
© DIGITALVISION, © ARTVILLE (CAMERAS, TV, AND CASSETTE TAPE) © STOCKBYTE (KEYBOARD)

T
he advances in digital video technology and the ever-increasing availability of computing resources have
resulted in the last few years in an explosion of digital video data, especially on the Internet. However, the
increasing availability of digital video has not been accompanied by an increase in its accessibility. This is
due to the nature of video data, which is unsuitable for traditional forms of data access, indexing, search,
and retrieval, which are either text based or based on the query-by-example paradigm. Therefore, tech-

niques have been sought that organize video data into more compact forms or extract semantically meaningful infor-
mation [1]. Such operations can serve as a first step for a number of different data access tasks, such as browsing,
retrieval, genre classification, and event detection. Here we focus not on the high-level video analysis tasks themselves
but on the common basic techniques that have been developed to facilitate them. These basic tasks are shot boundary
detection and condensed video representation.

Shot boundary detection is the most basic temporal video segmentation task, as it is intrinsically and inextricably
linked to the way that video is produced. It is a natural choice for segmenting a video into more manageable parts.
Thus, it is very often the first step in algorithms that accomplish other video analysis tasks, one of them being
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condensed video representation as described below. In the case of
video retrieval, a video index is much smaller and thus easier to
construct and use if it references whole video shots rather than
every video frame. Since scene changes almost always happen on
a shot change, shot boundary detection is indispensable as a first
step for scene boundary detection. Finally, shot transitions pro-
vide convenient jump points for video browsing. Condensed rep-
resentation is the extraction of a characteristic set of either
independent frames or short sequences from a video. This can be
used as a substitute for the whole video for the purposes of index-
ing, comparison, and categorization. It is also especially useful
for video browsing. The article by Xiong et al. [25] provides a
detailed account of condensed video representation applications.
The results of both shot boundary
detection and condensed video repre-
sentation do not need to be immediate-
ly directed to the above applications;
they may instead be stored as metadata
and used when they are needed. This
can be achieved by the use of standards,
such as MPEG-7 [2], which contain
appropriate specifications for the
description of shots, scenes, and various
types of condensed representation.

Several reviews on shot boundary
detection have been published in the
last decade [3]–[6], yet none later than
2001. There is little review work on the
subject of condensed video representa-
tion published in refereed journals.

SHOT BOUNDARY DETECTION
The concept of temporal image
sequence (video) segmentation is not a
new one, as it dates back to the first
days of motion pictures, well before the
introduction of computers. Motion pic-
ture specialists perceptually segment
their works into a hierarchy of parti-
tions. A video (or film) is completely
and disjointly segmented into a
sequence of scenes, which are subse-
quently segmented into a sequence of
shots. The concept of a scene (also
called a story unit) is much older than
motion pictures, ultimately originat-
ing in the theater. Traditionally, a scene
is a continuous sequence that is tem-
porally and spatially cohesive in the
real world but not necessarily cohesive
in the projection of the real world on
film. On the other hand, shots origi-
nate with the invention of motion cam-
eras and are defined as the longest
continuous sequence that originates

from a single camera take, which is what the camera images in
an uninterrupted run, as shown in Figure 1.

In general, the automatic segmentation of a video into
scenes ranges from very difficult to intractable. On the other
hand, video segmentation into shots is both exactly defined
and characterized by distinctive features of the video stream
itself. This is because video content within a shot tends to be
continuous, due to the continuity of both the physical scene
and the parameters (motion, zoom, focus) of the camera that
images it. Therefore, in principle, the detection of a shot
change between two adjacent frames simply requires the com-
putation of an appropriate continuity or similarity metric.
However, this simple concept has three major complications.

[FIG1] Schematic sketch of scenes and shots as defined by the video production process: (a)
the actual objects (or people) that are imaged, which are spatio-temporally coherent and
thus comprise a scene; (b) continuous segments imaged by different cameras (takes); (c) the
editing process that creates shots from takes.
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The first, and most obvious one, is defining a continuity met-
ric for the video in such a way that it is insensitive to gradual
changes in camera parameters, lighting, and physical scene con-
tent, easy to compute, and discriminant enough to be useful.
The simplest way to do this is to extract one or more scalar or
vector features from each frame and define distance functions
on the feature domain. Alternatively, the features themselves
can be used either for clustering the frames into shots or for
detecting shot transition patterns.

