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Abstract

In this paper a scheme for approximating solutions of convection-diffusion-
reaction equations by Markov jump processes is studied. The general prin-
ciple of the method of lines reduces evolution partial differential equations
to semi-discrete approximations consisting of systems of ordinary differen-
tial equations. Our approach is to use for this resulting system a stochastic
scheme which is essentially a direct simulation of the corresponding infinites-
imal dynamics. This implies automatically the time adaptivity and, in one
space dimension, stable approximations of diffusion operators on non-uniform
grids and the possibility of using moving cells for the transport part, all
within the framework of an explicit method. We present several results in
one space dimension including free boundary problems, but the general algo-
rithm is simple, flexible and on uniform grids it can be formulated for general
evolution partial differential equations in arbitrary space dimensions.
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1. Introduction

Many complex processes in natural sciences require stochastic models for
their simulation. The principle of rule-based modeling is to specify the mi-
croscopic dynamics of the system and to simulate them step by step, the
cumulated result being an approximation of the macroscopic limiting dy-
namics. A typical example in this sense is given by coagulation processes
(see [1] for a comprehensive review). In the simplest form, particles with
size parameters x and y coalesce at rate K(x, y) to form a particle with
size parameter x + y. The macroscopic dynamics of this system is given
by the Smoluchowski equation, which is an integral equation if the range of
the parameters is continuous and an infinite system of ordinary differential
equations if the parameters are taken as integers.

In a spatially inhomogeneous setting multi-compartment models are fre-
quently employed. One considers homogeneous reactors where the infinites-
imal dynamics are governed by a rule-based model and, in addition to this,
exchange of reactants between compartments takes place due to transport or
diffusion. Examples involving one reactant driven by diffusion and nonlinear
reaction are analyzed e.g. in [2] and [4]. In [9] a coagulation-diffusion model
based on the same principles is considered. A spatial domain is discretized
by a uniform grid and each grid point (cell) is considered as a homogeneous
reactor. The diffusion is modeled as a random walk of the particles on the
underlying grid. Theoretical convergence results were established, but the
approach turned out to be inadequate from the numerical point of view.
Further steps towards the numerical simulation of coagulation-diffusion pro-
cesses were done in [10] and [11], where diffusion was simulated by a stochas-
tic (mass conservative) flux-method and the coagulation dynamics by a mass
flow algorithm. The work [16] proposes alternatively a stochastic Lagrangian
scheme for simulating spatially inhomogeneous coagulation equations.

The attempt of coupling the Monte Carlo method for the reaction kinetics
with a usual deterministic scheme for the motion part of the dynamics has
to face the problem that the time steps of the latter are not adapted to the
possibly fast time scale of the reactions. Within the relatively large time
intervals of the deterministic scheme the possibility of significant changes
in the spectrum of reactants exists (for example the appearance of large
clusters in coagulation, especially in the gelation regime) and of which the
deterministic scheme is not aware.

For an overview of standard deterministic methods for convection-diffusion-
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reaction problems the reader may consult the monograph [13]. Monte Carlo
methods are usually employed only in special situations, for example if the
particles in a given spatial location have attached a velocity parameter which
varies in a continuous range. Transport occurs then due to this velocity which
in turn is subject to shocks, the discontinuous changes being modeled by a
linear integral term. The solution of this type of equations is defined there-
fore on a higher-dimensional space, in a usual setting we have three spatial
variables and three components of the velocity. For details see [15]. Another
example of a stochastic method based on interacting particles for scalar con-
servation laws in one space dimension is presented in [3].

In order to couple the available stochastic kinetic methods for homoge-
neous reactors with spatial motion, one has to use a scheme which completely
keeps track of the transitions on a microscopic level which correspond to all
components of the dynamics: convection, diffusion or reaction. While con-
vection and reaction can be simulated by jump processes in a straightforward
way, the same straightforward approach for simulating diffusion (using ran-
dom walks) turns out to be computationally expensive and inaccurate. In
this paper we use therefore the approach of direct simulation of the dynamics
of the finite-dimensional ODE-system given by the method of lines. We are
mainly interested in the one-dimensional problem

∂tu+ v(u)ux = (f(u)ux)x +R(u). (1)

All examples considered here are special cases of this form, but introducing
a spatial dependence of the velocity and of the diffusion coefficient yields no
difficulties.

The present material is organized as follows. In Section 2 we describe the
general algorithm for approximating systems of ordinary differential equa-
tions by Markov jump processes. These systems can be for example semi-
discrete approximations of certain partial differential equations. In contrast
to usual deterministic explicit schemes, the feature of this method is that
the increment by which the components of the solution are changed is fixed,
while the time steps are variable. For one single equation the principle of
using fixed increments leads to a deterministic scheme with time steps in-
versely proportional to the right hand side of the equation. For a general
multidimensional system of the form ẋ = F (x) it can be readily seen that
the same approach works only in a stochastic framework. The probability
of selecting the i-th component for the next modification of magnitude 1/N
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is proportional to |Fi(x)| while the time step is exponentially distributed
with parameter N

∑ |Fi(x)|. Its expected value is therefore (N
∑ |Fi(x)|)−1.

Note that in a transition step we change only one component of the state of
the process. This general pattern we call the direct ODE simulation method.
In the same section a theoretical result concerning the fluctuations of the
method is also given. Having introduced this scheme, the purpose of the
next sections is to explain its mechanism and to analyze its applicability to
various problems.

