Real-time streaming mobility analytics
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Abstract—Location prediction over mobility traces may find
applications in navigation, traffic optimization, city planning
and smart cities. Due to the scale of the mobility in a metropolis,
real time processing is one of the major Big Data challenges.

In this paper we deploy distributed streaming algorithms
and infrastructures to process large scale mobility data for fast
reaction time prediction. We evaluate our methods on a data
set derived from the Orange D4D Challenge data representing
sample traces of Ivory Coast mobile phone users. Our results
open the possibility for efficient real time mobility predictions
of even large metropolitan areas.
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I. INTRODUCTION

Intelligent Transportation is at the center of worldwide
transport policies intending to consolidate efficient and
sustainable transport systems and associated infrastructures.
The belief is that smart systems can receive, manage and
provide valuable information that will allow transport users
and operators to deal with a vast variety of traffic situations:
congestion, safety, tolling, navigation support, law enforce-
ment, as well as environmental sustainability.

Real time traffic prediction, as opposed to offline city
planning, requires processing the incoming data stream
without first storing, cleaning and organizing it in any sense.
Scalability and low latency are crucial factors to enable any
future technology to deal with mobility traces. This situa-
tion pushes towards new algorithms (typically, approximate
or distributed) and new computational frameworks (e.g.,
MapReduce, NoSQL and streaming data). In this paper, we
show that location prediction algorithms can be implemented
in a distributed streaming environment, and remarkably
high throughput can be achieved with low latency using a
properly designed streaming architecture.

We use the D4D Challenge Data Set! for our experiments.
In our research the emphasis is on the algorithmic and
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software scalability of the prediction method. Although there
exist publications with similar goals, even recent results [1]
consider data sets of similar or smaller size compared to
D4D. Furthermore, we multiplied the original data set to
meet the requirements of a metropolitan area of several
million people using mobile devices all day.

The rest of this paper is organized as follows. Section II is
devoted to describing the streaming data processing software
architecture. Section III shows how distributed mobility data
stream processing can be implemented in this architecture
using Storm. Section IV describes the D4D data set used for
our experiments. In Section V we describe the elements of
the modeling and prediction framework. In Section VI we
give our results, both in terms of accuracy and scalability.
Finally related results are summarized in Section VII.

II. STREAMING ARCHITECTURE

Figure 1 depicts the layered architecture of our pro-
posed general mobility data processing solution. The system
enables easy model implementation while relying on the
scalability, low latency and fault tolerance of the underlying
distributed data processing software.

Distributed stream processing frameworks have not yet
reached the same level of maturity such as batch processing
ones based on MapReduce and key-value stores. Certain
mature frameworks such as Hadoop [18] reach the required
level of scalability, but cannot provide mechanisms for
streaming input and real time response. As it is yet unclear
which programming model of distributed stream processing
will reach the same maturity and acceptance, we build an
abstract stream processing layer capable of using some of
the competing alternatives. We indicated Storm and S4 in
Figure 1 as the most promising ones.

Stream processing frameworks cannot directly guarantee
to store history information as their processing modules may
restart from scratch after failures. For example if a machine
crashes that stores information on part of the users in
memory, these users will be repartitioned to other machines
with empty history by default. To ensure that the history is
preserved over the processing nodes even in case of failures,
we build a generic persistence module (bottom right side of
Figure 1). We store information on users and cell towers
needed for modeling in distributed key-value stores. The
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Figure 1. Layers of our mobility prediction architecture: the streaming

framework (bottom left), persistence components (bottom right), and the
custom analytics (top).

visualization dashboard also gets the required data through
the storage adapter.

We defined a modular architecture for caching and seri-
alization. Since near real time processing is very important,
we deploy Cassandra [11] due to its high throughput writing
capabilities and memcached [7] for its efficiency.

The mobility data processing layer (second from top in
Figure 1) provides domain-specific primitives. For example,
parsers, abstract data records and processing components for
call detail records (CDRs) and other types of input are de-
fined here. Built on these primitives, on the top of Figure 1,
user defined functions implement history collection and
location prediction. On the top level of our architecture, the
implementation details of distributed processing, persistence,
caching and serialization are hidden from the programmer
to enable agile and straightforward model implementation.

III. DISTRIBUTED LOCATION PREDICTION
IMPLEMENTATION

Our demonstration is based on Storm, a scalable, robust
and fault tolerant, open source real time data stream pro-
cessing framework developed and used by Twitter and many
others [12]. Key to a practical application, Storm takes all
the burden of scalability and fault tolerance.

