
Using REST Web-Services Architecture for Distributed Simulation

Khaldoon Al-Zoubi Gabriel Wainer
Department of Systems and Computer Engineering

Carleton University Centre for Visualization and Simulation (V-Sim)
Ottawa, ON K1S-5B6 Canada

kazoubi@connect.carleton.ca , gwainer@sce.carleton.ca

Abstract

In recent years, Web Services technologies have
been successfully used for simplifying interoperability
while providing scalability and flexibility in multiple
applications, including distributed simulation software.
The RESTful-CD++ simulation Server provides Web
Services according to the REST principles by exposing
services as URIs and consumed via HTTP messages.
Therefore, the server becomes a service part of the
Web that can be easily mashed-up with other applica-
tions and simulation software. In contrast, RPC-style
SOAP-based Web Services use the Web as a transmis-
sion medium by exposing few URIs and many RPCs.
RESTful-CD++ is (to our best knowledge) the only
existing RESTful system in this area. Further, this dis-
tributed simulation package provides pioneering dis-
tributed simulation services using the Web architectur-
al style. We present an overview of the principles, de-
sign and implementation of the RESTful-CD++ HTTP
server and DCD++ simulation. We show that REST
fulfills WS objectives with a much better and easier
style than the SOAP-based systems.

1. Introduction

In recent years, Web Services (WS) technologies

have been successfully used for simplifying interope-
rability while providing scalability and flexibility in
multiple applications, including distributed simulation
software. WS is to provide interoperability (i.e. inter-
facing remote heterogeneous applications), thus, these
services can be combined and exposed in a bundle
(called mash-ups). SOAP-based WS are provided as
Remote Procedure calls (RPC) on top of the Web
(HTTP). Instead, the Representational State Transfer
(REST) style provides is an architectural style whose
principles are easy to understand and design. REST
was coined in chapter five of [3] to reveal the prin-
ciples behind the Web architecture. REST WS are
promising because of their lightweight and simplicity
comparing to SOAP-based WS.

The Discrete Event System Specification (DEVS)
[11] formalism has been extensively used to study dis-

crete event systems. The CD++ [9] is modeling and
simulation toolkit executes DEVS and Cell-DEVS
models following the definition of the DEVS abstract
simulator where it separates modeling from simulation.
We have created a distributed simulator based on WS
HTTP servers (called RESTful-CD++) strictly follow-
ing the REST principles and style [3] (inheriting all of
the Web architecture benefits).

RESTful-CD++ is a URI-oriented HTTP server that
spreads exposed services over a number of resources.
We designed the server URIs similar to regular Web
sites, making services easy to understand and to use by
clients. Each resource is manipulated via a few stan-
dardized HTTP methods. This resource-oriented ap-
proach takes the object-oriented style to the extreme
since every object is only allowed to expose services
via a few set of methods (making the server design and
implementation extensible, scalable and modifiable).

The RESTful-CD++ server is literally a part of the
Web great mash-up, hence simplifying interoperability
with other Web applications. The server can con-
sume/provide services from/to any application on the
Web by interfacing with any application that can un-
derstand HTTP messages. Further, the server can still
consume services from SOAP-based WS (in this case,
the server acts like a SOAP client). Further, the REST-
ful-CD++ server can be deployed as standalone or as a
Servlet within an HTTP container.

RESTful-CD++ acts as a container which can be ex-
tended to provide different services easily and quickly
(hence it is straightforward to extend uniform resources
structure). For example, the server currently provides
the services of Distributed CD++. However, more ser-
vices can be added without affecting other supported
services (or even clients that already own resources on
the server). This is similar to when a Web site changes
some of its resources. Further, programming at the
HTTP level revealed many performance issues (that
are hidden when many RPCs spread over the code)
such as transmitting simulation messages simulta-
neously in the distributed environment.

