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Abstract. As DNA microarrays have been widely used for gene expres-
sion profiling and other fields, the importance of reliable probe design for
microarray has been highlighted. First, the probe design for DNA mi-
croarray was formulated as a constrained multi-objective optimization
task by investigating the characteristics of probe design. Then the probe
set for human paillomavrius (HPV) was found using ε-multi-objective
evolutionary algorithm with thermodynamic fitness calculation. The evo-
lutionary optimization of probe set showed better results than the com-
mercial microarray probe set made by Biomedlab Co. Korea.

1 Introduction

DNA microarray, especially oligonucleotide array, consists of the DNA sequences
called probes, which are DNA complementaries to the genes of interest, on a solid
surface. When the molecules of a cell is put to the microarray, if there exists a
complementary oligonucleotide to one of the probes, it would hybridize to the
probe so that a user can detect it using various methods. In this way, DNA
microarray can provide the information on whether a gene is expressed or not
for hundreds of genes simultaneously. Therefore, DNA microarray is widely used
to study cell cycle, gene expression profiling, and other DNA-related phenomena
in a cell; and has become the method of choice to monitor the expression level
of a large number of genes.

By the way, microarray depends on the quality of probe sets that used. If a
probe hybridizes to not only its target gene but also other genes, the microarray
may produce misleading data. Thus, one needs to design the probe set care-
fully to get precise data. Till now, lots of probe design methods and strategies
are suggested reflecting its importance [16]. Gordon and Sensen proposed a Os-
prey system based on various well-defined criteria [5]. Zuker group implemented
OlgioArray 2.0 using thermodynamic data to predict secondary structures and
to calculate the specificity of targets on chips [10]. Wang and Seed suggested
OligoPicker which uses BLAST search for sequence specificity decision [18].
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Though they have shown the good results, the main algorithm of most pre-
vious system is a simple generate and filter-out approach. Recently, a method
based on machine learning algorithms such as näıve Bayes, decision trees, and
neural networks has been proposed for aiding probe selection [15]. And in our
previous work [8], we used a multi-objective evolutionary algorithm for probe
selection of DNA microarray. We designed 19 probes for human papillomaviruses
using non-dominated sorting genetic algorithm-II (NSGA-II). In this paper, we
improved our previous approach in many ways. First, we reformulated the probe
design problem by investigating the characteristics of the probe design. Sec-
ond, we adopted ε-multi-objective evolutionary algorithm (ε-MOEA) instead of
NSGA-II. In a related field, DNA sequence design for DNA computing, we no-
ticed that ε-MOEA outperforms NSGA-II for DNA sequence design problem [12].
Based on these results, we improved the main algorithms to ε-MOEA. Third, we
changed the fitness criteria of probe design by combining thermodynamic data
and sequence similarity search.

In the following sections, we explain the suggested probe design method in
detail. In section 2, we briefly introduce the multi-objective optimization prob-
lem and formulate the probe design problem as multi-objective optimization
problem. Section 3 and 4 describe our probe design method and provide the
experimental results. In Section 5, the conclusion will be followed.

2 Multi-Objective Probe Design

2.1 Multi-Objective Optimization Problem

A multi-objective optimization problem (MOP) has a number of conflicting objec-
tives which are to be optimized [1]. For non-conflicting objectives, the optimiza-
tion of one objective implies the optimization of the other and both objectives can
be treated as one objective. And if there exists priority between objectives, one can
optimize objectives according to the priority by optimizing single objective which
is the weighted sum of objectives. Therefore, for both cases, the given problem
becomes a single objective optimization problem. However, in MOP, objectives
conflict each other and there is no given priority between objectives, which makes
the optimization more difficult than in single objective case.

The general form of multi-objective optimization problem is like the following:

Optimize fm(X), m = 1, · · · , M,

subject to gj(X) ≥ 0, j = 1, · · · , N,

x
(L)
i ≤ xi ≤ x

(U)
i , i = 1, · · · , n (1)

where, X is a vector of n decision variable [x1, · · · , xn]T , f represents objective,
g is constraint, M denotes the number of objectives, and N the number of
constraints. x(L) is lower value of decision variable and x(U) is upper value of
decision variable.