Section 3 is dedicated to a model problem. We compare three stochas-
tic approaches of simulating linear diffusion on the line: the random walk
method, the flux simulation and the direct ODE simulation method. We
consider a uniform grid on [0, 1] with size h. For the random walk method
we consider O(N) particles with weights 1/N distributed on the grid. Each
element of a pair of neighbouring grid points may be source or target of a
particle jump, the corresponding concentration being reduced by 1/N re-
spectively increased by 1/N . For the other component the change has the
opposite sign. The flux method however allows only directed jumps from
higher to lower concentration. Both methods are mass conservative, since
mass can be lost or gained only at the boundary as specified by the bound-
ary conditions. The direct ODE simulation method changes in a single step
the value of the density only in one grid point instead of two, according to
the scheme presented in Section 2. The total mass is therefore conserved
only in the limit for large N . The magnitude of the change in every sim-
ulation step is of 1/N for all three methods (this quantity being regarded
as a numerical weight) but the corresponding rates are O(Nh−2), O(Nh−1)
and O(N) respectively for the random walk, flux simulation and direct ODE
simulation method. This has as a consequence the fact that the first method
is by a factor of h−1 slower than the second, which in turn is by the same
factor slower than the third. Moreover, we point out theoretically as well
as numerically the fact that the fluctuations induced by the three stochastic
methods are in about the same proportion as their speed. This shows the
enormous advantage of the direct ODE simulation method on the other two,
in speed as well as in precision.

In Section 4 we consider reaction-diffusion problems which are standard
examples for employing deterministic schemes with grid adaptivity in time
and space. In our examples the time adaptivity is given intrinsically by
the stochastic method and the grid is considered to be uniform. In Section
5 we simulate diffusion on non-uniform grids by the same basic principle
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of an explicit stochastic scheme, a fact that is fairly impossible in explicit
deterministic methods. This feature opens the possibility of using moving
grids. In Section 6 we consider cells which are transported according to the
corresponding velocity and diffusion is simulated on a non-uniform grid con-
figuration. We apply this method to the viscous Burgers’ equation. The use
of moving grid techniques as presented in [7] for reaction-diffusion equations
with solutions which develop traveling fronts (as the examples presented in
Section 4) is also possible, but is not considered here. Section 7 deals with
an example of a free boundary problem, namely the Black-Scholes equation
for American put options. The motion of the free boundary emerges natu-
rally by simulating the infinitesimal dynamics of the system, a feature which
shows the flexibility of the method. Finally, in Section 8 we conclude with
remarks concerning the features of the approach presented here. It turns
out to be (at least) a method which is simple and easy to implement, pro-
ducing satisfactory results on a wide range of problems. The principles on
which it is based allow a possible coupling with other stochastic algorithms
for population balance dynamics. We discuss also potential improvements
and generalizations. Of interest would be the extension of the method in
higher space dimensions in the case of non-uniform grids.

2. General description of the direct ODE simulation method

Consider a scalar differential equation of the form ẋ = F (x). Instead of
using an explicit Euler discretization step with fixed time increment ∆t we
require that the absolute value of the change of the quantity x is constant.
We denote the value of this increment by 1/N in order to suggest that it is
the weight of a numerical particle. The dynamics implies that the quantity
x increases when F (x) is positive and decreases if F (x) is negative (in this
heuristic consideration we ignore the case F (x) = 0). Consider therefore the
scheme

x(t +∆t) = x(t) +
1

N
sign(F (x(t)),

where ∆t has to be determined in order to ensure consistency. The above
relation can be reformulated as N |F (x(t))|(x(t +∆t)− x(t)) = F (x(t)) and
for consistency we need therefore ∆t = (N |F (x(t))|)−1. This approach does
not work for systems, since the time steps required by the change of each
component by the given increment are different. Note however that we do
not have to change all components at once, but only sequentially. Then the
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selection of the components which have to be modified cannot be uniform,
but according to a proper probability distribution. This feature is realized
by the following method of Monte Carlo type.

Consider the multidimensional system Ẋ = F (X) with X ∈ R
n, where

F is a Lipschitz continuous function. The solution of this system is approxi-
mated by the Markov jump process xN (t) with transitions

xN 7→ xN +
1

N
sign(Fi(xN))ei at rate N |Fi(xN )| (2)

where ei denotes the i-th unit vector in R
n. We change therefore the compo-

nents of xN sequentially: we choose the component i which has to be modified
with a probability proportional to |Fi(xN)|. The waiting time between two
consecutive jumps is exponentially distributed with parameter

λ = N
n

∑

i=1

|Fi(xN )|. (3)

The algorithm can be then described as follows. While t ≤ tmax do:

1. Given the state xN (t) of the process at time t:

2. Select a component i with probability proportional to |Fi(xN (t))|.
3. The time step ∆t = − logU/λ with U uniformly distributed on (0, 1)

and λ given by (3) is then exponentially distributed with parameter λ.

4. Update the value of the selected component: xN,i 7→ xN,i+
1

N
sign(Fi(xN ))

and set the new time as t = t+∆t.

5. GOTO 1.

We call an algorithm of this type, where the components are changed
sequentially, but in a random order, a direct ODE simulation algorithm. This
is certainly not the only possibility of approximating ordinary differential
dynamics by Markov jump processes. In Section 3 we compare this approach
for linear diffusion by two other methods, the random walk and the flux
simulation method, where in one transition step we change two components
simultaneously. It turns out that due to the fully decoupled scheme, this
approach has smaller statistical fluctuations and the covariance matrix of
the error process given by the central limit theorem is diagonal.

Markov jump processes can be treated either in terms of the master equa-
tions as in [8] and [12] or in terms of the martingale theory and infinitesimal
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generators as in [5] or [14]. The latter references deal also with the approx-
imation of ordinary differential equations by Markov jump processes and
deliver in particular the convergence result of the direct ODE simulation
method.