The second complication is deciding which values of the
continuity metric correspond to a shot change and which
do not. This is not trivial, since the feature variation within
certain shots can exceed the respective variation across
shots. Decision methods for shot boundary detection
include fixed thresholds, adaptive thresholds, and statistical
detection methods.

The third complication, and the most difficult to handle, is
the fact that not all shot changes are abrupt. Using motion pic-
ture terminology, changes between shots can belong to the fol-
lowing categories, some of which are illustrated in Figure 2:

1) Cut: This is the classic abrupt change case, where one
frame belongs to the disappearing shot and the next one to
the appearing shot.
2) Dissolve: In this case, the last few frames of the disap-
pearing shot temporally overlap with the first few frames
of the appearing shot. During the overlap, the intensity of
the disappearing shot decreases from normal to zero (fade
out), while that of the appearing shot increases from zero
to normal (fade in).
3) Fade: Here, first the disappearing shot fades out into a
blank frame, and then the blank frame fades into the appear-
ing shot.
4) Wipe: This is actually a set of shot change techniques,
where the appearing and disappearing shots coexist in differ-
ent spatial regions of the intermediate video frames, and the
region occupied by the former grows until it entirely
replaces the latter.
5) Other transition types: There is a multitude of inventive
special effects techniques used in motion pictures. They are,
in general, very rare and difficult to detect.

COMPONENTS OF SHOT BOUNDARY 
DETECTION ALGORITHMS
As previously mentioned, shot boundary detection algorithms
work by extracting one or more features from a video frame or a
subset of it, called a region of interest (ROI). An algorithm can
then use different methods to detect shot changes from these
features. Since there are many different ways the above compo-
nents can be combined, we have chosen not to provide a hierar-
chical decomposition of different classes of algorithms. Instead
we present below the different choices that can be made for each
component, along with their advantages and disadvantages.
These can then be combined more or less freely to design a shot
detection algorithm.

FEATURES USED
Almost all shot change detection algorithms reduce the large
dimensionality of the video domain by extracting a small num-
ber of features from one or more regions of interest in each
video frame. Such features include:

1) Luminance/color: The simplest feature that can be used to
characterize an ROI is its average grayscale luminance. This,
however, is susceptible to illumination changes. A more
robust choice is to use one or more statistics (e.g., averages)
of the values in a suitable color space [7]–[9], like hue satura-
tion value (HSV). 
2) Luminance/color histogram: A richer feature for an ROI is
the grayscale or color histogram. Its advantage is that it is
quite discriminant, easy to compute, and mostly insensitive
to translational, rotational, and zooming camera motions.
For these reasons, it is widely used [10], [11].
3) Image edges: An obvious choice for characterizing an ROI
is its edge information [9], [12]. The advantage of this feature
is that it is sufficiently invariant to illumination changes and
several types of motion, and it is related to the human visual

[FIG2] Examples of gradual transitions from the TRECVID 2003
corpus: (a) a dissolve between shots with similar color content;
(b) a dissolve between shots with dissimilar color content; (c)
fade; (d) a wipe of the “door’’ variety; (e) a wipe of the “grill’’
variety; and (f) a computer-generated special effect transition
between shots.

(a)

(b)

(c)

(d)

(e)

(f)

IEEE SIGNAL PROCESSING MAGAZINE [30] MARCH 2006



perception of a scene. Its main disadvantage is computational
cost, noise sensitivity, and, when not postprocessed, high
dimensionality.
4) Transform coefficients (discrete Fourier transform, dis-
crete cosine transform, wavelet): These are classic ways to
describe the image information in an ROI. The discrete cosine
transform (DCT) coefficients also have the advantage of being
already present in MPEG-encoded video streams or files.
5) Motion: This is sometimes used as a feature for detecting
shot transitions, but it is usually coupled with other features,
since by itself it can be highly discontinuous within a shot
(when motion changes abruptly) and is obviously useless
when there is no motion in the video.