Given an optimization problem, one’s goal is to find optimal solution(s). For
a single objective case, the optimality of a solution is determined by simply
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comparing its objective function value to others. In multi-objective case, the
optimality of a solution is determined by domination relation between solutions.
A solution X is said to dominate other solution Y in the case of maximization
when the following two conditions are satisfied and denoted by X � Y :

∀i ∈ {i, · · · , M}, fi((X)) ≥ fi((Y )),
∃i ∈ {i, · · · , M}, fi((X)) > fi((Y )). (2)

Therefore, the optimal solutions for a MOP are those that are not dominated by
any other solutions. Thus, one’s goal in MOP is to find such a non-dominated
set of solutions.

2.2 Probe Design as Multi-Objective Optimization

There exist several criteria to evaluate the set of probes [5]. We list the generally
used conditions for good probes:

1. The probe sequence for each gene should not appear other genes except its
target gene.

2. The probe sequence for each gene should be different from each other as
much as possible.

3. The non-specific interaction between probe and target should be minimized.
4. The probe sequence for each gene should not have secondary structure such

as hairpin.
5. The melting temperatures of the probes should be uniform.

The first three conditions concern with the specificity of the probes. And the
secondary structure of a probe can disturb the hybridization with its target gene.
Lastly, the probes on a oligonucleotide chip are exposed to the same experimental
condition. If the melting temperatures of the probes are not uniform, some probes
can not hybridize with its target.

We formulated the above conditions for clear definition of microarray probe
design problem. The first condition regarded as a constraint, since it is the basic
requirement for probes. And the fifth condition was not considered as one of
objectives but was used as the final decision criterion to choose the best solution
among diverse Pareto optimal solutions which are the results of the MOEA run.

Therefore, we formulated the microarray probe design using three fitness
functions and one constraint. Before going on the formulation of the prob-
lem, let us introduce the basic notations. We denote a set of n probes by
P = {p1, p2, · · · , pn}, where pi = {A, C, G, T }l for i = 1, 2, · · · , n, l is the length
of each probe. And we denote the set of target genes by T = {t1, · · · , tn}.

The constraint is the basic requirement for probes.

g(P ) =
∑

i�=j

subseq(pi, tj), (3)

subseq(pi, tj) =
{

1 if pi occurs in tj at least once
0 otherwise
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Since the probe sequences should not be the subsequence of the non-target gene
sequences (condition 1), this constraint is the basic requirement. And from its
definition, this constraint should be zero. Other conditions are implemented
as three fitness functions. First one is to prevent hybridization between probe
and non-target genes (condition 2). Second is to prevent hybridization between
probe and improper position of target genes (condition 3). Even though probe
hybridized to the undesired site of its target gene, this can give the right infor-
mation. Therefore, this seems to be unnecessary fitness functions. However, for
more specific probe design, we add this fitness function in our design criteria.
Last one is to prohibit forming unwanted secondary structures which can dis-
turb the hybridization between probe and target (condition 4). They could be
abstracted as follows:

f1(P ) =
∑

i�=j

hybridize(pi, tj), (4)

f2(P ) =
∑

i

hybridizetarget(pi, ti), (5)

f3(P ) =
∑

i

secondary(pi). (6)

where, hybridize(pi, tj) has non-zero value in proportion to the hybridiza-
tion likelihood between pi and tj . hybridizetarget(pi, ti) is similar with
hybridize(pi, tj). It increases its value when pi and ti hybridize in the non-
designed positions which are not the chosen site for pi in ti. secondary(pi) has
non-zero value in accordance with the probability that pi can form the unwanted
secondary structures.

The relationship between three objectives are shown in Fig. 1. The graphs
were plotted using 420 20-mer DNA sequences and their Watson-Crick comple-
mentary combinations. f1 or f2 has the some conflict relation with f3. Though,
in precise, the relation should be treated as random, these objectives could be
solved by MOEAs. And f1 and f2 has a linear relation as we expected.

From above, the probe design problem is formulated as an MOP with 3 min-
imization objectives and 1 equality constraints.

Minimize fi(P ), i = 1, 2, 3;
subject to g(P ) = 0. (7)

3 Multi-Objective Evolutionary Probe Optimization

To design probe set that satisfies above condition, we used ε-multi-objective
evolutionary algorithm (ε-MOEA). There exist several methods to find such non-
dominated set of solutions for a MOP. Among them, evolutionary method is one
of the most popular and actively studied methods. It has the advantage that it
can provide a set of non-dominated solutions by one run due to a population-
based method [1]. And among various multi-objective evolutionary algorithms,
ε-MOEA has shown the best performance [7, 2, 3].
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within
target gene

non-target gene

secondary
structures

Fig. 1. The relationship between objectives for probe design. The data are generated
using 20 mer DNA sequences and Watson-Crick complement.