Indeed, we note that we have F (x) =
∑

x→x′(x′−x)Rx→x′ where the sum
runs over all possible transitions from x to x′ with rates Rx→x′. According
to [14] we have then (for simplicity drop the index N):

xi(t) = xi(0) +

∫ t

0

Fi(x(s))ds+Mi(t) (4)

with the martingales Mi for which holds:

Ex[M
2
i (t)] =

∫ t

0

Ex[
∑

x→x′

((x′

i(s)− xi(s) +Mi(s))
2

−M2
i (s)− 2(x′

i(s)− x(s))Mi(s))Rx→x′]ds

=

∫ t

0

Ex[
∑

x→x′

(x′

i(s)− xi(s))
2N |Fi(x(s))|]ds

= N−1

∫ t

0

Ex[|Fi(x(s))|]ds (5)

where Ex[·] denotes conditional expectation with respect to x(0) = x. This
result shows that the stochastic perturbation (4) of the deterministic system
(without the martingale part) has magnitude O(1/

√
N), independent on the

dimension n of the system, provided Fi(x) = O(1) at all times and for all i.
In order to analyze the dynamics of the error of stochastic approximation

schemes which satisfy (4), denote YN(t) =
√
N · (xN (t) − X(t)). With the

corresponding vector-valued martingale M(t) we have:

dYN(t) =
√
N [F (xN(t))− F (X(t))]dt+

√
N · dM(t)

= ∇F (X(t)) · YN(t)dt+ o(|YN(t)|)dt+
√
N · dM(t) (6)

The magnitude of the fluctuations of this rescaled error process is determined
by the values aij := E[

√
NMi ·

√
NMj ] = N

∑

x→x′(x′

i − xi)(x
′

j − xj)Rx→x′.
If the jump process is given by (2) (where only one component is changed
in one transition step) it is clear that aij = 0 for i 6= j, while for i = j the
computation was performed in (5).
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According to the results in [14] and [5], a law of large numbers for ap-
proximating solutions of ordinary differential equations by Markov processes
holds under relatively natural assumptions. By imposing additional hypothe-
ses, one obtains also a central limit theorem. We formulate next a result of
this type in the context of the scheme proposed here.

Theorem 1. Denote with εN(t) = xN(t) − X(t) the difference between the
jump process xN (t) defined by the transitions (2) and the exact solution X(t)
of the equation Ẋ = F (X). Assume that F has uniformly continuous partial
derivatives and define the matrix-valued function a = a(x) by

aij(x) = N
∑

x→x′

(x′

i − xi)(x
′

j − xj)Rx→x′ = δij |Fi(x)|. (7)

Then for N → ∞ the process YN(t) =
√
N · εN(t) converges weakly to a

n-dimensional diffusion process Y (t) which satisfies

dY (t) = ∇F (X(t)) · Y (t)dt+ σ(X(t))dW (t) (8)

with Y (0) = limN→∞

√
N(xN(0) − X(0)), where W (t) is a n-dimensional

Brownian motion and the diffusion matrix is given by σ = a1/2. If σ is
Lipschitz-continuous, (8) has a unique solution.

Proof. The arguments which lead to the stochastic differential equation for-
mulation (8) can be found in [5]. This equation is equivalent to formula
(3.24) on p.463 in the mentioned reference, which is deduced from Theorem
2.3. on p.458 and from Theorem 5.3. on p.329. The result from [14] gives an
equivalent formulation of the dynamics of the limit process Y in terms of a
partial differential equation for its characteristic function.

Corollary 1. If we assume that Y (0) = limN→∞

√
N(xN (0) − X(0)) = 0,

i.e. if we take for example xN (0) = X(0), then by variation of constants we
obtain

Y (t) =

∫ t

0

Φ(t) · Φ(s)−1σ(X(s))dW (s) (9)

where Φ is a fundamental system of Φ̇(t) = ∇F (X(t)) · Φ(t).
We turn now towards our case of interest, where the system of ordinary

differential equations ẋ = F (x) emerges as a spatially discrete and time-
continuous version of a partial differential equation. The method presented
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here can be applied to partial differential equations in arbitrary space di-
mensions, provided the spatial discretization scheme is convergent and the
solution sufficiently regular. Enhancements of this basic principle are pos-
sible, for example by considering dynamic grids in order to capture shocks
of the solution. We present here this feature in the one-dimensional case
(Section 6).

Given the spatially discretized system one may use standard approxi-
mation results given by the method of lines in order to estimate an error
functional for the approximation of the corresponding solution of the PDE.
We are interested here only in the approximation of the solution of the ODE
by stochastic processes.

Under the assumption that we are dealing with a discretized PDE the
matrix ∇F will exhibit a band structure. As can be seen from the previous
convergence results, the stability of the deterministic scheme given by the
method of lines is essential for our case too. The properties of the eigenvalues
of the linearized problem are crucial in order to bound the error in (9), since if
we discretize a general partial differential equation of second order, the entries
of ∇F (x) will be typically of order O(h−2). An eigenvalue with positive real
part of this order of magnitude will require a very large value of N in order
to reduce fluctuations and to get a good approximation of the corresponding
ODE by the stochastic scheme. On the other hand, in the stable case, where
the matrix norm of Φ(t) is uniformly bounded in t and h, the fluctuations
are determined essentially only by σ. The behaviour of this quantity may
depend on the features of the general stochastic scheme which one uses.

Consider for example the spatially discrete diffusion equation ẋi = (∆hx)i,
i = 1, . . . n, with (∆hx)i = h−2(xi−1−2xi+xi+1), where h denotes the spatial
discretization step an where we take the boundary condition x0 = xn+1 = 0.
This is a typical example of a linear, stable problem with general solution
given by Φ(t) = exp(At) for

A = h−2
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. . . 1

0 . . . 1 −2











.

