An Approach for Non-Intrusively Adding Mall eable Fork/Join Parallelisminto Ordinary
JavaBeans Conpliant Applications. (C. Mateos, A Zunino, M Campo). Computer Languages,
Systenms and Structures. Elsevier Science. |SSN: 1477-8424. Ed.: R S. Ledley and

B. Kal yanasundaram Vol. 36, Num 3, pp 288-315. 2010. DO : doi: 10.1016/j.cl.2009.12. 003

An Approach for Non-Intrusively Adding Malleable Fork/doi
Parallelism into Ordinary JavaBeans Compliant Appliaagio

Cristian Mateo§ Alejandro Zunino, Marcelo Campo

ISISTAN Research Institute. UNICEN University. Campuyeémsitario, Tandil (B7001BBO), Buenos Aires, Argentinal.:T+54
(2293) 439682 ext. 35. Fax.: +54 (2293) 439683
Also Consejo Nacional de Investigaciones Cientficas y Bsni€CONICET)

Abstract

Motivated by the-advent of powerful hardware such as SMP imashand execution environments such
as Grids, research inparallel programming has gained mitehti@n within the Distributed Computing
community. There is a substantial body of efforts in the farhparallel libraries and frameworks that
supply developers with programming tools to exploit palah in their applications. Still, many of these
efforts prioritize performance over other important cluéeastics such as code invasiveness, ease of use
and independence of the underlying executing hardwargtemaent. In this paper, we present EasyFJP,
a new approach for semi-automatically injecting paralhalinto sequential Java applications that offers
a convenient balance to these four aspects. EasyFJP is ipasedhe popular fork/join parallel pattern,
and combines.implicit, application-level parallelism véxplicit, non-invasive application tuning. Experi-
ments performed with several classic CPU-intensive beacksrand a real-world application confirm that
EasyFJP effectively addresses these problems while delregy competitive performance.

Key words: Parallel computing, fork-join parallelism, implicit pdielism, non-invasive tuning, Java

1. Introduction

Fork/join parallelism (FJP) is‘a simple but effective dedigchnique for parallelizing sequential appli-
cations [56]. FJP is based on expressing parallelism by snefiwo basic primitivesfork, which starts
the execution of a code fragment —commonly a procedure ottlaade in parallel, angbin, which blocks
the main application thread until the execution of theseedoalgments finishes. To handle the execution
of forked code fragments in parallel, FJP-oriented lileariely on specialized schedulers responsible for
efficiently handling parallel subcomputations.

Particularly, FJP is suitable for parallelizing the familfydivide and conquer algorithms. Divide and
conquer applications solve problems by breaking them dowmseveral subproblems of the same type,
until trivial problems are obtained, which are solved diecThe solutions-to the different subproblems
are then combined to build the solution to the whole probleike divide and conquer algorithms, most
FJP algorithms are recursive [56]: they repeatedly geeevabtasks (i.e.” forks) for each subproblem
whose solutions are combined (i.e. join) to give a solutmthe original problem. Small subproblems are
commonly solved by calling a fragment of sequential code.

To some extent, FIJP provides an alternative to the well-kndwead programming model for par-
allelizing applications. This model has been receivingrgir criticism [57] due to the complexity of
programming, testing and debugging threads. In fact, anffadfework is planned to be included in the
next release (estimated in early 2010) of Jawehich has offered threads as first-class citizens for many
years. Intuitively, parallel but easy-to-use programngatierns like FIP are of major importance given the
increasing availability of multi-core/multi-processornahines, so as to boost the performance of today’s

*Corresponding author.
Email addresscmat e0s2006@nai | . com(Cristian Mateos)
Ihttp://ww.infog.com/news/2007/07/concurrency-jaea

Preprint submitted to Computer Languages, Systems andtGtes October 16, 2009

An Approach for Non-Intrusively Adding Mall eable Fork/Join Parallelisminto Ordinary
JavaBeans Conpliant Applications. (C. Mateos, A Zunino, M Campo). Computer Languages,
Systenms and Structures. Elsevier Science. |SSN: 1477-8424. Ed.: R S. Ledley and

B. Kal yanasundaram Vol. 36, Num 3, pp 288-315. 2010. DO : doi: 10.1016/j.cl.2009.12. 003

sequential applications without the need for programméiis & solid background on parallel program-
ming. In other words, FJP frameworks provide a convenielasiize between delivered performance and
ease of programming compared to multithread programming.

Noticeably, FJP is not only circumscribed to SMP machines.chn be also applied in other execu-
tion environments where the notions of task and processst, axuch as computer clusters [84]. In this
context, tasks resulting from issuing forks can be execintgzhrallel on the machines of a cluster, thus
potentially further increasing performance and scalgbilMore recently, Grid Computing [33, 34] has
emerged as an exciting paradigm for parallel distributethmating. A Grid arranges the hardware re-
sources from geographically dispersed sites to providéicgiipns with vast amounts of computational
resources. Interestingly, SMP machines, clusters ands@tike can be used to execute FJP tasks, since
these environments can be viewed in a general sense as amfmbecessing nodes (i.e. CPUs or individ-
ual machines) interconnected through a “network” infuactiure that provides communication capabilities
(i.e. a system bus, a high-speed LAN or a WAN). This unifoyrsitggests that the same FJP application
could be run in any of these environments, provided theresigegialized scheduler able to handle tasks
according to the characteristics of the underlying executiardware support. For example, a requirement
for higher performance on a multi-core application may bfillied by modifying the application to exploit
a.Grid scheduler.

In dealing with the hardware and software diversity inhéterparallel environments, and specially
Grids, Java has gained much popularity due to its “write pmaa anywhere” property that promotes
platform independence and the fact that its delivered perdiace is competitive with respect to that of
conventional HPC languages [63].” However, historicalpyalparallel libraries have focused on pro-
viding support for running applications on a particularg@l environment. Several tools for SMP (e.g.
JOMP [15], Doug Lea’s framework-[56]), cluster (e.g. MPJ][iBVM [81], Hyperion [43]) and Grid
programming (e.g. ProActive [10], JavaSymphony [50], 15gd84]) have been proposed. Basically, the
aim of these tools is to supply developers with programmifgsfand directives for starting and coordi-
nating the execution of subtasks in-parallel.. However, éipigroach leads to source codes polluted with
parallel instructions that depend on the library being usedhpromising maintainability and portability
to other libraries and execution environments. In otherdspthere is not a clear separation between the
tasks of writing the application logic and parallelizing Besides, using these tools requires expertise on
parallel programming. This intrusive approach to parglielis also followed by several contemporary
parallel languages designed to increase application anogrer’s productivity, such as Fortress (Sun) [6],
X10 (IBM) [21], Axum [42] (Microsoft) and Chapel (Cray) [18]However, whether these relatively
new parallel languages will become widespread remains teeba. In fact, many researchers promote
the idea of extending for parallelism commonly employedjlzages rather than building parallel-specific
languages from scratch. Examples of such-dialects are URC(T3, Intel® Threading Building Blocks
(TBB) [69] (C++), Athapascan [37] (C/C++), and Titanium [&Bava).

A crucial issue when introducing parallelism is to detereniwhether a sequential code will benefit
from being parallelized or not. In particular, for FJP apations, small task granularitesay negatively
affect speedup, as the cost of managing computations (eegtirg and starting individual runtime tasks
for them) may be greater than the computation times theraselhis is often avoided by using thresholds
in the code to establish limits in the number of tasks injgdteo the runtime system, anemoization
this is, reusing results when subcomputations overlap.irAgisting Java parallel libraries follow an
intrusive approach to tune the performance of parallelggulications, since these optimizations must be
explicit in the application source code, which compromisesntainability and testability. Moreover, the
optimizations introduced into an application may not beligaple when ported to a different execution
environment, which leads to even more code modificationserd s, however, an increasing degree of
consensus among the HPC community on the idea that for pbaglplications not only performance is
important, but also how well parallelism is abstracted aiddén from the application code [52].

This paper proposes EasyFJP, a new approach to mitigate phelslems, which takes advantage of

2Throughout the rest of the paper, the term “granularity”dtidoe understood as the computational requirements ofare-p
lel runtime tasks resulting from parallelizing an applicatand should not be confused with the component granylaation of
component-based software systems.

An Approach for Non-Intrusively Adding Mall eable Fork/Join Parallelisminto Ordinary
JavaBeans Conpliant Applications. (C. Mateos, A Zunino, M Campo). Computer Languages,
Systenms and Structures. Elsevier Science. |SSN: 1477-8424. Ed.: R S. Ledley and

B. Kal yanasundaram Vol. 36, Num 3, pp 288-315. 2010. DO : doi: 10.1016/j.cl.2009.12. 003

the implicit fork/join structure of sequential divide andrjuer applications to generate a parallel version
of the code that accesses a parallel API or library of the’sishpice. A recursive call within the code is
interpreted as a fork, whereas an instruction in which alre$a forked computation is read is interpreted
as a join. Fork and join points are spotted through a genégarithm that generates the actual parallel
code subordinated to a particular parallel library. In &iddj a fork point can be attachedpalicy, which

is a user-provided rule that dynamically decides whetheifdink takes place or the associated code is se-
guentially executed instead. Policies encapsulate the togfficiently execute applications by relying on
an intuitive framework that captures common optimizatientistics for divide and conquer applications.
Policies are non-invasively associated to the applicatame through an external configuration file, which
is processed at runtime.

EasyFJP is targeted at parallelizing Java programs thatfa recursive (divide and conquer) struc-
ture, which is indeed applicable to a broad range of probl¢&&. The contribution of this paper is a
method for developing task-based Java parallel applicgtibat (a) is based on application-level implicit
FJP parallelism that does not require explicit usage ofllgdisam within the application code, (b) features
integration with existing libraries and platforms for piéghand distributed development, and (c) offers
a non-intrusive, rule-based mechanism to tune the sameesgode to various target execution environ-
ments. EasyFJP-uses a generative programming approacitctébi applications from sequential codes,
and is materialized as a proof-of-concept tool that autarally outputs parallel code for a target parallel
library including placeholders for attaching policies.

The rest of the paper is organized as follows. The next sedigcusses related works, and explains
how EasyFJP complements them and improves over them. 8&cteerviews EasyFJP. Later, Section 4
briefly describes its implementation. After that, Sectioreports an experimental evaluation of EasyFJP.
Finally, Section 6 concludes the paper.

2. Background

The advent of sophisticated hardware and execution envieots has motivated the development of
many libraries and platforms for parallel programming.tieatarly, we are interested in Java programming
tools forimplementing CPU-intensive applications base&&P or similar embarrassingly parallel models,
such as master-worker and bag-of-tasks [71]. Models eixellydased on explicit message passing and/or
thread programming, or oriented towards data intensivéiGgtipns are out of the scope of this section.
Below we summarize these efforts.

