
23.5

I'm Done Simulating; Now What'?
Verification Coverage Analysis and Correctness Checking of the DECchip 21164 Alpha microprocessor

Michael Kantrowitz Lisa M. Noack

Digital Equipment Corporation
77 Reed Rd

Hudson MA 01749

ABSTRACT

Digital's Alpha-based DECchip 21 164 processor was verified
extensively prior to fabrication of silicon. This simulation-based
verification effort used implementation-directed, pseudorandom
excrchsers which were supplemented with implementation-
specific, hand-generated tests. Special emphasis was placed on
the tasks of checking for correct operation and functional
wverage analysis. Coverage analysis shows where testing is
incomplete, under the assumption that untested logic often
contains bugs. Correctness checkers are various mechanisms
(both during and after simulation) that monitor a test to
detennine if it was successful. This paper details the coverage
analysis and correctness checking techniques that were used. We
show how our methodology and its implementation was
successful, and we discuss the reasons why this methodology
allowed several minor bugs to escape detection until the f i s t
prototype systems were available. These bugs were corrected
before any chips were shipped to customers.

OVERVIEW

The DECchip 21164 CPU chip is a quad-issue, super-scalar
implementation of the Alpha architecture which required a
rigorlms verification effort to ensure that there were no logical
bugs. World-class performance dictated the use of many
advanced micro-architectural features, such as a virtual
instniction cache with seven-bit Address Space Numbers, a
dual-read-ported data cache, out-of-order instruction completion,
on-chip three-way set-associative write-back second-level cache,
module-level cache control, branch prediction, demand-paged
mem'ory management unit, write buffer unit, miss-address file
unit, and a complicated Bus Interface Unit with support for
various CPU-system clock ratios, system configurations, and
module-level cache parameters. [11

Increasingly, functional verification efforts are relying on
pseudorandom test generation to improve the quality of
functional coverage. These techniques have been in use at
Digil.al for more than seven years and are also used elsewhere in
the industry and in academia.[2-51 However, the heavy use of
pseudorandom testing increases the need for new ways of

3 r d Design Automation Conference@
Permission to make digitauhard copy of all or part of this work for personal or class-
room use is granted without fee provided that copies are not made or distributed for
profit ior commercial advantage, the copyright notice, the title of the publication and
its dab: appear, and notice is given that copying is by permission of ACM, Inc. To
copy otherwise, to republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.
DAC 96 - 06/96 Las Vegas, NV, USA
01996 ACM 0-89791-779-0/96..$3.50

detennining whether the test passed or failed, and new ways of
determining exactly what portion of the design the test actually
exercised. This paper discusses the correctness checking and
coverage analysis mechanisms used by the DECchip 21164
verification team 1t0 ensure adequate functional coverage using
pseudorandom test generatois.

VERIFICATION PROCESS

All verification was done using the process flow depicted in
Figure 1. The simulation environment consisted of a register
transfer level (RTI,) representation of the DECchip 21164 itself,
plus a behavioral system model which provided a memory
interface and could also mimic the behavior of other processors
or I/O devices. This allowed the verification tests to be actual
Alpha executable code, instead of needing to apply ones and
zeros to the pins of the chip. The system model conformed to
the constraints of the Alpha architecture, and was configurable
to allow every possible system configuration and mode setting of
the DECchip 21164 to be exercised.

The majority of sthulus applied to test the DECchip 21164 was
created through pseudorandom methods. Pseudorandom testing
offers several advantages in the verification of increasingly
complex chips. These include producing test cases that would be
time-consuming to generate by hand, and providing the ability to
generate multiple simultaneous events that would be extremely
difficult to think; of explicitly. Six different pseudorandom
exercisers were used on the DECchip 21 164 project. One was a
general-purpose exerciser that provided coverage at an
architectural leve'l. Each of the other five targeted a specific
section of the chip in a pseudorandom way.