The other factor which influences the strength of the fluctuations is σ(X(s)),
which in the case of the direct ODE simulation method has the form

σ(X(s)) = diag(|Fi(X(s))|1/2) = diag(|(∆hX(s))i|1/2).

9



Since X is the exact solution, in this case we can bound all terms under
the integral in (9) uniformly in t and h. In Section 3 we will compare this
stochastic method with two other schemes: the random walk method and
flux simulation, where the entries of σ cannot be bounded uniformly in h.

Further remarks. Since the change of the components of x occurs sequen-
tially, we may consider the value of N in equation (2) as being dependent
on i and even on t: N = N(i, t). This parameter can be therefore tuned
and allows a more flexible implementation of the method. In the most ex-
amples considered here however it turned out that the choice of a constant
N lead to the smallest statistical fluctuations of the method. An adaptive
choice of N might be reasonable if an apriori analysis of the problem to be
approximated suggests this approach. This is done for example in Section 6
within the framework of moving cells, where the ODE system has two types
of components: cell positions and the corresponding densities. In this case
the increment of the cell positions is taken much smaller than the increment
corresponding to the diffusive smoothing, these two values being however
constant over space and time.

From the numerical point of view it turns out to make no difference if
we take deterministic time steps of length given by the expected value of
the exponentially distributed random times, that is (N

∑

i |Fi(x)|)−1. But
the stochastic calculus employing martingales and generators of Markov pro-
cesses requires random exponentially distributed waiting times, so we keep
to this fact.

Some considerations on the computational complexity. We have to deal
with two aspects: the number of operations required for updating the state of
the process and the number of additional operations required by the sampling
procedure and the updating of the data structures used for sampling. If the
sampling mechanism is based on a binary tree structure, we need O(logn)
operations for sampling and updating the binary tree, where n is the dimen-
sion of the system. The length of a random time step between two jumps is
of magnitude N−1O(n−1), therefore after N jumps we need NO(logn) op-
erations in order to advance on a time interval of length O(1/n), provided
Fi(x) = O(1) in all situations. If we want to analyze the efficiency, one has
to note that the error of the stochastic method is given by the central limit

theorem as O(
√
N

−1

) and that the computational complexity is basically
the same as given above for all problems. Furthermore, it makes practically
no difference if we take averages over M independent realizations or if we
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take one realization with numerical weight (NM)−1 instead of N−1. To con-
clude: we need about n2O(logn) operations in order to obtain an L∞- error
of O(1/n).

We compare this result with the complexity of the explicit Euler method,
for example for a stiff problem like the discretized one-dimensional heat equa-
tion. Assume that we have n equidistant grid points on (0, 1). Stability
requires to take time increments of O(1/n2) while in each step we perform
O(n) operations. In order to advance with a time interval of length O(1/n)
like in the previous case, we need therefore O(n2) operations. For implicit
methods this amount becomes O(n) (with a factor of about 8 to 10 in front).
The L∞-error in both cases is O(1/n). In the very particular case of the
one-dimensional diffusion equation the advantage of implicit deterministic
methods is evident. For more complex problems (which need more elabo-
rated schemes, especially time-adaptivity) this gap becomes smaller. How-
ever, the method proposed here has two features which can make it a better
choice for coupling it with Monte Carlo schemes for kinetic equations (e.g.
coagulation-fragmentation) which take place in every grid point: it is ex-
plicit and automatically time-adaptive. Furthermore, as we will show in the
examples presented in the following sections, it can be applied to a wide
range of problems (including nonuniform and moving grids). This allows
the simulation of various spatially inhomogenenous kinetic equations by the
same principle. A task for future research is to compare the efficiency of
approximating such problems by coupling the Monte Carlo algorithms for
cell reactions either with the scheme proposed here, or with deterministic
schemes in a splitting approach. Due to the faster time scale of reactions
(e.g. coagulations), the use of large time steps as in implicit or even explicit
deterministic methods may alter the structure of the spectrum of the species
present in the system.

At the end of this section we mention that all simulations presented in
this paper were performed in MATLAB and we specify always the real CPU-
time. Since in this environment the work with dynamic data structures is
more difficult than in compiled programming languages, we used instead of
binary trees a stratified sampling approach, where the term O(logn) in the
considerations above has to be replaced with O(

√
n). Nevertheless, we have

to take into account also the constants of these terms (the part independent
on n) which is certainly larger in the case of tree data structures. For rela-
tively small values of n like used in our examples (between 20-80) we can say
that the computational complexity in both approaches is of about the same

11



order. In any case, the examples presented here show that there is still room
left to improve the efficiency by optimizing the sampling part and switching
to compiled programming environments.

3. Comparison of three stochastic methods for the diffusion equa-

tion

In this section we compare the direct ODE simulation method introduced
in Section 2 with two other stochastic methods: random walk and flux sim-
ulation for the one-dimensional diffusion equation ut = uxx on (0, 1). For
this purpose we consider a uniform grid xi = i · h, i = 1, . . . , n − 1, with
h = 1/n and denote by ui the density in grid point xi. At the boundary
points x0 = 0, xn = 1 we consider for example Dirichlet boundary condi-
tions: u0 = a, un = b.