2. Background and Motivation

2009 ACM/IEEE/SCS 23rd Workshop on Principles of Advanced and Distributed Simulation

1087-4097/09 $25.00 © 2009 IEEE

DOI 10.1109/PADS.2009.16

114

2009 ACM/IEEE/SCS 23rd Workshop on Principles of Advanced and Distributed Simulation

1087-4097/09 $25.00 © 2009 IEEE

DOI 10.1109/PADS.2009.16

114

Discrete Event System Specification (DEVS) [11] is
M&S specification aims to study discrete event sys-
tems. The formalism expresses a model as a number of
connected behavioral (atomic) and structural (coupled)
components. These components are connected together
through external ports, and events are exchanged
among models via those ports. The models change
their state only upon the occurrence of an event. The
basic building component of DEVS models is the
atomic DEVS model, formally defined as:

M = < X, Y, S, δint, δext, δcon, λ, ta >
At any given time, the model is in some state s∈S,

and it stays in this state for the period specified by the
time advance function ta(s). When the lifetime expires,
the model activates the output function λ and can gen-
erate an output value y∈Y. It then changes its state as
indicated by the internal transition function δint. The
model changes its state as defined by the external tran-
sition function δext if it receives one or more external
events x∈X before the expiration of ta(s). The conflu-
ent transition function δcon is used to resolve collisions
of external events with internal transitions. A DEVS
coupled model is formally defined as:

N = < X, Y, D, {Md | d ∈ D}, EIC, EOC, IC >
The model is composed by a number of components

Md interconnected. The external input coupling EIC
specifies the connections between external and com-
ponent inputs, while the external output coupling EOC
describes the connections between component and ex-
ternal outputs. The connections between the compo-
nents themselves are defined by the internal coupling
IC.

CD++ [9] is a modeling and simulation toolkit that
offers a varied simulation engines to execute DEVS
and Cell-DEVS models on different platforms (e.g.
parallel, distributed and real-time). For each DEVS
atomic model, users need to implement the various
DEVS functions in C++. On the other hand, for DEVS
coupled models and Cell-DEVS models, users can
specify the model in a model configuration file using a
built-in specification language. CD++ has been suc-
cessfully providing distributed simulation using the
SOAP-based WS [9], which paved the way toward
interfacing CD++ with other applications for providing
a mashup approach (by combining services from mul-
tiple sources). This can lead to higher degree of reuse
and reduced time to set up and run experiments, and
making sharing among remote users more effective.
For example, the DEVS community is in the progress
of interfacing various DEVS-based simulation tools
(e.g. CD++) using Web-service technology towards a
DEVS standard interoperability protocol [1]. We be-
lieve (as showed here) that WS can achieve its objec-
tives using the resource-oriented REST principles with

more simplicity, flexibility and scalability than the
RPC-style SOAP-based WS (as proven by the millions
who use the World-Wide-Web – WWW - everyday).

The current generation of WS has been successfully
used to perform distributed simulation [7] [8] [9]. It
exchanges data with SOAP messages wrapped within
HTTP messages (this is done by the SOAP engine [10]
and the HTTP server layers). WSDL [2] is used to de-
scribe exposed services; enabling clients to build ser-
vices as stubs to be compiled with their programs. On
the other hand, SOAP applies RPC on top of HTTP.
Once an RPC is invoked, the SOAP engine converts it
into a SOAP message and wraps it as a HTTP request
sent via the HTTP server. Exposed RPCs (usually
called services) have heterogeneous interfaces, and
programmers need to learn each procedure purpose
along with each single parameter. WSDL only converts
those RPCs into programming stubs, but does not teach
programmers how to use them, making difficult com-
posing and mashing-up services, and constraining
reuse. The RPC-style is suitable for closed communi-
ties that can coordinate changes among each other to
avoid breaking each other’s software.