We implement the required processing elements using the
predefined abstract components of the Storm API: spouts
responsible for creating input and bolts containing the
processing step. Storm can distribute and balance multiple
instances of spouts and bolts in the cluster automatically.
Bolts can be connected to each other in acyclic processing
graph by data packet streams as seen in Fig. 3.

Raw mobility data is read into the memory by an external
application and is put into a lightweight message queuing
system called Kestrel [4]: Storm spouts get their data from
this buffer.

Key to our application is that partitioning can be con-
trolled. As seen in Fig. 2, we may split incoming records
both by user and by cell tower. Hence we may define
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Figure 2. Sample input data partitioning in the streaming framework. Input
records consist of tuples of user, cell tower and time stamp and may get
partitioned both based on user and cell ID. User and cell based models
may get merged through the data aggregator element of the streaming
framework.
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Figure 3. System block diagram of the Storm streaming components.
Regular arrows show normal while dashed show the low frequency periodic
special “tick” packets.

processing components both on the user and on the cell
tower base. Finally user and cell tower models can be
merged by using data aggregators.

We define two types of data flow, as seen in Fig. 3:

« One regular packet starts from the single spout for each
input record that spreads along the thick edges in Fig. 3.

o Periodic aggregation updates move model information
along the dashed edges initiated by the special built-in
Storm tick packets.

We describe our algorithms by specifying the type of data
moving along different edges of Fig. 3 and describing the
algorithms implemented within each node of the Figure, the
bolts that correspond to the steps described in Section V.

o The spout element emits tuples (u,a,t) of user, cell
and time stamp.

o User history elements send sequences of (a,t) tuples
of the past steps both to the last cell statistics bolt for
recording the new user location and to the previous cell
for counting frequencies through the cell.

o User history elements send trees rooted at the current



location (a,t) weighted with transition probabilities.

o Cell statistics elements periodically submit the frequent
patterns to a single cell statistics aggregator bolt.

o The cell statistics aggregator bolt periodically refreshes
the cell frequent patterns to all user statistics predictors.

o User statistics predictors emit the aggregated future
history of the user in a form of rooted trees. This
element is used in the current experiment to measure
the accuracy of the user location prediction.

o User prediction aggregator periodically emits the pre-
dicted density of all cells seen in the prediction of the
given user for aggregation by the single cell density ag-
gregator element. In the current experiment this element
measures the accuracy of the cell density prediction.

IV. THE D4D DATA SET

We used the Fine Resolution Mobility Trace Data Set
(SET2) of the D4D Challenge [2], containing trajectories
of randomly sampled individuals over two week periods.
Trajectories have the granularity of cell tower locations.
Only locations associated with voice, text or data traffic
events are provided.

The SET2 data contains 50 million events. In a day, a
large metropolis is expected to generate records two to three
orders of magnitude more, especially if all locations related
to all communication with the base stations is provided. Our
target is to process events in the order of 100,000 in a second
corresponding to several million people, each generating an
event in every minute.

The fine-grained D4D data set is sparse to protect privacy.
To reach the targeted amounts of data we merged the two
week chunks of user location samples and considered the
resulting data as if it is coming from a single two weeks
period. The resulting weekly aggregated traffic volume is
shown in Fig. 5, indicating that considering the time of the
day only may be a good approximation for user motion.

The fact that only two-week user histories are available
in the data set poses certain limitations for our experi-
ments, however provides realistic distributions for scalability
testing. In the data set the median users only visits three
locations, and the mean only visits six. The median user
generates 46 events, out of which changes location thirteen
times. Most calls are in the same location as the previous
call as seen in Fig. 4. We can achieve near 70% accuracy
by always predicting the user’s last location. In addition,
we should only ever predict locations that a user has visited
before and since we cannot see a smooth path for how a user
moves over time, for now we ignore the physical layout of
the antennas and treat location prediction as a classification
problem.

V. MODELS FOR LOCATION PREDICTION

We give sample models to predict user movement and traf-
fic congestion. We produce a simple yet realistic framework
for location prediction sufficiently complex for scalability
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Figure 4. Fraction of calls that are at a different antenna than the previous
call for that user (y axis) by time of day (x axis). We can see morning
and evening rush hour, and people move less at night. Even at the peak of
morning rush hour, more then three quarters of all calls are from the same
location as before.

testing. We predict sequences and evaluate always for the
next known location after the predefined prediction period.