For the random walk method we consider O(N) independent particles
located on the grid points. We consider them to be indistinguishable and
look only at the modifications of the corresponding density by the jump of a
particle between two neighbouring grid points. The corresponding transitions
are therefore

{

ui 7→ ui − 1/N
ui±1 7→ ui±1 + 1/N

at rate N · h−2ui

which corresponds to a jump of a particle of mass 1/N from xi to xi±1.
By the flux simulation method we model the transport of particles of mass

1/N from a cell with higher density to a neighbouring cell with lower density
at rates proportional to the corresponding gradient. This scheme reads:

{

ui 7→ ui + sign(∇+

h ui)/N
ui+1 7→ ui+1 − sign(∇+

h ui)/N
at rate

1

2
N · h−1|∇+

h ui|

where ∇+

h ui := h−1(ui+1 − ui). For a pair of consecutive cells (xi, xi+1)
the transport of mass takes place therefore from the cell with higher density
to the cell with lower density.

Finally, for the direct ODE simulation method we have the transitions

ui 7→ ui + sign(∆hui)/N at rate N · |∆hui|

where ∆hui := h−2(ui−1 − 2ui + ui+1). Note that in this case we modify in
a transition step only one component of the density vector, while in the pre-
vious schemes we modify always the values of two neighbouring grid points.
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The first two schemes are mass conservative, since mass can be lost or gained
only at the boundary as specified by the boundary conditions. For the third
scheme this is not the case, the total mass being conserved only in the limit
for large N .

According to the general theory in [14], all three schemes are stochastic
approximations of the n − 1-dimensional ODE-system ut = ∆hu, which is
ensured by the choice of the transition rates in the proper scaling: O(Nh−2),
O(Nh−1) and O(N) respectively for the random walk, flux simulation and
direct ODE simulation method. This gives an indication on the speed of
the three methods. Assume that the data is regular enough, such that the
values of the discrete difference operators which determine the rates are of
O(1). The length of the corresponding time steps implies that the direct ODE
simulation is by a factor of O(h−1) = O(n) faster than the flux method, which
in turn is about O(n) times faster than the random walk method. The values
of these time steps, which are provided automatically by the corresponding
stochastic method, illustrate from another point of view a standard paradigm
in deterministic numerical schemes: for smoother data we can work with
coarser time-discretizations, whereas if we make no regularity assumptions
on the data, we need in general finer time steps.

Concerning the approximation error, similar computations like in (5) give
us that the corresponding martingale terms have second moments of order
O(N−1h−2), O(N−1h−1) and O(N−1) respectively for the for the random
walk, flux simulation and direct ODE simulation. In this example we have
F = ∆h and we note that for all three processes considered here, the error
satisfies a stochastic equation of type (6). According to the comments in
Section 2, the element which influences mostly the magnitude of the fluctu-
ations is the covariance matrix aij = N · E[Mi · Mj ]. For the random walk
and the flux simulation the corresponding matrices a are tridiagonal with
entries of order O(h−2) and O(h−1) respectively. More precisely we have
arwii (x) = h−2(xi−1 + 2xi + xi+1) and arwij (x) = −h−2(xi + xj) for j = i ± 1

and 0 otherwise. We have further afluxii (x) = 1

2
h−1(|∇+

h xi−1| + |∇+

h xi|) and

afluxij (x) = −1

2
h−1|∇+

h xj| for j = i ± 1 and 0 otherwise. For the direct ODE

simulation method the matrix is diagonal and we have adODE
ii (x) = Fi(x) =

(∆hx)i = h−2(xi−1 − 2xi + xi+1). These considerations show that for suf-
ficiently regular data, the direct ODE simulation method is superior also
concerning accuracy to the other two.

The above remarks are also backed up by the numerical experiments as
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Figure 1: Comparing 10 realizations of the three methods at time t = 0.3, u0(x) = x2.

shown in Figure 1. As initial condition we take u0(x) = x2 and the boundary
conditions are u(t, 0) = 0, u(t, 1) = 1.

The corresponding CPU times for the simulations of 10 independent real-
izations were of 0.56 sec. (direct ODE simulation), 30.50 sec. (flux method)
and 612.50 sec. (random walk method). This picture illustrates the previous
theoretical considerations concerning speed and stochastic fluctuations. The
advantage of the direct ODE simulation method is enhanced also by the fact
that in this case we have |∆hu| ≪ |∇+

h u|, u.
We consider next a situation where we have (at least locally) |∆hu| ≫

|∇+

h u|, u. This is the case for the initial condition u0(x) = 6x(1−x) and zero
Dirichlet boundary conditions. The results of this simulation are presented
in Figure 2.

The CPU times for the simulation of 10 independent realizations were
of 2.59 sec. (direct ODE simulation), 25.87 sec. (flux method) and 315.79
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Figure 2: Comparing 10 realizations of the three methods at time t = 0.2, u0(x) =
6x(1− x).

sec. (random walk method). Note that the variance of the computations
produced by the flux method is smaller in the middle of the interval, where
the derivative of the solution (and therefore the local rate) is close to 0. Even
with the factor h−1 in front, it is smaller than the variance of the direct ODE
simulation, since there the absolute value of the second derivative is maximal.
But in the points where the first derivative of the solution stays away from
0, the variance of the direct ODE simulation method is in turn smaller. This
behaviour indicates that locally the flux scheme might be an alternative for
the direct ODE simulation method if one realizes a coupling of both types of
the dynamics. But one has also to take into account the execution times. In
most cases the use of an adaptive grid or of a larger value of N for the direct
ODE simulation method will turn out to be more efficient.

We will take next a closer look at the dynamics induced by the three
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schemes. For bounded, continuous test functions Φ the general theory of
Markov processes ([5]) gives us the martingale representation

Φ(u(t)) = Φ(u(0)) +

∫ t

0

ΛΦ(u(s))ds+MΦ(t)

with the martingale term MΦ(t) and where Λ is the infinitesimal generator
of the Markov process u(t).

