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ABSTRACT

The reconstruction of broken artifacts is a common task in archeology domain; it can be supported now by 3D
data acquisition device and computer processing. Many works have been dedicated in the past to reconstructing
2D puzzles but very few propose a true 3D approach. We present here a complete solution including a dedicated
transportable 3D acquisition set-up and a virtual tool with a graphic interface allowing the archeologists to
manipulate the fragments and to, interactively, reconstruct the puzzle. The whole lateral part is acquired by
rotating the fragment around an axis chosen within a light sheet thanks to a step-motor synchronized with the
camera frame clock. Another camera provides a top view of the fragment under scanning. A scanning accuracy
of 100µm is attained. The iterative automatic processing algorithm is based on segmentation into facets of the
lateral part of the fragments followed by a 3D matching providing the user with a ranked short list of possible
assemblies. The device has been applied to the reconstruction of a set of 1200 fragments from broken tablets
supporting a Latin inscription dating from the first century AD.
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1. INTRODUCTION

The reconstruction of broken artifacts is a common task in archeology domain. This activity is not the rewarding
part of the archeologist work but one of the more time consuming and it can be supported now by 3D data
acquisition device and computer processing. Those new technics are very useful in this domain for they allow to
handle remotely very accurate models of fragile parts, they permit to test extensively reconstruction solutions
and they provide access to the parts to the whole researcher community.

A large state of the art about both 3D scanning of archeological parts and broken artifact reconstruction can
be found in the following references1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 ,9 ,.10 Through those references it appears that true 3D approach
for puzzle reconstructing is still an open problem for which the dimensional curse is to be broken.

An interesting problem has been recently proposed by archeologists under the form of a huge puzzle composed
of a thousand of fragments of pentelic marble of different sizes found in Autun France, all attempts to reconstruct
the puzzle during the last two centuries have failed. Those fragments seem to be parts of Latin inscription dating
from the first century AD. They come from large marble tablets and their individual size ranges from few to 20
centimeters. Archeologists are sure that some fragments are missing and that some of the ones we have come
from different tablets.11

The archeologist asks for a virtual tool to manipulate 3D representations of the fragments, suggest matching
possibilities and simulate the reassembly of the fragments.

A first solution dealing with a known assembly of some fragments is proposed here: it starts from the
acquisition of a fragment to the 3D reassembly of several fragments with an estimate of its likelihood.

The conclusion will presents some perspectives for completing our prototype in order to solve this challenging
complex 3D puzzle reconstruction.
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Figure 1. 3D acquisition set-up

Figure 2. Set-up description

2. ACQUISITION SET-UP

2.1 Description

The acquisition system must follow some guide lines; we need to have a low cost transportable device, the system
must also be usable by a museum for later acquisition of fragments. In order to optimized both performance
and cost, a special dedicated set up has been designed. As the most important part of the pieces for puzzle
reconstruction is the lateral one, we choose to get a 3D view of it with a line scanner based on a simple
triangulation principle using a camera and a laser light sheet as illustrated on the figure 1. The whole lateral
part is acquired by rotating the fragment around an axis chosen within the light sheet thanks to a step-motor
synchronized with the camera frame clock. Another camera provides a top view of the fragment under scanning.
A geometrical representation of this set-up is shown on figure 2. If α and β are the intrinsic camera parameters,



Figure 3. Calibration piece

ψ, t1, t2, t3, the extrinsic ones, the transformation matrix is given by

A[Rt] =

 α 0 0 0
0 β 0 0
0 0 1 0
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0 0 0 1
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and the coordinates of the image of a 3D point, denoted by (u, v) are given by
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As z = 0, after resolving the system:

x =
u

α
(
βt2 + t3β cotψ

β cotψ + v
)− t1 (3)

y =
vt3 − βt2

β cosψ + v sinψ

The six independent parameters are measured during the calibration stage.

2.2 Calibration12 ,13

The calibration process is made easy and effi cient by a special disposition: the fragment rotation axis is chosen
in the light sheet and parallel to the sensor plane and to the vertical axis of the sensor. Therefore the number
of parameters to be determined is reduced to 5 (instead of 11 in the general case)14 The calibration can be
therefore done with only two characteristic points whose 3D coordinates are known. In fact, to achieve an
optimal resolution we use a calibration piece with an engraved grid (see figure 3) set on the rotating stage in a
known position. A simple line detection algorithm followed by a linear regression allows to obtain a precision
better than the resolution provided by the camera.

2.3 Experiments and accuracy
The precision and resolution depend on the camera resolution, on the calibration and on the distance between the
point under consideration and the rotation axis ( therefore its position on the image). With our 800x1200 pixels
camera and the calibration process described in the previous section we have measured a precision better than
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Figure 4. Example of dependency of the precision with respect to the distance to the axis of rotation

100µm for the most remote points. An example of the dependency of this precision versus horizontal coordinate
is given in figure 4.

