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ABSTRACT 

Digital's Alpha-based DECchip 21 164 processor was verified 
extensively prior to fabrication of silicon. This simulation-based 
verification effort used implementation-directed, pseudorandom 
excrchsers which were supplemented with implementation- 
specific, hand-generated tests. Special emphasis was placed on 
the tasks of checking for correct operation and functional 
wverage analysis. Coverage analysis shows where testing is 
incomplete, under the assumption that untested logic often 
contains bugs. Correctness checkers are various mechanisms 
(both during and after simulation) that monitor a test to 
detennine if it was successful. This paper details the coverage 
analysis and correctness checking techniques that were used. We 
show how our methodology and its implementation was 
successful, and we discuss the reasons why this methodology 
allowed several minor bugs to escape detection until the f i s t  
prototype systems were available. These bugs were corrected 
before any chips were shipped to customers. 

OVERVIEW 

The DECchip 21164 CPU chip is a quad-issue, super-scalar 
implementation of the Alpha architecture which required a 
rigorlms verification effort to ensure that there were no logical 
bugs. World-class performance dictated the use of many 
advanced micro-architectural features, such as a virtual 
instniction cache with seven-bit Address Space Numbers, a 
dual-read-ported data cache, out-of-order instruction completion, 
on-chip three-way set-associative write-back second-level cache, 
module-level cache control, branch prediction, demand-paged 
mem'ory management unit, write buffer unit, miss-address file 
unit, and a complicated Bus Interface Unit with support for 
various CPU-system clock ratios, system configurations, and 
module-level cache parameters. [ 11 

Increasingly, functional verification efforts are relying on 
pseudorandom test generation to improve the quality of 
functional coverage. These techniques have been in use at 
Digil.al for more than seven years and are also used elsewhere in 
the industry and in academia.[2-51 However, the heavy use of 
pseudorandom testing increases the need for new ways of 
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detennining whether the test passed or failed, and new ways of 
determining exactly what portion of the design the test actually 
exercised. This paper discusses the correctness checking and 
coverage analysis mechanisms used by the DECchip 21164 
verification team 1t0 ensure adequate functional coverage using 
pseudorandom test generatois. 

VERIFICATION PROCESS 

All verification was done using the process flow depicted in 
Figure 1. The simulation environment consisted of a register 
transfer level (RTI,) representation of the DECchip 21164 itself, 
plus a behavioral system model which provided a memory 
interface and could also mimic the behavior of other processors 
or I/O devices. This allowed the verification tests to be actual 
Alpha executable code, instead of needing to apply ones and 
zeros to the pins of the chip. The system model conformed to 
the constraints of the Alpha architecture, and was configurable 
to allow every possible system configuration and mode setting of 
the DECchip 21164 to be exercised. 

The majority of sthulus applied to test the DECchip 21164 was 
created through pseudorandom methods. Pseudorandom testing 
offers several advantages in the verification of increasingly 
complex chips. These include producing test cases that would be 
time-consuming to generate by hand, and providing the ability to 
generate multiple simultaneous events that would be extremely 
difficult to think; of explicitly. Six different pseudorandom 
exercisers were used on the DECchip 21 164 project. One was a 
general-purpose exerciser that provided coverage at an 
architectural leve'l. Each of the other five targeted a specific 
section of the chip in a pseudorandom way. 

Test stimulus (eitlher random or focused) was applied to both the 
Design Under Test and to a reference model. Many different 
types of mechanisms were used to determine whether the test 
stimulus executed correctly. These included comparing test 
results between the Design Under Test and the reference model 
and enhancing the RTL, model with a wide variety of assertion 
checkers that continuously monitored the model while a test was 
simulating. Using coverage analysis to estimate how much of 
the design had been verified was also an important part of the 
verification flow. Several different techniques for coverage 
analysis were used. When analyzing the coverage of a particular 
section of the design, any or all of these techniques were used, as 
appropriate for that section. The following sections describe the 
correctness checking and coverage analysis pieces of the 
verification flow. 
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Figure 1: Verification Flow 

CORRECTNESS CHECKING 

The success or failure of traditional hand-generated focused tests 
is typically determined by the test itself. The test checks its own 
answer against a set of pre-determined expected results. 

However, with pseudorandom test generation, this self-checking 
approach did not work; it is very difficult to create a self- 
checking pseudorandom test. Instead, several alternate 
mechanisms were used for checking whether the model behaved 
correctly. The effectiveness of any specific checking mechanism 
depended on the type of test being run and the type of bug that 
might occur. Using as many different checking mechanisms as 
possible, we were able to detect a broad range of bugs. One 
specific goal was to detect a bug as close as possible to the 
place where the fault actually occurred, in order to simplifjr the 
debugging process. 