Instead, the WWW has been extremely successful
in providing an outsized, scalable and interoperable
mash-up system that is simple and easy to understand.
What make the Web successful in doing so? (1) It is
message-oriented and uses open standards. All changes
are done to message contents (e.g. HTML, HTTP mes-
sages). Thus, if you follow message-format standards,
you will be able to communicate with anyone on the
Web. (2) Open Standard Protocols. For instance, HTTP
is the Web protocol; hence, if you need to interface
with anyone in the Web, follow the HTTP standards.
(3) The Web employs a standardized global addressing
scheme. For example, every “resource” in the Web is
named with a unique URI. Resources are read (e.g. via
a Web-browser) by sending HTTP request messages to
that resource’s URI (i.e. using the GET method). In
response, the server returns an HTTP response mes-
sage with the resource data to the client (e.g. as HTML,
XML, etc.). Updating HTTP methods (e.g. POST)
work the same way, but by transferring data from the
client side to a resource on the server. REST [3] de-
rives its principles from the Web. To name few of the
REST principles: (1) it is stateless (message-oriented).
Every request should have all of the necessary infor-
mation to be processed. (2) It uses a uniform interface
(usually HTTP methods [4]). (3) Every “thing” is ex-
posed as a “resource” (and named with URIs). (4) Re-
presentation (resources state) captures a resource data,
which is transferable to other resources.

REST principles are suitable for open communities
that allowed RESTful applications to decouple clients
from servers where each side can progress indepen-

115115

dently from the other. The Web principles have been
proven in simplifying interoperability while still pro-
viding scalability, flexibility and client simplicity.
These principles have inspired us to provide WS at the
HTTP layer (to be part of the Web mash-up) rather
than using the Web as a transmission medium as in the
case of the RPC-style SOAP-based WS. REST simpli-
fies the client side, which is one of the strongest advan-
tages of the Web.

REST has been successfully used by numerous
vendors, including Yahoo
(http://developer.yahoo.com/), Flicker
(http://www.flickr.com/services/ap/), and Amazon S3
(http://s3.amazonaws.com). To the best of our know-
ledge, there are no REST-based simulators (or even
distributed programming software in general). Most
distributed simulation systems have been provided
using SOAP-based WS and other approaches (see [9]
for the complete list). This motivated us to build a
REST-based simulator for CD++, providing distributed
simulation at the Web layer, avoiding the heavyweight
RPC-style mechanism.

3. RESTful-CD++ Server Design

RESTful-CD++ is a URI-oriented architecture

where all services are divided into URIs and manipu-
lated via HTTP uniform interface methods. Figure 1
shows the server URI template [6] used to construct
every possible URI. URI Templates [6] are URIs with
variables (placed between braces ‘{}’). Variables are
substituted with appropriate values to get the actual
URI instances at runtime, which simplifies both clients
and servers. Clients can easily know what part of the
URI is under their control. Servers can easily verify all
the possible paths that clients can use to manipulate
exposed resources. Each resource (Figure 1) includes a
specification that defines the supported HTTP methods
(and their responses), possible HTTP errors (e.g. code
401 for not-found resource), incoming/outgoing repre-
sentations and media type. The root URI is split into
three subordinate resources: (1) /admin is used for
administrative services such as create/ delete/update
accounts, general server configuration and retrieving
server logs. For example, a PUT request to an absent
URI (/admin/accounts/Bob) creates an account with
name Bob. (2) /util is used for utilities that might be
helpful for client programs. (3) /sim is used to struc-
ture simulation resources. It contains a number of
workspaces, each of which may contain a number of
supported services (i.e., the resource {userwork-
space} holds a workspace name that can contain a
{servicetype} to define a service type). A simula-
tion service (e.g. DCD++) may contain a number of

frameworks. Clients use frameworks to setup their si-
mulation (i.e., sending configuration files). For exam-
ple, /cdpp/sim/workspaces/Bob/DCDpp/FireModel is a
framework that belongs to workspace Bob, service
DCDpp and uses the framework FireModel.

Figure 1: RESTful-CD++ URIs Template

The framework resource supports four methods: (1)

GET, which returns an XML or HTML document de-
scribing the framework configuration. (2) DELETE, to
delete a framework. (3) PUT, to create/update a
framework. (4) POS, to submit files used for CD++
simulation. The resource {framework}/simulation
manages active simulations according to the following
operations: (1) PUT creates (starts) the simulation. (2)
DELETE aborts the simulation. (3) POST sends mes-
sages to an active simulation (e.g., DCD++ servers use
it to exchange XML simulation messages). (4) GET
reads values from a simulation in progress. The active
simulation resource is automatically deleted upon nor-
mal completion. In addition, {framework}/results
is created, enabling to retrieve simulation results. The
server spawns a Java thread for each HTTP request,
which is terminated upon generating HTTP response to
the client. This allows many requests to be handled
simultaneously, hence improving response time. The
server also requires all incoming requests to be vali-
dated according to the HTTP Basic authentication [5].
However, authentication is not required (by default) for
GET requests.