Another important property is the visibility of a given point of the fragment (see illustration on figure 5).
We have developed a method aiming at finding the best position of the object on the rotation stage (rotation
axis position: K) for the largest visibility range and the best resolution. The bottom view is used for that in a
preliminary step of the acquisition process. The system gives an information about the eventually missing points
and the minimum theoretical resolution.We denote by ΩK the region on which all possible rotation axes K can

Figure 5. Visibility of a point P depending on the rotation center K

be chosen, ωP denotes the known set of (seen from the bottom view) image points of the contour. For every
K ∈ ΩK , we must verify that P ∈ [LS]. We have defined two criteria for characterized the result::

• visibility of Pn:

ν(Pn) =
Card(ΩK/Pn)

Card(ΩK)
(4)

with ΩK/Pn the set of K allowing Pn to be visible



• optimality of Kl :

λ(Kl) =
Card(ωP/Kl

)

Card(ωP )
(5)

with ωP/K the set of P visible with Kl as rotation center

The algorithm is given below:

• for every K ∈ ΩK

— for every rotation step

∗ verify that P ∈ [LS]

∗ verify that P is not hidden by an occultation
∗ store K corresponding to P

— store the number of visible P

• build the visibility map ν (scores of visible P )

• build the optimality map λ ( scores of K giving the best visibility)

An example of visibility and optimality maps is given in figures 6 and 7.
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Figure 6. Visibility map

The optimality rarely goes beyond 70%. Consequently a first acquisition is achieved with the center leading
to the best optimality. Then, a second pass is done by choosing a center computed from the remaining non-visible
points.

The acquisition time depends on the angular resolution of the rotation. For a 1◦ unit step, the acquisition
time for one fragment is about 1mn. In order to obtain a constant resolution we modulate the angular step with
respect to the mean distance between the slice under scanning and the rotation axis. This distance is assumed
to be approximately proportional to the line image mean ordinate: 〈v〉.
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Figure 7. Optimality map

Figure 8. Example of raw 3D point cloud

3. PROCESSING

The processing is be divided into 3 stages:

• data preprocessing: data cropping and denoising

• facet segmentation

• facet matching and fragments merging

For every rotation angle, the projection of the laser line on the fragment is seen by the camera, an edge
detection algorithm allows to extract the image of the line and, according to calibration, the 3D position of each
point of the line is computed and after a complete rotation a raw 3D point cloud is get (see an example in figure
8) after automatic denoising based on thresholding set according to the neighboring density, a cloud of points
ready to be processed is stored (figure 9).,

The most sensitive step is the segmentation. The elementary problem is to find two adjacent fragments. To
limit the computational time and as we know that two adjacent fragments share at least one fractured facet and
in the majority of cases, only one, we propose to segment the cloud of points representing the lateral part of a
given fragment into facets in order to reduce the number of points used for each matching trial. An iterative
segmentation algorithm, in which Ransac plane fitting is used as initialization step,15 has been implemented to
segment the fragment model into facets. At each iteration, each point is affected to the nearest plane, if the
distance from the nearest plane is above a threshold belonging to the object geometry; a new plane is created
in order to regroup all the points without facet affectation. Facets are merged or split according to the normal
dissimilarity of the fitted plane, the proximity of points and the continuity of the facets. The main advantage



Figure 9. 3D point cloud after denoising

Figure 10. Fragment lateral part segmented into facets

is that no pre-knowledge of the fragment is required. An example of facet segmented fragment is shown in
figure 10. The matching problem is similar to the registration one, therefore a slightly modified version of an
Iterative Closest Points (ICP) algorithm16 ,17 has been used. The residual error of the ICP gives us a likelihood
estimate for the matching. Once the matching is validated by the archeologist, the two fragments are merged
and considered after that as only one. The process of facet segmentation is performed again and a matching with
the remaining fragments can be tried. The process can be iteratively repeated as far as fragments stay alone.

4. RESULTS

A graphic interface has been developed allowing the archeologist to supervise the process of fragment matching
and merging. The first fragment is selected by the expert and the automatic process proposes few ranked solutions
for matching pieces. After expert validation the iterative process can run up to the next matching proposition.

An example of digitized set of fragments is shown here as an illustration of the current state of our work.
In this example 3 iterations has been done leading to the automatic reconstruction of the set shown in figures
11 and 12. These results has been obtained by selecting automatically the first ranked result for each pairwise
matching.

5. CONCLUSION AND FUTURE WORKS

We have developed a complete solution for the acquisition and reconstruction of fragmented 3D objects figuring

• a transportable acquisition system providing 3D scans of the object contours and 2D images of their faces,

• a reconstruction method based on the congruence of two adjacent fragments.

This flexible solution is adapted to any similar problem of broken artifact with arbitrary shape, as fresco,
murals, tablets or even in medicine18 for orthopedists aiming at reconstructing heavily broken bones.

The next step, currently under progress, is to digitize the whole number fragments with the 2D/3D image of
the carved face and also the 3D acquisition of the lateral face.



Figure 11. Automatic assembly of matching fragments

Figure 12. Example of reconstructed part

Some evolutions of the process are planned such as adding the optical character recognition from the image
of the carved face. We also target some time consuming task of the process. Contour extraction is one of them,
the sharp edge detection were not used here, discard due to a lot of smooth transition between the face but
can give interesting result in combination with the actual iterative method. The matching part of the process is
another option due to the number of use during the process. In,19 Huang et al. propose a modification of the
ICP algorithm which can solve the problem of collision between two fragments, adapted to our problem it will
probably give a better adjustments of correct matching and reduce the number of false positive by increasing
the residual errors in this cases.

The last evolution of the prototype will concern the integration of additional data from geologists, archeologists
and historians to finally obtain a tool helping the reconstruction of this very challenging puzzle reconstruction.
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