
This document is downloaded from DR-NTU, Nanyang Technological

University Library, Singapore.

Title A context switchable fuzzy inference chip(Published
version)

Author(s) Cao, Qi; Lim, Meng-Hiot; Li, Ju Hui; Ong, Yew Soon; Ng,
Wil Lie

Citation
Cao, Q., Lim, M. H., Li, J. H., Ong, Y. S., & Ng, W. L.
(2006). A context switchable fuzzy inference chip. IEEE
Transactions on Fuzzy Systems, 14(4), 552-567.

Date 2006

URL http://hdl.handle.net/10220/4636

Rights

© 2006 IEEE. Personal use of this material is permitted.
However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new
collective works for resale or redistribution to servers or
lists, or to reuse any copyrighted component of this work
in other works must be obtained from the IEEE. This
material is presented to ensure timely dissemination of
scholarly and technical work. Copyright and all rights
therein are retained by authors or by other copyright
holders. All persons copying this information are
expected to adhere to the terms and constraints invoked
by each author's copyright. In most cases, these works
may not be reposted without the explicit permission of the
copyright holder. http://www.ieee.org/portal/site.

552 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 14, NO. 4, AUGUST 2006

A Context Switchable Fuzzy Inference Chip
Qi Cao, Meng Hiot Lim, Ju Hui Li, Yew Soon Ong, Member, IEEE, and Wil Lie Ng

Abstract—This paper describes a novel design of a fuzzy in-
ference chip that allows for real-time online context switching. A
context refers to a situation or scenario of an application requiring
specific domain knowledge. In particular, our focus is on the class
of applications involving embedded fuzzy control. The domain
knowledge therefore refers to fuzzy rules and memberships. The
kind of applications being considered is real-time in nature, which
necessitates the implementation of hardware for fuzzy inferencing.
The chip architecture is described and details on the design of the
chip is presented.

Index Terms—Context switching, embedded fuzzy control,
evolvable systems, fuzzy inference, reconfigurable fuzzy chip.

I. INTRODUCTION

FUZZY systems have been an active area of research since
the conceptualization of fuzzy set theory by Zadeh [1][2].

There have been successful applications in many areas of
control. Some examples include washing machine [3], air-con-
ditioner [4], automobile control [5], robotics [6], financial
loan management [7], model predictive control [8], and image
and speech processing [9][10]. Fuzzy systems are efficient in
dealing with complex, nonlinear and time-varying processes
whose mathematical models are difficult to describe [11].

In practice, depending on the requirements of an application,
there are essentially two modes of implementing fuzzy systems
that can be considered. If an application is not time-critical, the
inference engine of the system can be realized in software or
some form of general purpose computing devices. For some
real-time applications, it may be necessary to resort to special
purpose inference hardware. The implementation of special pur-
pose hardware for fuzzy reasoning is well established and de-
pending on the speed requirement, a suitable architecture with
an appropriate level of parallelism can be configured to achieve
the desired processing speed [12]. This type of hardware solu-
tion employing dedicated microelectronic circuits to realize the
system is referred to as a fuzzy inference chip.

The motivation for the initial design of a fuzzy inference chip
by Togai and Watanabe [13] was its suitability for applications
requiring high inference speed. To realize an application, do-
main specific knowledge is programmed into the fuzzy chip

Manuscript received September 23, 2003; revised February 8, 2005 and Oc-
tober 17, 2005.

Q. Cao and J. H. Li are with the Centre for Integrated Circuits and Systems,
the School of EEE, Nanyang Technological University, Singapore 639798, Sin-
gapore.

M. H. Lim is with the School of EEE, Nanyang Technological University,
Singapore 639798, Singapore.

Y. S. Ong is with the School of Computer Engineering, Nanyang Technolog-
ical University, Singapore 639798, Singapore.

W. L. Ng is with the Centre for Advanced Information Systems, the School of
Computer Engineering, Nanyang Technological University, Singapore 639798,
Singapore.

Digital Object Identifier 10.1109/TFUZZ.2006.876735

beforehand. The system output is derived through inferencing
based on the inputs applied and the domain knowledge. A typ-
ical fuzzy inference chip stores the fuzzy rules and memberships
as domain knowledge for specific scenarios. The knowledge
base is easily updated for the different scenarios and applica-
tions by reprogramming the domain knowledge in the memory
section of the fuzzy inference chip.

For conventional fuzzy systems, the rules are usually fixed
regardless of the change in operating conditions. This may not
be efficient for some problems where scenarios may change
dramatically. In order to achieve consistent performance for
the system, evolvable fuzzy hardware could be a viable option.
Evolvable fuzzy hardware is an attractive alternative since it
allows the architecture of a hardware system to be altered ac-
cordingly to suit the requirements of the operating environment.
Certain applications of real-time fuzzy control may require a
hardware solution towards fuzzy inference. If the domain rules
and memberships are static, then it is usually not an issue since
extensive work on fuzzy inference chips has addressed this as-
pect adequately. On the other hand, if the domain rules or pos-
sibly the membership functions are dynamic, it is imperative
that the hardware that handles the fuzzy inference lends itself
to reconfiguration. For this purpose, we design a reconfigurable
fuzzy inference chip (RFIC), which allows for online context
switching. A switch in the context refers to a change in either
the rule set or the membership functions. It should be empha-
sized that in principle, the changes of both the rule set and mem-
berships can occur simultaneously. In practice, experience has
shown that evolving the rule sets with fixed membership usually
offers sufficient coverage for functional adaptability of fuzzy
systems, a notion that was originally described by Thrift [14]
and Lim et al. [15]. Hence, in our scheme, we consider the up-
dating of context to involve only the rule set.

In the next section, we give a general overview of fuzzy in-
ference chips. In Section III, we describe the architecture of the
RFIC. In Section IV, a detailed illustration on the process of
configuring the RFIC is presented. The method of inferencing
and partitioning of the rule blocks is described in details. In Sec-
tion V, we simulate the functionality of the RFIC based on an
actual control application. To further demonstrate online con-
text switching capability of the RFIC, we simulate an evolvable
fuzzy hardware system with the proposed RFIC as the core-pro-
cessor. We conclude this paper in Section VI.

II. FUZZY INFERENCE CHIPS REVIEW

Issues pertaining to hardware implementation of fuzzy sys-
tems have been covered extensively in literature [3], [4], [7],
[13], [16]–[27]. Fuzzy inference chip was first proposed by
Togai et al. [13] in 1986, while Yamakawa et al. designed the
first analog fuzzy chip [21]. Analog fuzzy chips yield high in-
ference speed with relatively simple and compact architecture,

1063-6706/$20.00 © 2006 IEEE

CAO et al.: A CONTEXT SWITCHABLE FUZZY INFERENCE CHIP 553

as well as good compatibility with sensors [24], [28]. However,
analog implementation lacks extensibility and flexibility com-
pared to digital implementation [29]. Digital fuzzy chips have
good programmability and flexibility by employing logic and
memory circuits, as well as good compatibility with other dig-
ital systems [24], [29]. Nowadays, with powerful formal design
methodology and good design tools support, the realization of
digital systems is generally more efficient. Digital fuzzy chips
are also popular since development and prototyping can be
achieved in a relatively short time.

