SPCA is a sparse dimensional-
ity reduction algorithm which combines the lasso penalty with PCA to produce sparse
loadings.

Three standard face image datasets, e.g., UMIST, FERET and YALE, are utilized in
this paper to evaluate the proposed MEN for discriminative dimensionality reduction.
There are 565 face images from 20 individuals in the UMIST dataset. The samples
demonstrate variations in race, gender, pose and appearance. The FERET dataset con-
sists of 13, 539 face images from 1, 565 individuals. The images vary in size, gender,
pose, illumination, facial expression and age. We randomly select 100 individuals,
each of which has 7 images from FERET for performance evaluation. The YALE
dataset contains 165 face images of 15 individuals. Lighting conditions, gender, facial
expressions and configurations are different among these images. All images from
these three databases are normalized to 40× 40 pixel arrays with 256 gray levels per
pixel. Figure 1 shows sample images from these three datasets. Each image is reshaped
to a long vector by concatenating its pixel values in a particular order.

Different algorithms follow an equivalent procedure for all face recognition exper-
iments on various datasets. Firstly, the database is randomly divided into two separate
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Fig. 1 Sample face images from the three databases. The first row comes from UMIST; the second row
comes from FERET; and the third row comes from YALE

sets: training set and testing set. Then the training set is used to learn the low dimen-
sional subspace and corresponding projection matrix through given algorithm. After
this, samples in the testing set are projected to a low dimensional subspace via the
projection matrix. Finally, the nearest neighbor classifier is used to recognize testing
samples in the subspace.

We apply PCA to reduce dimensions of original high dimensional face images
before FLDA, DLA, LPP (with supervised setting) and NPE (with supervised set-
ting). For FLDA, we retain n − c dimensions in the PCA projection, where n is the
number of samples and c is the number of classes. We project samples to the PCA
subspace with n − 1 dimensions for DLA, SLPP and NPE.

For UMIST and YALE, we randomly select p = (5, 7) images per individual
for training, while the remaining images are used as testing samples. For FERET,
p = (4, 5) images per individual are selected as training set, and the remaining for
testing. All experiments are repeated five times, and the average recognition rates are
calculated.

The results of these dimensionality reduction algorithms on two settings of FERET
are shown in Fig. 2. These seven algorithms can be divided into 3 groups according to
their performance: PCA and SPCA are at the bottom level, because they are unsuper-
vised and the label information is not considered. PCA is slightly better than SPCA,
because SPCA is designed to approximate PCA but with less information retained to
hold the sparse property. LPP, NPE and LDA are at the middle level. They are much
better than PCA and SPCA because they consider the class label information. LPP and
NPE preserve the local geometry based on the neighborhood information of samples,
while LDA ignores the local geometry. LPP and NPE cannot perform as well as DLA
and MEN because both of them ignore the margin maximization or the inter-class
information. MEN and DLA are at the top level. MEN outperforms DLA because it
reduces the noises by using the elastic net penalty.

Experimental results on UMIST are shown in Fig. 3. MEN outperforms the other six
algorithms consistently. Note the fact that MEN keeps having the highest recognition
rate when the dimension of the selected subspace is low. This verifies the robustness of
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Fig. 2 Recognition Rate vs. Dimension on FERET
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Fig. 3 Recognition Rate vs. Dimension on UMIST

MEN in low dimension situation. In addition, the computational cost is proportional to
the dimension of the selected subspace. Therefore MEN produces better results with
less computational cost than other dimensionality reduction methods.

Figure 4 shows MEN outperforms the other six algorithms on the YALE dataset.
The curves of MEN are smoother than those of the other algorithms. This implicates
that MEN is more stable than the other algorithms. MEN has high recognition rate even
when the training set is small and the dimensions of the selected subspace is low. The
priority of MEN can be attributes to its supervised learning property, consideration of
data manifold structure, feature selection ability brought by sparsity and the grouping
effect. The sparsity of MEN filters out classification irrelevant features, which bring
unnecessary noises for classification. This is effective especially when the number of
classes is much smaller than the number of the original features. Furthermore, the
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Fig. 4 Recognition Rate vs. Dimension on YALE

Table 1 Best recognition rate (%) on three databases

MEN DLA LPP NPE LDA PCA SPCA

FERET 4 90.67 (17) 88.67 (19) 74.00 (17) 74.33 (21) 76.33 (25) 48.00 (54) 45.67 (41)

5 96.50 (30) 88.50 (35) 83.50 (36) 82.00 (19) 84.00 (49) 54.00 (51) 48.50 (58)

UMIST 5 95.89 (17) 94.57 (18) 90.11 (19) 89.68 (19) 88.21 (18) 88.63 (13) 80.63 (19)

7 99.21 (16) 97.62 (19) 95.40 (19) 95.17 (18) 97.24 (14) 93.79 (19) 90.57 (18)

YALE 5 82.78 (13) 79.11 (12) 79.33 (13) 77.11 (14) 82.22 (12) 61.11 (12) 63.33 (13)

7 90.33 (12) 87.00 (12) 85.00 (13) 84.33 (11) 81.67 (11) 66.67 (13) 63.33 (12)

For MEN, DLA, LPP (SLPP), NPE, LDA (FLDA), PCA, SPCA (Sparse PCA), the numbers in the paren-
theses behind the recognition rates are the subspace dimensions. Numbers in the second column denote the
number of training samples per individual

sparse projection matrix brings better interpretation and lower computational cost for
subsequent calculation than dense projection matrices.