Reference Model Comparisons 

When pseudorandom tests are used, the state of the machine 
upon test completion is not known, thus it is hard to determine if 
the test executed successfully. For these cases, we relied heavily 
on comparisons against a reference model. Both the reference 
model and the design-under-test supported a full system 
environment, including not only the CPU chip, but a memory 

interface and U0 space as well. This allowed us to execute the 
same test stimulus on both models, and expect the same results. 

Ideally, a reference model needs to be fast, correct, and represent 
all the details of the design. The reference we chose 
emphasized speed and correctness over detail. It represented a 
high-level abstraction of the Alpha architecture, written in the C 
language. The model represented all features visible to software, 
including the full Alpha instruction set and support for both 
memory and 1/0 space. It did not represent intemal design 
details. In particular, it did not represent pipeline stages, 
parallel functional units, or caches. Representing a higher 
abstraction level allowed us to produce a reference model that 
contained very few bugs and was able to execute over 100 times 
the speed of the detailed RTL model. 

The reference model enabled several types of correctness checks. 
The simplest of these was a~ end-of-test state comparison. When 
a pseudorandom test completed, the contents of all memory 
locations that were accessed during the test, as well as the final 
state of the integer and floating-point register files, were dumped 
to a file. These dump files were compared and any differences 
were flagged for further investigation. 

This end-state comparison was of limited usefulness for long 
tests. Intermediate results may be overwritten and problems with 
them may never be known. Even if an error is detected, the 
source of the error may be far away from the detection point at 
the end of the test. Comparing results between the two models at 
intermediate points in a test execution, and not waiting until the 
test completes, can solve both of these problems. However, since 
our reference model did not exactly match the timing of the 
design-under-test, these intermediate comparisons were not 
easily implemented. 

Both models accurately represented the Alpha architecture, and 
d y  valid architectural comparisons could be made. The 
additional comparisons we made were checking the PC flow and 
writes to the integer and floating-point registers. The PC flow 
immediately signaled any problem with control-flow instructions, 
while the register write comparison caught problems with the 
data manipulation instructions. In addition to checking internal 
state, the memory image was also compared at intermediate 
points during the test execution. This was complicated by the 
high level of buffering in the memory subsystem and the on-chip 
write-back cache of the DECchip 21164. Comparing 
intermediate memory required monitoring the state of all the 
intemal queues and constructing a consistent memory image that 
could be compared with the reference model. 

The Alpha architecture allows for the generation of unpredictable 
values under certain circumstances. Since the reference model 
was not an exact copy of the design-under-test, it could produce a 
different unpredictable value. To complicate this, unpredictable 
values could propagate to other registers, making comparison 
against the reference machine difficult. For example, when an 
arithmetic trap occurs, the destination register of the instruction 
which caused the trap may have an unpredictable value. To 
complicate this further, arithmetic traps are imprecise, meaning 
they might not be reported with the exact PC that caused them. 
Normally, certain software conventions would be followed to 
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contml these aspects of the architecture. To achieve the full 
benefit from pseudorandom testing, however, no restrictions 
were placed on which registers or instruction sequences could be 
used. Instead, an elaborate method was devised for tracking 
which registers were unpredictable at any given time. This 
infomation was then used to filter allowable mismatches 
between the two models. 

Assertion Checkers 

Assertion checkers are segments of code added to a model to 
check that various properties or rules of design behavior are not 
violated. Examples of simple assertion checkers include 
watching for a transition to an illegal state in a state machine, or 
watching for the select lines of a multiplexer to choose an unused 
inpul.. More complex assertion checkers require explicit 
knowledge about illegal sequences. For example, the system bus 
had ii complicated set of checkers attached to it that checked for 
violations of the bus protocol. In all cases, the assertion checkers 
can only detect a problem after the test has stimulated a 
partilcular condition. Their primary purpose is to increase 
visibility into what a test is doing. The DECchip 21164 
verification effort used two categories of assertion checkers. The 
first was built-in checkers, that were part of thc RTL model 
itself. The second was post-processing checkers that evaluated 
trace files representing various signal transitions. 

The RTL model of the DECchip 21164 was augmented with a 
wide. variety of built-in checkers. The team continually added 
new checkers to the model, since this was a very effective bug- 
finding mechanism. The advantage of built-in checkers is that 
they are always active and monitoring behavior for every cycle 
that is simulated. If one person on the team adds an assertion 
checker to the model, everyone else who uses that model will be 
using that assertion checker as well. Thus, for a large team, the 
built-in assertion checkers provided a huge amount of added 
leverage. Many times, an assertion checker caught a bug while 
the model was being run by someone focusing on a totally 
different area from which the original writer of the assertion 
checker was focusing on. An additional benefit of built-in 
assertion checkers was their ability to detect a bug very quickly 
and halt the simulation immediately. This simplified the 
debugging effort immensely. 