SPATIAL FEATURE DOMAIN
The size of the region from which individual features are
extracted plays an important role in the overall performance of
shot change detection. A small region tends to reduce detection
invariance with respect to motion, while a large region might
lead to missed transitions between similar shots. In the follow-
ing, we will describe various possible choices:

1) Single pixel: Some algorithms derive a feature for each
pixel. This feature can be luminance, edge strength [9], etc.
However, such an approach results in a very large feature vec-
tor and is very sensitive to motion, unless motion compensa-
tion is subsequently performed.
2) Rectangular block: Another method is to segment
each frame into equal-sized blocks and extract a set of
features (e.g., average color or orientation, color his-
togram) from these blocks [7], [8]. This approach has the
advantage of being invariant to small camera and object
motion as well as being adequately discriminant for shot
boundary detection.
3) Arbitrarily shaped region: Feature extraction can also be
applied to arbitrarily shaped and sized frame regions derived
by spatial segmentation algorithms. This enables the deriva-
tion of features based on the most homogeneous regions,
thus facilitating a better detection of temporal discontinu-
ities. The main disadvantage is the usually high computa-
tional complexity and instability of region segmentation.
4) Whole frame: The algorithms that extract features (e.g.,
histograms) from the whole frame [11], [13], [14] have the
advantage of being very robust with respect to motion within
a shot, but tend to have poor performance at detecting the
change between two similar shots.

FEATURE SIMILARITY METRIC
To evaluate discontinuity between frames based on the selected
features, an appropriate similarity/dissimilarity metric needs
to be chosen. Assuming that a frame is characterized by K
scalar features F(k), k = 1..K, the most traditional choice is to
use a Ln norm:

DLn(i, j) =
( K∑

k=1

|Fi(k) − Fj(k)|n
)1/n

.

Examples of the above are the histogram difference, where F(k)
are the bins of the histogram and n = 1, and the image differ-
ence where F(k) are the pixels of the (usually subsampled)
image and n = 2. Another example of a commonly used metric,
especially in the case of histograms, is the chi-square (χ2):

Dχ2(i, j) =
K∑

k=1

(Fi(k) − Fj(k))2

Fi(k)
.

TEMPORAL DOMAIN OF CONTINUITY METRIC
Another important aspect of shot boundary detection algo-
rithms is the temporal window that is used to perform shot
change detection. In general, the objective is to select a tempo-
ral window that contains a representative amount of video
activity. Options include:

1) Two frames: The simplest way to detect discontinuity
between frames is to look for a high value of the discontinuity
metric between two successive frames [8], [13], [15], [26].
However, such an approach can fail to discriminate between
shot transitions and changes within the shot when there is
significant variation in activity among different parts of the
video or when certain shots contain events that cause brief
discontinuities (e.g., photographic flashes). It also has diffi-
culty in detecting gradual transitions.
2) N-frame window: The most common technique for allevi-
ating the above problems is to detect the discontinuity by
using the features of all frames within a suitable temporal
window, which is centered on the location of the potential
discontinuity [8], [9], [14], [16].
3) Interval since last shot change: Perhaps the most obvious
method for detecting a shot end is to compute one or more
statistics from the last detected shot change up to the current
point, and to check if the next frame is consistent with them,
as in [7] and [11]. The problem with such approaches is that
there is often great variability within shots, meaning that sta-
tistics computed for an entire shot may not be representative
of its end.

SHOT CHANGE DETECTION METHOD
Having defined a feature (or a set of features) computed on one or
more ROIs for each frame (and, optionally, a similarity metric), a
shot change detection algorithm needs to detect where these
exhibit discontinuity. This can be done in the following ways:

1) Static thresholding: This is the most basic decision
method, which entails comparing a metric expressing the
similarity or dissimilarity of the features computed on
adjacent frames against a fixed threshold [11]. This only
performs well if video content exhibits similar character-
istics over time and only if the threshold is manually
adjusted for each video.
2) Adaptive thresholding: The obvious solution to the prob-
lems of static thresholding is to vary the threshold depending
on a statistic (e.g., average) of the feature difference metrics
within a temporal window, as in [13] and [16].
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3) Probabilistic detection: Perhaps the most rigorous way to
detect shot changes is to model the pattern of specific types of
shot transitions and, presupposing specific probability distri-
butions for the feature difference metrics in each shot, per-
form optimal a posteriori shot change estimation. This is
demonstrated in [7] and [8].
4) Trained classifier: A radically different method for
detecting shot changes is to formulate the problem as a
classification task where frames are separated (through
their corresponding features) into two classes, namely
“shot change’’ and “no shot change,’’ and train a classifier
(e.g., a neural network) to distinguish between the two
classes [14].