Table 1 lists the best recognition rate and the corresponding subspace dimension for
each algorithm in the experiments on the three face image datasets. Sparse dimension-
ality reduction algorithm including MEN and SPCA always arrive their best recogni-
tion rate in lower dimensional subspace than other five algorithms. This is because the
sparsity brought by the lasso penalty is able to select the most significant features. How-
ever, because SPCA does not consider the class label information, it always performs
more poorly than other supervised algorithms. For each algorithm, the dimension of
the best recognition rate is decreasing with the increasing of training samples. This is
because more training samples make the low dimensional representation more stable
and reliable.

Boxplots of the experimental results of these seven dimensionality reduction algo-
rithms on the three face image datasets are shown in Figs. 5, 6 and 7, respectively.
Each boxplot produces a box and whisker plot for each method. The box has lines at
the lower quartile, median, and upper quartile values. Whiskers extend from each end
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Fig. 5 Boxplot of recognition Rate vs. Dimension (from 21 to 30) on FERET with 4 (5) training samples
per person. For every dimension, from left to right, the seven boxes refer to MEN, DLA, LPP, NPE, FLDA,
PCA, and SPCA
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Fig. 6 Boxplot of recognition Rate vs. Dimension (from 10 to 19) on UMIST with 5 (7) training samples
per person. For every dimension, from left to right, the seven boxes refer to MEN, DLA, LPP, NPE, FLDA,
PCA, and SPCA
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Fig. 7 Boxplot of recognition Rate vs. Dimension (from 5 to 14) on YALE with 5 (7) training samples per
person. For every dimension, from left to right, the seven boxes refer to MEN, DLA, LPP, NPE, FLDA,
PCA, and SPCA
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of the box to the adjacent values in the data-by default and the most extreme values
within 1.5 times the interquartile range from the ends of the box.

MEN achieves the most robust recognition rate, because it considers the sparse
property, the local geometry of intra-class samples, and the margin maximization and
classification error minimization of inter-class samples. MEN selects features with the
largest correlation and eliminates the most unstable ones. Manifold learning methods,
such as LPP, DLA and NPE, as well as LDA are more stable than PCA and SPCA
according to these boxplots because they consider the class label information.

Figures 8, 9 and 10 show the columns of the projection matrix of the seven algo-
rithms on the three face image datasets. The low dimensional subspace is spanned by
the column vectors, which is called bases. The bases of PCA are called Eigenfaces
(Turk and Pentland 1991), while the bases of LDA are called Fisherfaces (He et al.
2005b) in previous literatures. Similar methods can be applied to DLA, SLPP, NPE,
SPCA and MEN. The bases of MEN are sparser and have less noise than PCA and
DLA because of its sparsity, and more grouping than SPCA because of its grouping
effect adopted from the �2 penalty. Sparse bases lead to computational efficiency and
good interpretation. According to Figs. 8, 9 and 10, “MEN faces” retain the most dis-
criminative facial features, e.g., eyebrows, eyes, nose, mouth, ears and facial contours,
while leave the other parts blank. “SPCA faces” are sparse but without the grouping
effect, their facial contours and organs are represented by some isolate points. “LPP
faces” and “NPE faces” are very similar in appearances and this fact well explains
that they perform comparably in these datasets. “DLA faces” have better description
of features and less noises than those obtained by LPP, NPE and FLDA.

In each LARS loop of the MEN algorithm, according to the algorithm listed in Algo-
rithm 1, all entries of one column in the MEN projection matrix are zeros initially. They
are sequentially added into the active set according to their importance. The values of
active ones are increased with equal altering correlation. In this process, the �1-norm
of the column vector is augmented. Figure 11 shows the altering tracks of some entries
of the column vector in one LARS loop. We called these tracks “coefficient path” in
LARS. In Fig. 11, every coefficient path starts from zero when the corresponding
variable becomes active, and changes its direction when another variable is added into
the active set. All the paths keep in the directions which make the correlations of their
corresponding variables equally altering. The �1-norm is increasing along the greedy
augment of entries. The coefficient paths proceed along the gradient decent direction
of objective function on the subspace, which is spanned by the active variables.