The disadvantage of built-in assertion checkers is that they slow 
down the simulation speed. For the majority of checkers, this 
slow down is negligible, and their bug-finding payback is well 
worlh the impact. However, in cases of particularly complex 
checkers, the performance impact was unacceptable. In these 
cases, the checkers were implemented separate from the model, 
as a post-processing step. While the model is simulating, the only 
impact is the additional U0 due to tracing the state of internal 
signals and writing them out to disk. The specific signals to 
tract: were selected based on the particular postprocessing to be 
done. After simulation, an optional, per-test post-processing step 
would read the signal trace data and determine whether any of 
the various assertions were violated. In addition to not 
impacting simulation performance, it was easier to create more 
complicated assertion checkers using the post-processing 
technique. The signal trace file provided infomation about the 
future and past state of desired signals. This simplified creating 

assertion checkers, without having to explicitly provide history 
queues and other complicated data structures inside the model. 
One example involved representing the behavior of a large 
section of the design as a single, complicated state machine. The 
behavior of this state machine could be compared with the I/O 
behavior of the actual design section. Another example was the 
representation of the branch-prediction algorithm in a more 
abstract form than the actual RTL model. The behavior of the 
abstract algorithm was compared with the behavior of the model 
itself. 

A specialized foim of built-in assertion checker is a cache 
coherency checker. The DECchip 21164 system supported three 
levels of caching; a first-level data cache, a second-level, on-chip, 
combined instructioddata secondary cache, and a third level, off- 
chip combined backup cache. Each cache was defined to be a 
subset of the next cache in the hierarchy, complicated by the 
second-level and third-level caches following a write-back 
protocol. At regular intervals during a simulation, the cache 
coherency checken would be activated, to ensure that the 
coherency rules were not being violated. This checker alone 
caught a significamt percentage of all bugs. 

Self-checking Tests 

The DECchip 21164 verification effort did use some focused, 
hand-crafted tests which checked their own result against a pre- 
stored expected result. This was useful for the areas in which 
the reference maldel did not accurately match the design-under- 
test. In particular, performance-enhancing features like bypasses 
and multiple-issue logic were verified via self-checking tests. 
As mentioned above, these performance-related features were not 
included in the reference model in order to keep it simple. 
Using the cycle counter built into the DECchip 21164, exact 
timings could be checked and verified against the expected 
timings. Self-checking tests were also useful for running in an 
environment where the reference model was not available. For 
example, when testing prototype hardware, the self-checking 
focused tests were re-used as diagnostic tests. 

When run on the simulation model, though, even a self-checking 
test used the reference model and assertion check mechanisms. 
These allowed many more bugs to be detected than the self- 
check itself could detect. 

Figure 2 shows the various detection mechanisms used by the 
DECchip 21 164 verification effort. As can be seen, the assertion 
checkers were the most effective techniques. 

COVERAGE ANALYSIS 

The use of pseudlorandom testing was highly effective and more 
productive than creating hand-generated tests. With the 
correctness checking problem solved, the next major issue was 
determining what the tests were actually doing. We were using 
targeted-random testing, so we knew the general areas that the 
tests were exercising, but we needed more detail on what was 
being covered. To help with this, extensive coverage analysis 
was done, mostly as a post-processing step. 
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During the simulation of the RTL model, a trace of the behavior 
of various signals was written to disk, in the same way we 
obtained trace files for assertion checkers. In many cases, 
coverage analysis and post-processing assertion checking were 
combined into one step. 

I 
Assertion Checkers 34% 

Cache Coherency Checkers 9% 

Reference Model Comparison 
Register File Trace Compare 8% 
Memory State Compare 7% 
End-of-Run State Compare 6% 
PC Trace Compare 4% 

Self-checking Test 11% I 
Manual Inspection of 
Simulation Output 

7% 

Simulation hang 6% 

Other 8% 

Figure 2: Effectiveness of Bug Detection Mechanisms 

Several different coverage analysis techniques were used. For 
standard types of coverage checking, a library of analysis 
routines automated the process significantly. One example 
where this was possible involved analyzing the coverage of state 
machines. 