PERFORMANCE EVALUATION
The basic measures in detection and retrieval problems in
general are recall, precision, and accuracy. Recall quantifies
what proportion of the correct entities (shot changes in our
case) are detected, while precision quantifies what proportion
of the detected entities are correct. Accuracy reflects the
temporal correctness of the detected results, and corresponds
to the distance between the detected location of a transition
and its true location. Therefore, if we denote by D the shot
transitions correctly detected by the algorithm, by DM the
number of missed detections (the transitions that should
have been detected but were not), and by DF the number of
false detections (the transitions that should not have been
detected but were), we have that:

Recall = D
D + DM

Precision = D
D + DF

.

Because of the richness and variety of digital video content,
the effective quantitative (and even qualitative) comparison of
the results of different video analysis algorithms is meaningless
if they are derived from different video corpora. To alleviate this
problem, the TREC video retrieval evaluation [17] (TRECVID)
was organized. The goal of TRECVID is not only to provide a
common corpus of video data as a testbed for different algo-
rithms, but also to standardize and oversee their evaluation and
provide a forum for the comparison of the results.

SPECIFIC SHOT BOUNDARY DETECTION ALGORITHMS
In the previous section, we analyzed the features, metrics,
and  decision methods that can be used to design a shot
boundary detection algorithm. We illustrate the design of
such an algorithm in Figure 3. Specifically, the intensity his-
togram of the whole frame has been chosen as a feature, the
histogram difference as a discontinuity metric, and a con-
stant threshold as the shot change detection method. In the
following, we will also give some state-of-the-art examples of
complete algorithms.

The shot boundary detection problem is thoroughly ana-
lyzed by Hanjalic [8], and a probabilistically-based algorithm is
proposed. Each video frame is completely segmented into

nonoverlapping blocks, and the aver-
age YUV color component values are
extracted from each block. Blocks are
matched between each pair of adjacent
frames according to average difference
between the color components
between blocks, and the discontinuity
value is then defined as the above-aver-
age difference for matching blocks.
Adjacent frames are compared for
detecting abrupt transitions, while for
gradual ones, frames that are separated
by the minimum shot length are com-
pared. The a priori likelihood functions
of the discontinuity metric are
obtained by experiments on manually
labeled data. Their choice is largely
heuristic. The a priori probability of
shot boundary detection, conditional
on the time that elapsed since the last
shot boundary detection, was modeled
as a Poisson function; this was
observed to produce good results. The
shot boundary detection probability is
refined with a heuristic derived from
the discontinuity value pattern (for
cuts and fades) and from in-frame
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[FIG3] A typical shot detection algorithm. (a) Samples of the video content. (b) Histogram
of the distribution of the intensity values in the displayed frames. (c) Histogram difference
between adjacent frames. (d) A shot change is detected when the histogram difference
exceeds a threshold.
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variances (for dissolves) in a temporal window around the cur-
rent frame. Effectively, a different detector is implemented for
each transition type. In conclusion, although the proposed
method claims to offer a rigorous solution to the shot boundary
detection problem, it is somewhat heuristic. Yet the probabilis-
tic analysis of the problem is valid and thorough. Additionally,
experimental results are very satisfactory, being perfect for cuts
and having good recall and precision for dissolves.

The approach developed by Lienhart [14], detects dis-
solves (and only dissolves) with a trained classifier (i.e., a
neural network), operating on either YUV color histograms,
magnitude of directional gradients, or edge-based contrast.
The classifier detects possible dissolves at multiple temporal
scales and merges the results using a winner-take-all strate-
gy. The interesting part is that the classifier is trained using a
dissolve synthesizer, which creates artificial dissolves from
any available set of video sequences. Although the videos
used for experimental verification are nonstandard, perform-
ance is shown to be superior when compared to simple edge-
based dissolve detection methods.