Figure 12 shows 10 of the 1600 coefficient paths from LAPS loop for the first base
in experiment on FERET dataset. MEN selects ten important variables (facial features)
sequentially here. Each feature, its corresponding coefficient path and the“MEN fac”
when the feature is added into active set are assigned the same color which is different
with the other 9 features. In each “MEN face”, the new added active feature is marked
by a small circle, and all the active features are marked by white crosses. The features
selected by MEN can produce explicit interpretation of the relationship between facial
features and face recognition: feature 1 is the left ear, feature 2 is the top of nose, fea-
ture 3 is on the head contour, feature 4 is the mouth, feature 5 and feature 6 are on
the left eye, feature 7 is the right ear, and feature 8 is the left corner of mouth. These
features are already verified of great importance in face recognition by many other

123



366 T. Zhou et al.

Fig. 8 Plots of first 10 bases obtained from 7 dimensionality reduction algorithms on FERET For each
column, from top to bottom: MEN, DLA, LPP, NPE, FLDA, PCA, and SPCA

Fig. 9 Plots of first 10 bases obtained from 7 dimensionality reduction algorithms on UMIST For each
column, from top to bottom: MEN, DLA, LPP, NPE, FLDA, PCA, and SPCA
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Fig. 10 Plots of first 10 bases obtained from 7 dimensionality reduction algorithms on YALE For each
column, from top to bottom: MEN, DLA, LPP, NPE, FLDA, PCA, and SPCA
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Fig. 11 Entries of one column of projection matrix vs. its �1-norm in one LARS loop of MEN
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Fig. 12 Coefficient paths of 10 entries (features) in one column vector

famous face recognition methods. Moreover, Fig. 12 also shows MEN can group cor-
related features, for example, feature 5 and feature 6 are selected sequentially because
they are both on the left eye. In addition, features which are not very important, such
as feature 9 and feature 10 in Fig. 12, are selected after the selection of the other
more significant features and assigned smaller value than those more important ones.
Therefore, MEN is a powerful algorithm in variable (feature) selection.

4 Conclusion

In this paper, we propose a unifying framework which obtains a sparse projection
matrix for subsequent classification, termed manifold elastic net or MEN for short.
MEN incorporates the advantages of both manifold learning based dimensionality
reduction and sparse learning based dimensionality reduction, but it is not a direct
combination of these two. To obtain a sparse projection matrix, MEN imposes the
elastic net penalty over a loss function that is defined under the patch alignment
framework. The objective function of MEN can be transformed into a lasso penalized
least square problem by using a series of complex linear algebra equivalent trans-
formations, and thus the least angle regression (LARS) can be applied to obtain the
optimal sparse projection matrix.

In MEN, the patch alignment framework is first used to construct local patches of
data and unifies these patches into a global coordinate system. Secondly, the classifica-
tion error is minimized directly via weighted principal component analysis (PCA) over
class centers. Thirdly, to obtain a sparse projection matrix with the grouping effect,
the elastic net penalty is added to the objective function. After a series of equivalent
transformations, MEN can be rewritten as a lasso-type regression. Therefore, LARS
can be applied to solve the problem efficiently. In each LARS loop for MEN optimi-
zation, important variables are added into the active set sequentially according to their
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correlation. All the elements in the active set are altered along a special direction with a
special distance in each step. The special direction and distance keep the correlation of
active elements identical and the largest in a LARS loop. The procedure is conducted
several times to obtain a set of sparse bases because these bases are independent.

MEN enjoys advantages in several aspects: (1) the local geometry of intra-class sam-
ples is well preserved for low dimensional data representation, (2) both the margin max-
imization and the classification error minimization are considered for discriminative
information preservation, (3) the sparsity of the projection matrix of MEN improves
the parsimony in computation, (4) the elastic net penalty reduces the over-fitting prob-
lem, and (5) the projection matrix of MEN can be interpreted psychologically and
physiologically.

Experimental results of face recognition on UMIST, FERET and YALE show that
MEN performs better and more stable than popular dimensionality reduction algo-
rithms, such as the principal component analysis (PCA), Fisher’s linear discriminant
analysis (FLDA), the discriminative locality alignment (DLA), the locality preserving
projections with supervised setting (LPP), the neighborhood preserving embedding
with supervised setting (NPE), and the sparse principal component analysis (SPCA).

There are still many interesting properties of MEN which have not been targeted
and formally proved in this paper. In the future, we will analyze its error bounds under
different situations. Another important problem in MEN is how to choose the optimal
sparsity, so that we can remove most noise and retain most discriminative informa-
tion for subsequent classification. The compressed sensing may be an effective tool
to address the above concern. It is also valuable to replace the lasso penalty with the
�0-norm penalty to further improve MEN with more “accurate sparsity”. The lasso
penalty is a relaxation of �0-norm penalty, and there are alternatives which could per-
form better than the lasso penalty, e.g., the smoothly clipped absolute deviation penalty
(SCAD) (Fan and Li 2001), the reweighted �1 minimization (Candes et al. 2008), the
adaptive lasso (Zou 2006) and the adaptive elastic net (Zou and Zhang 2009). The
advantages of these methods can be adopted in MEN to further enhance the variable
selection ability of MEN, and there is still a long way to go.
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