4. RESTful Distributed CD++ Design

Modeler clients creates their simulation resources

on the main server (which is a RESTful-CD++ HTTP
server that the modeler owns a user account on). The
modeler then needs (for the first time) to create a simu-
lation framework on the main server and submit all
necessary files to it. After that, the modeler can start a
simulation via creating a {framework}/simulation re-
source. As a result, the main server (acting as client)

/{accountname}

/accounts

Machine-URI/cdpp

/workspaces

/{userworkspace}

/{servicetype}

/sim/admin
/log /util

/ping
/config

/{framework}

/debug /simulation/results

116116

creates the necessary resources on support servers and
starts the simulation everywhere.

Figure 2 shows example of a Distributed CD++ si-
mulation session among three servers. The three
DCD++ simulation engines (written in C++) are
plugged into the RESTful-CD++ HTTP server (written
in Java), which they coordinate among each other to
simulate a CD++ model by exchanging XML messages
within HTTP envelopes.

Figure 2: RESTful Distributed Simulation Example

Figure 3: DCD++ Simulation Resource Example

 Figure 3 shows a conceptual look of the main serv-

er during a single simulation session. The URI exam-
ple in Figure 3 is the address to manipulate the active
simulation. The Simulation Manager component man-
ages a session for a DCD++ simulation engine. Upon
receiving a DCD++ simulation message by the server
Router: (1) a Java thread is spawned to handle the re-
ceived message, which represents the target URI. (2)
The XML message is parsed and validated. (3) The
message is forwarded to the proper simulation manag-
er. (4) An HTTP response is generated and the request
thread is terminated. Simulation managers also act as
clients when they transmit messages to remote simula-
tion URIs in the DCD++ grid. To improve perfor-
mance, they spawn a thread for each transmitted mes-
sage, allowing concurrent message transmission. This
is because HTTP calls are synchronous; hence, the
process is blocked until a response is received back.
The simulation manager proxy (Figure 3) interfaces
with the C++ models in CD++. All messages between
the DCD++ simulation engine and its simulation man-
ager are exchanged using Linux queues.

The simulation manager on the main server creates
the necessary resources on all support servers. All par-

ticipants in the simulation conference must have a
username and password on all other servers (similar to
any other clients). Everybody in the conference is al-
lowed to POST a message while the main server (the
resources owner) is the only one allowed to perform
other HTTP methods, taking the advantage of the uni-
form interface.

DCD++ uses Coordinator objects to simulate
coupled models and Simulator objects to simulate
atomic models. The simulation is divided into three
phases: Initialization, Collection and Transition. Initia-
lization starts when the topmost coupled model rece-
ives an Initialization (I) message. Collection starts
when the Root coordinator sends a collect message
(@) to the top model in the hierarchy. In this phase, all
output (Y) and external (X) messages are collected.
Transition starts when the Root coordinator sends an
internal (*) message to the top model. In this phase, all
collected external and scheduled internal messages are
executed. Each phase ends with a Done (D) message,
which contains the calculated next imminent event
time.

Figure 4: Head/Proxy Local message routing

A Head/Proxy algorithm (also used in our SOAP-

based DCD++ [9]) places proxy coordinators on re-
mote machines to handle children’s messages on behalf
of the head coordinator. For example, the Proxy Coor-
dinator in Figure 4 routes the output message (4:Y)
from Simulator 3 to Simulator 2 locally (6:X). Thus,
the proxy makes local decisions (on behalf of the Head
Coordinator) to avoid unnecessary remote message
transmission, improving performance.