3.1 ε-Multi-Objective Evolutionary Algorithm

ε-multi-objective evolutionary algorithm (ε-MOEA) is a steady-state genetic al-
gorithm using elite archive and ε-dominance relation [7, 3]. The most important
characteristic of ε-MOEA is the ε-dominance relation. In ε-dominance relation,
x ε-dominates y if the difference between x and y is greater than or equal to a
certain amount ε in all objectives and is strictly better than y by ε in at least
one objective. The mathematical definition is

X ε − dominates Y ⇐⇒ (1 + ε)f(X) ≥ f(Y ). (8)

The ε-dominance is introduced to maintain a representative subset of non-
dominated individuals. The ε-non-dominated set is smaller than the usual non-
dominated set, for the non-dominated solutions which can be ε-dominated by
others are removed in ε-non-dominated set. Therefore, ε-Pareto set is a subset
of the Pareto-optimal set which ε-dominates all Pareto-optimal solutions. And
the minimum distance between nearest solutions can be guaranteed by dividing
whole search space into many grides. The density of the approximate set can be
adjusted by controlling the value of ε [7]. Utilizing the ε-dominance in selecting
representative subset of non-dominated set and maintaining them in the archive
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1. Randomly generate initial pool.
2. Sort by domination, and set first front as archive.
3. Generate one new individual by choosing the parents from population and archive.

(a) Choose two individuals from population.
(b) Choose dominating solution, if dominates; choose random one, otherwise.
(c) Choose one individuals from archive.
(d) Perform crossover and mutation.

4. Update archive.
(a) Replace ε-dominated individual(s) in the archive with new individual, if new

individual ε-dominates archive member(s).
(b) Leave dominating member, if there are more than one archive members in

the same grid.
(c) Add new individual, if archive members do not dominate new individual.

5. Update population.
(a) Replace dominating individual(s) with new individual.
(b) Replace randomly selected population member with new individual, if there

is no population member which dominates the new individual.
6. Check termination.

Fig. 2. The psedocode of ε-MOEA

throughout generations, ε-MOEA showed good convergence and diversity per-
formance [2, 3, 7].

The procedure of ε-MOEA for probe optimization is explained in Fig. 2. We
slightly modified ε-MOEA proposed by Deb [2]. At each generation, parents for
new offspring are chosen from the population and the archive respectively. The
parent from the population is chosen by tournament selection and the parent
from the archive is selected randomly. Then, an offspring is produced from these
parents and evaluated. The offspring replaces an individual of the population if
there exists one dominated by it in usual sense. If the offspring ε-dominates one
or more members of the archive, it replaces the ε-dominated members. Or, the
offspring is added to the archive if no archive member ε-dominates it and it ε-
dominates no archive member. Otherwise, the offspring is discarded. Therefore,
the ε-non-dominated individuals are always the member of the archive. This
process is repeated until termination [7].

3.2 Thermodynamic Fitness Calculation

The previous microarray probe design tools can be classified into two groups
by their probe specificity evaluation methods: thermodynamic approach [10, 9]
and sequence similarity search approach [18, 4]. In thermodynamic approach, the
optimum probes are picked based on having free energy for the correct target, and
maximizing the difference in free energy to other mismatched target sequences.
A sequence similarity search methods used BLAST or BLAT [6] to check cross-
hybridization. Since thermodynamic approach is more accurate method between
them [10, 9], we calculate the fitness objectives in 2.2 using thermodynamic data.
The thermodynamic fitness functions are implemented by the modified Mfold
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eMOEA for Candidate Selection 

BLAT Search / Hybridization Simulation / Others

Many Possible Solutions

Fig. 3. The steps for probe design

[19] for OligoArray problem [10]. We downloaded the stand-alone program source
code and slightly modified for fitness functions.