State Transition Analysis 

Some state machines in the DECchip 21 164 were represented as 
PLA structures. For this case, the PLA representation was used 
to determine the valid combinations of events that could occur, 
referred to as a minterm. A minterm consisted of a current state 
and all active input signals. The following shows an excerpt of a 
what PLA definition might look like: 

csjdle,  bus-req-h J ns-bus-req; 
cs-bus-req, bus-ack-h 1 ns-bus-ack; 
cs-bus-req, Abus-ack-h 1 ns-bus-req, bus-req-h; 

The tool used to convert the PLA representation to a coverage 
analysis test was limited in that it would only check the number 
of times a minterm occurred. This limitation was augmented by 
other checking mechanisms such as assertion checkers in the 
model that assured that only a single minterm was asserted at 
one time. 

State transition analysis was also used in areas where the logic 
was not explicitly implemented as a state machine, but its 
functionality could be represented by an abstract model of a state 
machine. This abstract model could be checked for state 
transition coverage. One area where this concept was applied 
was in the system and cache interface logic. Various pieces of 
logic interacted together when processing hits and misses on the 
Victim Address File (VAF). Rather than performing coverage 
analysis on each section of logic individually, the choice was 
made to treat this logic as a single entity and model it as an 
abstract representation, 

Coverage analysis was performed on the abstract model to 
determine the events that our pseudorandom tests were covering 
and areas where coverage was inadequate. Since the system and 
cache interface of the DECchip 21164 is highly programmable, 
this section of logic was particularly difficult to cover fully. By 
performing this extensive coverage analysis, we understood the 
areas that were not well tested, and could target the most 
important of these for additional testing. 

A smaller example of this was an analysis of the state of internal 
cache blocks vs. commands to the cache. This analysis resulted 
in the table shown in figure 3: 

Cache Block State 

Commands 

NOP 
Flti Pt. Load 
Invalidate 
Set Shared 
Read 
Rd Duty 
Rd Dirty Inv 

V = valid S = shared D = Dirty 
. = event cannot occur 
* = more than 100 events of this type were seen 

Figure 3: Example of a Coverage Analysis Matrix 

When this table was generated, an error message was also 
generated because a Set Shared should not have been issued to a 
block with VIS status and 4 occurrences of this type were seen. 
This triggered us to investigate why this illegal combination was 
happening and a design bug was found. 

In the case above, cross-products were based on 2 events 
occurring with respect to time. However, in the analyses for the 
DECchip 21164, there were often cases where checking was 
needed for many events at the same time. For example, the 
internal trapping logic of the chip was checked by creating a 
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coverage checking test to see which combinations of traps were 
being generated at the same time. By looking at the number of 
times certain traps occurred within the same window (time 
proximity) of other traps it could be determined whether the 
testing of the trap logic was sufficient. 

When checking coverage on events that can all occur in the same 
time window, the question raised is "what is enough?" 
Obviously, for the trap logic case, the f i s t  level of having each 
trap asserted individually was needed. Next would be having 
each trap asserted with every other trap for the second-level 
cross-product. But what about the third level where all 
combinations of any three traps occur? Is this complexity 
newled? Depending on the number of traps, this number could 
be small or very large. For the DECchip 21164, our goal was to 
attain good 1st and 2nd level coverage. Additional levels may 
have been analyzed to determine what Combinations were being 
generated but complete multi-level coverage was not a goal. 

Sequence Checking 

Anclther way that signal traces were utilized was to look for 
sequences of events in a particular window of time. Post 
processing tests could be created to look for any combination of 
events be they state transitions or single signal assertions. Bus 
interfaces, interrupt assertions, traps and seemingly unrelated 
events are particularly interesting to look at using this method. 

On the DECchip 21164, event sequence checking was used to 
ensure that the transactor, stimulating the system bus, was fully 
randomizing events. For example, using the DECchip 21164, 
systems can acknowledge command transactions with variable 
timing. Events were described to check that the CACK signal 
was being asserted at various times. Figure was produced from 
the post processing traces: 

CAlCK at 1 CLK 
CAlCK at 2 CLK 
CAlCK at 3 CLK 
CkCK at 4 CLK 
CACK at 5 CLK 
CACK at 6 CLK 
CACK at 7 CLK 
CACK at 8 CLK 
CACK at 9 CLK 
CACK at >9 CLK 

Total 

CACK Intervals 

Total 

0 
2 

189 
27 1 
234 
199 
199 
122 
90 

266 

...................... 

* 

Figure 4: Example of Sequence Chec..ing Analysis 

From this output, it was immediately seen that CACK at 1 CLK 
was an event that was not occurring. Further analysis of why this 
was not happening triggered the team to choose parameter 
settings for the pseudorandom methods that would stimulate this 
event. 