With respect to parallelism on single machines, Javar [$2] restructuring tool that paralellizes
loops and recursive calls by converting them into multidtiied structures to run in parallel. Doug Lea’s
framework [56] is a set of classes (bundled into Java sincgiame 5) that provides common functional-
ity for managing synchronization state, blocking/unblogkof concurrent subcomputations and queuing.
JCilk [25] extends the Java language with $gawnandsyncfork/join primitives from the Cilk [14]
multithreaded language. For each spawnable method, tierelitt clones are created: a fast clone that
executes in the common case where serial semantics suffideg alow clone that executes when paral-
lel semantics are required. All communication due to schiedus performed only when executing slow
clones. This mechanism, which is prescribed by the comipatatodel of the Cilk language, is known as
the “two-clones” strategy [36]. Moreover, JCilk obeys thrdinary sequential semantics of the try/catch
construct when executed on a single processor machineabsés parallel computations to abort whenever
an exception is thrown when executed on an SMP machine. JACsidplifies concurrent programming
by separating the application logic from thread declaratiod synchronization through Java annotations.
JAC emphasizes on removing the differences between seguantl concurrent code, promoting code
reuse. In addition, a precompiler to translate from JAC tadbea’s framework exists [90]. Similarly,
JOMP [15] is a Java implementation of OpenMP [20], a standatdf directives and library routines
for shared memory parallel programming. JOMP provides apil@mand a runtime library that support a
large subset of the OpenMP specification.

There are also several tools for Java-based parallel proghag in distributed environments. JR [19]
is a dialect of Java that provides a rich concurrency modgbstting remote virtual machine/object cre-
ation and method invocation, asynchronous communicatiezvous and dynamic process creation. JR

An Approach for Non-Intrusively Adding Mall eable Fork/Join Parallelisminto Ordinary
JavaBeans Conpliant Applications. (C. Mateos, A Zunino, M Campo). Computer Languages,
Systenms and Structures. Elsevier Science. |SSN: 1477-8424. Ed.: R S. Ledley and

B. Kal yanasundaram Vol. 36, Num 3, pp 288-315. 2010. DO : doi: 10.1016/j.cl.2009.12. 003

programs are then translated into standard Java progr&hsstdr [88] is a platform for executing task--
based parallel applications in heterogeneous clusteldbuputations are scheduled according to a novel
algorithm called transitive random stealing (TRS), whictproves random stealing. JCluster also features
PVM [38] and MPI [29] interfaces for implementing messageséd parallel applications. PJ [51] pro-
vides an uniform API for loop parallelism and MPI-like megsgassing for cluster/SMP programming.
Satin [84] is a library for parallelizing divide and congumrdes on LANs and WANSs that follows the
semantics of Cilk. Programmers mark through API classesnegtthiods the operations that must be run
in parallel. Then, Satin instruments the compiled code &cate the application in parallel on a Grid.
JavaSymphony [50] is a performance-oriented platform aisemi-automatic execution model that trans-
parently deals with migration, parallelism and load balagof Grid applications, and at the same time
allows programmers to control such features via API calte@application code. Similarly, VCluster [89]
supports execution of thread-based applications on SMiteski Threads can migrate between hosts for
load balancing purposes and interchange data throughrcemtual channelghat are independent of the
location of threads. Another related platform is Babylor?][&hich support code mobility, parallelism
and inter-thread communication in.an uniform API.

Furthermore, ProActive [10, 54] is a platform for implemiagtobject-oriented parallel mobile ap-
plications. A ProActive application is composed of mobiteites calledactive objects Active objects
serve methods calls originated from other (active) objeatsl call methods implemented by other local
or remote (active) objects. Method calls are asynchroydweshdled through thevait-by-necessitynech-
anism, which is equivalent to future objects in Java. Actitagect creation, parallelism and mobility must
be specified in the applicationcode through API calls. JGRB4] is a method for Grid-enabling ordi-
nary component-based applications. JGRIM focuses on maasively injecting existing Grid middleware
services such-as component brokering, mobility, and gdisath into sequential codes via Dependency In-
jection techniques [49]. -Moreover, the Grid Component Md@CM) [23, 3] of the CoreGRID NoE
defines a model for creating component-based Grid appiesitby which a component’s behavior can be
seamlessly attached extra-functional behavior relatetistoibution and parallelism. At present, there is
an open source reference implementation of GCM called ®@Me [47], which materializes this model
on top of the ProActive platform and lets developers to distatthe non-functional behavior of compo-
nents via external pluggable rules [3]. Unlike EasyFJPctiraponent models prescribed by JGRIM and
GCM aim at providing higher levels of composability and nofgerability of user-level and platform-level
components by promoting the convergence of Grid and SOA ¢tfitepts. Finally, with respect to the
plethora of open source Java APIs for executing bag-ofstditributed applications, some examples are
JPPF [74], GridGain [41], Xgrid [46] and JCGrid [73].

From a programming language perspective, the approacpasdtielism can be classified into implicit
and explicit [35]. On one hand, implicit parallelism alloywsagrammers to write their programs without
any concern about the exploitation of parallelism, whicimi&ead automatically performed by the com-
piler or the runtime system. On the other-hand, explicit flism aims at supplying constructs or APIs
for describing and coordinating parallel computationsogPammers have more control over the parallel
execution, thus it is feasible to fully exploit parallelismimplement very efficient applications. However,
explicit parallelism is difficult to deal with [35], sinceétburden ofinitiating, stopping and synchronizing
parallel computations is placed on the programmer.

No (implicit parallelism)

Do programmers - API functions .
have any concern - Method-level compiler
about parallelism? directives

L) / Yes - Framework-based
Yes (explicit parallelism)

) skeletons/templates
Must sequential codes be
manually modified too — AOP
introduce parallelism? No or - Metaobjects
aiming § - Code annotations
- Dependency Injection
- Non-intrusive skeletons

to

Figure 1: Approaches to parallelization in Java: A taxonomy

Although designed with simplicity in mind, many of the abaféorts fall into the category of tools

An Approach for Non-Intrusively Adding Mall eable Fork/Join Parallelisminto Ordinary
JavaBeans Conpliant Applications. (C. Mateos, A Zunino, M Campo). Computer Languages,
Systenms and Structures. Elsevier Science. |SSN: 1477-8424. Ed.: R S. Ledley and

B. Kal yanasundaram Vol. 36, Num 3, pp 288-315. 2010. DO : doi: 10.1016/j.cl.2009.12. 003

based on explicit parallelism. This has two clear disachges. First, parallelizing an application requires
learning the parallel API of the tool being used, which maglifigcult for an average programmer. Second,
from a software engineering perspective, the resultingededlifficult to maintain and to port to other
frameworks and libraries. Moreover, explicit parallelisisually leads to code that contains not only the
boilerplate instructions for creating and coordinatingsmputations but also statements for tuning the
execution of the subcomputations according to the natutieeoépplication and the environment where it
executes. This potentially makes the tuning rules invaid@on as the application is ported to a different
environment, for example, from a local cluster to a wideaarieister.

An alternative solution to conventional explicit parabet is to treat parallelism as a concern and thus
to avoid mixing the logic of applications with the code thaplements its parallel behavior (see Figure 1).
This idea has been gaining momentum as shown by existing toich are partially or entirely based
on mechanisms for separation of concerns such as code #onet@lAC, Satin, GridGain), metaobjects
(ProActive), Dependency Injection [49] (JGRIM) and dynaatiy pluggable rules (GridCOMP). More-
over, some efforts [17, 87, 24, 13] have supported the sagsetidough the application of AOP [53] to
seamlessly combine sequential code (i.e. applicatio)agih code in charge of parallelism and applica-
tion tuning (i-e. aspects). Similarly, other frameworksédnaroposed the use of skeletons, which capture
recurring parallel programming patterns such as pipestanagrker and farms without ideally affecting
applications. Roughly, the modeled patterns are instaatiby programmers through the creation of the
involved interacting components by either wrapping erigsequential applications (e.g. Muskel [5, 4])
or the specialization of framework classes (e.g. JaSke], G PsS [59]). All in all, the key problems of
the existing approaches to parallelism pursuing separaficoncerns relate to:

« Applicability: Naturally, approaches designed to expéingle machines are not applicable to cluster
and Grid settings. Conversely, many approaches designattécadvantage of such settings expe-
rience overheads due to the-distributed nature of the ptafainderneath [1], which makes them
potentially less efficient when exploiting, for example, Bivhachines. These problems violate the
“handling heterogeneity” principle for parallel tools iatluced in [26], which states that parallel
applications should be easy to port to different paralleloetion environments.

» Code intrusiveness: Approaches based on code annotagiqnie explicit source code modifica-
tions to introduce task parallelism and application-sfieoptimizations, thus the resulting code is
somewhat more difficult to'handle thereafter from a softwergineering standpoint. Metaobjects
and specially AOP techniques have proven to be effectieiigoes in avoiding code modifications
when introducing parallelism' [27], but at the expense of deding developers to learn and use
another programming paradigm.

« Expertise: Roughly, approaches aimed at providing suppowarious parallel patterns and tem-
plates feature good applicability with respect to the ramfggpplications that can be parallelized, but
employing these approaches require a solid knowledge aidl@laprogramming from developers.
In addition, with these tools, the code structure of a setiglespplication is usually very different
to that of its parallel counterpart. Therefore, introdgcmodifications to the application logic after
parallelization unavoidably demands first to understaedptoduced parallel code. In opposition,
by restricting the offered parallel patterns just to FJR would nevertheless provide a model for
parallelizing a broad range of applications while not immg too much in such structural difference.

In this sense, we exploit the concept of separation of corscer provide a hybrid approach to develop
parallel applications thamplicitly introduces parallel behavior into existing sequentialleptions, and
(optionally) allows programmers &xplicitly tune the resulting parallel code by means of an uniform API
without affecting the application logic. The goal is to geétbest from both worlds: the simplicity of
implicit parallelism [35], and both the flexibility and effemcy of explicit parallelism [35]. The execu-
tion and coordination of parallel applications are perfedny transparently leveraging existing parallel
libraries for cluster/Grid and SMP programming. Then, E&y is suited for developers with limited
knowledge on parallel programming.

In our view, EasyFJP does not compete but complementsrexistirk by offering developers who are
not experienced in parallel programming a versatile anecéffe tool for easily parallelizing applications.

An Approach for Non-Intrusively Adding Mall eable Fork/Join Parallelisminto Ordinary
JavaBeans Conpliant Applications. (C. Mateos, A Zunino, M Campo). Computer Languages,
Systenms and Structures. Elsevier Science. |SSN: 1477-8424. Ed.: R S. Ledley and

B. Kal yanasundaram Vol. 36, Num 3, pp 288-315. 2010. DO : doi: 10.1016/j.cl.2009.12. 003

This is achieved by circumscribing parallelism to the pap#JP model and using a generative program-
ming approach to automatically build parallel code thasweseasting parallel libraries. Besides, developers
who are proficient in parallel programming can manually mpte the code generated by our tool. The

next section describes EasyFJP.