Cernekova et al. [11] propose performing singular value
decomposition (SVD) on the RGB color histograms of each
frame to reduce feature vector dimensionality, in order to make
the feature space more discriminant. Initially, video segmenta-
tion is performed by comparing the angle between the feature
vector of each frame and the average of the feature vectors of
the current segment. If their difference is higher than a static
threshold, a new segment is started. Segments whose feature
vectors exhibit large dispersion are considered to depict a grad-
ual transition between two shots, whereas segments with small
dispersion are characterized as shots. Experiments were run on
a database of four real TV sequences. The main problem with
this approach is the static threshold applied on the angle
between vectors to detect shot change, which may be problem-
atic in the case of large intrashot content variation and small
intershot content variation.

Boccignone et al. [16] approach the shot boundary detec-
tion problem from a completely new angle, using the atten-
tional paradigm for human vision. Fundamentally, their
algorithm computes for every frame a set (called a trace) of
points of focus of attention (FOA) in decreasing order of
saliency and then compares nearby frames by evaluating the
consistency of their traces. Shot boundaries are found when
the above similarity is below a dynamic threshold.
Specifically, FOAs are detected by first computing a saliency
map from the normalized sum of multiscale intensity con-
trast, color contrast (blue-yellow and red-green), and orienta-
tion contrast. Then, the most salient points in this map are
found using a winner-take-all artificial neural network, which
also gives a measure of their saliency. The FOAs are accompa-
nied by the color and shape information in their neighbor-
hoods. The consistency of two traces is computed by first
finding homologous FOAs between the two traces based on
three different types of local consistency: spatial, temporal
(i.e., referring to order of saliency), and visual (i.e., referring

to neighborhood information). A cut is then detected by com-
paring the interframe consistency with a probabilistically
derived adaptive threshold, while dissolves are detected in a
subsequent phase. The results,  given for a subset of
TRECVID01 and some news and movie segments, are overall
satisfactory but not above the state of the art.

Lelescu and Schonfeld [7] present an interesting statisti-
cal approach, which additionally benefits from operating on
MPEG-compressed videos. They extract the average lumi-
nance and chrominance for each block in every I and P frame
and then perform principal component analysis (PCA) on the
resulting feature vectors. It should be noted that the eigen-
vectors are computed based only on the M first frames of
each shot. The resulting projected vectors are modeled by a
Gaussian distribution whose mean and covariance matrixes
are estimated from the M first frames of each shot. The origi-
nality of the approach is that a change statistic is estimated
for each new frame using a maximum likelihood methodolo-
gy (the generalized likelihood ratio) and, if it exceeds an
experimentally determined threshold, a new shot is started.
The algorithm has been tested on a number of videos where
gradual transitions are common. The test videos used are
characterized by the particularly short duration of their
shots. This highlights the greatest problem of this algorithm,
namely that the extraction of the shot characteristics (eigen-
space, mean, and covariance) happens at its very beginning
(first M frames). This means that in the case of long and non-
homogeneous shots, like the ones common in motion pic-
tures, the values calculated at the start of the shot might not
be characteristic of its end.

The joint probability image (JPI) of two frames is defined
by Li et al. [15] as a matrix whose [i, j] element contains the
probability that a pixel with color i in the first image has
color j in the second image. They also derive the joint proba-
bility projection vector (JPPV) as a one-dimensional projec-
tion of the JPI, and the joint probability projection centroid
(JPPC) as a scalar measure of the JPI’s dispersion. Specific
types of transition (dissolve, fade, dither) are observed to
have specific JPI patterns. To detect shot changes, possible
locations are first detected using the JPPC, and then they are
refined, validated, and classified into transition types by
matching the JPPV with specific transition patterns. Results
are given for a relatively small number of abrupt and gradual
transitions. The authors admit the obvious problems this
method has with large object and/or camera motion.