Over the years, digital fuzzy inference chips have evolved
significantly. Initial implementation of Togai’s inference chip
accommodates fuzzy subset of 31 elements. The membership
value of each element is discretized using four binary bits. All
16 rules can be processed in parallel. The fuzzy chip can per-
form approximately 80 000 fuzzy logic inferences per second
(80 K FLIPS). Watanabe et al. [18] continued to enhance the
fuzzy chip. With the memory size and inference speed upgraded,
the universe of discourse of fuzzy subset is enlarged to 64 ele-
ments and up to 102 fuzzy rules can operate in parallel. The
chip can perform up to 580 K FLIPS. Subsequently, the in-
ference speed and performance have improved tremendously
as a result of significant advancement in hardware technology.
The inference speed of the fuzzy inference chip is up to 7.5
M FLIPS as reported in [20] and 10 M FLIPS in [16], [17].
High density, flexible architecture, and availability of devices
with good programmability feature such as FPGA, offer even
greater versatility for system implementation. A potential in-
ference speed of up to 60 M FLIPS was reported in [30] by
employing the Xilinx XC3000-family FPGA. Besides improve-
ment in inference speed, higher resolution for fuzzy chips has
also been achieved. For examples, the input resolution is 10-bit
and the resolution of membership functions is 8-bit for Toshiba
T/FC150 chip [11], while the input resolution of 12-bit with
membership functions resolution of 8-bit have been reported
in [23]. These fuzzy chips with high inference throughput can
support rigorous real-time applications [31]. For example, these
chips are useful in applications involving image and speech pro-
cessing where general-purpose hardware based on standard pro-
cessors or microprocessors may not be able to deliver the nec-
essary inference throughput.

Usually, there are two ways to realize a digital fuzzy chip.
One way is by means of explicit implementation approach. In
the development of a fuzzy system, the input and output vari-
ables are first identified. Then, the membership functions and
fuzzy rules are formulated, which are collectively referred to as
the fuzzy relation knowledge. The fuzzy relation knowledge is
a form of mapping programmed into memory elements and to-
gether with the hardware inference circuitry form the basis of
a fuzzy chip system. This is a form of explicit implementation
of the fuzzy inference systems. For example, the adaptive fuzzy
hardware system depicted in [25] consists of six parts; knowl-
edge base, input fuzzifier, dynamic membership function gener-
ator, inference processing unit, defuzzifier and control unit. The
knowledge base is stored in four types of memory blocks; input
fuzziness memory, membership function memory, rule index
memory and rule weight memory. Logic circuitry is employed
to achieve the max-min composition in the inference processing

unit. Usually, a two-stage addition/accumulation and a divider
make up the defuzzifier circuitry. The performance of such a
system is limited by the delay of the circuitry in carrying out
each logical inference. Other examples of such explicit imple-
mentation approaches can be found in [7], [13], [18], [19], [23],
and [26].

Another way to realize digital fuzzy inference chip is by
means of implicit implementation approach. For such an ap-
proach to work, a mapping of the inputs and outputs is created
based on a software inferencing model. Such a mapping can
then be conveniently programmed as a memory map in the
chip. The fuzzy inference process is then carried out based
on the inputs and the preprogrammed mapping. For example,
Lim et al. [3] presented a framework for the development of
PLD-based fuzzy controllers. The performance of such systems
is usually limited by the access time of the digital memory de-
vices. Hence, the main advantage of the implicit approach is the
potentially high speed of inference. However, such an approach
is able to support only a single context since the switching
of context requires the complete reconfiguration of the whole
memory map. Some other examples of implicit implementation
approaches can be found in [22], [27], and [30].

For fuzzy inference chip, designing the defuzzification block
is a challenge because it is a significant bottleneck in achieving
high fuzzy inference speed [32]. Normally, defuzzification
process requires multiplication and division, making the fuzzy
inference chip complicated and complex. One design approach
by Watanabe et al. [18] uses two adders, two registers and
one divider to avoid the multiplication step. The numerator
and denominator are calculated separately. An adder and a
register carry out summation for the numerator while another
adder and register carry out summation for the denominator.
Finally, the crisp output is calculated by a divider. Jou et al.
[25] also designed similar circuit. The defuzzifier circuit en-
hances the performance of their digital fuzzy inference chips,
although a divider is still necessary. Yamakawa [24] designed
a defuzzification circuit to eliminate the divider in his analog
fuzzy inference chip. The defuzzification was accomplished by
employing a grade-controllable membership function circuit
with feedback loops. Employing look-up table to replace the
multiplication and division is another solution for defuzzifica-
tion, an approach adopted by [4], [26]. For example, a (16 8)
ROM-type multiplier lookup table and a (24 9) ROM-type
division lookup table are employed in [4]. This approach can
achieve very high performance. The drawback is that a poten-
tially large memory space is required to cover the entire range
of possibilities.

III. RFIC

The design of the RFIC is generally more complicated
than either implicit or explicit implementation approaches.
It involves a combination of methodologies employed in the
implicit implementation approach as well as explicit implemen-
tation approach to support online context switching. Using a
structured scheme of multiple rule level mappings, we derive a
formatted memory map, which we refer to as a fuzzy inference
mapping (FIM). For the scheme to work, a novel methodology
of conflict resolution or aggregation is incorporated. This is

554 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 14, NO. 4, AUGUST 2006

Fig. 1. Block architecture of RFIC.

analogous to the process of defuzzification, a necessary step in
the explicit implementation of fuzzy reasoning hardware.

For fuzzy hardware, the inference engine deduces the fuzzy
output based on the system’s inputs, rules and membership func-
tions. Within the RFIC, the key to fuzzy inference is the FIM.
The FIM is a representation that covers all the contexts for a
fuzzy application. The adaptation of the RFIC to various con-
texts is handled by the partition blocks in the FIM. The relevant
partition blocks in the FIM are activated according to the context
of the problem and the inputs to the system. From the outputs of
the FIM partition blocks, a deterministic action is derived. This
represents the output of the RFIC.

There are two working stages of the RFIC, the configuration
stage and the normal operation stage. During the configuration
stage, the FIM is created with the support of a software configu-
ration platform. From this software platform, the necessary dig-
ital data required to configure the FIM memory are generated.
The representation of a context is in terms of fuzzy rule set and
membership functions. In our scheme, since the membership
functions are fixed, the possible rule set represents the context,
which is applied to the RFIC. Since the context is directly ap-
plied and configured into the hardware, real-time performance
of the system is maintained. Furthermore, the in-system con-
text switching capability means that normal operation of the
real-time control system is not disrupted.

Once the FIM of the RFIC is configured, there is no need to
change its configuration unless there is a change in the member-
ship functions. The new FIM configuration data set is generated
only if a context is updated due to a change in the membership
functions. FIM reconfiguration is not necessary for switching
of context due to a change in domain rules. Hence, the RFIC

is effective in supporting context switching for different oper-
ating environment without interrupting the normal inferencing
process. The hardware architecture of the RFIC is described
next.

A. Architecture

Fig. 1 shows the overall block architecture of the RFIC. It
consists of five basic function blocks; FIM, context management
unit (CMU), address encoder module (AEM), output aggrega-
tion module (OAM), and control unit.

The FIM in the RFIC is a structured representation of the
fuzzy relational knowledge. The number of partition blocks
in the FIM depends on the size of the linguistic terms set
for the input variables. Consider the size of the linguistic
terms set for a two-input system to be and . Then in
general, there are partition blocks in the FIM,

. For example, if each
input variable is characterized by five linguistic terms, the
number of partition blocks in the FIM is 25, essentially the size
of the maximal rule set. During the process of inferencing, not
all the partition blocks in the FIM are active or enabled. The
ones enabled are determined by the current context maintained
in the CMU.

Within the CMU, the context of the application is stored
in a -bit parallel-load register, where de-
pends on the size of the linguistic terms set for the output
variable. There are segments in the context reg-
ister, . Each segment
is represented by bits. Based on the current context of the
application, the CMU generates a -bit address for accessing
each partition block in the FIM. Each -bit address connects to

CAO et al.: A CONTEXT SWITCHABLE FUZZY INFERENCE CHIP 555

Fig. 2. FIM configuration.

only one partition block. Hence, the -bit address derived from
in the CMU connects to in the FIM, while

the -bit address derived from connects to
in the FIM, and so on.