3. Approach

EasyFJP is a new approach for simplifying the parallelimatif sequential Java applications. EasyFJP
differs from similar efforts in that it offers a convenierdlance to the dimensions of applicability, code
intrusiveness and expertise discussed above. First, lapplitability is achieved by targeting the Java
language and the FJP parallel model, and leveraging thizesmof existing parallel libraries. Second, low
intrusiveness is achieved by using a generative progragapproach to generate parallel code from se-
guential code, and keeping the tuning behavior away frongémerated parallel application. Precisely, this
separation, together with the simplicity of FIJP, makes EdBysuitable for developers with little expertise
on parallel programming.

EasyFJP represents an alternative approach to simplifgelielopment of parallel programs in the
form of an “amalgam” that combines several good ideas ajrpagisent in existing tools but not simulta-
neously exploited, namely:

» Wide applicability, to allow developers to run in parakkebroad range of sequential applications in
various parallel environments such as multi-core machamedocal/wide-area clusters.

« Flexibility and extensibility, to seamlessly exploit teeheduling and the synchronization capabilities
featured by existing multi-core and distributed parallefdries.

« Little intrusiveness, to minimize the impact of introdogiparallelism into a sequential application.

« Use of standard Java and a simplified parallel programmiodet) thus novice developers can take
advantage of parallelism without using a parallel dialdctava or being proficient in parallel con-
cepts.

« Malleability, to allow experienced parallel developeaysune the parallel applications resulting from
using EasyFJP according to both the nature of the applitatimd the environments where they
execute.

At the heart of EasyFJP is a semi-automatic parallelizgtimtess to introduce parallelism into applica-
tions. EasyFJP accepts as input ordinary sequential dandeconquer Java applications, and generates
library-dependent parallel applications with hooks fardrporating application-specific and environment-
specific optimizations. As depicted in Figure 2, this precesmprises three steps, which conceptually
operate as follows:

Sequential R O Step1:Sourge> R O Step 2: Policy) R O Step 3: Parallel) >\ [Parallelized

application code analysis injection code generation malleable
. application
public class Fibonacci { ||public class Fibonacci { public class Fibonacci {
public long fib(long n) { public ib(long n) { public long fib(long n) {
long £1 = fib(n 1); longf £l ib N ; long f1 = fib(n 1); m
long f2 = fib(n 2); long f2 i ; long £f2 = fib(n 2);
iet‘u;n fl1+£2; }’ret‘u 7 ieﬁu}’fn fl1+£2; \ DE@%’FJP
} } } -
User policy: "Spawn
} } } fib(long) if"... otherwise |:| Input/output
execute it sequentially" source code

Figure 2: An overview of EasyFJP

An Approach for Non-Intrusively Adding Mall eable Fork/Join Parallelisminto Ordinary
JavaBeans Conpliant Applications. (C. Mateos, A Zunino, M Campo). Computer Languages,
Systenms and Structures. Elsevier Science. |SSN: 1477-8424. Ed.: R S. Ledley and

B. Kal yanasundaram Vol. 36, Num 3, pp 288-315. 2010. DO : doi: 10.1016/j.cl.2009.12. 003

« Source code analysiSection 3.1): The source code of the input sequential diadd conquer
application is analyzed in order to spot the points in whiebursive calls are performed and the
results of such calls are accessed. These points are ietieddyy EasyFJP as implicit forks and joins,
respectively. Before feeding our analyzer, the progranimseito assign the results of recursive calls
to local variables declared at the beginning of methodssrshguential application. Note that this
is a simple code convention that does not involve API callsimilar convention is also required by
parallel frameworks such as Satin.

In general, existing parallel libraries provide means tmtzh the execution in parallel of a single fork
or a list of forks. Therefore, the parallelization of indiuial spotted forks can be straightforwardly
performed at step 3 by replacing each fork by the necessarg@de to individually execute each
fork in parallel. However, there are semantic differencemiag parallel libraries with respect to
the primitives offered to express join points. Operatigngdin primitives can be grouped into two
types: single-fork and multi-fork. The former models oonesne relationships between fork and
join points, this is, for every fork a join call must be issueithin the code to wait for the result of a
particular fork. Conversely, multi-fork joins only allova¢ application to wait for the results of the
forks previously issued up to the join call. For example hie &pplication code of Figure 2 (step 1),
amulti-fork join before theeturn sentence would cause the application to block wdtih f, andf;
are available, whereas two single-fork joins would be nemegsto obtain the same behavior.

Parallel libraries supporting single-fork joins (e.g. @iain, JPPF) greatly simplify the task of
automatically inserting library code to handle join poittigt is carried out at step 3, since each
individual join can be trivially replaced by the corresporgiparallel API call. However, multi-fork
join primitives-such as the one provided by Satin make thsk taore difficult, as it is necessary
to perform-a smarter analysis of the code to find proper plaz@ssert synchronization by taking
into account aspects such as the structure of sentencéshleascopes, etc. To this end, EasyFJP
includes a library-independent code analysis algorithhictvis explained in Section 3.1.

« Policy injection(Section 3.2): The policy support is a hon-intrusive medrarby which program-
mers can customize for efficiency purposes the way a pamgliglication behaves at runtime. A
policy is a user-supplied class that dynamically decidesthér to actually fork a recursive call or
execute it sequentially instead. For example Ribenacci application (Figure 2) could be instructed
to fork a call tofib provided the depth within the execution tree is below sonvergihreshold.
Moreover, policies are non-invasively associated to fookns through an external configuration
file. Then, these configured policies, which are basicaklyrtiies that control the amount of paral-
lelism of an application, can be changed without modifyimg &pplication code.

Interestingly, this approach to tuning allows developeradjust parallelism according to the nature
of their applications (e.g. using thresholds or memoizgtas well as the dynamics and character-
istics of the underlying execution environment (e.g. argidoo many forks with large parameters
in a high-latency network) without affecting the applicetilogic. For building policies, EasyFJP
offers a profiling API for obtaining runtime information alidoth the running application and the
execution infrastructure. The usage of policies is not-nastony for parallelizing applications. In
addition, the separation promoted by this mechanism bettreetasks of writing application logic
and tuning it contributes to the application developmeantpss, as these two groups of tasks can be
carried out independently by programmers with differenfiskFor example, policy coding could
be performed by a programmer proficient in parallel concaptsour policy API.

 Parallel code generatioffSection 3.3): This step involves the generation of the lfreode that
depends on the parallel library selected by the developerthis end, the process prescribes the
existence obuilders which are library-dependent components that comprisenéoessary func-
tionality to adapt a sequential application to the appiiastructure of the target parallel library.
For example, some libraries require applications to exfend certain API-classes, include default
constructors, and so on. Besides, builders are in chargakofg advantage of the target library
to process fork and joins from the analysis at step 1, andjéatithe glue code to invoke the user
policies defined at step 2.

An Approach for Non-Intrusively Adding Mall eable Fork/Join Parallelisminto Ordinary
JavaBeans Conpliant Applications. (C. Mateos, A Zunino, M Campo). Computer Languages,
Systenms and Structures. Elsevier Science. |SSN: 1477-8424. Ed.: R S. Ledley and

B. Kal yanasundaram Vol. 36, Num 3, pp 288-315. 2010. DO : doi: 10.1016/j.cl.2009.12. 003

At present, we have implemented builders for Satin [84],Hitlings to other parallel libraries are
underway. We are for example working on builders for Doug'd &mamework [56] for multi-core
programming and the GridGain [41] distributed platformtMWegard to fork processing, developing
builders for libraries based on FJP such as Satin mainhjwegdranslation, this is, recursive methods
in the input FJP application are forked in the output pakalpplication via appropriate calls to the
target library APIl. However, supporting libraries thatyrein execution models such as master--
worker or bag-of-tasks (e.g. GridGain), in which there apehierarchical relationships between
parallel tasks, is not straightforward since builders nenstilate FIP by using the non-FJP primitives
of the underlying parallel library. With respect to join passing, libraries based on multi-fork join
primitives such as Satin makes code generation significamblre challenging than those based on
single-fork join primitives, as it is necessary to deeplglgre the input application to introduce a
minimal number of calls to such primitives.

It is worth noting that this parallelization process does @im at introducing parallelism into any kind
of Java application, but targets component-based Javacapphs only. Component-based program-
ming allows developers to implement applications compgsogical components with well-defined inter-
faces [78]. Besides, components are designed to not sladéeesid to communicate with other components
through loosely-coupled operation calls. This leads t@dpted building blocks where any interaction that
involves tightly-coupled communication is disallowed¢Buas invoking component operations by passing
parameters by reference. This, in turn, allows communmigatbmponents to be executed in different ad-
dress spaces without the need of explicitly using more @mipbmmunication mechanisms such as shared
objects. Infact, component-based notions are being extpsapplied in distributed programming, as ev-
idenced by proposed Grid component models such as the GCMB]28d the K-Components [30]. Also,
in Java, component-based programming is commonplace g&4jn by the high popularity of component
models for Java such as JavaBeans [77] and Dependencydnjgd®]. For these reasons, we believe the
applicability of EasyFJP is not compromised.

Precisely, the development model promoted by EasyFJP edhgson the JavaBeans [77] specifica-
tion, which states among other things that any individualigption class must (a) be serializable, and
(b) contain getters and setters to access its propertigisisinontext, a component is just an ordinary class
that is implemented by following a number of coding and designventions. Particularly, (a) is crucial to
our work as it ensures that application objects can be teaesply migrated across machines when using
parallelism while targeting a distributed environment. tBa other hand, (b) defines a convention to read
and to set the properties of a component fromthe outside ufility of this latter code convention for our
work will be discussed in Section 3.3.

The source code conventions imposed by EasyFJP are verledionfollow. Specifically, before pro-
cessing an application with EasyFJP, the developer mustdbits source code by following the coding
conventions discussed so far, namely adhering to the JaveBspecification and storing results of re-
cursive calls in local variables. On one hand, JavaBeans weginally defined as reusable software
components that can be manipulated (e.g. created and cedjplag means of graphical development
tools [77]. Note that most current IDEs for Java such as Belgdlow developers to automatically refactor
ordinary classes to be compliant to the JavaBeans model ésgpciating setters/getters to the instance
variables of a class) or to change the shape of the code inapligmy their methods. In this sense, using
these conventions does not mean greater development, éfemause they are feasible to be automated
by exploiting IDE refactoring tools. For example, we are&leping a plug-in for Eclipse to support the
parallelization process of EasyFJP, which as mentionedebleady include tools for performing such
kind of code transformations.