Another way to attack the most difficult problem in shot
boundary detection, which is the detection of gradual transi-
tions, is to use different algorithms for each type of transi-
tion. This is the path followed by Nam and Tewfik [9], who
designed two algorithms, one for dissolves and fades and one
for wipes. The fade/dissolve detector starts by approximating,
within a temporal window, the temporal evolution of the
intensity of each pixel in the frame with a B-spline. It then
computes a change metric as the negative of the normalized
sum of the errors of the above approximations. This metric is



then discretized by comparison with a locally adaptive
threshold, processed by a morphological filter and used as an
indicator of the existence of dissolves and fades. Fades are
distinguished from dissolves by additionally checking
whether the interframe standard deviation is close to zero.
The wipe detector functions by first calculating the difference
between one frame and the next, and then multiplying this
difference with parts of the frame’s two-dimensional (2-D)
wavelet transform to enhance directionality. Then, the radon
transform of each frame is taken for the four cardinal direc-
tions (horizontal, vertical, and the two diagonals) and the
same is done for the half-frames (but only for the horizontal
and vertical directions). For each frame, the location of the
maximum is taken from each of the above projections, repre-
senting the location of the strongest edge in each direction.
Tracking these maxima over time results in six temporal
curves. Wipe candidates are then detected when these curves
exhibit a linear increase or decrease, corresponding to the
regular movement of the wipe’s edge. Finally, the candidates
are considered to be verified if they can be efficiently approxi-
mated with a B-spline. The results of these methods are close
to the state-of-the-art for the sequences tested, but the
approach has problems in detecting types of transitions other
than the ones it was designed for.

CONDENSED VIDEO REPRESENTATION
An important functionality when retrieving information in
general is the availability of a condensed representation of a

larger information unit. This can be the summary of a book,
the theme or ground of a musical piece, the thumbnail of
an image, or the abstract of a paper. Condensed representa-
tion allows us to assess the relevance or value of the infor-
mation before committing time, effort, or computational
and communication resources to process the entire infor-
mation unit. It can also allow us to extract high-level infor-
mation when we are not interested in the whole unit,
especially during manual organization, classification, and
annotation tasks. While for most types of information there
is one or more standard forms of condensed representation,
this is not the case for video.

In the literature, the term highlighting or storyboarding is
used for video representation resulting in distinct images, while
skimming is sometimes used for a representation resulting in a
shorter video. These classes of methods are illustrated in Figure
4. In addition, we will use the term condensed representation to
describe the processes of summarization, highlighting, and
skimming in general.

HIGHLIGHTING
Highlighting is the field that has attracted by far the most atten-
tion, since it is the simplest and most intuitive. Its purpose is the
selection of the video highlights, or those frames that contain the
most, or most relevant, information for a given video.
Highlighting is sometimes also referred to as key frame extraction.

An advanced, object-based method has been developed by
Kim and Hwang [18]. They use the method described in [19]
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[FIG4] Illustration of the different types of condensed representation: (a) original video, (b) highlighting, (c) skimming, (d) hierarchical
highlighting, and (e) hierarchical skimming.  The “film’’ segments denote continuous video, while images denote video frames.
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to extract objects from each frame, and then use these objects
to extract video key frames. Object detection and tracking are
performed by conducting Canny edge detection on image dif-
ferences and then finding areas enclosed by edges and track-
ing them. The objects are labeled either with the magnitude
of the first eight Fourier descriptors (i.e., Fourier transform
coefficients of the object contour) or with Hu’s seven region
moments. The distance between objects is defined as the L1

distance between their descriptors, weighted by experimental-
ly derived constants. Objects in the two frames are paired by
the spatial proximity of their centers, and the distance
between frames is the maximum of the distance between
objects in such pairs. When the number of objects in a frame
is different from that of the last frame, then the current frame
is automatically labeled as a key frame. Otherwise, a frame is
labeled as a key frame if its distance from the previous key
frame is greater than a predefined threshold. This object-
based method has the advantage of getting close to the physi-
cal semantics of the video. However, like other object-based
approaches, it has the disadvantage that it is unable to per-
form well in complex scenes or in scenes with significant
background motion. It is not accidental that all the experi-
mental videos used in this method have a static background
and a small number of well-defined objects.

Li et al. [20] approach the highlighting problem from the
viewpoint of video compression and attempt to minimize the
loss of visual information that occurs during highlighting.
First they define the summarization rate as the ratio of the
size of the condensed video to the size of the original one.
They define distortion as the maximum distance between any
frame in the highlighting and any frame in the original
video. Then they formulate highlighting as one of two prob-
lems: either the minimization of distortion with the summa-
rization rate as a constraint [minimum distortion optimal
summarization (MDOS)] or the minimization of the summa-
rization rate with distortion as a constraint [minimum rate
optimal summarization (MROS)]. They then present a solu-
tion for the MROS problem by means of dynamic program-
ming and a solution for the MDOS problem by efficiently
searching through relevant solutions to the MROS problem.
The only drawback of their approach is that it is too quantita-
tive and does not address the difference between visual and
semantic information.