Case Analysis 

While a model was executing, information was stored about the 
occurrence of sirriple events. For example, a record was kept on 
the number of times that four instructions issued simultaneously, 
the number of times the translation buffers filled up, or the 
number of times, stalls occurred. Since the configuration in 
which the chip operated was randomized, a record was also kept 
about the configuration information such as the Bcache size and 
speed selected, the system interface options and timing, etc. At 
the end of every model run, this information was stored to a 
database which allowed collecting statistics across multiple runs. 

Case analysis was used on the DECchip 21164 in a similar way 
to sequence checking. The occurrence of an event could be 
determined by looking at the entries in the database. Matrices 
could be created to show which combinations of events had or 
had not occurred over the course of all the simulations. For 
example, on the DECchip 21164 the CPU/SYS clock ratio and 
the secondary cache block size were programmable. Figure 5 is 
an example showing whether or not all combinations of these 
events occurred. 

CPU/Sys 3 
Clock 4 
Ratio 5 

6 
7 
8 
9 

10 
11 
12 
13 
14 
15 

Secondary Cache Size 
(in bytes) 

32 64 
I .................... 
I O  13784 
I O  98341 
I O  14387 
I650 28374 
1787 71843 
1324 32847 
192992 17834 
12834 39843 
I12833 18745 
I18324 18763 
I1433 81736 
12 13498 
I O  18327 

Figure 5: Example of Coverage Case Analysis 

A table like the above, would have indicated that there was a 
nice distribution of CPU/Sys clock ratios vs. block size when the 
block size was 64. However, for the 32 byte block size, systems 
with a CPU/Sys clock ratio or 3, 4, 5,  and 15 were not being 
chosen. A table like this would have triggered the verification 
engineer to look at the scripts that chose these parameters to find 
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out why these ratios were not being chosen correctly. Usually, 
when scripts would be changed to exercise previously 
unexercised events, additional bugs would be uncovered. 

Toggle Coverage 

The simulator used in the DECchip 21 164 effort was capable of 
giving a list of signals that were or were not toggling for a given 
simulation. A toggled signal was one in which a transition from 
a 0-logic level to a 1-logic level or a 1-logic level to a 0-logic 
level was detected. Toggle coverage could indicate whether 
signals were being wiggled, but it did not give a good indication 
of whether the logic in that section was actually being 
functionally used. 

We utilized toggle coverage only at a gross level on the DECchip 
21 164. Toggle coverage was checked for various sections within 
the chip to determine whether or not major areas of the chip were 
being stimulated. Lists of signals that did not toggle were 
checked to see whether any patterns emerged or major areas of 
functionality were not being covered. This sometimes pointed 
out areas that needed to be stimulated further. 

Fault Simulation for Functional Coverage 

Fault simulation was not used for functional verification of the 
DECchip 21164. Fault simulation is very compute intensive, 
and it targets faults introduced during the manufacturing 
process, not bugs introduced during the design process. The 
typical stuck-at fault model is not a useful model of design bugs. 
For these reasons, we did not use fault simulation during the 
verification phase of the project. 

ESCAPES 

Using the above techniques, the DECchip 21 164 verification 
effort was highly successful. First-pass silicon booted the 
operating system and ran extensive diagnostics and user 
applications. Even so, we discovered several bugs that escaped 
our efforts to find them. Examining some of these shows areas 
where improvements are necessary. 

Three bugs were related to bypass mechanisms, where the 
normal data flow was skipped under very specific timing 
conditions. Although the three bypasses were unrelated to each 
other, and in different sections of the chip, it does indicate that 
our coverage of these bypass conditions was not sufficient. Had 
we specifically looked for bypass-related coverage, we would 
have noticed this. To complicate matters, one of these bugs 
existed only in 32-byte cache mode and B-cache speed 
configurations of 4, 5 ,  and 6. This indicates that multi-level 
event coverage is necessary for finding these verification holes. 

CONCLUSIONS 

Pseudorandom test generation for design verification has 
significant advantages over hand-generated focused tests. To 
realize its full potential, though, the issues of correctness 
checking and coverage analysis must be addressed. The 
DECchip 21 164 verification effort developed many different 
techniques for addressing these issues. Selecting the appropriate 
technique to use for specific areas of the design required good 
engineering judgment. The verification effort was highly 
successful, and many bugs were discovered prior to first-pass 
silicon. Nevertheless, there is still room for improvement in the 
verification methodology. 
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cycle. This was the type of thing we targeted assertion checkers 
at, and in fact an assertion checker existed to look for this. 
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thus allowing the bug to evade detection. 
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