On the other hand, the algorithm still transmits all
remote messages. For example, suppose that Simulator
3 in Figure 5 is transmitting a message for Simulator 1.
The proxy sends it to the Head Coordinator as (5:X)
followed by the Done message (8:D) to mark the end
of the proxy collection phase. What if the Head rece-
ives the external message (5:X) after the Done message
(8:D)? It will treat external (5:X) as part of the next
collection phase, which leads to incorrect simulation.
Further, assume the message (5:X) is sent (in reverse
direction) from the Head to the proxy during the col-
lection phase. In this case, the simulation will deadlock
if the internal message (*) from the Head (which starts

User

WWW (HTTP Messages)

Server #1

DCD++

Server #2 Server #3

DCD++ DCD++

Head
Coordinator

Simulator 1 Simulator 2 Simulator 3

Server 1

6:X 4:Y

Proxy
Coordinator

1:@
2:@

3:@ 5:D
7:D

8:D
Server 2

Client

/cdpp/sim/workspaces/Bob/DCDpp/FireModel/simulation

Simulation
Manager

DCD++ Engine
JNI

Message Monitor CPP Wrapper Linux Queues

Simulation Manag-
er Proxy

117117

the next transition phase) is received by the proxy be-
fore that external message. The proxy coordinator will
be waiting forever for an imaginary Done message (as
acknowledgment to the internal message) from its
children.

Figure 5: Head/Proxy Remote message routing

These scenarios are possible in RESTful-CD++ be-

cause all remote messages are transmitted concurrent-
ly, (i.e. each lives in a separate thread). We cannot
guarantee that several messages transmitted in few
milliseconds apart would reach their destination in
their transmission order. The original Head/Proxy algo-
rithm works in SOAP-based DCD++ [9], because mes-
sages are transmitted using RPC-style via the SOAP-
engine. In this case, the SOAP engine converts the
RPC into a SOAP sent in an HTTP envelope. Since
HTTP requests are blocking, the simulation messages
arrive in their transmission order. This is an example of
how RPCs can deceive even experienced programmers
by appearing innocent while they are still expensive
blocking remote calls. Thus, a new Head/Proxy version
was created.

Simulation messages can be categorized into syn-
chronization messages (i.e. D, *, I and @), and content
messages (Y, X). Synchronization messages are used
to synchronize the start/end of simulation phases.
Thus, they are exchanged at the boundary of simulation
phases. For example, external message (5:X) must al-
ways arrive at the head coordinator before the Done
message (8:D) (in Figure 5) to ensure causality and
avoid deadlocks. The new head/proxy algorithm
achieves this by sending all content messages with the
first synchronized message heading to their destined
processor. This solution not only ensures the correct
message order arrival to a coordinator, but also reduces
the number of remote messages between two coordina-
tors (in a simulation phase) to only one message. Fig-
ure 6 shows an example of two simulation messages
bundled in one XML document, showing the XML
flexibility to overcome issues when compared to RPCs
in the SOAP-based WS.

Figure 6: Simulation Messages Example

The simulation message contains (at least) the fol-

lowing information: Message type, simulation time,
source processor Id, destination port Id, content value,
next change time, sender model Id, and destination
Processor Id. DCD++ keeps unique IDs for each mod-
el, port and processor (i.e. coupled model coordinator
or atomic model simulator) in the DCD++ grid. This is
ensured by the way model files are parsed by each par-
ticipant DCD++ simulation engine. Therefore, it is
necessary to resubmit model files to each server, if
modeler changes any of them.

5. RESTful-CD++: Implementation

The RESTful-CD++ HTTP server consists of five

Java packages (shown in Figure 7): Main, Data, Re-
sources, Utility and Simulation Admin (i.e. note that
the DCD++ simulation engine shown in Figure 2 and
Figure 3 implementation is not discussed here). The
Main subsystem starts the server and initializes major
components such as URIs Router, Database, logging,
simulation managers’ administration and communica-
tion. Utility provides helper classes for all other sub-
systems such as XML parsing utilities, server logging,
file-system services and HTML builder documents.
Data holds and organizes the server database. The Da-
tabase is divided into sections for each user, hence,
thread requests from different users do not need to
block each other. Each user section is divided into user
account and workspace. A workspace may contain any
number of supported services (e.g. DCD++) where a
service may contain any number of simulation frame-
works.