HIERARCHICAL HIGHLIGHTING
A somewhat different task from highlighting is hierarchical
highlighting, where the goal is to extract a hierarchy or a tree of
highlight frames, so that the user can then interactively request
more detail on the part of the video that interests him.

A semiautomatic method for the extraction of a hierarchy
of highlights is proposed by Zhu et al. [27]. First, shots are
found and a key frame is arbitrarily chosen for each of them.
Similarity between shots is defined as the global color his-
togram and texture similarity between their key frames.
Then shot groups are detected by heuristics based on simi-

larity with the previous and following frames at their bor-
ders. Shot groups are described as either spatially coherent
(i.e., composed of consecutive similar shots) or temporally
coherent (e.g., shots forming a dialog), through clustering
using a similarity threshold. Videos, groups, shots, and
frames then have to be annotated manually with labels
selected from a set of ontologies. The similarity between two
groups is defined as the average similarity between shots in
one group and the correspondingly most similar shots in the
other group, using both the above visual features and the
semantic labeling. Scenes are detected heuristically by
merging groups according to their similarity. The summary
is created hierarchically at four levels (video, scene, group,
and shot) by semantically clustering the immediately lower
level (e.g., clustering shots to create groups, etc). Finally,
the highlighting is constructed by selecting the key frames
that correspond to those shots and/or groups that contain
the most annotation information. The system described is an
advanced and complex one, but it suffers from the need for
manual annotation and from the arbitrary selection of the
key frame of each shot.

The extraction of the hierarchical highlights is performed
in two stages by Ferman and Tekalp [21]. Their algorithm
receives as input a video that has already been segmented into
shots. Each shot is characterized by its α-trimmed average
luminance histogram (although, theoretically, other features
could be used as well), and each frame is characterized by the
normalized distance between its histogram and that of the
shot to which it belongs. Then fuzzy c-means clustering is
performed on the frames in each shot, based on the above fea-
ture. The clustering is refined by two stages of cluster harden-
ing and the pruning of uncertain data, with a recomputation
of the fuzzy c-means performed between them. The clustering
is repeated with increasing c, until decreasing clustering valid-
ity is detected. For each cluster, the most representative frame
is selected as a key frame, based either on maximal proximity
to the cluster’s centroid or on maximal fuzzy cluster member-
ship. In a second stage, temporally adjacent clusters with high
similarity are merged to reduce the number of key frames
generated according to user preference. The same merging
approach can also be used to extract a hierarchy of highlights.
Clustering is a typical method for highlight extraction, but
the technical interest of the work lies in the refinement pro-
cedure of the clustering and the automatic determination of
the optimal number of clusters.

SKIMMING
Video skimming is more difficult to perform effectively than
video highlighting, because it is more difficult to extract appro-
priate features from its atomic elements (video segments
instead of images), since they contain a much greater amount
of information.

Gong and Liu [22] partly solve this problem by constrain-
ing the skimming to consist of whole shots of the video. First
they down-sample the video temporally as well as spatially.



Each resulting frame is characterized by its color histogram,
and SVD is performed on the resulting feature matrix A to
reduce its dimensionality. For SVD-reduced frame features
ψi = [υi1 υi2 . . . υin]T, the authors define a new metric:

‖ψi‖ =
√√√√rank(A)∑

j=1

υ2
i j,

which is inversely proportional to the cardinality of the feature
within the matrix and, thus, to how typical the frame is within
the video. Similarly, for a video segment Si the metric
CON(Si) = ∑

ψi∈Si
‖ψi‖ is defined as a measure of visual con-

tent contained in this segment. The next step is clustering the
reduced feature vectors. The most common frame is used to
seed the first cluster, which is grown until a heuristic limit is
reached. The other clusters are grown in such a way that they
have CON(Si) similar to that of the first cluster. Then the
longest shot is extracted from each cluster, and an appropriate
number of these shots is selected to form the summary accord-
ing to user preferences.