The function of the AEM is to generate the address for ac-
cessingeachFIMpartitionblock.Thenumberofbits and for
inputs depend on the resolution of the input variables. In a prac-
tical scenario, both -bit and -bit inputs may be obtained from
analog-to-digital converters. For example, choosing both and

to be four as the resolution of the inputs will allow for 16 dis-
crete levels of input values. From the inputs, the AEM generates
a -bit address for accessing all the partition blocks in the
FIM. Herein, the complete address for accessing each partition
block in the FIM is made up of bits.

Although the address lines from the AEM feed into all the
FIM partition blocks, only the partition blocks that are relevant
to the context are accessed. The outputs of all the FIM partition
blocks that are being accessed become the inputs to the OAM.
In order to achieve the desired aggregation effect, we design
a novel circuit to realize the appropriate mode of conflict res-
olution. The outcome of the OAM is a crisp digital output of
the fuzzy system. The output consists of a whole and fractional
part. By incorporating the fractional part, significant rounding
off error in the output can be avoided. An additional 4 bits is
incorporated for the fractional part. Hence, for the -bit data on
the bi-directional data bus, there are bits of data output
from the OAM. It is also the final output of the RFIC.

A global synchronizing clock signal is derived from the con-
trol unit. Besides synchronizing data flow on the bi-directional

data bus, the control unit handles the switching between the two
functional stages of the RFIC. During the configuration stage,
the FIM is programmed by data from an external configuration
program via the FIM configuration interface. For the normal op-
eration stage, data originate from the FIM partition blocks for
further computation in the OAM.

B. FIM

Fig. 2 shows the general layout of the FIM to be realized
by on-chip RAM (random access memory). The whole FIM is
divided into partition blocks ,

and the total number of partition blocks is deter-
mined by the size of the input linguistic terms set. In this case,
we denote the size to be for one input and for the other. Es-
sentially, the FIM acts as the fuzzy relational knowledge base
of the application. It is a representation that models the process
of inputs fuzzification, rules evaluation and output composi-
tion. The process of configuring the FIM involves a configu-
ration procedure that emulates the fuzzy inferencing process.
Once configured, there is no need to update the FIM whenever
a change in the context occurs. As alluded to earlier, a change
in the context could be a result of change in the domain rules
or membership functions. A context change is normally trig-
gered by a change in the scenarios of the application. In this
respect, RFIC is able to handle context switching brought about
by a change in the domain rules. Although in principle, changing
membership functions can also bring about a context change, we
argue that it is not as useful as a context change brought about
by a change in the domain rules [14], [15].

556 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 14, NO. 4, AUGUST 2006

Fig. 3. Hardware architecture of CMU.

All data in each partition block exist in 2’s complement
format. The width of the data bus is -bit. The most significant
bit (MSB) is the sign bit, while the magnitude is represented by
the remaining bits. The FIM as shown in Fig. 2 must support
two modes of operations. During the configuration mode, the
partition blocks in the FIM are configured one at a time. This is
achieved by selectively enabling each FIM partition block one
by one. The control unit sets the status of all the FIM partition
blocks to Write mode during the configuration process. During
the normal operation mode, all the FIM partition blocks are set
to Read mode and the context register maintains the current
rule set of the application, updated by means of a parallel data
load operation.

C. CMU

With fixed membership functions, a context is an instance of
rule set. The length of the rule set depends on the number of
membership functions defined for the input variables. The rule
set is loaded directly into the context register of the CMU. The
circuit block diagram of the CMU is as shown in Fig. 3. The
main components in the CMU are the context register and the
decoding logic block. The bits register is a par-
allel loading register. In designing the CMU, it is necessary to
consider the appropriate scheme of register loading for context
updating. On the one hand, if the architecture is to cater for fast
and efficient context switching, the number of I/O pins incurred
will be high. However, if the speed of context updating is not so
critical, the loading of the bits register can be car-
ried out in a sequential manner. From the context in the register,
the logic block in the CMU decodes the value of each rule in
the register to derive the necessary enable signal for each FIM
partition block. This is handled by the decoding logic block con-
sisting of OR gates circuitry to generate the enable signals.

On the whole, the context register is made up of segments
labeled as Rule Rule Rule

Rule . Each segment maintains the active rule
represented by bits, denoting the output as the conclusion part
of a rule. For each rule, the -bit signals become the inputs to
the decoding circuit. For an inactive rule, the decoding logic
generates a false for the enable signal. For active rules denoted
by non-zero values, the decoding logic generates output signals
to enable the corresponding partition blocks.

Fig. 4. Schematic of AEM.

D. AEM

The AEM as shown in Fig. 4 is the address encoding block
of the RFIC. It generates the address for accessing the partition
blocks in the FIM. During the normal operation mode, the
signal is pulled high. The AEM takes in -bit and -bit data.
During the configuration mode, the signal is low. This
causes the MUX to select the address counter as the source that
generates the address for writing into each partition block in the
FIM. The address counter is essentially a -bit counter
that automatically generates the address for accessing the FIM
partition blocks.

In the RFIC, the complete address consists of two parts. The
first part of the address is derived from the input bits.
Each set of inputs generates a unique address bits.
From the CMU, the -bit coding of each rule in the context
register is appended to the address bits. This forms the
complete address for the FIM partition blocks. Only the contents
of the FIM partition blocks enabled by the CMU decoding logic
are accessed.

The data accessed from all the partition blocks become the in-
puts to the OAM for defuzzification. Although the current con-
text in the CMU activates the partition blocks in the FIM by
means of the enable signals, outputs are derived only from those
partition blocks that contribute to the conclusion according to
the inputs into the system. Further details on this aspect are
given in Section IV by means of an illustrative example.

E. OAM

The defuzzification operation is handled by the OAM circuit.
The method of aggregation adopted for the RFIC is a form of
rule level defuzzification averaging [33]. Conceptually, one can
perceive the output from each partition block of the FIM as a
form of defuzzifized conclusion derived for a one-rule fuzzy
sub-system. To cover the entire context, it is necessary to ag-
gregate the outputs from all the FIM partition blocks. However,
not all the outputs from partition blocks are relevant. The out-
puts of inactive or disabled FIM partition blocks are irrelevant
data, hence ignored. Therefore, the OAM is only required to
aggregate the valid data from FIM partition blocks that are ac-
tive. The appropriate FIM partition blocks are activated based
on the context applied to the system. Besides that, during the
normal operation of the RFIC, the partition blocks are selec-
tively enabled according to the fuzzy inputs applied. For each in-
ferencing process, the number of active one-rule fuzzy sub-sys-
tems may vary in the range of 1 to .

To illustrate the aggregation process, consider the general
case of partition blocks in the FIM. Let denote the

CAO et al.: A CONTEXT SWITCHABLE FUZZY INFERENCE CHIP 557

Fig. 5. Hardware architecture of OAM.

output of in the FIM. The general form of the equation
for averaging is as follows:

(1)

where is the number of active partition blocks. The output
from (1) is the final output of the RFIC.

The circuit to compute can be implemented by a summing
block and a divider. Although the summing block is relatively
straightforward from a circuit implementation point of view, the
implementation of the divider is potentially complex. To over-
come this, we adopt a hierarchical averaging approach in order
to manage the potential complexity of the circuit. Hierarchical
averaging involves multiple stages of computation as illustrated
in Fig. 5. In the circuit, we use mostly Avg_2 circuit blocks,
with flexibility to incorporate Avg_3 circuit blocks whenever
necessary. The function of the Avg_2 and Avg_3 blocks is to do
averaging of 2 and 3 -bit binary inputs respectively. An Avg_2
block is realized by an adder and a divide-by-2 circuit while an
Avg_3 block is realized by an adder and a divide-by-3 circuit.
The implementation of the divide-by-3 operation in the Avg_3
block is conveniently realized using a simple look-up table. Al-
though certain degree of error is expected in hierarchical aver-
aging by the circuit in Fig. 5, the extent of the error compared
to direct averaging based on (1) is not significant. From simula-
tions on control applications presented in Section V, the error
due to hierarchical averaging has no noticeable effect on the
functional performance of the RFIC.