3.3 Probe Selection Procedure

The multi-objective evolutionary algorithm has the advantage that one can get
the Pareto optimal solutions at a time. However the users usually need one
promising solution, not the set of whole Pareto optimal solutions. Therefore, we
incorporated the decision makers to select the most promising solution among
Pareto solutions. First, the Pareto optimal solutions can be found by ε-MOEA.
Then, BLAT search [6], hybridization simulation [13], and melting temperature
calculation choose one candidate solution. BLAT is a BLAST-like sequence align-
ment tool, but much faster than BLAST [6]. NACST/Sim [13] is a hybridization
simulation tool to check cross-hybridization based on nearest neighbor model of
DNA [11]. Melting temperature is also calculated by nearest neighbor model.

Through these steps, user could be recommended the most promising probe
set while maintaining the flexibility to select among various solutions. Using
the characteristics of MOEA, we can improve the reliability of the optimized
probe set by combining the diverse criteria such thermodynamic fitness calcula-
tion, sequence similarity search, and other user-define criteriaThis procedure is
summarized in Fig. 3.

4 Experimental Results

4.1 Human Papillomavirus

The proposed constrained multi-objective approach was used to find probe set of
human papillomavirus (HPV). HPV is known to be the cause of cervical cancer
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[17]. HPV types can be divided into two classes: ones that are very likely to cause
the cervical cancer and the others that are not. 19 genotypes of HPV belong to
the first class are selected as target genes. The goal is to discriminate each
of 19 genotypes among themselves. The selected 19 genes are HPV6, HPV11,
HPV16, HPV18, HPV31, HPV33, HPV34, HPV35, HPV39, HPV40, HPV42,
HPV44, HPV45, HPV51, HPV52, HPV56, HPV58, HPV59, and HPV66. And
to improve the accuracy, L1 region of each gene sequences is chosen. Each gene
and L1 region are selected by Biomedlab Co., Korea with experts’ laborious
works.

4.2 Parameter Settings

Based on the experimental data from Biomedlab, the length of each probe was
set to 30 nucleotides long. For ε-MOEA, we used the various parameters. The
size of population was set as 100 and the maximum generation number as 1,
1,000, 5,000, and 100,000. The crossover and mutation rates were set as 0.9 and
0.01 respectively. The ε was set as 1 for better convergence. For BLAT, we use
default parameter settings. For NACST/Sim, we set hybridization temperature
as 40◦C, where the concentration of sodium ion and oligomers were set to 1M
and 1µM respectively. The hybridization temperature was decided based on the
experimental data from Biomedlab.

4.3 Probe Design Results

Our method is based on evolutionary approach, not a simple generate-filter ap-
proach which is used by most previous probe design tools. To check the merits of
evolutionary approach, we compared the results by varying maximum generation
from 1 to 100,000. Evolutionary algorithm with generation 1 would be the same
as generate-filter method. The comparison results are shown in Table 1. As we
expected, design with more generation can find better probe set. In the aspect
of the number of average cross-hybridization which is checked by NACST/Sim,
probe set with more generation produces the less cross-hybridization. A cross-
hybridization means the undesirable hybridization between probes and genes.
Especially, the comparison result between generation 1 and 1,000 showed the
remarkable improvement. This means evolutionary approach can design more
reliable probe set compared to the simple method. In addition, more than 1,000
generation did not show the impressive improvement. This result implies one
does not need a quite large number of generation to find better probe set.

Table 1. The comparison result for various generation. As generation goes on, the
probes show the less cross-hybridizations.

Generation 1 1,000 5,000 100,000

Number of average cross-hybridization 41.33 13.45 13 10.64

Number of Pareto-optimal probe sets 12 11 4 38
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Table 2. in silico hybridization results for Pareto set with generation 1000

Set Number of cross-hybridization

0 16

1 15

2 15

3 12

4 23

5 11

6 9

7 10

8 7

9 11

10 19

Table 3. The comparison result between probes in commercial chip (Biomedlab),
selected probes using NSGA-II [8], and selected probes with ε-MOEA. First row means
the undesirable hybridization between probes and genes calculated by NACST/Sim.
Second raw represent the similar sequences appear in the wrong position. Therefore, 0
means the probe sequence appear only in its original position. The proposed method
(ε-MOEA showed best performance for all aspects.