HIERARCHICAL SKIMMING
The creation of hierarchical video skimming is approached by
Shipman et al. [23] as the creation of a specific type of video on
demand, and as part of their Hyper-Hitchcock hypervideo
authoring tool. Their work, which they call detail-on-demand
video, is based on video segmentation into “takes,’’ which are
not real takes but scenes in the case of commercial videos and
shots in the case of home videos, and “clips,” which are shots
in the case of commercial videos and cohesive subsegments of
shots in the case of home videos. This way, the authors
attempt to sidestep the semantic ambiguity of the scene con-
cept. It should be noted that the segmentation is a prerequisite
for their work. The hierarchical skimming method is con-
structed by selecting, for each level, a number of “clips” and
connecting all or some of them to “clips” in the lower levels.
The number of levels in the hierarchy is dependant solely on
the duration of the video. The “clips’’ that make up each level
are chosen by three methods: by temporal homogeneity, by a
set of heuristics that ensures as much as possible that the
selected clips belong to different takes, or by an importance
metric that is either precomputed or manually assigned.

A different approach is presented by Ngo et al. [24], who
create their hierarchical skimming based mostly on tradi-
tional concepts such as scenes and shots. Their first step is to
segment the video into shots and subshots. Then the shots
are organized as a graph with the vertex length equal to simi-
larity of shot key frames, and grouped into clusters using the
normalized cut algorithm. The temporal ordering of shots is
used to make another directional graph with the clusters as
nodes. This is then used to group clusters into continuous
scenes. The attention value of a frame is computed from the
motion of the MPEG macroblocks in it, with compensation
for camera motion. Then the attention value for shots, clus-

ters, and scenes is calculated by averaging the attention value
in the immediately lower level of the hierarchy. The hierar-
chical skimming is produced by first discarding scenes and
clusters that have a low number of shots and/or low attention
value, and then for each cluster discarding subshots from
those shots that have a low attention value. This procedure is
continued until the required skimming length is reached.

PERFORMANCE EVALUATION
Because the objective of the above methods is to extract a
semantically informative video representation, their objective
performance evaluation is a very difficult affair. In practice, per-
formance evaluation is only feasible by visual inspection of the
results. In fact, when most authors need to perform experimen-
tal evaluation, they use panels of experts who quantify whether a
specific video representation contains all salient information of
the original video. Of course, there are other measures of the
characteristics of each algorithm, such as the size of the result-
ing representation, but these provide no information on the
quality and completeness of the results. 

CONCLUSIONS
It is clear that the field of video shot detection has matured
and is capable of detecting not only simple cuts but also grad-
ual transitions with considerable recall and precision. This
maturity is also evidenced by the establishment of a standard
performance evaluation and comparison benchmark in the
form of the TREC video shot detection task. The field has also
advanced from simple and heuristic feature comparison meth-
ods to rigorous probabilistic methods, along with the use of
complex models of the shot transition formation process.
However, there is still room for algorithm improvement. It is
clear that improved solutions for this problem will involve an
increasingly rigorous inclusion of the a priori information
about the actual physical process of shot formation as well as a
thorough theoretical analysis of the editing effects, or a simu-
lation of their generation as in [14].

On the other hand, condensed video representation remains
a largely open issue. In part, this is due to its significantly high-
er complexity, the greater variety of tasks that fall under its
heading, and because the evaluation of its results is almost
entirely subjective. Furthermore, the desired condensed video
representation may vary with the task at hand: a different repre-
sentation might be needed for archival purposes than for pro-
motional or educational purposes. However, the main reason for
the relative failure of most automatic methods for the extraction
of representative or significant frames or video segments is that
the concept of being “representative’’ or “significant’’ is heavily
dependent on the semantics of the video, and specifically on the
semantic content of each video frame. So it is reasonable to
state that the complete solution of the automatic highlighting
and skimming tasks depends on the extraction of semantics at
the basic (frame and object) level. Still, a significant amount of
success has been shown in applications dealing with specific
types of video content and when tasks of limited complexity are
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attempted. It should also be noted that the lack of a commonly
accepted experimental corpus hinders the evaluation of success
in the general case.
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