In our special case we take Φ(u) = 〈u, φ〉, i.e. the euclidean scalar prod-
uct with a given n − 1-dimensional vector φ. We obtain then the following
dynamics:

1. for the random walk method:

〈u(t), φ〉 = 〈u(0), φ〉+
∫ t

0

〈u(s),∆hφ〉ds+M rw
φ (t)

2. for the flux simulation method:

〈u(t), φ〉 = 〈u(0), φ〉 −
∫ t

0

〈∇+

h u(s),∇+

h φ〉ds+Mflux
φ (t)

3. for the direct ODE simulation method:

〈u(t), φ〉 = 〈u(0), φ〉+
∫ t

0

〈∆hu(s), φ〉ds+MdODE
φ (t).

By considering summation by parts in the case of zero Dirichlet or Neu-
mann boundary conditions we obtain that the scalar products within the
three integral terms above are in fact equal. Nevertheless, the form pre-
sented here points out towards the weak formulation of the dynamics, where
one derivative is applied on the test function (flux simulation) or even two
derivatives are applied on the test function (random walk). This observa-
tion together with the previous remarks on speed and precision leads to the
following conclusion: the regularity of the data determines which type of
method one has to chose for approximating difference quotients of second
order in general problems. Regular solutions suggests the direct ODE simu-
lation method, while lack of regularity may lead to the choice of a flux-scheme
which approximates some weak formulations of the problem. Random-walk-
type methods are suited only if even less regularity is present.
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In this example we can speak of models which take place naturally on
three different levels of spatial resolution (if we want to approximate the
deterministic equation by the same level of precision). The random walk
method gives us the right dynamics on a very fine scale, where a numerical
particle almost simulates a “physical particle”. On a coarser scale (in space
and time) we may consider not individual jumps of numerical particles, but
the net difference of jumps in both directions, i.e. the flux. The numeri-
cal particle in the flux simulation method with weight 1/N lives therefore
in a different world. Finally, if the regularity of the data allows this, we
may switch to an even coarser scale in space and time, where we consider
only the individual changes in the density value at each grid point due to
the cumulated dynamics corresponding to the particle jumps or to the flux.
By this successive transitions among different scales we remain within the
same level of precision. However, if we compare the three methods for the
heat equation on the same resolution level, which is the relevant situation
in practical applications, we see in general the advantage of the direct ODE
simulation method over the other two. For more general equations, if the
effects which can lead to singular data are dominating, one may use the flux
scheme or the random walk approach in order to simulate the diffusion part
of the problem.

4. Reaction-diffusion problems

In this section we consider an application of the direct ODE simulation
method to reaction-diffusion problems. The first problem we consider is

du

dt
= ∆u+

5eδ

δ
(2− u) exp(−δ/u)

with boundary conditions: ∂νu(0) = 0, u(1) = 1 and initial condition u0 ≡ 1.
This equation models a problem in combustion theory (see [7] and [12],

p.439). u denotes a temperature which increases gradually up to a critical
value when ignition occurs, resulting in a fast propagation of a reaction front
towards the right end of the interval. It is a typical benchmark problem for
deterministic methods which use adaptive grids (in time and space).

In our case we consider a uniform spatial grid, while the time adaptivity is
given intrinsically by the stochastic scheme. Note that we consider the values
Fi in the transition rates of the stochastic process to be the fully discretized
r.h.s. of the reaction-diffusion equations above. That is, we do not split the
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Figure 3: δ = 20, uniform grid, 10 realizations, CPU-time ≈ 9 min/run

dynamics in reaction part and diffusion part. This choice ensures an almost
two times faster execution at the same precision, since the values |Fi| in this
case are smaller than in a splitting approach, due to the partial cancelling
effects of reaction and diffusion. The results are plotted in Figure 3 and
are comparable to those in [7]. In order to have a good time resolution of
the fast motion of the front which takes place within the small time interval
[0.26, 0.29] we had to consider the very large value of N = 300 000.

By computing several Monte Carlo simulations we can read several obser-
vations directly from the graphical plots. The maximal error for our method,
as well as that of the deterministic methods in [7] is around the ignition time
computed as t = 0.26. In our case this can be seen directly from the large
variance of the curves in the neighbourhood of the origin at the mentioned
time. Since in this case the value of N is very large (having in mind the
convergence result from Theorem 1) we may assume -at least heuristically-
that the exact solution lies with high probability between the lower and the
upper curve of the simulations. Observations on test problems and com-
parisons with exact solutions indicate that a tight pattern of the computed
curves is a hint that in general the simulations are close to the exact solution.
Nevertheless, exceptions from this fact cannot be ruled out a priori. For ex-
ample, certain problems may exhibit time-shift errors, where the computed
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profile (a tight pattern of curves) is close to an exact one, but at a different
time, and the convergence to the exact solution occurs only slowly with the
increase of the parameter N .

In the next section we will show also the possibility of approximating
diffusion on non-uniform grids. But in this example a naive refinement of
the spatial grid in the region of the front leads to no improvement, due to the
larger statistical fluctuations which are induced. However, it is possible to
use moving grid techniques like in [7] in order to follow the motion of a grid
which is always fully adapted to the traveling front. We do not follow this
path here, but in Section 6 we present the use of moving grids for convection-
diffusion problems, where the grid is moving with the natural velocity given
by the problem.

The next example is an application to the Fisher-Kolmogorov equation

du

dt
= D∆u+ u− u2

with u(0, x) = 1 for x ≤ 0 and u(x, 0) = 0 for x ≥ x1, which in [4] is simulated
by a stochastic scheme based on the random walk and where diffusion and
reaction were decoupled. The solution of this equation exhibits a traveling
front, a fact that can be seen in Figure 4 which is based on simulations with
the same parameters as in [4], adapted to our setting.