Let usillustrate the parallelization process of EasyFJR am example application. For instance, if we
have a class including a recursive solution to computefthEibonacci number like:
public class Fibonacci {

private Hashtable preComputedVal ues = new Hashtable();
public long fib(long n){
if (n<2)
return n;

if (preComputedVal ues. containsKey(n))
return preComput edVal ues. get (n);

An Approach for Non-Intrusively Adding Mall eable Fork/Join Parallelisminto Ordinary
JavaBeans Conpliant Applications. (C. Mateos, A Zunino, M Campo). Computer Languages,
Systenms and Structures. Elsevier Science. |SSN: 1477-8424. Ed.: R S. Ledley and

B. Kal yanasundaram Vol. 36, Num 3, pp 288-315. 2010. DO : doi: 10.1016/j.cl.2009.12. 003

return fib(n - 1) + fib(n - 2);
}
/1 O her nethods
public static void main(String[] args){...}
}

, formatting the above application results in the followoagle:

1 public class Fibonacci inplenents Serializable{
2 private Hashtable preComputedValues = null

3 public long fib(long n){

4 long f1 = 0; long f2 = 0

5 if (n<2)

6 return n;

7 if (getPreComputedVal ues(). containsKey(n))
8 return get PreComput edVal ues(). get(n)

9 f1 = fib(n - 1)

10 f2 = fib(n - 2)

11 return f1 + f2;

12 }

13 publ ic Hashtable getPreComputedVal ues(){

14 return _preComput edVal ues;

15}

16 public Hashtable setPreComputedVal ues(Hashtable preComputedVal ues){
17 this.preComput edVal ues = preComput edVal ues
18

19 /1 O her nethods
20 public static void main(String[] args){...}
21 }

Basically, lines 9-10 were added to store the results of bethrsive calls into two local variablé&sandf2
declared at the beginning of the recursive method (line 4xides, we made the class serializable (line 1)
and added getters and setters fopitsComputedValuesinstance variable (lines 13-18), which must be used
within the code to properly access the variable (lines T@8ice these conventions are applied, the modified
source code along with some configuration are processecdBaikFJP to obtain the parallel counterpart
of the sequential application. Specifically, this configiarais an XML file that specifies which classes
(fully qualified names) and methods from these classes nauahhlyzed for introducing parallelism. In
our example, the configuration would be:

1 <application name="Fibonacci"

2 xsi:noNamespaceSchemalLocation="configuration. xsd"

3 xm ns: xsi ="http:// ww. w3.-0rg/ 2001/ XM.Schema- i nstance" >
4 <component s>

5 <conponent id="Fibonacci" class="Fibonacci ">

6 <method id="fib" name="fib">

7 <parameter type="long"/>

8 </ met hod>

9 </ component >

10

11 </é§ﬁponents>

12 <policies>

13 o

14 </ policies>

15 </ application>

The components element specifies the application classes and methods thaewparallelized. It is also
possible to parallelize several methods from an individieds. Finally, theolicies element includes the
optimizations associated to the method(s) to be paradig)iwhich are explained in Section 3.2.

3.1. Step 1: Source code analysis

Before feeding EasyFJP with a sequential application dhelts of recursive methods must be stored in
local variables. Roughly, this convention allows EasyFJButomatically identify implicit fork sentences
and spot the points in which synchronization barriers agglad, so as to ensure that recursive results are
always available before they are accessed. In case a progratargets a library including a single-fork

An Approach for Non-Intrusively Adding Mall eable Fork/Join Parallelisminto Ordinary
JavaBeans Conpliant Applications. (C. Mateos, A Zunino, M Campo). Computer Languages,
Systenms and Structures. Elsevier Science. |SSN: 1477-8424. Ed.: R S. Ledley and

B. Kal yanasundaram Vol. 36, Num 3, pp 288-315. 2010. DO : doi: 10.1016/j.cl.2009.12. 003

join primitive such as Doug Lea’s framework or GridGain, tlesulting joint points are equivalent to the
points in which those local variables are read. However,wgenerating code for a parallel library based
on a multi-fork join primitive such as Satin, a smarter codalgsis is necessary to minimize the number
of inserted synchronization barriers.

A naive solution to the problem of automatically insertirygnshronization is to blindly add a barrier
right before any access to a local variable representingursive result. However, this solution generates
more calls to the underlying join primitive than needed, aegpending on the library being used and
the cost of calling the primitive, this may negatively afftfte performance of the resulting application.
Therefore, we designed an heuristic that aims at insertiminégmal number of synchronization barriers
and at the same time preserving the semantics of the origppdication. The algorithm works by walking
through the instructions of a method and detecting the pamivhich a local variable is eithelefinedor
usedby a sentence. A local variable is defined and thus beconpasadlel variablewhen the result of
a recursive method is assigned to it. On the contrary, alphkariable is used when its value is read.
When executing in parallel, to-work properly recursive nogihcan read parallel variables provided a join
has been previously invoked. Based on the identified jointgait this step, EasyFJP modifies the source
code so as to ensure that a library-specific join primitivealed between the definition and use of any
parallel variable, for any execution path between thesepwints. When targeting a parallel library based
on single-fork join primitives, the analysis simply outpdhe points in which a parallel variable is used.
However, when targeting a library relying on multi-forkjgprimitives, the analysis employs an heuristic
algorithm to keep the correctness of the resulting parafilication while minimizing the identified join
points. Any regular local variable that does not represestilts from parallel computations (i.e. non--
parallel) is naturally ignored by thealgorithm.

Algorithm 1 Spotting multi-fork join points

procedur e | DENTI FYSYNCPOI NTS(rootScopg
syncPoints— empty
for all sentence TRAVERSEDEPTHFI RST(root Scope) do
i f varName— I SPARALLELVAR(sentence) t hen
currentScope— GETSCOPE(sent ence)
i f BEI NGUSED(var Nane, sent ence) =true t hen
i f GETFI RSTSTATE(varNane, current Scope) =UNSAFEt hen
SYNCVARSI NScOPE(cur rent Scope)
ADDEL EMENT(syncPoint s, sent ence)
end if
el se i f BEI NGDEFI NED(var Nane, sent ence) =true t hen
DESYNCVARUPTOROOT(var Name, cur r ent Scope)
end if
end if
end for
ret ur n syncPoints
end procedure

Algorithm 1 summarizes the process of identifying the mfdtk join points gyncPoints of a divide
and conquer method based on its associated tree-basedariateon. Basically, the nodes of the tree
represent the different scopes of the method, this is, tbesoope given by the method itself and the
scopes resulting from container sentences (e.g. condlsploops, etc). The arcs of the three represent the
relationships between the scopes.

The algorithm traverses the sentences of the tree in a diegtHiashion looking for definitions and
uses of parallel variables. To this end, the algorithm naéirsta map with the parallel variables and their
associated state per scope. Possible states are SAFE (up ¢artent analyzed instruction the variable
is safe to use; a synchronization barrier is not needed) &MBAFE (unsafe to use; a barrier from where
the variable is defined is needed). The algorithm takes iotowant the scope at which parallel variables
are defined and used, this is, it computes the state of eadbleaaccording to the state it has within the

10

An Approach for Non-Intrusively Adding Mall eable Fork/Join Parallelisminto Ordinary
JavaBeans Conpliant Applications. (C. Mateos, A Zunino, M Campo). Computer Languages,
Systenms and Structures. Elsevier Science. |SSN: 1477-8424. Ed.: R S. Ledley and

B. Kal yanasundaram Vol. 36, Num 3, pp 288-315. 2010. DO : doi: 10.1016/j.cl.2009.12. 003

(scope) node of the tree where the variable is read and tteeddtthe same variable within the ancestors
of that node. The algorithm uses several helper functiohigware listed and summarized in Table 1.

Table 1: Helper functions of the algorithm for identifyingitti-fork join points

Signature Functionality

isParallelVar Checks whetheaSentenceeferences a parallel variable. In such a case, the variable
(aSentence) name within the method is returned.

getScope Returns the scope to whi@Sentenceelongs. Clearly, sentences belong to one scope
(aSentence) only; if a parent scop& has a child scop&, a sentence d& does not belong t&.
beingUsed Checks whether thearNameparallel variable is being read. Analogously,

(varName,aSentence)

beingDefined checks whether a parallel variable is assigned the resaltetursive call.
For container sentences, both functions check whetheratiable is accessed in the
header of the sentence, but not in the body.

getFirstState
(varName,scope)

Traverses the scope tree starting from the node represieyntsb peupwards looking
for the occurrence of a parallel variablarNamein any of the variable maps of these
scopes. When the variable is first found, the function rettine state it has in the
variable map of the scope it was first encountered.

syncVarsinScope
(scope)

Sets to SAFE the state of all parallel variables containest@pe(encountered up to the
current analyzed sentence) as well as the ancestsogle The resulting pairs
<varName,SAFE> are only put into the mapsabpe

desyncVarUpToRoot
(varName,scope)

Sets the state of a specific parallel variable to UNSAFE fragiven scope up to the
root'scope (i.e. the method). This means that the variatderbes UNSAFE irscope

as well-as all its ancestor scopes.

Let us apply the algorithm to the sequential method showovhelThe method contains one non--
parallel variablerfonParallelvar) and two parallel variables4rA andvarB). The points in which a call to a
multi-join barrier are needed are explicitly indicated e tsource code. Figure 3 depicts the stateaoh
andvarB within their associated scopes as the analysis progreissesvorth mentioning that the method
does not implement any useful computation but it will be egtofor illustration purposes.

1 public String recursiveMethod() { // Scope 1

2

3 bool ean nonParallelVar = (Math.random() > 0.5) ? true : false;
4 String varA = recursiveMethod();

5 if (!nonParallelvar) { // Scope 1.1

6 String varB = recursiveMethod();

7 if (Math.random() > 0.5) { // Block 1.1.1

8 /1 A multi-fork join should be issued here
9 System. out. println(varB);

10 varA = recursiveMethod();

11 }

12 }

13 if (nonParallelVar) { // Scope 1.2

14 /1 A multi-fork join should be issued here too
15 System. out. println(varA);

16 }

17 .