ε-MOEA NSGA-II Biomedlab. Probes

# cross-hybridization 7 21 17

BLAT search 0 0 (1 for whole) 0

Melting temperature (oC) 72.58 ± 3.55 74.87 ± 2.34 77.52 ± 5.03

As shown in Table 1, there are various candidate probe sets (4 ∼ 38) as re-
sults of ε-MOEA. To choose best probe set among candidate probe sets, we used
BLAT with HPV gene sequences first. However, we could not find any cross-
hybridization using BLAT unfortunately. Since L1 region of HPV sequences is
very well discriminated parts of HPV sequences, there is no similar sequences.
Even when we compared L1 region sequences with whole HPV sequences using
BLAT, we can find only few similar sequences. Second, we use in silico hybridiza-
tion using NACST/Sim. The results are shown in Table 2. We used NACST/Sim
for Pareto set found by 1000 generation. As explained previously, 1000 genera-
tion showed the most significant result and other runs required too much run
times. As a result, we chose set no. 8 for final probe set, since that set showed
the smallest number of cross-hybridization.

To verify the reliability of final probe set, we compared the probe set by ε-
MOEA with the probes in commercial chip made by Biomedlab and the probe set
by NSGA-II [8]. Table 3 showed the comparison results. ε-MOEA found the best
probe set. Probe set by NSGA-II has three times more cross-hybridizations and
Biomedlab probes has 2.5 times more cross-hybridizations. We ran BLAT for L1
region and whole HPV sequence respectively. BLAT found one similar sequences
for whole HPV sequences in NSGA-II probe set, and could not find any more
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Table 4. The final set of probes chosen by the proposed method for HPV

HPV Type Probe Sequence

HPV6 CATGTACTCTTTATAATCAGAATTGGTGTA
HPV11 TCTGAATTAGTGTATGTAGCAGATTTAGAC
HPV16 TCCTTAAAGTTAGTATTTTTATATGTAGTT
HPV18 ATGTCTGCTATACTGCTTAAATTTGGTAGC
HPV31 CTTAAATACTCTTTAAAATTACTACTTTTA
HPV33 CTGTCACTAGTTACTTGTGTGCATAAAGTC
HPV34 GTGCAGTTGTACTTGTGGATTGTGTACCTA
HPV35 TTTATATGTACTGTCACTAGAAGACACAGC
HPV39 AAGGTATGGAAGACTCTATAGAGGTAGATA
HPV40 CTTGAAATTACTGTTATTATATGGGGTTGG
HPV42 AAATTAGCAGCTGTATATGTATCACCAGAT
HPV44 TTGCTTATATTGTTCACTAGTATATGTAGA
HPV45 CATGTCTACTATACTGCTTAAACTTAGTAG
HPV51 AAAGTTACTTGGAGTAAATGTTGGGGAAAC
HPV52 TTTATATGTGCTTTCCTTTTTAACCTCAGC
HPV56 ATTAATTTTTCGTGCATCATATTTACTTAA
HPV58 TTTATATGTACCTTCCTTAGTTACTTCAGT
HPV59 TAGGTGTGTATACATTAGGAATAGAAGAAG
HPV66 GAAGGTATTGATTGATTTCACGGGCATCAT

similar sequences. Probe set by ε-MOEA has also the lowest melting temperature
among three probe sets. Though NSGA-II has the smallest melting temperature
variation, the difference is not so significant compared to ε-MOEA. The reason
why NSGA-II found the near uniform melting temperature probe set is NSGA-
II used the melting temperature variation as one of objectives [8]. Even though
we did not use that objective, our approach can find the comparable results.
The probes practically used in Biomedlab showed the poorest results in melting
temperature, even though the melting temperature variation is important for the
microarray experiment protocols. The final probe set generated by the proposed
approach is shown in Table 4.

5 Conclusion

We formulated the probe design problem as a constrained multi-objective opti-
mization problem and presented a multi-objective evolutionary method for the
problem. Because our method is based on multi-objective evolutionary algo-
rithm, it has the advantage to provide multiple choices to users. And to make
it easy to choose among candidates, we suggested the criteria as an assistant
to the decision maker. It is shown that the proposed method could be useful to
design good probes by applying it to real-world problem and comparing them
to currently used probes.

Though the previous works focused on finding the moderate probe set in short
time, we focused on improving the quality of probe set. Therefore, our approach
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need more computational time compared to the previous approaches. However,
we showed the small iterations can improve the probe set quality significantly. In
addition, MOEA can combine thermodynamic methods and sequence similarity
search. Since these results are the preliminary results, it is necessary to optimize
several time consuming stages.
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