Test stimulus (eitlher random or focused) was applied to both the
Design Under Test and to a reference model. Many different
types of mechanisms were used to determine whether the test
stimulus executed correctly. These included comparing test
results between the Design Under Test and the reference model
and enhancing the RTL, model with a wide variety of assertion
checkers that continuously monitored the model while a test was
simulating. Using coverage analysis to estimate how much of
the design had been verified was also an important part of the
verification flow. Several different techniques for coverage
analysis were used. When analyzing the coverage of a particular
section of the design, any or all of these techniques were used, as
appropriate for that section. The following sections describe the
correctness checking and coverage analysis pieces of the
verification flow.

325

PseudoRandom Self-checking
Focused Test Test Stimulus r

Model
Simulation

1

ICheckers 1

Traces
Reference

Comparisons

Pnaiysis Analysis

Failure Model .---

I I I I I

i
Success

Figure 1: Verification Flow

CORRECTNESS CHECKING

The success or failure of traditional hand-generated focused tests
is typically determined by the test itself. The test checks its own
answer against a set of pre-determined expected results.

However, with pseudorandom test generation, this self-checking
approach did not work; it is very difficult to create a self-
checking pseudorandom test. Instead, several alternate
mechanisms were used for checking whether the model behaved
correctly. The effectiveness of any specific checking mechanism
depended on the type of test being run and the type of bug that
might occur. Using as many different checking mechanisms as
possible, we were able to detect a broad range of bugs. One
specific goal was to detect a bug as close as possible to the
place where the fault actually occurred, in order to simplifjr the
debugging process.

Reference Model Comparisons

When pseudorandom tests are used, the state of the machine
upon test completion is not known, thus it is hard to determine if
the test executed successfully. For these cases, we relied heavily
on comparisons against a reference model. Both the reference
model and the design-under-test supported a full system
environment, including not only the CPU chip, but a memory

interface and U0 space as well. This allowed us to execute the
same test stimulus on both models, and expect the same results.

Ideally, a reference model needs to be fast, correct, and represent
all the details of the design. The reference we chose
emphasized speed and correctness over detail. It represented a
high-level abstraction of the Alpha architecture, written in the C
language. The model represented all features visible to software,
including the full Alpha instruction set and support for both
memory and 1/0 space. It did not represent intemal design
details. In particular, it did not represent pipeline stages,
parallel functional units, or caches. Representing a higher
abstraction level allowed us to produce a reference model that
contained very few bugs and was able to execute over 100 times
the speed of the detailed RTL model.

The reference model enabled several types of correctness checks.
The simplest of these was a~ end-of-test state comparison. When
a pseudorandom test completed, the contents of all memory
locations that were accessed during the test, as well as the final
state of the integer and floating-point register files, were dumped
to a file. These dump files were compared and any differences
were flagged for further investigation.

This end-state comparison was of limited usefulness for long
tests. Intermediate results may be overwritten and problems with
them may never be known. Even if an error is detected, the
source of the error may be far away from the detection point at
the end of the test. Comparing results between the two models at
intermediate points in a test execution, and not waiting until the
test completes, can solve both of these problems. However, since
our reference model did not exactly match the timing of the
design-under-test, these intermediate comparisons were not
easily implemented.

Both models accurately represented the Alpha architecture, and
d y valid architectural comparisons could be made. The
additional comparisons we made were checking the PC flow and
writes to the integer and floating-point registers. The PC flow
immediately signaled any problem with control-flow instructions,
while the register write comparison caught problems with the
data manipulation instructions. In addition to checking internal
state, the memory image was also compared at intermediate
points during the test execution. This was complicated by the
high level of buffering in the memory subsystem and the on-chip
write-back cache of the DECchip 21164. Comparing
intermediate memory required monitoring the state of all the
intemal queues and constructing a consistent memory image that
could be compared with the reference model.