18 }

The algorithm iterates the instructions up to line 4, in vbhierA is defined. HenceyarA becomes UN-
SAFE in scope 1 (see Figure 3 (a)). At linevayB is defined within scope 1.1, which makes it UNSAFE
in scope 1.1 and its parent scope 1 (see Figure 3 (b)). At linerB is used within scope 1.1.1. Its first
occurrence is encountered in the parent of scope 1.1.1 afABRSAIl parallel variables in the variable
maps of scope 1.1.1 (none) and its ancestan\(andvarB) are set to SAFE in scope 1.1.1, and the line
right before line 9 is regarded as a multi-fork join pointg#ie 3 (c)). At line 10, another definition adrA

11

An Approach for Non-Intrusively Adding Mall eable Fork/Join Parallelisminto Ordinary
JavaBeans Conpliant Applications. (C. Mateos, A Zunino, M Campo). Computer Languages,
Systenms and Structures. Elsevier Science. |SSN: 1477-8424. Ed.: R S. Ledley and

B. Kal yanasundaram Vol. 36, Num 3, pp 288-315. 2010. DO : doi: 10.1016/j.cl.2009.12. 003

{<varA UNSAFE>, {<varA,UNSAFE>,
arA’UNSAFD) 1 |<varB,UNSAFE>} 1 |<varB,UNSAFE>}
m @ <varB,UNSAFE>) @ <varB,UNSAFE>) @
{<varA,SAFE>,
- || <varB,SAFE>}

syncPoints=[] syncPoints=[] syncPoints=[line 9]
@ (b) (©

{<varA,UNSAFE>, {<varA,UNSAFE>,
<varB,UNSAFE>} 1 |<varB,UNSAFE>}

1.1 |{<varA UNSAFE>, 1.1 |{<varAUNSAFE>, | (1 o [(<varA SAFE>,
<varB,UNSAFE>} <varB,UNSAFE>} "“ | <varB,SAFE>}

@

{<varA,UNSAFE>, {<varA,UNSAFE>,
1.1.1|<varB SAFE>} 1.1.1|<varB SAFE>}
syncPoints=[line 9] syncPoints=[line 9, line 15]

(d) @)

Figure 3: Contents of the variable maps of the example médthtiee different steps of the algorithm

is found, which makes the variable UNSAFE iin scopes 1.1 ahd 1 (Figure 3 (d)). At line 15arA is
being used within scope 1.2.-According to-its parent scophelfirst state of this variable is UNSAFE.
This causes to set to SAFE in scope 1.2 all variables fourttbimiaps of scope 1.2 (hone) and its ancestors
(varA andvarB), and to regard the line right before line 15 as a multi-faik jpoint (Figure 3 (e)).

Inserting a call to a multi-fork join-primitive right befortme spotted pointsyncPointgi.e. lines 9
and 15) provides proper synchronization-and guaranteesptheational semantics of the sequential code.
As shown, the algorithm minimizes the identified points e passed on to the code generator of Sec-
tion 3.3 to gain efficiency. Similarly, the algorithm penfios a best-effort analysis to place such points
optimally . A common case of optimization is-when insertiggchronization within loops. For example,
in the following code:

int[] varA = recursiveMethod(...);

for (int i=0; i < varA.length; i++){
System. out.printin(varA[i]);
}

, the line of the first use of the parallel variable (i.e. whba it, element ofvarA is accessed) is not
considered as the multi-fork join point —as the above umoiggd algorithm would do— but the line corre-
sponding to the header of the loop. In consequence, theiresabde performs only one invocation to the
join primitive instead ofarA.length calls.

3.2. Step 2: Policy injection

In a broad sense, policies represent a mechanism that aflewedopers to express, separately from
the application logic, customized strategies for applicet to achieve better performance [62]. Policies
have been widely employed in diverse areas such as mobitibdied computing [66], migratory Web
agents [62], and Grid development [64]. Conceptually, &gdanplements a user-specified rule that gov-
erns the behavior of an application within the underlyingaxion environment. Unlike approaches aimed
at automatically tuning parallel applications [61, 67,licies are oriented towards providing a flexible
programmatic support to specify tuning decisions. Padity) EasyFJP provides a policy-inspired tuning

12

An Approach for Non-Intrusively Adding Mall eable Fork/Join Parallelisminto Ordinary
JavaBeans Conpliant Applications. (C. Mateos, A Zunino, M Campo). Computer Languages,
Systenms and Structures. Elsevier Science. |SSN: 1477-8424. Ed.: R S. Ledley and

B. Kal yanasundaram Vol. 36, Num 3, pp 288-315. 2010. DO : doi: 10.1016/j.cl.2009.12. 003

support that let developers to introduce common FJP opditioiz heuristics without altering application
code by means of special Java classes.

Policies considered by EasyFJP fall into two types: appticaspecific and environment-specific. The
former represents tuning decisions that are more affegtéabalgorithmic nature of the application being
parallelized, whereas the latter represents optimizatites that aim at adjusting the level of parallelism
of an application according to the capabilities of the emwinent where the application executes. On one
hand, application-specific policies model the notions oéshold and memoization. On the other hand,
environment-specific policies use runtime informationvyided by the environment (CPU and memory
availability, network conditions, topology, etc.) to matkesir decisions. There is not, however, a clear
line between these two types of policies as programmers rogteiment hybrid policies that combine
threshold and/or memoization techniques together witirenmnental conditions. For example, the amount
of memoized results for a memory-intensive application tmagontrolled by also taking into account the
available memory in the executing cluster.

Threshold policies are employed to avoid forking a methodetivan needed and otherwise execute the
method sequentially. Forexample; in the Fibonacci apptinawe may want to put a limit on the number
of forks that are injected into the runtime system dependimthe depth of the execution tree associated
to the method at runtime. This decision is indicated to E4Byy associating the following policy to the
fio method:

i mport easyFJP. policy. Policy;
i mport easyFJP. policy. Executi onCont ext

public class MyThreshol dPolicy inmplenents Policy{
static final int THRESHOLD =10
publ i ¢ bool ean shoul dFork (Executi onContext ctx){
return (ctx.getCurrentDepth() <= THRESHOLD)

}
}

The code implements thelicy interface from the EasyFJP policy APl and allows each execuff fib to

be forked provided the current depth of the execution tree@ated to the method is below 10. This depth
is encapsulated in axecutionContext object, which additionally provides operations to furtherospect
the execution of the application, namely obtaining the @alaf method parameters. For example, for a
recursive binary search method over an array, a similacyatiay be associated to restrict parallelism
depending on the size of the input array. Assuming the sigeaif the method isearch(int element, int[]
array), the policy would be:

publ i c bool ean shoul dFork(Executi onContext ctx){
int[] array = (int[])ctx.getArgument (1); // search(el ement, array)
return (array.length > M N_ARRAY_SIZE)

}

The above code uses the execution context object to aceesaltie of the second argument of each call
to search to decide whether the size of the received array is largegmntjustify a fork. Now, recall the
structure of the configuration file that specifies the potiéa an application. Then, for example, to attach
the above threshold policy to the Fibonacci applicationmuest add the following declaration within the
policies element:

<policies>
<policy id="myThreshold" class="MyThreshol dPolicy">

<l-- Instances of the sane policy can be attached
to methods fromdifferent conponents -->
<act Upon component|d="Fibonacci" methodl d="fib"/>
</ policy>

</ policies>

Memoization is another common optimization technique usaghin efficiency by having applications to
avoid forking a method in case its associated result has &leesdy computed and stored into a cache. In

13

An Approach for Non-Intrusively Adding Mall eable Fork/Join Parallelisminto Ordinary
JavaBeans Conpliant Applications. (C. Mateos, A Zunino, M Campo). Computer Languages,
Systenms and Structures. Elsevier Science. |SSN: 1477-8424. Ed.: R S. Ledley and

B. Kal yanasundaram Vol. 36, Num 3, pp 288-315. 2010. DO : doi: 10.1016/j.cl.2009.12. 003

this sense, in our Fibonacci application, we may want tocavetalculating previously computed results,
as the nature of the application makes subcomputationsedap: From a programmer’s perspective,
coding a memoization policy requires deciding whether t& fir not, and in the latter case to identify the
particular result that should be reused:

import easyFJP. policy. Memoi zationPolicy;
import easyFJP. policy. ExecutionContext;

public class MyMemoi zati onPolicy inplements MemoizationPolicy{
publ i ¢ bool ean shoul dFork(Executi onContext ctx){
long n = (Long)ctx.getArgument (0); // fib(n)
return (n % 2 == 0);

}
public String buil dResultKey(ExecutionContext ctx){

return String.valueOf (ctx.getArgument (0));
1

}

The policy indicates EasyFJP to fork (and hence to ignoredhéents of the cache) whenever the argument
of a call tofib is an even number. Moreover, wheneskouldFork evaluates tdalse, EasyFJP attempts to
reuse the value from the cache with the key as indicatdalithyResultkey. However, ifshouldFork evalu-
ates tofalse but the key is invalid and leads to a cache miss, the normaliom (in parallel) takes place.
Depending on the target execution environment for the agfptin (e.g. multi-core, cluster), memoization
works by using a local in-memory or a distributed cache. Famgple, our current distributed bindings
rely on spymemcached [70], a general-purpose and veryeffidiistributed object caching system writ-
ten in Java. We expect, however, to extend our implememt&tisupport other caching technologies (see
Section 4).

It is worth noting that we have explicitly implement&yMemoizationPolicy so that the application
does not reuseverypreviously computed result. This may not seem to be, in piagca good tuning rule.
However, memoization strategies like the one implemenyadib policy, in which only a subset of already
calculated results are reused, is useful in-parallel ogtition problems where creating a new fork for a
subproblem may yield a better solution than reusing a sippl&viously computed suboptimal result [2].

Moreover, for coding environment-specific policies, Ealyprovides a well-defined interface to useful
system metrics. To this end, EasyFJP provides two profiliogutes: a local one, which is intended to
be used when employing EasyFJP in conjunction with SMP |ghiddraries, and a distributed one, which
is useful when implementing policies for cluster and Griglagations. Within a single machine, metrics
are gathered by using JMX [76], a platform-independent AfPlobtaining runtime information such as
CPU load, available threads and memory, disk usage, etcedfer, to return cluster-wide values for the
above metrics, EasyFJP implements a distributed mongaémvice that predicts the global performance
of both network and computational resources by using regresnodels and communicates these values
via GMAC [40], a lightweight P2P protocol that provides afiat multicast services across distributed
environments. With this support, users are able for exanaptpiery for theoverall cluster CPU load or
the amount of parallel runtime tasks under execution. Islight, by using the profiling API, a developer
may code for instance a policy to relate the amount of pdistheof an application as an inverse function
of the average CPU availability.

3.3. Step 3: Parallel code generation

Based on the synchronization points obtained from the sotwde analysis carried out at Step 1, the
XML configuration of the input application, and the paralierary targeted by the developer, EasyFJP
generates the final parallel application. To this end, faheglass of the sequential application being
parallelized, EasyFJP createpeer class whose source code is derived from the sequential blass
modified so that the peer exploits the target parallel ljordihen, ordinary classes and created peers are
seamlessly “wired” at load time by employing a simple bytecewriting technique. This essentially aims
at avoiding modifying the source code of the original clasgkile supporting parallelism for them through
those peers.