F. Control Unit

The overall synchronization of the RFIC is carried out by the
control unit. Besides generating the clock signals, the control
unit also generates signals to synchronize operations involving
the RFIC and external hardware interface, such as ADC and
the FIM configuration interface. The fuzzy logic inferencing is
performed during the RFIC normal operation stage. For situa-
tions where the membership functions or the application domain
changes, a new set of configuration data is generated by the FIM
configuration program. The FIM configuration interface sends
a REQ# signal to the control unit to initiate a configuration up-
date. A GRANT# signal is fed back to the FIM configuration in-

Fig. 6. Hardware block architecture of control unit.

terface, triggering the RFIC configuration process. The overall
handshaking protocol between the control unit and the FIM con-
figuration interface is illustrated in Fig. 6.

A transfer controller in the control unit coordinates the data
transfer to/from the FIM. There are two types of transfer modes;
the Write and the Read transfer modes. During the Write mode,
data from the FIM configuration interface are written to the FIM
via the data bus. The FIM partition blocks are config-
ured one by one sequentially. The first FIM partition block con-
figured is . Data is transferred from the FIM configura-
tion interface to without interruption. Next,
is configured, followed by . This continues until the
last block is configured. For the Read mode, all the

FIM partition blocks are enabled simultaneously. This
way, data can be accessed from the FIM in parallel and fed into
the OAM.

The switching between the Write and the Read transfer mode
on the bidirectional data buses are handled by data selection
switches. In Fig. 6, there are bus switches which are
controlled by the transfer controller. The select signals are set
to ‘0’ for the Write mode to set up connections between the FIM
configuration interface and the FIM. During the Read mode,
connections are established between the FIM and the OAM.

G. Circuit Prototyping

Circuit realization for the RFIC is carried out using VHDL
(very high-speed integrated circuit hardware description lan-
guage) in Mentor Graphics FPGA Advantage 6.3 environment.
A Xilinx XC2V2000 Virtex-II FPGA is employed for circuit
prototyping. For our RFIC prototyping example, we consider
both inputs to be 6 bits . The number of bits to
code the consequent of each rule is chosen to be 3 bits .
The width of the data bus is chosen to be 8 bits . The
device utilization and critical path report is as shown in Table I.
The critical path delay is 57.38 ns (from the AEM to the OAM),
out of which 41.8 ns is delay attributed to the OAM. Based on
this critical path delay, the inference speed of the RFIC is esti-
mated to be 17 M FLIPS. This inference speed is high enough
for most time-critical applications.

H. Evolvable Hardware System

An example of RFIC-based evolvable hardware system con-
figuration is illustrated by the block architecture in Fig. 7. The
Evolution Module can be realized by a microcontroller-based

558 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 14, NO. 4, AUGUST 2006

TABLE I
CIRCUITRY AREA AND DELAY REPORTS

Fig. 7. Functional block diagram for complete system.

genetic algorithm (GA) unit. Functionally, the role of the GA
is to evolve a suitable context which is then configured into the
CMU of the RFIC. The RFIC-based system is capable of main-
taining suitable level of performance in a dynamically changing
operating environment.

In Fig. 7, data from domain environment are fed into the Evo-
lution Module as training data. A GA process is triggered and
operates on the training data stored in the memory. GA opera-
tions such as selection, crossover, mutation and replacement are
carried out in the GA unit. The derived context with the best fit-
ness is updated into the CMU. As discussed earlier, the address
to access the FIM encoded by the AEM, consists of two parts.
One part of it is derived from the system’s inputs, while the other
part is derived based on the current context in the CMU. With
the data accessed from the FIM, the OAM of the RFIC computes
the control output. The whole setup allows for online context
switching, a critical feature of intrinsic evolution for evolvable
hardware systems.

IV. CONFIGURING FIM

The application developmental framework for an RFIC-based
system requires a FIM configuration program to compute data
set for configuring the FIM. Once programmed, the RFIC has
the potential for high inference performance with small response
delay and good adaptive capability. Furthermore, the gate count

Fig. 8. Linguistic matrix of maximum rule set for two input variables.

and hence hardware complexity is minimized. In this section, we
illustrate in details the whole process of configuring the FIM.

A. General Descriptions

The FIM configuration is structured according to the lin-
guistic matrix of a fuzzy system. The linguistic matrix is
basically a tabular representation showing the input-output
mapping of the fuzzy system [34]. As a general illustration,
Fig. 8 shows the linguistic matrix for a system of two input
variables and with the linguistic sets
and , respectively. Each entry
in a cell of the matrix denotes the linguistic value of the
conclusion part of a rule. For example, the cell
is interpreted as “if and
then ” where is a linguistic
value of the variable . If we consider the linguistic set of the
output variable to be , this will imply that

.
The maximum number of rules for the system described is

. Each cell in the rule matrix is assigned a value in the
linguistic terms set of the output variable . To facilitate discus-
sion, consider as the rule set representing the context of an
application. In general, we can write as follows:

(2)

The size of is is a representation of a context
within a mapping space of . This is based on the as-
sumption that is defined for a maximal rule set of .

In order to partition the domain knowledge in the FIM, the
entire mapping space is divided into groupings based on the
antecedents of the rules. According to the linguistic matrix of
Fig. 9, the cells can be conveniently classified into groupings.
For example, the Grouping is representative of the
following rules:

If and then

If and then

If and then
...

If and then

Hence, the number of rules that falls into each grouping depends
on the size of the linguistic terms set characterizing the con-
clusion part of the rules. All the rules in a grouping have the

CAO et al.: A CONTEXT SWITCHABLE FUZZY INFERENCE CHIP 559

Fig. 9. Linguistic matrices of the (v � w) groupings.

Fig. 10. Membership functions of a simplified system.

same antecedent part. The overall situation is depicted in Fig. 9,
showing the various groupings.

In general, for each grouping , only the cell corre-
sponding to “If and then

” is included, while theother cells are treated
as NULL entries. With the groupings, we can provide
coverage for all possible conditions in the -rule fuzzy sys-
tems. Hence, for any -rule fuzzy system , it can be
taken apart into number of one-rule sub-systems. Each one-rule
sub-system is covered by the corresponding grouping shown in
Fig. 9 . In this way, the FIM is capable of handling all the con-
texts when configured. Furthermore, there is no need to modify
the FIM unless there is a change in the membership functions.

The FIM configuration program configures the parti-
tion blocks of the FIM based on the groupings. Data for
the groupings are loaded into the RFIC during the configuration
stage. The resolution of input membership functions is chosen
to be and number of bits. For the output, the memberships
are described using the pulse functions. The number of bits is
chosen to indicate the output variables. Hence, the width of the
address bus to the FIM is . In our RFIC, the width
of data bus is bits. The complete FIM configuration procedure
is demonstrated by means of a simple illustration. Following this
illustration, we present two practical examples in the next sec-
tion. The functional simulation of the practical example is also
incorporated to verify the operational functionality of the RFIC.

B. Simple Illustration

To describe the process of configuring the FIM in the RFIC,
we use a simple example to illustrate the steps involved. The
application example is intentionally simplified to facilitate de-
tailed illustration of the steps involved. Consider a system of
two inputs and and a single output . The membership
functions for the system are as shown in Fig. 10

A 2-bit resolution is used to discretize the input
membership functions. We choose the number of bits to be 3,
and a 2-bit code for the consequent of each rule . The
segment of the context register Rule with bits in the
CMU specifies the conclusion part of a rule, as outlined earlier
in Section III.C.