The Alpha architecture allows for the generation of unpredictable
values under certain circumstances. Since the reference model
was not an exact copy of the design-under-test, it could produce a
different unpredictable value. To complicate this, unpredictable
values could propagate to other registers, making comparison
against the reference machine difficult. For example, when an
arithmetic trap occurs, the destination register of the instruction
which caused the trap may have an unpredictable value. To
complicate this further, arithmetic traps are imprecise, meaning
they might not be reported with the exact PC that caused them.
Normally, certain software conventions would be followed to

326

contml these aspects of the architecture. To achieve the full
benefit from pseudorandom testing, however, no restrictions
were placed on which registers or instruction sequences could be
used. Instead, an elaborate method was devised for tracking
which registers were unpredictable at any given time. This
infomation was then used to filter allowable mismatches
between the two models.

Assertion Checkers

Assertion checkers are segments of code added to a model to
check that various properties or rules of design behavior are not
violated. Examples of simple assertion checkers include
watching for a transition to an illegal state in a state machine, or
watching for the select lines of a multiplexer to choose an unused
inpul.. More complex assertion checkers require explicit
knowledge about illegal sequences. For example, the system bus
had ii complicated set of checkers attached to it that checked for
violations of the bus protocol. In all cases, the assertion checkers
can only detect a problem after the test has stimulated a
partilcular condition. Their primary purpose is to increase
visibility into what a test is doing. The DECchip 21164
verification effort used two categories of assertion checkers. The
first was built-in checkers, that were part of thc RTL model
itself. The second was post-processing checkers that evaluated
trace files representing various signal transitions.

The RTL model of the DECchip 21164 was augmented with a
wide. variety of built-in checkers. The team continually added
new checkers to the model, since this was a very effective bug-
finding mechanism. The advantage of built-in checkers is that
they are always active and monitoring behavior for every cycle
that is simulated. If one person on the team adds an assertion
checker to the model, everyone else who uses that model will be
using that assertion checker as well. Thus, for a large team, the
built-in assertion checkers provided a huge amount of added
leverage. Many times, an assertion checker caught a bug while
the model was being run by someone focusing on a totally
different area from which the original writer of the assertion
checker was focusing on. An additional benefit of built-in
assertion checkers was their ability to detect a bug very quickly
and halt the simulation immediately. This simplified the
debugging effort immensely.

The disadvantage of built-in assertion checkers is that they slow
down the simulation speed. For the majority of checkers, this
slow down is negligible, and their bug-finding payback is well
worlh the impact. However, in cases of particularly complex
checkers, the performance impact was unacceptable. In these
cases, the checkers were implemented separate from the model,
as a post-processing step. While the model is simulating, the only
impact is the additional U0 due to tracing the state of internal
signals and writing them out to disk. The specific signals to
tract: were selected based on the particular postprocessing to be
done. After simulation, an optional, per-test post-processing step
would read the signal trace data and determine whether any of
the various assertions were violated. In addition to not
impacting simulation performance, it was easier to create more
complicated assertion checkers using the post-processing
technique. The signal trace file provided infomation about the
future and past state of desired signals. This simplified creating

assertion checkers, without having to explicitly provide history
queues and other complicated data structures inside the model.
One example involved representing the behavior of a large
section of the design as a single, complicated state machine. The
behavior of this state machine could be compared with the I/O
behavior of the actual design section. Another example was the
representation of the branch-prediction algorithm in a more
abstract form than the actual RTL model. The behavior of the
abstract algorithm was compared with the behavior of the model
itself.

A specialized foim of built-in assertion checker is a cache
coherency checker. The DECchip 21164 system supported three
levels of caching; a first-level data cache, a second-level, on-chip,
combined instructioddata secondary cache, and a third level, off-
chip combined backup cache. Each cache was defined to be a
subset of the next cache in the hierarchy, complicated by the
second-level and third-level caches following a write-back
protocol. At regular intervals during a simulation, the cache
coherency checken would be activated, to ensure that the
coherency rules were not being violated. This checker alone
caught a significamt percentage of all bugs.