Basically, this technique takes advantage ofjtive.lang.instrument package, a built-in Java API that
defines hooks for modifying classes at load time. The packag#ended to be used through special

14

An Approach for Non-Intrusively Adding Mall eable Fork/Join Parallelisminto Ordinary
JavaBeans Conpliant Applications. (C. Mateos, A Zunino, M Campo). Computer Languages,
Systenms and Structures. Elsevier Science. |SSN: 1477-8424. Ed.: R S. Ledley and

B. Kal yanasundaram Vol. 36, Num 3, pp 288-315. 2010. DO : doi: 10.1016/j.cl.2009.12. 003

libraries called Java agents, this is, pluggable userrigga-JAR (Java ARchive) files— that customize the
class loading process. Java agents are accessed by the Bvvtieve an application requests to load a
class. In our case, the classes that are subject to modificaté the ones specified by the user as targets
for parallelization in the corresponding XML configuration

When rewriting a sequential class for such purposes, E&sgdplaces the body of its divide and con-
guer method with a stub that delegates the execution of thieadéo the parallel counterpart in the associ-
ated peer. Therefore, for example, filkemethod of the Fibonacci application of Section 3 is dynatthjica
rewritten as:

public class Fibonacci inplenents Serializable{

public long fib(long n){
Fi bonacci _Peer peer = .new Fibonacci _Peer();
copyProperties(this, peer);
/'l Assuming we are targeting Satin
Execut or Manager manager = Execut or Manager Factory. get Executor ("Satin");
return manager . execute(peer, "fib", new Object[]{n});

}
.

, S0 that its computation is performed in parallel by the fd€#&ronacci_Peer), whose properties are in-
stantiated via Java reflection from the running sequentigad. Basically, copying properties is a generic
procedure that is possible thanks to the uniformity progitg following the getters/setters convention
of the JavaBean specification. FinallixecutorManager represents the EasyFJP class API that commu-
nicates with the middleware-level support that executespby performing the corresponding parallel
library-specific initialization and disposal tasks. To geate peers, EasyFJP relies on builders, which are
library-dependent components that know how to properlpiiporate fork and join calls into sequential
code. In addition, builders inject into peers the glue cadiateract with the policies declared for the ap-
plication. Let us illustrate all these transformationsdahsn the Satin library, for which EasyFJP provides
a builder.

To manually use Satin, divide and conquer methods congldergarallel execution must be identified
through amarker interfacethat includes their exact signature and extendspawnablénterface. The
class containing parallel methods extends$la¢inObjectclass and implements the marker interface. In
addition, the invocations to parallel methods are stordaddal variables. After specifying parallel methods
and inserting synchronization calls into the applicatiode, the developer must feed a compiled version of
the application to the Satin compiler that translates,ubhoJava bytecode instrumentation, each invocation
to a parallel method into a Satin runtime task, so that a fergjued at runtime. In a broad sense, bytecode
instrumentation is the task of transforming the compilesiom of a program to alter its semantics [28].

The purpose of the Satin builder is to automatically repoedhese tasks. The Satin builder generates
the marker interface based on the operations specifiednitiki XML configuration file of the application,
and makes the peer extend and implement the required ARledand interfaces. Besides, the builder
inserts appropriate calls &ync (the multi-fork join primitive of Satin) based on the outmftthe source
code analysis of Step 1. Passing the source code of our eedtifggnacci application through the builder
(without taking into account policies) results in the gextien of the following code:

/1 Marker interface

public interface Fibonacci _Marker extends satin.Spawnabl e{
public long fib(long n, |ong depth);

1

2

3

4

5 /] Peer
6 public class Fibonacci_Peer extends satin. SatinObject

7 i mpl enents Fibonacci _Marker, Serializable{

8 /'l Properties are copied "as is" fromthe original class
9

10 public long fib(long n){

11 return fib(n, 0);

12

13 /1 The Satin-enabl ed nmethod, according to lines 2-4

14 public long fib(long n, int depth){

15

15

An Approach for
JavaBeans Conpli ant Appl
Systens and Structures.
B. Kal yanasundaram Vol .

ications. (C. Mateos, A. Zunino,
El sevier Science. |SSN 1477-8424. Ed.:
36, Num 3, pp 288-315. 2010. DA : doi

Non- I ntrusively Adding Mall eable Fork/Join Parallelisminto Odinary
M Canpo).

Comput er Languages,
R S. Ledley and

:10. 1016/ .cl.2009. 12. 003

16 f1 = fib(n - 1, depth + 1);

17 f2 = fib(n - 2, depth + 1);

18 /1 The Satin multi-fork join primtive
19 super. sync();

20 return f1 + f2;

21 }

22

23}

A new method (lines 10-12) is added in order to invoke theagarallel method (lines 14-21), whose code
has been derived from the origirftdl method but modified to include Satin synchronization (liég &and to
keep track of the depth of the execution tree at runtime. iffiilsmation, together with the current method
parameters are encapsulated irEaacutionContext object, which is used to feed policies by further mod-
ifying the source code of the newly generated parallel nekthrigure 4 details the code transformations
performed to support threshold policies (left) and memt@znegpolicies (right). Basically, before executing

public long fib(long n,
ExecutionContext ctx
new ExecutionContext();

ctx.setCurrentDepth(depth);
ctx. addArgument (n);
if (PolicyManager.fork(pld, ctx)){

int depth){

f1 =fib(n -
f2 = fib(n -
super. sync();
return f1 + f2;

1
2,

depth-+ 1);
depth + 1);

return fibSeq(n);

public long fib(long n,
ExecutionCont ext ctx
ctx.setCurrentDepth(depth);
ctx. addArgument (n);

}

if

Memoi zati onPolicy mPolicy

Obj ect

[
}
f1
f2

super. sync();

Memoi zati onPolicy mPolicy
Pol i cyManager. get MPolicy(pld);

CacheManager. put (

return f1 + f2;

int depth){
new ExecutionContext();

(! PolicyManager. fork(pld,ctx)){

Pol i cyManager. get MPol icy(pld);
entry = CacheManager. get (
mPol i cy. buil dResul t Key(ctx));
f (entry !'= null)
return (Long)entry;

fib(n -
fib(n -

1,
2,

depth + 1);
depth + 1);

mPol.icy. buil dResul t Key(ctx), f1+f2);

Figure 4. Source code transformations for injecting thoésipolicies (left) and memoization policies

(right)

the target method in parallel, its associated policy (ifiedtin the example asld and extracted from the
XML configuration of the application) is evaluated to testettrer the execution of the method should be
forked or executed sequentially instead. In this sensesp@eep an unmodified version of the original (se-
guential) divide and conquer methods, thisfilsSeq in our example (see Figure 4 (left)). From the point
of view of source code generation, this mechanism shareg sianilarities with the two-clones strategy of
the Cilk multithreaded language [36]. Roughly, based odiexjpnethod-level directives for forking and
coordinating methods, Cilk generates two versions (clpokethe method(s) being parallelized: a sequen-
tial one, which is executed when serial semantics are seffficand a parallel one, which contains calls to
the Cilk API to exploit parallelism. However, from a devetoent standpoint, EasyFJP does not rely on
explicit code directives, but employs implicit parallelisand automatic techniques for spotting fork and
joint points. Besides, EasyFJP is oriented towards geerat code for various target parallel libraries.
Furthermore, the code introduced to handle memoizatioigipsluses a cache to store computed re-
sults. This latter behavior is transparently achieved Wjimyextra code right before each return sentence
within a parallel method in order to update the contents efddiche. It is worth mentioning that EasyFJP
also includes source code transformations to allow thidstwod memoization technigues to simultane-
ously control the same parallel method. However, they haemlomitted from the explanation for the sake

of simplicity.

16

An Approach for Non-Intrusively Adding Mall eable Fork/Join Parallelisminto Ordinary
JavaBeans Conpliant Applications. (C. Mateos, A Zunino, M Campo). Computer Languages,
Systenms and Structures. Elsevier Science. |SSN: 1477-8424. Ed.: R S. Ledley and

B. Kal yanasundaram Vol. 36, Num 3, pp 288-315. 2010. DO : doi: 10.1016/j.cl.2009.12. 003

3.4. EasyFJP: Applicability guidelines and related issues

Up to this point, we have described the parallelization amdnig process promoted by EasyFJP to
parallelize sequential codes, which addresses the prat@ehibited by current approaches to parallelism
that usually assume expertise from developers in paraigirologies. However, determining whether a
user code will effectively benefit from using EasyFJP degeada number of issues that users should have
in mind. This section explains what users should expect samapproach and what not.

One one hand, EasyFJP is designed to parallelize apphsatiat follow the JavaBeans component
specification —an extremely popular way to structure ckaas@ong Java developers—and obey some simple
coding conventions. This positively impacts on the apjbliiy of EasyFJP, and do not affect programma-
bility, as the code structure expected by EasyFJP can baelthy using the refactoring tools of modern
Java IDEs. However, it is worth pointing out that feedingy#al® with a properly structured code does not
necessarily mean it will benefit from our parallelizatiompess or even the process will be applicable.

Regarding the first issue, the choice of parallelizing anliegiion (or an individual component op-
eration) depends on whether the operation is suitable fiogbexecuted in parallel. In other words, the
potential performance gains in parallelizing an applmatis subject to its computational requirements,
which is a design factor that must be first addressed by the HasyFJP automates the process of gener-
ating a parallel, tunable application “skeleton”, but doesaim at automatically determining the portions
of an application suitable for being parallelized. Furthere, the choice of targeting a specific parallel
backend is mostly subject to availability factors, thisvidiether an execution environment running the
desired parallel library is available or not. For examplepsice user would likely target a parallel library
he knows is installed on a particular hardware, rather tharother way around.

On the other hand, thepolicy support discussed so far isegigded to automate application tuning,
but to provide a customizable framework that captures comomtimization patterns in FJP applications.
Again, whether these patterns benefit a particular paizdiapplication depends on its nature. For exam-
ple, a subset of FIP applications-can exploit caching teciesi

An issue that may affect the applicability of EasyFJP is esned with compatibility and interrelations
with commonly-used techniques and libraries, such as thrdtiding and AOP. In a broad sense, these
techniques literally alter the ordinary semantics of a setjal application. Particularly, multithreading
makes deterministic sequential code non-deterministij, lwhile AOP modifies the normal control flow
of applications through the implicit use of artifacts caniag aspect-specific behavior. Therefore, when
using EasyFJP to parallelize such applications, varioogpedibility problems may arise depending on the
backend selected for parallelization. Note that this isamdnherent limitation of EasyFJP, but of the target
backend. Thus, before parallelizing an application witByEaP, a prior analysis should be carried out to
determine whether the target parallel runtime is.compatibth the libraries the application relies on.