Note that in the algorithm presented in [4] there exists only one scaling
parameter, which is the spatial discretization step h in our notation. The
densities are taken as the number of particles divided by the volume of the
cells, that is by h, which would correspond to the choice N = h−1 in our
situation. Due to the large fluctuations induced by the random walk method
the asymptotic speed of the traveling waves was computed in [4] (especially
for relatively large h) to be in the average different from the theoretical
predicted value. Note that this scaling is very particular and it approximates
the limiting partial differential equation for h → 0, but for relatively large
h it can be far away from the deterministic ODE which corresponds to the
spatially discretized PDE. Our experiments by the direct ODE simulation
method do not exhibit such a behaviour, which can be explained by the
relatively small fluctuations of our scheme (see also the comparison of the
fluctuations from Section 3).
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Figure 4: 10 realizations, solution at times t = 0.5, 1, 2, 5, 10, CPU-time ≈ 2.8 sec/run

5. Diffusion on nonuniform grids

In contrast to explicit deterministic schemes, due to its natural time-
adaptivity, the direct ODE simulation method turns out to be stable also on
non-uniform grids. Consider a grid x0 = a < x1 < x2 < . . . < xn−1 < xn = b
with hi = xi − xi−1 and on it the following transitions:

ui 7→ ui +
sign(∆hui)

N
at rate N · |∆hui|,

for i = 1, . . . n− 1, where ∆hui = αiui−1 + βiui + γiui+1, with

αi =
2

hi(hi + hi+1)
, γi =

2

hi+1(hi + hi+1)
, βi = −αi − γi.

These are the values required for the consistency of the space discretization
scheme. The values u0 and un at the boundary points are prescribed by the
boundary conditions.

We present an example for the diffusion equation with discontinuous ini-
tial data. A plot of the exact solution at equidistant time steps is given in
Figure 5.

We compare the deterministic explicit and implicit (Crank-Nicolson) fi-
nite difference schemes on uniform grids with the direct ODE simulation

20



Figure 5: Exact solution at equidistant time steps t ∈ [0, 0.05].

method on a nonuniform grid. This is generated very naively, only for illus-
tration purposes, as a coarse grid on which we superpose locally two finer
grids around the discontinuity points of the initial data.

As shown in Figure 6 the error is about the same, but the number of grid
points used by the direct ODE simulation method is of about three times
smaller. The CPU times are of 0.15 sec. (Crank-Nicolson with MATLAB
routines for matrix operations), 0.59 sec. (explicit finite difference) (both
with 200 grid points) and 0.82 sec. for one realization of the direct ODE
simulation method based on 60 grid points with N = 1000. In the plot of
the average taken on 10 realizations the standard deviation of each curve
is also represented (the dashed line). The fluctuations are small and the
error of one typical realization of the method is comparable to that of the
deterministic schemes. We note the relatively large execution time of the
direct ODE simulation method compared to the results in Section 3. The
explanation lies in the discontinuity of the initial data and in the large values
of the discrete difference operators at small times. This implies extremely
large rates and consequently short time steps and more iterations. This
example shows also the effect of the automatic time adaptivity of the scheme
presented here.

The possibility of using this scheme for approximating diffusion on nonuni-
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Figure 6: Difference to the exact solution at equidistant time steps t ∈ [0, 0.05].

form grids will be exploited in the next section in the context of convection-
diffusion equations.

6. Convection-diffusion dynamics with moving cells

For the viscous Burgers’ equation

du

dt
+ uux = νuxx (10)

we consider the following variant of the direct ODE simulation method. For
i = 1, . . . n let xi(t) denote the position of cell i and ui(t) the density in cell
i at time t. We consider the ODE system

{

ẋi = ui

u̇i = ν∆hui
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with ∆h defined as in Section 5 on the dynamic grid xi = xi(t). This means
that the cells with positions xi and densities ui follow a Lagrangian dynamics
with a velocity which equals ui, while on the non-uniform grid configuration
we simulate diffusion by the known scheme. This system is approximated
by the direct ODE simulation method, where we have to deal with some
computational issues:

• We take Nx = 10 · Nu, that is the increment by which we change the
position of the cells is 10 times smaller than the increment by which
we change the density values by diffusion.

• In the numerical simulations the trajectories of the cells may cross, or
may become very close. In this case we eliminate one of the cells, in
order to avoid the numerical explosion of the diffusion rates.

• Due to several elimination steps the number of cells can decay signif-
icantly. A typical rule used in this situation is the following: if the
current number of cells becomes e.g. half of the initial number, we add
the missing number of cells by interpolation, by keeping at the same
time the remaining cells.

• Depending on the boundary conditions, we have to consider a possible
inflow or outflow of cells at the boundaries of the given computational
domain.

The first example is to approximate the equation (10) on the interval
(0, 1) with zero boundary conditions and initial condition u0(x) = sin πx, see
also [6]. In this case we can compare the numerical results with the exact
solution as shown in Figure 7.

The second example we consider is the problem of two moving fronts.
The domain of definition is now given by the whole real line and an explicit
solution can be computed as a combination of exponential functions, see [13],
p.164 and p.201. The upper front travels with a higher velocity and catches
up the slower one. The two fronts then merge and their common motion
continues as one single front.

In Figure 8 we show the results of the numerical simulations produced
by our method. Note that in this case we have not only a natural time-
adaptivity, but also a natural grid-adaptivity. The value N = 5000 regards
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Figure 7: Comparison with the exact solution for ν = 10−2. CPU-time ≈ 1 min.

the parameter of the diffusion dynamics. As already mentioned, the corre-
sponding parameter for the convective dynamics is taken as 10N in order to
ensure a better spatial resolution. The same (larger) value for the diffusion
dynamics would lead to a significant increase in the execution time.