Self-checking Tests

The DECchip 21164 verification effort did use some focused,
hand-crafted tests which checked their own result against a pre-
stored expected result. This was useful for the areas in which
the reference maldel did not accurately match the design-under-
test. In particular, performance-enhancing features like bypasses
and multiple-issue logic were verified via self-checking tests.
As mentioned above, these performance-related features were not
included in the reference model in order to keep it simple.
Using the cycle counter built into the DECchip 21164, exact
timings could be checked and verified against the expected
timings. Self-checking tests were also useful for running in an
environment where the reference model was not available. For
example, when testing prototype hardware, the self-checking
focused tests were re-used as diagnostic tests.

When run on the simulation model, though, even a self-checking
test used the reference model and assertion check mechanisms.
These allowed many more bugs to be detected than the self-
check itself could detect.

Figure 2 shows the various detection mechanisms used by the
DECchip 21 164 verification effort. As can be seen, the assertion
checkers were the most effective techniques.

COVERAGE ANALYSIS

The use of pseudlorandom testing was highly effective and more
productive than creating hand-generated tests. With the
correctness checking problem solved, the next major issue was
determining what the tests were actually doing. We were using
targeted-random testing, so we knew the general areas that the
tests were exercising, but we needed more detail on what was
being covered. To help with this, extensive coverage analysis
was done, mostly as a post-processing step.

327

During the simulation of the RTL model, a trace of the behavior
of various signals was written to disk, in the same way we
obtained trace files for assertion checkers. In many cases,
coverage analysis and post-processing assertion checking were
combined into one step.

I
Assertion Checkers 34%

Cache Coherency Checkers 9%

Reference Model Comparison
Register File Trace Compare 8%
Memory State Compare 7%
End-of-Run State Compare 6%
PC Trace Compare 4%

Self-checking Test 11% I
Manual Inspection of
Simulation Output

7%

Simulation hang 6%

Other 8%

Figure 2: Effectiveness of Bug Detection Mechanisms

Several different coverage analysis techniques were used. For
standard types of coverage checking, a library of analysis
routines automated the process significantly. One example
where this was possible involved analyzing the coverage of state
machines.

State Transition Analysis

Some state machines in the DECchip 21 164 were represented as
PLA structures. For this case, the PLA representation was used
to determine the valid combinations of events that could occur,
referred to as a minterm. A minterm consisted of a current state
and all active input signals. The following shows an excerpt of a
what PLA definition might look like:

csjdle, bus-req-h J ns-bus-req;
cs-bus-req, bus-ack-h 1 ns-bus-ack;
cs-bus-req, Abus-ack-h 1 ns-bus-req, bus-req-h;

The tool used to convert the PLA representation to a coverage
analysis test was limited in that it would only check the number
of times a minterm occurred. This limitation was augmented by
other checking mechanisms such as assertion checkers in the
model that assured that only a single minterm was asserted at
one time.

State transition analysis was also used in areas where the logic
was not explicitly implemented as a state machine, but its
functionality could be represented by an abstract model of a state
machine. This abstract model could be checked for state
transition coverage. One area where this concept was applied
was in the system and cache interface logic. Various pieces of
logic interacted together when processing hits and misses on the
Victim Address File (VAF). Rather than performing coverage
analysis on each section of logic individually, the choice was
made to treat this logic as a single entity and model it as an
abstract representation,

Coverage analysis was performed on the abstract model to
determine the events that our pseudorandom tests were covering
and areas where coverage was inadequate. Since the system and
cache interface of the DECchip 21164 is highly programmable,
this section of logic was particularly difficult to cover fully. By
performing this extensive coverage analysis, we understood the
areas that were not well tested, and could target the most
important of these for additional testing.

A smaller example of this was an analysis of the state of internal
cache blocks vs. commands to the cache. This analysis resulted
in the table shown in figure 3:

Cache Block State

Commands

NOP
Flti Pt. Load
Invalidate
Set Shared
Read
Rd Duty
Rd Dirty Inv

V = valid S = shared D = Dirty
. = event cannot occur
* = more than 100 events of this type were seen

Figure 3: Example of a Coverage Analysis Matrix

When this table was generated, an error message was also
generated because a Set Shared should not have been issued to a
block with VIS status and 4 occurrences of this type were seen.
This triggered us to investigate why this illegal combination was
happening and a design bug was found.