Finally, EasyFJP applications do not differ from the packeirms of debuggability, in which parallel
programming has been historically conceived as a notdsidiasd task [65]. Specifically, when not using
policies, debugging EasyFJP applications that targeaicebackends should be as difficult as debugging
the counterparts obtained by manually using those backeddghe other hand, policies may make de-
bugging more complex as they change the operational sersaita program. Nevertheless, this problem
is also shared by approaches to parallel development bassebarating the functional behavior of a pro-
gram from its parallel concerns, such as those tools thabreAOP techniques or rules to parallelize/tune
applications. Interestingly, both these approaches asgfE arguably ease the task of testing the algo-
rithmic correctness of programs prior to parallelizatiomich is more difficult to achieve with intrusive
parallelization tools.

4. Prototype implementation

We have developed a proof-of-concept implementation offtheyFJP approach to materialize the
three steps described in the previous section. Our toobpagthe initial code analysis over an in-memory
tree structure derived from parsing an XML version of theussdial user application obtained through
java2xml [48], a library for converting Java source to XMLdaviceversa. We are nevertheless working
on porting the analyzer to Eclipse by implementing a plugEnlipse provides an API to manipulate the
abstract syntax tree of Java classes at a very deep leveiaif dargeting Eclipse will make our tool more
attractive to Java developers and therefore will facdititg adoption.

17

An Approach for Non-Intrusively Adding Mall eable Fork/Join Parallelisminto Ordinary
JavaBeans Conpliant Applications. (C. Mateos, A Zunino, M Campo). Computer Languages,
Systenms and Structures. Elsevier Science. |SSN: 1477-8424. Ed.: R S. Ledley and

B. Kal yanasundaram Vol. 36, Num 3, pp 288-315. 2010. DO : doi: 10.1016/j.cl.2009.12. 003

As EasyFJP employs the agent support of Java to connectapyditasses to their generated parallel
counterpart (i.e. peers), the developer must enabledb@agent JVM flag upon executing the applica-
tion. This is, the startup command to execute the main agijic class must includgavaagent:easyFJP-
agent.jar=<config-file>, whereeasyFJP-agent.jar is the implementation of the EasyFJP agent that rewrites
sequential classes based on the XML configuration specifiednifig-file. Within the agent, class trans-
formations are performed by using Javassist [22], a highHérary for dynamically instrumenting byte-
codes.

As explained earlier, EasyFJP currently provides parabele generation capabilities that target the
Satin platform, which offers efficient scheduling algonith to parallelize ordinary divide and conquer
applications on local and wide-area clusters. However, rgeadapting our ideas to target Doug Lea’s
framework, an API for programming concurrent SMP applmagi, and GridGain, a platform for develop-
ing master-worker applications on LANs and WANSs. Basicalhe former exposes an API to parallelize
applications hiding many low-level details related to flatsm such as thread creation and synchroniza-
tion from the programmer. Specifically, the API containsssks to manage thread pools, fork subtasks
and wait for asynchronous results by exploiting the futuject synchronization pattern. For example, the
Doug Lea’s framework version of the Fibonacci applicatiannd be:

1 inport java.util.concurrent. Callable;

2 inport java.util.concurrent.ExecutorService;

3 inmport java.util.concurrent. Future;

4 public class Fibonacci inplenments Callable<Long>{
5 private |ong n;

6 private ExecutorService pool;

7 public Fibonacci (1 ong n, ExecutorService pool){
8 this.n = n;

9 this. pool = pool;

11 public Long call (){
12 return fib(this.n);

13 '}

14 public Long fib(long n){

15 if (n <2

16 return new Long(n);

17 Future<Long> f1 = pool.submt(new Fibonacci (n - 1, pool));
18 Future<Long> f2 = pool.submt(new Fibonacci(n - 2, pool));
19 return fl.get() + f2.get();

20 }

21 }

The example employs an instance of BxecutorService API class representing a pool of threads (lines
6-7) to asynchronously execute the recursive calfivtio parallel. Since the pool internally maintains sev-
eral threads, this code would automatically exploit SMP iraes. Note that this framework implements
an approach to synchronization based on a single-fork jomifive. In the above example, the points in
which the application must wait for the parallel results afkied tasks are the accesses to the value of
andf2 at line 19. Furthermore, the GridGain platform builds upbis tAPI, but supports the execution
of such forked tasks on clusters. GridGain is also able tdo#&x®MP-machines. In this sense, the two
builders for these backends rely on the same generic hiedassynchronization, which basically replaces
each recursive call in the (sequential) input code by a odli¢ correspondin@allable object in the paral-
lelized code, and also translates the places of the origjmalication that access to subresults (in our case
line 19) by using the associated future objects.

Regarding the EasyFJP policy framework, we have implendetite distributed caching support by
using spymemcached [70], a Java client for memcached [3R#]palar high-performance and distributed
object caching backend. Nevertheless, we have designgudtatype of EasyFJP so that other distributed
caching systems can be easily plugged. In this sense, aitera include the Terracotta [80] object clus-
tering platform, and a caching service on top of our GMAC P2&tqzol [40], which is also used for
implementing the monitoring service for collecting systewtrics in EasyFJP.

18

An Approach for Non-Intrusively Adding Mall eable Fork/Join Parallelisminto Ordinary
JavaBeans Conpliant Applications. (C. Mateos, A Zunino, M Campo). Computer Languages,
Systenms and Structures. Elsevier Science. |SSN: 1477-8424. Ed.: R S. Ledley and

B. Kal yanasundaram Vol. 36, Num 3, pp 288-315. 2010. DO : doi: 10.1016/j.cl.2009.12. 003

5. Experimental evaluation

In this section, we describe the experiments that were pagd to evaluate the practical soundness of
EasyFJP. We evaluated two essential aspects of our appnadssessed the effectiveness of its generic
heuristic for inserting synchronization barriers and warntified the benefits and potential overheads re-
garding the policy support of EasyFJP. In addition, to pdeva down-to-earth evaluation of EasyFJP, we
also performed the parallelization of a real-world apglara Basically, Sections 5.1 and 5.2 describe the
evaluations of EasyFJP using small to moderate computdtgyranularities, whereas Section 5.3 reports
experiments with large task granularities.

The first evaluation was performed by running EasyFJP, taigi¢he Satin parallel library, and pure
Satin versions of a number of CPU-intensive classic divitit@nquer applications on a local cluster and
a wide-area cluster. As we wanted to accurately test thetsftd our multi-fork join insertion techniques
in the performance of the test applications in these tworenments, we temporarily disabled the injection
of the code for supporting policies illustrated in Figurelfhese experiments are reported in Section 5.1.

In a second round of tests, we enabled the injection of paliae to quantify the incidence as well as
the effectiveness of the EasyFJP policy support for two-fat&nsive benchmark applications when using
both threshold and memoization policies. These experisremetpresented in Section 5.2, and were run on
a local clusterto better evaluate the policy layer.

Finally, the third evaluation involved the parallelizatigia both EasyFJP and Satin of a sequential
implementation of a sequence alignment application, a comproblem in the area of bioinformatics.
Roughly, sequence alignment is the process of comparing BiN#otein sequences to find similarities.
This evaluation is reported in Section 5.3.

It is worth noting that it is out-of the scope of this paper talenate the performance of the distributed
monitoring service for environment-specific policies. garous evaluation of this support in terms of both
the effectiveness of this kind of policies and the efficientits underlying GMAC protocol can be found
in [64] and [40], respectively.

5.1. Evaluation of the heuristic for inserting synchroniaa

This evaluation involved the execution of five CPU-inteesapplications, which for the sake of fairness
were obtained from the Satin project [84]. To obtain the EEd&yversions of these applications, we first
removed from their source code any sentence related tolglamal and/or application tuning, to derive
the sequential divide and conquer counterparts of the egtjfins. Then, we used the EasyFJP binding to
Satin to obtain the parallel implementations of the sedakobdes, but without including API code for
supporting policies. Table 2 summarizes the applicatiokthe parameters used in the experiments.

To run the tests, we used a cluster of 15 machines running Maridnux 2009.0, Java 5 and Satin 2.1
connected through a 100 Mbps LAN. We used 8 single core mashiith a 2.80 MHz CPU and 1.25 MB
of RAM, and 7 single core machines with-a3 MHz CPU and 1.5 MB AMR In spite of that, as discussed
in Section 4, EasyFJP targets multi-core parallel libsaniee used single-core machines in the experiments
since Satin is not designed to directly exploit multi-coraalines. Figure 5 shows the average execution
time for 25 runs of these applications. In all cases, desiativere below 5%. Despite being an acceptable
deviation when experimenting on wide area Grids, this pgegge is rather high for a LAN-based cluster.
The cause of this effect is that Satin —and thus the EasyFIpwe Satin applications—relies on a random
task stealing algorithm.

EasyFJP performed in a very competitive way compared ta Sadispite the fact that EasyFJP em-
ploys an heuristic algorithm for inserting synchronizatand introduces some technological noise, which
intuitively should translate into performance overheadsiBally, this noise is caused by the Java agent
that wires ordinary application and peers together andilinarly/-dependent executor objects that handle
the execution of parallel methods. For 3 out of 5 test apfitina (PF, Cov, MM), EasyFJP introduced
performance gains with respect to Satin, which could beagmpd in part by the random nature of the
Satin scheduler, the differences between the number af teadinc and the places of the application code
in which these calls are located. Naturally, these diffeesrstem from the fact that the Satin versions of
the applications were parallelized and therefore provigigid synchronization by hand, while the EasyFJP
counterparts were parallelized by applying our heuristittee sequential recursive codes derived from the
pure Satin applications. However, our goal is not to outrenfexisting parallel libraries, but simplifying

19

An Approach for Non-Intrusively Adding Mall eable Fork/Join Parallelisminto Ordinary
JavaBeans Conpliant Applications. (C. Mateos, A Zunino, M Campo). Computer Languages,
Systenms and Structures. Elsevier Science. |SSN: 1477-8424. Ed.: R S. Ledley and

B. Kal yanasundaram Vol. 36, Num 3, pp 288-315. 2010. DO : doi: 10.1016/j.cl.2009.12. 003

Table 2: Test applications used for evaluating the hearistiidentifying multi-fork join points

Application Description Run size

Prime Splits an integel into its prime factors. The | =15576890,767
factorization multiplication of these factors is equal ito

(PF)

The set Finds a minimal number of subsets from a list of List of 33 sets with
covering setsL which covers all elements within The random elements

problem (Cov) problem takes as a parameter the sizke of

The knapsack Finds a set of items, each with a weidftand a A list of 32 items
problem (KS) valueV, so that the total value is maximal, while not with random weights
exceeding a fixed weight limit. The problem receivesand values
as a parameter the initial number of items

Matrix Implements the popular Strassen’s algorithm A matrix of
multiplication 3,072x3,072 with
(MM) random cell values
Adaptive Approximates a functiorfi (x) within a given interval f(x) = 0.1xxx*sin(x),
numerical (a,b) by replacing its curve by a straight line a=0,b=250000,

integration (Ad) from (a, f(a)) to (b, f(b)). The application receives epsilon=0.000001
as parameter§(x), a, b, and arepsilonthat controls
the mechanics of the algorithm

their usage without incurringin an excessive penalty imteof performance. This experiment shows that
EasyFJP facilitates the construction of Satin applicatiavhile stays competitive compared to directly
employing Satin, which is explained by the effectivenesswfgeneric heuristic.