The main component of our model is based on learning
the patterns of individual user motion histories. Our main
assumption is that for most users, their location follows a
daily regular schedule, i.e. they leave to work and return
home at approximately the same time of the day over
roughly the same route. This assumption is confirmed for
other data sets e.g. in [9]. We consider typical locations and
two-step frequent patterns. For each user, we generate the
following set of features:

o Time of the day;

« Time elapsed since the previous location;

« Ratio of events from frequently used antennas;

o Typical locations at the time of the day and distance

from previous location;
o Typical length of stay in one place in general and
depending on time of the day.

The last two classes of features are implemented by nearest
neighbor search among blocks of events consisting of subse-
quent events from the same location. Distance is calculated
by taking the time of the day, the duration of stay at the same
location, the geographical distance and the equality of the
present and the past antennas. We compute the nearest two
neighbors under four different selection of these attributes:

(A) Time of the day only;

(B)  Time of the day and equality of the past cell tower;

(C) Duration of stay and distance from the previous

cell tower;
(D)  Time of the day, duration of stay and distance from
the previous cell tower.

Based on the above feature set, we use decision trees for
modeling. First we predict whether the user changed or re-
mained in the same location. For location prediction we have
no information other than user past locations and frequent
paths through user most recent locations. Hence we train
classifiers separate for each of the following possibilities for
the next location:

« Same as previous location;

« Most frequent (second most frequent) location;
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Figure 5.  Volume of traffic (vertical axis) as the function of the day of
the week (1-7) and hour (0-23) over the horizontal axes.

¢ One of the nearest neighbor locations;
« Next step over frequent paths—here longer paths could
also be computed, e.g. by streaming FP-trees [8].

We consider the first week as training period: for each
user event, we compute all the above features based on the
user history before the event. We give a set of binary labels
to the event to mark whether the user stayed in the previous
location or moved to one of the potential new locations. As
additional features, we also compute the physical distance
of the last location to each of the potential new ones.

In our implementation, the modeling steps correspond
to the Storm bolts of Fig. 3 as follows. User features
are computed based on past history in the user move
history bolt. In order to compute frequent paths, the
cell tower statistics bolt receives the last few
user steps from the user move history bolt. Frequent
paths need only be periodically updated and this is done in
the cell tower statistics bolt that feeds the user
statistics/predictor bolt with updates. This bolt is
capable of implementing the pre-trained decision tree model.

VI. EXPERIMENTS

In this section we describe our measurements for speed,
scalability and quality. To emphasize scalability in the num-
ber of threads and machines, we ran our experiments over
a Storm 0.9.0-wip4 cluster of 35 old dual core Pentium-D
3.0GHz machines with 4GB RAM each.

The spouts emit as many records as the Storm framework
is able to process. We partitioned the data for the spouts and
for each spout, we loaded its data set into memory while
initializing the topology. We iterated over the data infinitely,
i.e. the same user moves were emitted repeatedly.
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Figure 6. Number of records emitted by two spouts per 13 minutes (vertical
axis, records per second) after initializing the topology (with seconds on
the horizontal axis). Red and blue lines indicate throughput of two spouts
and the black bold line is the aggregated speed.
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Figure 7. Throughput (number of records per second) as the function of

the number of servers in the Storm cluster, with five input spouts residing
at five different servers.

A. Scalability and Latency

To test scalability of location prediction we test how the
throughput (the number of events processed per second)
changes when new nodes are added to the cluster. To avoid
misleading figures due to caching, we ran the system for
10 minutes before starting to measure the predictor element
processing rate. Figure 6 shows how system throughput
normalizes after initialization.

Figure 7 depicts throughput speed. Near linear scalability
can be observed in the number of servers and threads: We
may reach rates of a few 100,000 records in a second, which
is well beyond the desired threshold.

The average latency of the system was low, processing
an input record took about 1023 ms. We did observe larger
values when initializing the system, but this value remained
relatively constant when adding or removing nodes.

B. Fault Tolerance

When a node fails, a new node is initialized with the
stored states of the affected processing components. Ac-
cording to the guarantees of Storm, the lost packets are
also processed again. Figure 8 shows how node failures
affect overall performance. We can observe rapid recoveries,
despite of the large number of failing nodes, the overall
performance remains predictable.

C. Accuracy

Next we evaluate the accuracy of our location prediction
methods by giving F-measure (averaged for the positive and
negative classes) and AUC values. We predict the location
of active users for at least 15 minutes in the future. We
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Figure 8. Throughput (number of records per second) as the function of
the time passed (absolute times), with six nodes, each with a spout. One
node works continuously, while the others occasionally stop.