In the case above, cross-products were based on 2 events
occurring with respect to time. However, in the analyses for the
DECchip 21164, there were often cases where checking was
needed for many events at the same time. For example, the
internal trapping logic of the chip was checked by creating a

328

coverage checking test to see which combinations of traps were
being generated at the same time. By looking at the number of
times certain traps occurred within the same window (time
proximity) of other traps it could be determined whether the
testing of the trap logic was sufficient.

When checking coverage on events that can all occur in the same
time window, the question raised is "what is enough?"
Obviously, for the trap logic case, the f i s t level of having each
trap asserted individually was needed. Next would be having
each trap asserted with every other trap for the second-level
cross-product. But what about the third level where all
combinations of any three traps occur? Is this complexity
newled? Depending on the number of traps, this number could
be small or very large. For the DECchip 21164, our goal was to
attain good 1st and 2nd level coverage. Additional levels may
have been analyzed to determine what Combinations were being
generated but complete multi-level coverage was not a goal.

Sequence Checking

Anclther way that signal traces were utilized was to look for
sequences of events in a particular window of time. Post
processing tests could be created to look for any combination of
events be they state transitions or single signal assertions. Bus
interfaces, interrupt assertions, traps and seemingly unrelated
events are particularly interesting to look at using this method.

On the DECchip 21164, event sequence checking was used to
ensure that the transactor, stimulating the system bus, was fully
randomizing events. For example, using the DECchip 21164,
systems can acknowledge command transactions with variable
timing. Events were described to check that the CACK signal
was being asserted at various times. Figure was produced from
the post processing traces:

CAlCK at 1 CLK
CAlCK at 2 CLK
CAlCK at 3 CLK
CkCK at 4 CLK
CACK at 5 CLK
CACK at 6 CLK
CACK at 7 CLK
CACK at 8 CLK
CACK at 9 CLK
CACK at >9 CLK

Total

CACK Intervals

Total

0
2

189
27 1
234
199
199
122
90

266

......................

*

Figure 4: Example of Sequence Chec..ing Analysis

From this output, it was immediately seen that CACK at 1 CLK
was an event that was not occurring. Further analysis of why this
was not happening triggered the team to choose parameter
settings for the pseudorandom methods that would stimulate this
event.

Case Analysis

While a model was executing, information was stored about the
occurrence of sirriple events. For example, a record was kept on
the number of times that four instructions issued simultaneously,
the number of times the translation buffers filled up, or the
number of times, stalls occurred. Since the configuration in
which the chip operated was randomized, a record was also kept
about the configuration information such as the Bcache size and
speed selected, the system interface options and timing, etc. At
the end of every model run, this information was stored to a
database which allowed collecting statistics across multiple runs.

Case analysis was used on the DECchip 21164 in a similar way
to sequence checking. The occurrence of an event could be
determined by looking at the entries in the database. Matrices
could be created to show which combinations of events had or
had not occurred over the course of all the simulations. For
example, on the DECchip 21164 the CPU/SYS clock ratio and
the secondary cache block size were programmable. Figure 5 is
an example showing whether or not all combinations of these
events occurred.

CPU/Sys 3
Clock 4
Ratio 5

6
7
8
9

10
11
12
13
14
15

Secondary Cache Size
(in bytes)

32 64
I
I O 13784
I O 98341
I O 14387
I650 28374
1787 71843
1324 32847
192992 17834
12834 39843
I12833 18745
I18324 18763
I1433 81736
12 13498
I O 18327

Figure 5: Example of Coverage Case Analysis

A table like the above, would have indicated that there was a
nice distribution of CPU/Sys clock ratios vs. block size when the
block size was 64. However, for the 32 byte block size, systems
with a CPU/Sys clock ratio or 3, 4, 5, and 15 were not being
chosen. A table like this would have triggered the verification
engineer to look at the scripts that chose these parameters to find

329

out why these ratios were not being chosen correctly. Usually,
when scripts would be changed to exercise previously
unexercised events, additional bugs would be uncovered.