Server 2

Head
Coordinator

Simulator 1 Sim2 Simulator 3

Server 1

5:X

4:Y

Proxy
Coordinator

1:@
2:@

3:@ 6:D
8:D

9:D

7:X

<Messages>
 <MessagesCount>2</MessagesCount>
 <Message>
 <MessageType>X</MessageType>
 <Time>08:50:00:00</Time>
 <SrcProcId>2</SrcProcId>
 <PortId>5</PortId>
 <Value>9.0</Value>
 <SenderModelId>3</SenderModelId>
 <DestProcId>1</DestProcId>
 </Message>
 <Message>
 <MessageType>D</MessageType>
 <Time>08:50:00:00</Time>
 <SrcProcId>2</SrcProcId>
 <NextChange>00:00:00:00</NextChange>
 <SenderModelId>3</SenderModelId>
 <Proxy>True</Proxy>
 <DestProcId>1</DestProcId>
 </Message>
</Messages>

118118

Figure 7: RESTful-CD++ Architecture Overview

Figure 8: Resources-Subsystem Overview

Figure 8 shows the Resources Subsystem, which

handles client HTTP requests. There is a Java class to
process each URI in the template of Figure 2. For ex-
ample, requests to .../{framework}/simulation are han-
dled by SimulationResource. Resource classes parse
the variable parts of a URI to figure out the appropriate
stored Java objects in the database. For example, a
request to …/sim/workspaces/ Bob/DCDpp/FireModel
is handled by FrameworkResource, which can deter-
mine that the request belongs to the framework Fire-
Model of service DCDpp, owned by workspace Bob.
After that, the appropriate operation (based on the
HTTP method in the request) is invoked. Each Java
class in Figure 8 (at most) contains the following oper-
ations: represent, storeRepresentation, accept Repre-
sentation and removeRepresentations (to handle HTTP
methods GET, PUT, POST and DELETE respective-
ly).
 The SimulationAdmin classes (shown in Figure 9)
manage active simulation sessions. The SimulationMa-
nager class performs all necessary operations to start,
stop, control and monitor a simulation engine.

Figure 9: SimulationAdmin -Subsystem Overview

 DCDppSimulationManager is extended from Simula-
tionManager class to handle DCD++ simulation man-
agement in geographically distributed locations. Simu-
lationManagersAdmin administrates all simulation
managers in the server. The SimulationManagerProxy
class operations are used by Simulation managers to
manipulate their correspondent CD++ simulation en-
gines (written in C++). DCDppGridWatchdog imple-
ments the watchdog thread, which periodically checks
on the health of simulation resources in the DCD++
grid. MessageDispatcher is used (by DCD++ simula-
tion managers) to send a simulation message (as a sep-
arate thread) to remote simulation resources (URIs) in
the DCD++ grid. MessageDispatcher is actually an
HTTP client with the purpose to send single message
and reports the transmission status to the subject simu-
lation manager.

6. Client Example

The DCD++ simulation can be performed with the
following four steps (Step #1 and #2 are only needed
once):

Step #1: Creating a DCD++ framework via apply-
ing the PUT method to the URI (for instance,
…/cdpp/sim/ workspaces/Bob/DCDpp/MyModel).
The server then creates the framework MyModel.
Workspace Bob and service DCDpp are created, if they
do not already exist. Further, the modeler needs to con-
figure the DCD++ grid (upon creation or in a separate
update request). For example, the following XML con-
figuration document places two atomic models on two
DCD++ servers:

<DCDpp>
 <Servers>
 <Server IP="10.0.40.8" PORT="8080">
 <MODEL>Producer</MODEL></Server>

119119

 <Server IP="10.0.40.9" PORT="8282">
 <MODEL>Consumer</MODEL></Server>

 </Servers>
 </DCDpp>

Step #2: Submitting the required CD++ model files
via applying POST method to the framework URI. The
easiest way is to submit all of the CD++ files in a
zipped directory to URI
…/DCDpp/MyModel?zdir=files (where files is the
name of the directory when extracted).