All Active
F AUC | F AUC
next 0.888 | 0914 | 0.888 | 0.886
15 mins | 0.859 | 0.905 | 0.819 | 0.896
1 hour 0.861 | 0.909 | 0.815 | 0.890
Table I

ACCURACY OF THE PREDICTION WHETHER A GIVEN USER MAKES THE
NEXT CALL FROM A NEW LOCATION.

consider a user active if he or she has at least 1000 events
during the two-week period. There are 1126 such users in
the data set. We use the first week of data for all users for
training and evaluate over the second week.

The prediction for users staying in place is given in
Table I. Here we observe that the prediction quality is very
high and slightly decays as we look farther ahead in the
future. The decision tree has 37 nodes using the following
sample of attributes in approximate order of tree depth:

« Previous location equal to most frequent user cell;

o Fraction of the last and the most frequent cells in the
user history so far;

o Geographical distance and duration of stay at nearest
neighbor (D) and other nearest neighbors in case of the
active users;

o Elapsed time since arrival to the last location.

The prediction for the next user location is evaluated for
active users for a minimum of 15 minutes in the future.
As seen in Table II, we perform binary classification tasks
for ten different types of likely next locations for the user.
Note that some of these locations may coincide or not exist,
hence no multi-class classification is possible. Based on
the measured accuracy of the methods and the likelihood
assigned by the decision tree, it is easy to merge the binary
predictions into a prediction of a single location.

The decision for the most frequent continuation of the
last two cell locations is weak, however misclassification

F AUC
same as previous 0.862 | 0.896
most frequent 3-step trajectory | 0.372 | 0.623
nearest neigbor (A) 0.637 | 0.686
second nearest neigbor (A) 0.633 | 0.633
nearest neigbor (B) 0.710 | 0.699
second nearest neigbor (B) 0.700 | 0.695
nearest neigbor (C) 0.708 | 0.705
second nearest neigbor (C) 0.698 | 0.695
nearest neigbor (D) 0.553 | 0.686
second nearest neigbor (D) 0.672 | 0.669

Table 1T
ACCURACY OF THE PREDICTION FOR DIFFERENT TYPES OF NEW
LOCATIONS AS DESCRIBED IN SECTION V.
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Figure 9. Visualization of the cell traffic prediction (red circles show actual
sizes while green is the prediction), with a sample of individual movement
predictions (black lines are real, colored lines are predicted moves).
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is imbalanced: we almost never misclassify users who do
not follow the frequent path. Here the decision tree is
surprisingly small, it has only five leaves. The first decision
splits whether the user stayed for more or less than one day
at the same location. Subsequent decisions use the fraction of
the previous cell among all cells of the user and the distance
of the last step taken.

For nearest neighbors, the decision trees mostly choose
based on physical distance. This is the main reason why
we see very similar measures for the last eight classification
problems. In addition, some features to determine whether
the user stays in place are also used but in general the
decision trees are much smaller than for staying in place.

We developed a visualization demo application to demon-
strate the use of individual trajectory predictions: Fig. 9
shows the aggregated predicted and real cell density as well
as the predicted and real trajectories of random users.



VII. RELATED RESULTS

The idea of using mobility traces for traffic analysis is
not new. Early papers [14] list several potential applications,
including traffic services, navigation aids and urban system
mapping. In [14] a case study of Milan, while in [1] of New
York City suburbs are presented.

Mobility, City Planning and Smart City are considered by
many major companies. IBM released redguides [10], [15]
describing among others their IBM Traffic Prediction Tool
[15]. Unfortunately little is known about the technology and
the scalability properties of existing proprietary software.

Several recent results [9], [16], [3], [17], [19] analyze and
model the mobility patterns of people. In our results we rely
on their findings, e.g. the predictability of user traces.

We are aware of no prior results that address algorithmic
and software issues of the streaming data source. Mobility
data naturally requires stream processing frameworks [12],
[13], [5]. A wide range of stream processing solutions are
available: For example, major social media companies have
all developed their software tools [6].

VIII. CONCLUSIONS AND FUTURE WORK

In this preliminary experiment we demonstrated the appli-
cability of data streaming frameworks for processing mass
mobility streams: Low latency and high throughput values
enable building real-time applications based on motion pre-
diction. Given more detailed data, our framework is suitable
for detecting flock (motion of groups), deviation of real track
from expected (map) or permitted (restricted areas) tracks.
Our results open the ground for advanced experimentation
regarding the quality of large scale mobility prediction
suitable for example for real time traffic prediction.
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