For the system specified, and . Hence, there
are nine groupings representing the fuzzy system. The FIM con-
figuration program creates the configuration data for all the nine
partition blocks in the FIM. We illustrate the whole configura-
tion process in the following.

1) Coverage Map: The digitization of the membership func-
tions for variables and is as shown in Fig. 10. Both

and are described by discretized triangular membership
functions. The consequent is described by singleton member-
ship functions. Each fuzzy singleton has values for magnitude
and the degree of truth. According to Fig. 11, the magnitude
for linguistic value (Negative) is in decimal notation
or (11.0) in 2’s complement binary. When the degree of truth
is 1, the consequent value stored is “110”. For 0.5 degree of
truth, the consequent value stored is “111”. Similarly, for lin-
guistic value (Positive), the consequent value is “010” for de-
gree of truth being 1, while it is “001” for 0.5 degree of truth.
The coverage map for all the groupings are derived based on the
Mamdani implication and max-min composition rule of infer-
ence. The resulting coverage map is as shown in Fig. 11. In the
coverage map, each grouping covers a 1-rule fuzzy sub-system.
For example, Grouping of the FIM incorporates the
1-rule fuzzy sub-system whose rule is “If and

then ”. There are two
digitized values for each input, “00” and “01”. There are four
digitized values for the output, “111”, “110”, “001”, and “010”,
where the MSB is the sign bit. The FIM configuration program
will configure the rules in grouping based on the

560 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 14, NO. 4, AUGUST 2006

Fig. 11. Coverage map of the nine groupings for configuring the FIM.

following series of well-defined rules:

If and and

Rule then

If and and

Rule then

If and and

Rule then

If and and

Rule then

If and and

Rule then

If and and

Rule then

If and and

Rule then

If and and

Rule then

The data set for the grouping is as shown in
Table II-A. Each entry in the table consists of two parts,
the address and data. For example, the entry “00 00 01 : 110”

means that the data “110” is stored in the memory with lo-
cation specified by the physical address “000001”. This data
set is then programmed into the of the FIM via the
FIM configuration interface during the configuration stage.
The coverage map for all the nine groupings is as shown in
Fig. 11 with detailed illustration of the well-defined rules for
Grouping and Grouping shown.

The FIM configuration program computes the mapping data
to configure all the partition blocks of the FIM based on the
coverage map. For grouping , the data set of
is configured as shown in Table II-B. Similarly for grouping

, the data set of is configured as shown in
Table II-C. This is repeated for all the other groupings as shown
in Table II-D–I.

2) FIM Configuration Data: All the data sets for the 9 parti-
tion blocks are as shown in Table II. These data sets are used to
program the partition blocks of the RFIC through the FIM con-
figuration interface during the configuration stage.

V. APPLICATION EXAMPLES

Two examples are considered to illustrate the practical func-
tionality of the RFIC. The first application selected is that of
a water bath temperature control, for demonstrating the prac-
tical functionality of the RFIC. A scheme for controlling the
temperature of the water bath based on evolutionary learning of
fuzzy system has been described in [35]. In our work, the model

CAO et al.: A CONTEXT SWITCHABLE FUZZY INFERENCE CHIP 561

TABLE II
DATA SETS FOR CONFIGURING FIM PARTITION BLOCKS

presented in [36] is adopted to simulate the functionality of the
plant controlled by an RFIC-based fuzzy system. The simulation
results and a comparison between a typical fuzzy solution and
the RFIC implementation of the control system are presented.

The second example is a real-time application of the RFIC
in an evolvable fuzzy hardware system. The RFIC serves as
the core-processor in an evolvable fuzzy system (EFS) for ATM
cell scheduling. An EFS for ATM cell scheduling combining
GA and fuzzy system was proposed in [37]. A GA is used to
search for good fuzzy rule sets online. If the EFS is to be real-
ized in hardware at the system-on-chip level, the scheme based
on RFIC has the capability to support intrinsic evolution. There
are certain inherent advantages of the proposed intrinsic evolv-
able and online adaptive EFS. One of the main advantages is
that the system can adapt to the changes of the cell flow traffic
to maintain good system performance. When the working fuzzy
rule set is not suitable for the current cell flow scenario, it is
replaced by another fuzzy rule set derived by an evolutionary
search algorithm. Another main advantage is that the quality of
service (QoS) performance satisfied by the system can be tuned
by adjusting the appropriate parameters in the fitness function.
We present the simulation results, and compare the results with
those of first-in–first-out (FIFO), static priority (SPR), and dy-
namically weighted priority scheduling (DWPS) schemes.

A. Water Bath Temperature Control

The objective is to develop a fuzzy system for water bath
temperature control. The membership functions for the input

Fig. 12. Membership functions for the water bath temperature controller.

variables and , output variable y(t) are as shown in
Fig. 12. Both input variables are described by the linguistic set

while the output variable is described
by . We choose 4 bits to
discretize the memberships and 3 bits to code the
consequent of each rule. The number of bits for the width
of the data bus is chosen to be 5. The digitization of the fuzzy
concepts is as shown in Fig. 12. Note that the 5-bit data shown
as singleton membership functions are in 2’s complement
format, which include the consequent’s magnitude and the
corresponding degree of truth.

Since , there are 25 groupings for the
fuzzy system. It is therefore necessary to compute the data set
to configure all 25 partition blocks of the FIM. The process is
the same as that described earlier (see Section IV-B).

562 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 14, NO. 4, AUGUST 2006

TABLE III
CONFIGURATION DATA SET FOR GROUPING <1; 1 > OF THE FIM

Fig. 13. Four examples of contexts for the RFIC.

For example, the 1-rule fuzzy sub-system with the ac-
tive rule “If and then

” is stored in Grouping of the
FIM, where and

. The FIM configuration
program creates the data set for Grouping as shown in
Table III. The data set is programmed into the via the
FIM configuration interface during the hardware configuration
stage. The remaining 24 partition blocks are also configured in
the same manner. After the FIM is configured, the RFIC can
function efficiently at potentially high inference speed.

An example of a 12-rule fuzzy system as linguistic rule
matrix is as shown in Fig. 13(a). The coding for the fuzzy
rule set is “0405513055100500130500000”. This represents
the context of the domain problem loaded into the context
register (See Fig. 3). For this 12-rule context, the entire fuzzy
system is represented by grouping , grouping ,
grouping , grouping , grouping ,
grouping , grouping , grouping ,
grouping , grouping , grouping ,
and grouping . These 12 partition blocks in the FIM

of the RFIC are activated during inferencing. Three other
contexts (14-rule, 16-rule, and 17-rule) are also as shown in
Fig. 13. From the viewpoint of the RFIC, any of the con-
texts specified in Fig. 13(b), –(d) can be effected by loading
the corresponding codes “3033503000010503140502240”,
“0030303545015353023400350”, and “40044235003225521
15001003”, respectively into the context register. The RFIC
functions accordingly, regardless of the context presented to
the system via the context register.

1) Functional Simulation: We simulate the function of the
RFIC using these four different contexts and compare our
results with the fuzzy control system in Lim and Ng [35].
We show four cases of simulation based on the RFIC being
used as the plant controller. The results are presented side
by side with the control response of a typical fuzzy control
implementation [35]. The plots of the control response for
four different contexts at the same temperature settings (from
25 to 80) are presented in Fig. 14(a)–(d). Each plot shows
a control response for 100 time samples, corresponding to 50
minutes. For each figure, the upper plot is the temperature
response based on the input applied to the heater as shown
by the lower control voltage plot.

CAO et al.: A CONTEXT SWITCHABLE FUZZY INFERENCE CHIP 563

Fig. 14. Control responses for heating from 25 to 80 (a) Response for 12-rule context. (b) Response for 14-rule context. (c) Response for 16-rule context. (d)
Response for 17-rule context.