7. A free boundary problem: the Black-Scholes equation for Amer-

ican options

We consider the Black-Scholes equation for American put-options (for-
mulated forward in time instead of backward):

Pt =
1

2
σ2S2PSS + r(PS − P ) for S > Sf ,

P (S, t) = K − S for S ≤ Sf(t).

with the free boundary Sf and the initial conditions:

P (S, 0) = (K − S)+, Sf (0) = K.

P (S, t) is the value of the option at time t if the underlying asset has the
value S. The free boundary point Sf is the critical value of the underlying
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Figure 8: Computations for ν = 10−3 and t ≤ 2.5. 10 realizations (left) and one realization
compared to the exact solution (right). CPU-time ≈ 1min/run

asset such that for S ≤ Sf it is profitable to exercise the option, its value
being given by the payoff K − S. For S > Sf it is more profitable to hold
the option, the value being given then by the solution of the Black-Scholes
equation.

Usual deterministic schemes for this equation are based on its formu-
lation as an obstacle problem and employing for example projection SOR
(successive over-relaxation) methods for the numerical approximation of the
corresponding differential inequalities. In contrast to this approach, the ap-
plication of the direct ODE simulation method is straightforward. Due to
the dynamics of the problem, the free boundary Sf will move to the left.
Consider a discretized approximation of the initial value on a uniform grid
and denote by i∗ the index of the grid point corresponding to the free bound-
ary. This means that Si∗ is the last grid point (counted from the left) where
the function takes the value K −S. We simulate the dynamics of the Black-
Scholes equation only on the interval (Si∗ , Sn) which, at a certain moment,
will imply also a change of the value P (Si∗). After this step we move the
boundary one point to the left, that is we set i∗ = i∗ − 1 and for the new
value of P (Si∗) we take the value computed in the initial condition, that is
K − Si∗ . Up to this modification, the algorithm follows the usual pattern.
Note that we simulate the motion of the free boundary in a natural way, as a
result of the infinitesimal dynamics of the problem. The numerical results for
the parameter values K = 100, r = 0.03, σ = 0.4, T = 1 are given in Figure
9.

We can see a good agreement of the results produced by the direct ODE
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Figure 9: Value of an American put option computed by two methods at times t = 0, 0.5, 1.
CPU-time ≈ 6 sec (for the direct ODE simulation).

simulation method (one realization) and a standard deterministic scheme.
The latter runs in a time of under 1 second, but it uses the fast MATLAB-
routines for matrix operations, while the samplings and the explicit updates
of the stochastic process are performed always “by hand”.

8. Conclusions

In this paper we presented a stochastic scheme for approximating so-
lutions of ordinary differential equations by direct simulation of the corre-
sponding infinitesimal dynamics. The method is explicit and it can be applied
also for semi-discrete partial differential equations, even on non-uniform spa-
tial grids (one-dimensional). Time-adaptivity is provided intrinsically, while
space adaptivity can be also employed. An error analysis shows that the
fluctuations are small, provided the deterministic solution which has to be
approximated stays bounded on the given time interval. Given the dimension
n of the system and the parameter N which induces an approximation error

of O(
√
N

−1

), the scheme requires NO(logn) operations in order to advance
on a time interval of length O(1/n). Comparing with deterministic schemes
for systems of dimension n, which require a linear or quadratic complex-
ity in n for the same time interval, we can say that the method proposed
here could be more efficient for large systems, for example in 2 or 3 space
dimensions and where we have a large number of species which interact in
every cell or grid point. A typical application example can be a spatially
inhomogeneous coagulating system, where in each cell one has to simulate

26



an infinite-dimensional system of ordinary differential equations.
The general principle of the direct ODE simulation method can be ap-

plied for arbitrary evolution partial differential equations, but in the present
paper we show applications only at convection-diffusion-reaction problems
in one space dimension, including free boundary problems. Further research
towards improving this method can be directed at variance reduction and
generalizations in more space dimensions in the case of non-uniform grids.

Acknowledgement

The author thanks an anonymous referee for useful comments and obser-
vations which helped improving the clarity of the exposition.

References

[1] D. Aldous, Deterministic and stochastic models for coalescence (aggrega-
tion and coagulation): a review of the mean-field theory for probabilists,
Bernoulli 5 No. 1 (1999) 3-48

[2] L. Arnold, M. Theodosopulu, Deterministic limit of the stochastic model
of chemical reactions with diffusion, Adv.Appl.Prob. 12 (1980) 367-379

[3] M.Bossy, Optimal rate of convergence of a stochastic particle method to
solutions of 1D viscous scalar conservation laws, Math.Comput. 73, No.
246, (2004) 777-812

[4] H.-P. Breuer, W. Huber, F. Petruccione, Fluctuation effects on wave
propagation in a reaction-diffusion process, Physica D 73, No.3 (1994)
259-273

[5] S. Ethier, T.G. Kurtz, Markov Processes: Characterization and Conver-
gence, Wiley, 1986

[6] C.A.J. Fletcher, A comparison of finite element and finite differ-
ence solutions of the one- and two-dimensional Burgers’ equations.
J.Comput.Phys. 51 (1983), 159-188

[7] R. M. Furzeland, J.G. Verwer, P.A. Zegeling, A numerical study of three
moving-grid methods for one-dimensional partial differential equations
which are based on the method of lines, J.Comput.Phys. 89 (1990), 349-
388

27



[8] D.T. Gillespie, Markov Processes, Academic Press, San Diego, 1992
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