Step #3: Start the simulation by applying PUT me-
thod to create URI …/DCDpp/MyModel/simulation.
The client program can check the simulation status (via
GET) to URI …/MyModel?sim=status.

Step #4: Once the simulation is completed, one can
retrieve the results by applying the GET method to
URI …/MyModel/results.

7. Performance

This section provides two sets of experiments. The

first set aims on studying the REST system under pres-
sure since many users are expected to use the system
services simultaneously. The second set presents com-
parison results against the SOAP-based DCD++ [9]
system.

Clients in the first set of experiments sent their re-
quests simultaneously to the server from the same
room as of the server. They also resend their requests
to the server using the Internet across the city. The
response time is measured, by clients, from the time a
request is sent until the response is received back. Fig-
ure 10 shows the response time (averaged over 50 dif-
ferent runs) for both LAN and Internet clients. It also
shows the difference between LAN and Internet re-
sponse times, which indicates the same behavior re-
gardless of the number of clients. This is because mes-
sages round-trip delay across the Internet is the major
contribution in the difference, which is independent of
our executed tests. The results also show that the server
reacts to the number of requests at the beginning, but it
holds its ground when the pressure increases (i.e. the
jumps in response time get smaller when clients more
than 100).

The second set of experiments compares distributed
simulation using the presented REST-based WS
DCD++ here against the SOAP-based WS DCD++ [9].
The next set of experiments used three CD++ models
in the simulation: a Fire model (30x30 Cell-DEVS)
used to simulate fire behavior in forests, a ship evacua-
tion model (49x27 Cell-DEVS) used to simulate hu-
man behavior in case of ship evacuation and a Barber-
shop model (standard DEVS model) simulates barber-
shop customer service. The models were split evenly
between two machines connected to the same Ethernet;

hence remote simulation messages round trip time de-
lay is measured to be around 4 ms.

0
20

40
60

80
100

120
140

160
180

1 10 20 30 40 50 60 70 80 90 100 150 200

Concurrent Clients Count

Ti
m

e
(m

se
c)

LAN Clients Internet Clients Difference

Figure 10: Concurrent Clients Response Time

0

500

1000

1500

2000

2500

3000

3500

Fire Ship Barbershop

CD++ Model

To
ta

l M
es

sa
ge

s

SOAP
REST

Figure 11: Total Exchanged Remote Simulation Messages

Figure 11 shows the total exchanged messages be-

tween the two machines to synchronize the distributed
simulation. The shown difference is because the
REST-system bundles remote messages in one XML
message to reduce number of remote messages as pre-
viously discussed here. This improvement offered itself
because of exchanging simulation messages in XML
documents rather than parameters in a procedure. In
this case, the degree of improvement depends on the
studied model. On the other hand, models execution
times (i.e. averaged over 25 different runs) still very
close to each other on the Ethernet as shown in Figure
12. This is because using the Ethernet almost cancels
the gain that is obtained from reducing the number of
exchanged messages because of the trivial delay time
of messages.

0

5

10

15

20

25

30

35

40

45

Fire Ship Barbershop

CD++ Model

E
xe

cu
tio

n
Ti

m
e

(s
ec

)

SOAP
REST

Figure 12: Models Execution Times over the Ethernet

The results in Figure 13 aim on studying concurren-

cy on both systems, since these systems are usually
used by different modelers at the same time. It starts by
simulating one evacuation model, then two of them
simultaneously, etc. Results (i.e. execution time aver-

120120

aged over 25 different runs) are almost the same for
both systems. However, the REST systems start show-
ing slightly better performance after four concurrent
models.