In general, all four plots show that the RFIC can serve as an
effective implementation of a fuzzy control application. There
is no noticeable difference in the control response shown by the
RFIC-based plant control system. All the four contexts were ap-
plied without the need to reconfigure the FIM. This clearly illus-
trates the context-independent feature of the RFIC. The results
are significant, bearing in mind that the RFIC handles context
switching efficiently, hence, an ideal platform for further work
on evolvable fuzzy hardware, which is described next.

B. ATM Cell Scheduling

In order to demonstrate the overall developmental framework
of EFS using the RFIC, we consider the case of an evolvable
fuzzy hardware system for ATM cell scheduling. It is envisaged
that the pattern of cell flow traffic into an ATM cell scheduling
system may change dynamically. To maintain a desired level
of QoS performance and to satisfy the real-time requirement,
ATM cell scheduling model requires online evolution in order
for evolvable fuzzy hardware to be practical. This poses the re-
quirement for evolvable fuzzy hardware that conveniently sup-

ports hardware reconfiguration. There are also many algorithms
designed to solve the problem of cell scheduling. The common
switching schemes are FIFO, SPR, and DWPS schemes [38].
The performance of these algorithms is described by the QoS.
The major parameters of QoS are cell loss and cell delay. FIFO
is easy to implement in hardware. However, it is not very good in
terms of QoS performance. SPR is also an easily realizable ap-
proach. However, there is a tendency for priority bias whereby
class1 cell always has a higher priority than other cell classes.
DWPS is a significant improvement over the SPR scheme. It ad-
justs the priority according to the cell flow scenarios [38]. How-
ever, its adaptation scheme is simple and may not be efficient
if the cell flow changes dramatically. DWPS is also difficult to
implement in hardware.

The architectural framework of the EFS for ATM cell
scheduling is as shown in Fig. 15. Both class1 and class2
are the two classes of cell flow traffic. They are scheduled by
the Multiplexer. The evolution engine searches for the most
appropriate context. The optimal context is updated into the
fuzzy switching control (FSC) module directly. Based on the

564 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 14, NO. 4, AUGUST 2006

Fig. 15. Architectural framework of EFS for ATM cell scheduling.

current context and the current cell flow traffic, the FSC module
schedules a cell from Buffer1 and Buffer2 to the OUT channel
via the Multiplexer. It is clear from the framework that the FSC
module should be able to support online context switching for
intrinsic system evolvability. To demonstrate the applicability
of the RFIC, we simulate the ATM cell scheduling system using
the RFIC to emulate the FSC function. The simulation results
of the EFS using the RFIC as the core-processor are compared
with the results of using the FIFO, SPR, and DWPS schemes.

Simulation of the EFS scheduling for ATM cell scheduling
has been reported in [37], with detailed QoS performance anal-
ysis and evaluation presented in [39]. For each scenario, an op-
timal fuzzy rule set is derived by a GA. The fitness function used
in the evolution module is described by (3).

AveDelay MaxDelay (3)

For the fitness function, the parameter is a very large con-
stant. This way, will be proportional to the performance of
the chromosome. The larger the fitness value is, the better is the
chromosome. AveDelay is the average delay of class1 cell units.
MaxDelay refers to the maximum delay possible for class1 cell
units. is an adjustable coefficient used to tune the desired av-
erage cell delay of class1 cell units. In our simulation, we choose
the value of to be 0.38.

1) Simulation Results and Comparisons: In order to test the
system’s performance, two traffic scenarios lasting for 2 sec-
onds are adopted for simulation [37]. Scenario1 is a statistical
model to describe the aspect of burstiness of cell flow traffic.
It satisfies the Poisson distribution with a mean value of 2 ms.
The class1 and class2 cell traffic are cell flows of 155.52 MHz,
shown in Fig. 16(a). The difference between them is that class1
is CBR (constant bit rate) while class2 is a bursty traffic flow
with 2 ms ON period and 2 ms OFF period.

The second traffic scenario which is referred to as Scenario 2
is more complicated than the first. The cell flow is as shown in
Fig. 16(b). For class1, the bit rate is 100 MHz while the bit rate
of class2 can change randomly every 2 ms. The bit rate varies
from 55.52 to 155.52 MHz and the total bit rate of the input
channels is larger than the output channel capacity of 155.52
MHz [37]. With these two traffic scenarios, we test the func-
tionality and robustness of the RFIC-based EFS.

Scenario 1: The simulation results are as shown in Fig. 17.
In each figure, we compare the QoS performance of the RFIC-
based EFS with the FIFO, SPR, and DWPS scheduling schemes.

Fig. 16. Two scenarios of cell flow. (a) Scenario 1. (b) Scenario 2.

The QoS is described in terms of cell loss and cell delay in
ATM network. In general, class1 communication should be as-
signed a wide bandwidth, while class2 communication is as-
signed a narrow bandwidth. In Fig. 17(a), the SPR scheduling
scheme shows a minimum class1 cell loss, while cell loss for
class2 communication as shown in Fig. 17(b) is maximal. For
the cell delay shown in Fig. 17(c) and (d), it appears that the
SPR scheme which produces zero delay for both class1 and
class2 has the best performance. This however is misleading.
Since the SPR scheme accords priority to class1 cell, and the
capacity of the OUT channel is just enough to accommodate
class1 communication, all the class2 cells are actually not ser-
viced and therefore lost. The plot of Fig. 17(d) shows a zero
cell delay for class2 because the calculation of cell delay only
account for cells being serviced. In general, the SPR scheme
exhibits a form of extreme bias that results in too good a ser-
vice for class1. The cell loss and cell delay of class1 are kept
to zero, while the cell loss and cell delay of class2 are sacri-
ficed. Even when the 2-s simulation is completed, Buffer2 con-
tinues to be filled with class2 cells waiting to be serviced. For
the other three scheduling schemes, the cell loss is spread out
over class1 and class2 cell flow. The total cell losses for the
other three schemes are about the same. From Fig. 17(a)–(c),
the DWPS scheme is more capable in scheduling the class1 and
class2 cell flow than the FIFO scheme. It achieves a better bal-
ance of cell loss between class1 and class2 communications,
as well as a smaller class1 cell delay. Compared to the DWPS
scheme, the RFIC-based EFS scheme achieves smaller class1
cell loss and class1 cell delay in Fig. 17(a) and (b). It is evident
from the plots in Fig. 17 that the RFIC-based EFS scheme per-
forms just as well as the DWPS scheme. The simulation results
show that the RFIC-based EFS scheme works efficiently, and it
achieves good QoS performance based on Scenario 1 cell flow
traffic.

Scenario 2: In this scenario, the pattern of cell flow changes
dynamically. From a practical point of view, Scenario 2 is more

CAO et al.: A CONTEXT SWITCHABLE FUZZY INFERENCE CHIP 565

Fig. 17. QoS performance for class1 and class2 in Scenario 1. (a) Cell loss of
class1. (b) Cell loss of class2. (c) Cell delay of class1. (d) Cell delay of class2.

likely to occur than Scenario 1. It is necessary to adopt an adap-
tive scheduling scheme to maintain a desirable level of QoS per-
formance. The simulation results using the four schemes are as
shown in Fig. 18.