Toggle Coverage

The simulator used in the DECchip 21 164 effort was capable of
giving a list of signals that were or were not toggling for a given
simulation. A toggled signal was one in which a transition from
a 0-logic level to a 1-logic level or a 1-logic level to a 0-logic
level was detected. Toggle coverage could indicate whether
signals were being wiggled, but it did not give a good indication
of whether the logic in that section was actually being
functionally used.

We utilized toggle coverage only at a gross level on the DECchip
21 164. Toggle coverage was checked for various sections within
the chip to determine whether or not major areas of the chip were
being stimulated. Lists of signals that did not toggle were
checked to see whether any patterns emerged or major areas of
functionality were not being covered. This sometimes pointed
out areas that needed to be stimulated further.

Fault Simulation for Functional Coverage

Fault simulation was not used for functional verification of the
DECchip 21164. Fault simulation is very compute intensive,
and it targets faults introduced during the manufacturing
process, not bugs introduced during the design process. The
typical stuck-at fault model is not a useful model of design bugs.
For these reasons, we did not use fault simulation during the
verification phase of the project.

ESCAPES

Using the above techniques, the DECchip 21 164 verification
effort was highly successful. First-pass silicon booted the
operating system and ran extensive diagnostics and user
applications. Even so, we discovered several bugs that escaped
our efforts to find them. Examining some of these shows areas
where improvements are necessary.

Three bugs were related to bypass mechanisms, where the
normal data flow was skipped under very specific timing
conditions. Although the three bypasses were unrelated to each
other, and in different sections of the chip, it does indicate that
our coverage of these bypass conditions was not sufficient. Had
we specifically looked for bypass-related coverage, we would
have noticed this. To complicate matters, one of these bugs
existed only in 32-byte cache mode and B-cache speed
configurations of 4, 5 , and 6. This indicates that multi-level
event coverage is necessary for finding these verification holes.

CONCLUSIONS

Pseudorandom test generation for design verification has
significant advantages over hand-generated focused tests. To
realize its full potential, though, the issues of correctness
checking and coverage analysis must be addressed. The
DECchip 21 164 verification effort developed many different
techniques for addressing these issues. Selecting the appropriate
technique to use for specific areas of the design required good
engineering judgment. The verification effort was highly
successful, and many bugs were discovered prior to first-pass
silicon. Nevertheless, there is still room for improvement in the
verification methodology.

REFERENCES

1. J. Edmondson et al., "Intemal Organization of the Alpha
21164, a 300-MHz 64-bit Quad-issue CMOS RISC
Microprocessor," Digital Technical Journal, vol. 7, no. 1 (1995):
119-135.

2. W. Anderson, "Logical Verification of the NVAX CPU Chip
Design," Digital Technical Journal, vol. 4, no. 3 (Summer 1992):
38-46.

3. A. Aharon, A. Bar-David, B. Dorfman, E. Gofman, M.
Leibowitz, and V. Schwartzburd, "Verification of the IBM RISC
System/6000 by a Dynamic Biased Pseudo-random Test
Program Generator," IBM Systems Journal, vol. 30, no. 4
(1991): 527-538.

4. A. Ahi, G. Burroughs, A. Gore, S. LaMar, C-Y. Lin, and A.
Wiemann, "Design Verification of the HP 9000 Series 700 PA-
RISC Workstations," Hewlett-Packard Journal (August 1992):
3442.

5. D. Wood, G. Gibson, and R. Katz, "Verifying a
Multiprocessor Cache Controller Using Random Test
Generation," E E E Design and Test of Computers (August 1990):
13-25.

One bug caused the Bcache read/write timing to be off by one
cycle. This was the type of thing we targeted assertion checkers
at, and in fact an assertion checker existed to look for this.
However, the assertion checker itself was not working properly,
thus allowing the bug to evade detection.

330