0

50

100

150

200

250

1 2 3 4 5 6

Number of Concurrent Ship Models

E
xe

cu
tio

n
Ti

m
e

(s
ec

)

SOAP REST

Figure 13: Execution Time of Concurrent Ship Models

The results presented here show that REST-style

can be used to provide distributed simulation as in the
case of SOAP-based WS. Further, the REST pro-
gramming model is much easier to introduce tech-
niques to improve performance. The comparison re-
sults here only use both systems to study software im-
plementations, which can be influenced by many fac-
tors such as using third-party software and general
software design. On the other hand, interoperability is
the major benefit of WS and is usually put ahead of
performance. We believe that interoperability is pro-
vided with much flexibility and simplicity by the
REST-style comparing to the SOAP-based style as it
has previously been shown here. Particularly the un-
derlying communication in the both systems is the
same. The SOAP-WS invokes RPCs by sending XML
SOAP messages in HTTP messages whereas REST-
WS directly works with HTTP messages themselves.

8. Conclusions

The RESTful-CD++ HTTP server provides WS us-

ing the Web principles (as defined by the REST-style).
The server strictly follows the REST style and the Web
principles in order to capitalize on the Web benefits
such as scalability, interoperability and simplicity. In
contrast, the SOAP-based WS use RPC-style by expos-
ing few ports (i.e. single URI per port) and many oper-
ations (i.e. services). RPCs glues server and client pro-
grams together which prevent them from evolving in-
dependently.

The RESTful-CD++ server supports distributed
CD++ (DCD++) simulation. DCD++ servers coordi-
nate among each other via XML messages according to
the head/proxy algorithm new version (which bundles
remote messages together).

Being part of the Web mash-up, designing with the
Web principles (e.g. resources with uniform interface
and message-oriented open standards), the heavy-

weight of the SOAP-WS, and having the Web global
addressing scheme have inspired us to develop the
RESTful-CD++ server. Furthermore, the server is still
able to consume services from the SOAP-based WS.

9. References

[1] Al-Zoubi K.; Wainer, G. “Interfacing and Coordination
for a DEVS Simulation Protocol Standard”. In Proceed-
ings of DS-RT 2008. Vancouver, BC, Canada. October
2008.

[2] Christensen, E; Curbera, F.; Meredith, G.; Weerawara-
na, S.” Web Service Desctiption Language (WSDL)
1.1”. March, 2001. http://www.w3.org/TR/wsdl. [Ac-
cessed October 2008].

[3] Fielding, R. T. “Architectural Styles and the Design of
Network-based Software Architectures”, Doctoral dis-
sertation, University of California, Irvine, 2000. Availa-
ble at:
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.ht
m. [Accessed October 2008].

[4] Fielding R., Gettys J., Mogul J., Frystyk H., Masinter
L., Leach P., Berners-Lee T. “Hypertext Transfer Proto-
col - HTTP/1.1”. RFC 2616. Available at:
http://www.w3.org/ Protocols/rfc2616/rfc2616.html.
[Accessed October 2008].

[5] Franks J.; Hallam-Baker P.; Hostetler J.; Lawrence S.;
Leach P.; Luotonen P.; Stewart L. “HTTP Authentica-
tion: Basic and Digest Access Authentication” RFC
2617. Available at: http://www.ietf.org/rfc/rfc2617.txt.
[Accessed: Feb. 2009]

[6] Gregorio J. URI Templates.
http://bitworking.org/projects/ URI-Templates/ [Ac-
cessed: February 2009]

[7] Mittal S., Risco J. and Zeigler B. "DEVS-Based Simu-
lation Web Services for Net-Centric T&E". Proceedings
of SCSC. San Diego, CA. 2007.

[8] Möller B., Löf S.: “A Management Overview of the
HLA Evolved Web Service API”.
http://www.pitch.se/images/06f-siw-024.pdf . Accessed
February 2009.

[9] Wainer, G.; Madhoun, R.; Al-Zoubi, K. “Distributed
Simulation of DEVS and Cell-DEVS Models in CD++
using Web-Services”. Simulation Modelling Practice
and Theory 16 (2008), pp. 1266-1292. Elsevier.

[10] Web Services-Axis. Available via
http://ws.apache.org/axis/ [Accessed October 2008].

[11] Zeigler, B.; Kim, T.; Praehofer, H. Theory of Modeling
and Simulation. 2nd Edition. Academic Press. 2000.

121121