For the SPR scheme, class1 cell loss and cell delay are kept
at zero again [see Fig. 18(a) and (c)]. However, according to
Fig. 18(b) and (d), the SPR scheme suffers the largest class2 cell
loss and cell delay due to the low priority assigned for class2
communication. Comparing the SPR and DWPS schemes, all
the plots show the same performance level except for Fig. 18(c)
which clearly shows the SPR scheme delivering a better class1
cell delay. In retrospect, the observation for Scenario 1 (Fig.
17) showed a comparable performance level between the SPR
and DWPS schemes. This suggests that the performance of the
DWPS scheme has degraded from Scenarios 1 to 2. In this re-
spect, the DWPS scheme is not efficient when cell flow changes
unpredictably. The sum of the cell losses of the two classes
for the four schemes is about the same. The simulation results
show that the FIFO scheme performs better than the SPR and
DWPS schemes in terms of maintaining balance between class1
cell loss and class2 cell loss. By the same token, as shown
in Fig. 18(a) and (b), the RFIC-based EFS scheme is able to
achieve a similar balance compared to the FIFO scheme. On top
of that, the RFIC-based EFS scheme shows much smaller class1
cell delay than the FIFO scheme in Fig. 18(c). Considering cell

Fig. 18. QoS performance for class1 and class2 in Scenario 2. (a) Cell loss of
class1. (b) Cell loss of class2. (c) Cell delay of class1 Cell delay of class2.

delay and the ability to maintain desirable balance between the
class1 cell loss and class2 cell loss, the RFIC-based EFS scheme
is generally more advantageous over the FIFO, SPR and DWPS
schemes. It is a more versatile approach compared to all the
other schemes.

The simulation results have shown that our proposed EFS
using the RFIC as the core-processor works efficiently. It is
capable of dealing with the ATM cell scheduling, a potential
real-time application of evolvable fuzzy hardware. It is a viable
alternative to handle the unpredictable scenarios in an ATM net-
work. For the RFIC-based EFS, the QoS performance can be
tuned easily by setting different values of for the fitness func-
tion. This is a significant advantage compared to the other three
schemes.

VI. CONCLUSION

The real-time requirement of some applications necessi-
tates the implementation of the fuzzy inference as embedded
hardware. In this respect, the main challenge is the implemen-
tation of hardware that supports in-system reconfiguration. In
this paper, we overcome this challenge by means of a RFIC
which supports online context switching. A context refers to an
instance of fuzzy control rule set and membership functions.
Since a switch in context as a result of changes in membership

566 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 14, NO. 4, AUGUST 2006

functions has limited applicability, we design our chip to handle
context updating brought about by changes in the domain rules.
More importantly, the RFIC can offer very high inference
throughput to support time-critical applications.

The RFIC consists of FIM partition blocks which implicitly
encode the fuzzy relational knowledge and the inference model.
The key to the context independence of the RFIC is the novel
structuring of the FIM partition blocks. Any changes in the do-
main rule set will not affect the FIM configuration. It is only
necessary to update the context in the RFIC via a loadable reg-
ister. In this respect, the bottleneck of having to reconfigure the
whole FIM is avoided.

The context switchable RFIC is an ideal platform to develop
evolvable fuzzy hardware. The RFIC incorporates the desirable
characteristic of real-time reconfigurability, adaptation and high
inference speed, making it a viable alternative for realizing in-
trinsically evolvable fuzzy hardware systems. We can design an
intrinsic evolvable fuzzy hardware system using the RFIC as the
core fuzzy processing unit. A GA can be deployed to derive the
appropriate context for the applications. The most appropriate
context is applied to the RFIC online, via the CMU. In this way,
intrinsic evolution can be realized smoothly and expeditiously
without interrupting the normal operation of the fuzzy system.
The data set to configure the FIM for handling all the contexts
in the GA search space is achieved through supporting software
utility programs.

Two examples to illustrate the functionality of the RFIC were
presented. The first example pertains to a water temperature
control. It clearly illustrates the RFIC’s versatility in handling
context-independent fuzzy inferencing. The second example of
ATM cell scheduling is a real-time switching control applica-
tion. In this example, the viability of the RFIC as a device to
support evolvable fuzzy hardware is demonstrated. More im-
portantly, it demonstrates that the RFIC is capable of supporting
intrinsic hardware evolution.

REFERENCES

[1] L. A. Zadeh, “Fuzzy sets,” Inform. Control, vol. 8, no. 3, pp. 338–353,
June 1965.

[2] ——, “Fuzzy logic,” IEEE Comput., vol. 21, no. 4, pp. 83–93, Apr.
1988.

[3] M. H. Lim, J. Y. Leong, and K. T. Lau, “A general framework for the
development of PLD-based fuzzy controllers,” J. Inst. Eng., vol. 35,
no. 1, pp. 7–12, Feb. 1995.

[4] N. E. Evmorforpoulos and J. N. Avaritsitis, “Adaptive digital fuzzy
hardware in application-specific integrated circuits,” in Proc. 6th
IEEE Int. Conf. Electronics, Circuits, and Systems, Sept. 1999, pp.
1635–1638.

[5] N. Al-Holou, T. Lahdhiri, D. Joo, J. Weaver, and F. Al-Abbas, “Sliding
mode neural network inference fuzzy logic control for active suspen-
sion systems,” IEEE Trans. Fuzzy Syst., vol. 10, no. 2, pp. 234–246,
Apr. 2002.

[6] S. M. Yang, H. Li, M. Q. H. Meng, and P. X. Liu, “An embedded fuzzy
controller for a behavior-based mobile robot with guaranteed perfor-
mance,” IEEE Trans. Fuzzy Syst., vol. 12, no. 4, pp. 436–446, Aug.
2004.

[7] M. H. Lim and Y. Takefuji, “Implementing fuzzy rule-based systems
on silicon chips,” IEEE Expert, vol. 5, no. 1, pp. 31–45, Feb. 1990.

[8] S. Mollov, R. Babuska, J. Abonyi, and H. B. Verbruggen, “Effective
optimization for fuzzy model predictive control,” IEEE Trans. Fuzzy
Syst., vol. 12, no. 5, pp. 661–675, Oct. 2004.

[9] G. Louverdis and I. Andreadis, “Design and implementation of a fuzzy
hardware structure for morphological color image processing,” IEEE
Trans. Circuits Syst. Video Technol., vol. 13, no. 3, pp. 277–288, Mar.
2003.

[10] C. C. Lee, “Fuzzy logic in control systems: Fuzzy logic controller -
Part I,” IEEE Trans. Syst., Man, Cybern., vol. 20, no. 2, pp. 404–418,
Mar. 1990.

[11] A. Costa, A. D. Gloria, P. Faraboschi, A. Pagni, and G. Rizzotto, “Hard-
ware solutions for fuzzy control,” in Proc. IEEE, Mar. 1995, vol. 83,
no. 3, pp. 422–434.

[12] G. Ascia, V. Catania, and M. Russo, “VLSI hardware architecture for
complex fuzzy systems,” IEEE Trans. Fuzzy Syst., vol. 7, no. 5, pp.
553–570, Oct. 1999.

[13] M. Togai and H. Watanabe, “Expert system on a chip: An engine
for real-time approximate reasoning,” IEEE Expert, vol. 1, no. 3, pp.
55–62, Aug. 1986.

[14] P. Thrift, “Fuzzy logic synthesis with genetic algorithms,” in Proc. 4th
Int. Conf. Genetic Algorithms, 1991, pp. 509–513.

[15] M. H. Lim, S. Rahardja, and B. H. Gwee, “A GA paradigm
for learning fuzzy rules,” Fuzzy Sets Syst., vol. 82, no. 2, pp.
177–186, Sept. 1996.

[16] H. Eichfeld, T. Künemund, and M. Menke, “A 12 b general-purpose
fuzzy logic controller chip,” IEEE Trans. Fuzzy Syst., vol. 4, no. 4, pp.
460–475, Nov. 1996.

[17] K. Shimizu, M. Osumi, and F. Imae, “The digital fuzzy processor
FP-5000,” in Proc. 2nd Int. Conf. Fuzzy Logic and Neural Networks,
Dec. 1992, pp. 539–542.

[18] H. Watanabe, W. D. Dettloff, and K. E. Yount, “A VLSI fuzzy logic
controller with reconfigurable, cascadable architecture,” IEEE J. Solid-
State Circuits, vol. 25, no. 2, pp. 376–382, Apr. 1990.

[19] A. Gabrielli and E. Gandolfi, “A fast digital fuzzy processor,” IEEE
Micro., vol. 19, no. 1, pp. 68–79, Jan. 1999.

[20] M. Sasaki, F. Ueno, and T. Inoue, “7.5 MFLIPS fuzzy microprocessor
using SIMD and logic-in-memory structure,” in Proc. 2nd IEEE Int.
Conf. Fuzzy Systems, Sep. 1993, pp. 527–534.

[21] T. Yamakawa and T. Miki, “The current mode fuzzy logic integrated
circuits fabricated by the standard CMOS process,” IEEE Trans.
Comput., vol. C-35, no. 2, pp. 161–167, Feb. 1986.

[22] M. A. Manzoul and D. Jayabharathi, “Fuzzy controller on FPGA chip,”
in Proc. IEEE Int. Conf. Fuzzy Systems (FUZZ-IEEE ’92), Mar. 1992,
pp. 1309–1316.

[23] K. Nakamura, N. Sakashita, Y. Nitta, K. Shimomura, and T. Tokuda,
“A 12-bit resolution 200 k FLIPS fuzzy inference processor,” IEICE
Trans. Electron., vol. E76-C, no. 7, pp. 1102–1110, Jul. 1993.

[24] T. Yamakawa, “A fuzzy inference engine in nonlinear analog mode and
its application to a fuzzy logic control,” IEEE Trans. Neural Netw., vol.
4, no. 3, pp. 496–522, May 1993.

[25] J. M. Jou, P. Y. Chen, and S. F. Yang, “An adaptive fuzzy logic con-
troller: Its VLSI architecture and applications,” IEEE Trans. Very Large
Scale Integration (VLSI) Syst., vol. 8, no. 1, pp. 52–60, Feb. 2000.

[26] D. L. Hung, “Dedicated digital fuzzy hardware,” IEEE Micro., vol. 15,
no. 4, pp. 31–39, Aug. 1995.

[27] M. McKenna and B. M. Wilamowshi, “Implementing a fuzzy system
on a field programmable gate array,” in Proc. Int. Joint Conf. Neural
Networks, Jul. 2001, pp. 189–194.

[28] V. Catania, A. Puliafito, M. Russo, and L. Vita, “A VLSI fuzzy in-
ference processor based on a discrete analog approach,” IEEE Trans.
Fuzzy Syst., vol. 2, no. 2, pp. 93–106, May 1994.

[29] S. Guo and L. Peters, “A high-speed fuzzy co-processor implemented
in analogue/digital technique,” Comput. Elect. Eng., vol. 24, no. 1–2,
pp. 89–98, Jan. 1998.

[30] M. A. Manzoul and D. Jayabharathi, “FPGA for fuzzy controllers,”
IEEE Trans. Syst., Man, Cybern., vol. 25, no. 1, pp. 213–216,
Jan. 1995.

[31] D. Kim, “An implementation of fuzzy logic controller on the reconfig-
urable FPGA system,” IEEE Trans. Ind. Electron., vol. 47, no. 3, pp.
703–715, Jun. 2000.

[32] M. J. Patyra, J. L. Grantner, and K. Koster, “Digital fuzzy logic con-
troller: Design and implementation,” IEEE Trans. Fuzzy Syst., vol. 4,
no. 4, pp. 439–459, Nov. 1996.

[33] Q. Cao, M. H. Lim, and J. H. Li, “A novel aggregation circuit for re-
configurable fuzzy inference chip,” in Proc. 2nd Int. Conf. Artificial
Intelligence in Engineering and Technology, Aug. 2004, pp. 835–839.

[34] B. Kosko, Neural Networks and Fuzzy Systems. Englewood Cliffs,
NJ: Prentice-Hall, 1992.

[35] M. H. Lim and W. L. Ng, “Iterative genetic algorithm for learning ef-
ficient fuzzy rule set,” Art. Intell. Eng. Design, Anal., Manuf., vol. 17,
no. 4, pp. 335–347, Sep. 2003.

[36] J. Tanomaru and S. Omatu, “Process control by online trained neural
controllers,” IEEE Trans. Ind. Electron., vol. 39, no. 6, pp. 511–521,
Dec. 1992.

CAO et al.: A CONTEXT SWITCHABLE FUZZY INFERENCE CHIP 567

[37] J. H. Li and M. H. Lim, “Evolvable fuzzy system for ATM cell sched-
uling,” in Proc. 5th Int. Conf. Evolvable Systems, LNCS 2606, 2003,
pp. 208–217.

[38] T. Lizambri, F. Duran, and S. Wakid, “Priority scheduling and buffer
management for ATM traffic shaping,” in Proc. 7th IEEE Workshop on
Future Trends of Distributed Computing Systems, 1999, pp. 36–43.

[39] J. H. Li, M. H. Lim, and Q. Cao, “A QoS-tunable scheme for ATM cell
scheduling using evolutionary fuzzy system,” Appl. Intell., vol. 23, no.
3, pp. 207–218, Dec. 2005.

Qi Cao received the B.Eng. degree in control science
and engineering from Huazhong University of Sci-
ence and Technology, Wuhan, P.R. China, in 2000.
He is currently working toward the Ph.D. degree at
the School of Electrical and Electronic Engineering,
Nanyang Technological University, Singapore.

From 2000 to 2002, he was a Hardware Design
Engineer with ALi, Shenzhen Branch, P.R.C. His re-
search interests focus on GPGA design and in-system
reconfigurable fuzzy inference processor design.

Meng Hiot Lim received the B.Sc., M.Sc., and Ph.D.
degrees from the University of South Carolina, Co-
lumbia, in 1982, 1984, and 1988, respectively.

He joined the Faculty of the School of Electrical
and Electronics Engineering, Nanyang Technolog-
ical University, Singapore, in 1989, and is currently
an Associate Professor. His research interests include
computational intelligence, combinatorial optimiza-
tion, web-based applications, evolvable hardware
systems, reconfigurable circuits and architecture,
computational finance, and graph theory.

He is an Associate Editor of the IEEE TRANSACTIONS ON SYSTEMS, MAN,
AND CYBERNETICS, PART C, and has co-edited a volume on Recent Advances in
Simulated Evolution and Learning (Singapore: World Scientific).

Ju Hui Li received the B.Eng. degree in computer
communication from Hunan University, Changsha,
P.R. China, in 1994, and the M.Eng. degree in com-
puter application from Northwestern Polytechnical
University, Xi’an, P.R. China, in 2001.

He is currently with Semiconductor-APIC, Philips
Electronics Singapore Pte, Ltd. His research interests
are evolvable hardware, evolvable fuzzy hardware,
digital IC design, and mix-signal IC design.

Yew Soon Ong (M’99) received the B.S. and M.S.
degrees in electrical and electronics engineering
from Nanyang Technological University, Singapore,
in 1998 and 1999, respectively, and subsequently the
Ph.D. degree from the University of Southampton,
Southampton, U.K., in 2003.

He is currently an Assistant Professor with the
School of Computer Engineering, Nanyang Tech-
nological University. His research interests lie in
computational intelligence, spanning: evolutionary
optimization, surrogate-assisted evolutionary al-

gorithms, memetic algorithms, evolutionary fuzzy systems, and grid-based
computing.

He has been a Guest Editor of the IEEE TRANSACTIONS ON SYSTEMS, MAN,
AND CYBERNETICS, PART B, and has co-edited a volume on Advances in Natural
Computation (New York: Springer-Verlag).

Wil Lie Ng received the Honours degree in electrical
and electronics engineering from the University of
Edinburgh, Edinburgh, U.K., in 2001, and the M.S.
degree by research in the School of EEE, Nanyang
Technological University (NTU), Singapore, in 2004.

Currently, he is a member of the Centre for Ad-
vanced Information Systems at NTU. His research
interest is in computational intelligence involving
neural network, evolutionary programming, and
fuzzy systems.