Later, we executed a subset of the above applications onexavigh cluster, which was established by
using WANem [79], a software for simulating WAN conditiongev a LAN. We simulated 3 Internet--
connected local cluste€, C; andCs by using 4, 5 and 6 of the machines of the local cluster, raisgdye
Each WAN link was a T1 connection with a round-trip latency26D ms and a jitter of 10 ms. Both the
EasyFJP and the pure Satin variants of the applications egerégured to use the Cluster-aware Random
Stealing (CRS) [84] algorithm of the Satin framework, irg&tef its default Random Stealing algorithm.
With CRS, when a machine becomes idle; it attempts to stealindinished task from both remote or
local machines, but intra-cluster steals have a greaterityrthan wide-area steals, saving bandwidth and
minimizing WAN latencies. Furthermore, the computatiom&iwork data transfer ratio dfiM in this
setting was very small, which severely and negatively i@ processor usage. Therefore, we decided to
left the application out of the analysis since it did not eigreced a CPU-bound behavior in this testbed.
Table 3 summarizes the obtained results for both the loachtlzwide-area clusters.

Figure 6 depicts the average execution time for 40 runs ofstiected applications. In all cases,
deviations were around 11%, which as explained before islgndie to the random nature of the Satin
scheduler plus the fact that we used WAN links with jitter tmnect the local clusters. As shown, the
EasyFJP applications performed better than their resme8ttin versions. For the case % and Ad,
and unlike the previous LAN experiment, EasyFJP outperéat®atin. Moreover, for the case BF and
Coy, the performance gains introduced by EasyFJP were evetegtéan the gains obtained for these
applications in the LAN setting (1-2% versus 5-6%). Hentgsgéms that executing these four applications
in the wide-area cluster accentuated the differences degpthe way synchronization is added when
using both tools. However, this trend should be furtheraoorated. All in all, these results show that the
EasyFJP applications performed very well, which align$ilie promissory results obtained in the LAN
environment.

As a complement, Figure 7 depicts the speedup factor adhieyeghe Satin and EasyFJP variants
when executing the test applications in the local-areaetu(teft) and the wide-area cluster (right). This

20

An Approach for Non-Intrusively Adding Mall eable Fork/Join Parallelisminto Ordinary
JavaBeans Conpliant Applications. (C. Mateos, A Zunino, M Campo). Computer Languages,
Systenms and Structures. Elsevier Science. |SSN: 1477-8424. Ed.: R S. Ledley and

B. Kal yanasundaram Vol. 36, Num 3, pp 288-315. 2010. DO : doi: 10.1016/j.cl.2009.12. 003

| Satin =—=

100 | EasyFJP o |

80 -

60

40 +

Average execution time (seconds)

20

. . .
PF Cov KS MM Ad
Application

Figure 5: Performance of the test applications in the lokedter

Table 3: Evaluation of the heuristic for inserting synchization: Performance results

Application Satin EasyFJP
Average execution time Average execution time
(seconds) (seconds)
Local Wide-area Local Wide-area
cluster cluster cluster cluster
Prime factorization 98.4 129.0 97.8 122.4
(PF)
The set covering 107.4 138.0 105.0 129.6
problem (Cov)
The knapsack 84.0 117.0 84.6 111.6
problem (KS)
Matrix multiplication 69.6 N/A 67.8 N/A
(MM)
Adaptive numerical 78.6 117.0 78.6 102.6

integration (Ad)

factor was computed &g/ Tp, whereTs andTy are the times required to execute the sequential and daralle
versions of these applications, respectively. Basictdlgomputels, the sequential codes where run on the
machine of the experimental setting with the best-hardwapelsilities in terms of CPU and memory. The
figures also depict the theoretical maximum speedup fagteen by the number of available machines
in either experimental settings, this is, fifteen. ‘Moreovete that all the applications executed in the
local-area cluster achieved important speedups except¥brwhich is due to its low computation to data
transfer ratio with respect to the rest of the applicati@erall, the implications of the obtained speedups
are twofold. First, the original applications certainlynedited from being parallelized, which makes them
representative to provide the basis for a significant ev@noaf our synchronization heuristics. Second,
EasyFJP achieved speedups levels that are competitivege #thieved by Satin in both settings.

These positive results are consistent with the main godle@gynchronization techniques of EasyFJP,
which is to automatically incorporate synchronization iasilar as a human programmer would do. It is
worth emphasizing that we cannot conclude from the testsatlmaheuristic is better than that of Satin.
Specifically, despite the fact that EasyFJP outperformeith 8athe WAN testbed for the above bench-
marks, Satin and EasyFJP performance were similar for tngesee alignment application of Section 5.3
in the same setting. In this sense, results suggest thatvelven not fully exploiting policies, applica-
tions parallelized via our automatic synchronization téghes arecompetitivein terms of performance
compared to the manual approach to parallelism and synization followed by Satin.

21

An Approach for Non-Intrusively Adding Mall eable Fork/Join Parallelisminto Ordinary
JavaBeans Conpliant Applications. (C. Mateos, A Zunino, M Campo). Computer Languages,
Systenms and Structures. Elsevier Science. |SSN: 1477-8424. Ed.: R S. Ledley and

B. Kal yanasundaram Vol. 36, Num 3, pp 288-315. 2010. DO : doi: 10.1016/j.cl.2009.12. 003

Satin =—=
N EasyFJP mmmmm -

N
S

N
S

=)
S

80 -

60 -

40

Average execution time (seconds)

20

1 1
PF Cov KS Ad
Application

Figure 6: Performance of the test applications in the wisaaluster

Satin === Theoretical maximum Satin === Theoretical maximum
16 EasyFJP mmmmm 1 16 [EasyFJP mmmmm 1

Speedup factor
Speedup factor

Cov KS MM Cov KS
Application Application

(a) Local-area cluster (b) Wide-area cluster

Figure 7: Speedup

5.2. Evaluation of the policy support

The second part of the evaluation involved the executiorivald and conquer versions of two bench-
mark applications, namely tidth Fibonacci and the binomial coefficient (also known as “N d</§r Sim-
ilarly to the experiments reported in the previous subeeciive processed the source codes with EasyFJP
by enabling the injection of code for supporting policiesd ave coded alternative parallel versions with
Satin. Then, we derived variants of the EasyFJP-and Satileimgntations by introducing threshold and
memoization. Roughly, the purpose of the evaluation wasdess the overhead and effectiveness of tuning
applications through policies versus using the same op#itioin rules within the application code, which
was the case of the Satin versions. For the Fibonacci apiplicae usedN = 42, whereas for the binomial
coefficient application we used = 33 (K was set to\/2). Note that with these arguments, the number
of tasks generated by the applications at runtime was hhgs, it was a rather challenging scenario to
EasyFJP.

First, we obtained the Satin versions of the Fibonacci andeX K applications by manually paralleliz-
ing their sequential recursive codes, and then we derived/ariants of the parallelized codes by including
threshold optimizations so as to compute in parallel theaslds associated to any ingutprovidedN is
greater or equal to some given threshold. Furthermore, wedr@sl two more variants by using a simple
memoization strategy that stored the result of a subtaskged the associatdd is below some limit (for
consistency purposes, we employed similar limits to theghold-based variants). Memoization in Satin
was implemented by means sliared objectg83], a mechanism provided by Satin to transparently share
and update the state of a Java object (in this case a cachepatmdistributed parallel computations of
an executing application. These variants were carefuljgieed and implemented to perform as few write

22

An Approach for Non-Intrusively Adding Mall eable Fork/Join Parallelisminto Ordinary
JavaBeans Conpliant Applications. (C. Mateos, A Zunino, M Campo). Computer Languages,
Systenms and Structures. Elsevier Science. |SSN: 1477-8424. Ed.: R S. Ledley and

B. Kal yanasundaram Vol. 36, Num 3, pp 288-315. 2010. DO : doi: 10.1016/j.cl.2009.12. 003

operations on the shared object as possible, which are th&tigns broadcasted by Satin and thus the
ones that generate network traffic.

Similarly, based on the sequential Fibonacci and N over Kiegions, we generated the correspond-
ing EasyFJP variants. Basically, the unoptimized varias&d a policy that always forks subtasks, while
the rest of the variants implemented the above optimizaties through the use of threshold and memo-
ization policies. Interestingly, this only involved confitgng different policies for the two template parallel
applications that were first obtained via the EasyFJP codergéor. Table 4 shows the number of source
code lines of the policy-based test applications afterI[mizang the original sequential codes via both
Satin and EasyFJP. This can be used as a very rough estimétfantuning effort in either cases. In order
to carry out a fair comparison, before taking metrics, théesowere transformed to a uniform formatting
standard, and Java import statements were optimized byogimplthe source code optimizing tools of the
Eclipse IDE. As shown in the Table, the unoptimized EasyFaiffaxits had more source code lines than
their corresponding unoptimized Satin variants becausenabled back the generation of instructions to
support policies. However, these instructions are infeatéo sequential codes automatically. The Table
also includes the code size of the optimized variants. Tiestold-based EasyFJP variants had some more
lines than their Satin-counterparts, but memoization meguiess source code in EasyFJP, since most of
the behavior for caching results is transparently manag#adramework level.

Table 4: Policy-based test applications: source code lines

Application Original Satin EasyFJP
(sequential)

Unoptimized - Threshold Memoization Unoptimized Threshold Memoization

Fibonacci 29 40 57 73 54 66 65

N over K 32 49 66 115 70 81 79

Table 5 shows the average execution time (in seconds) fox@&uéions of the applications on the
local cluster described in the previous subsection undestime execution conditions. For each variant
(leftmost column), we considered three different exedetaby varying the granularity of the runtime
tasks:extra fine(i.e. the unoptimized/optimized parallel codef#)e andmedium These two latter were
obtained by adding to these codes a fake countingloop updaifferent numbers within the body of
the recursive methods. For the Satin and EasyFJP variaingg nedium granularity and thresholds, the
obtained execution times were slightly better or in somesasen worse than their associated unoptimized
variants. Nevertheless, for the sake of consistency, tlesiiold values used in those experiments were the
same as the extra fine-grained and fine-grained variants.

In addition, the Table shows the amount of runtime tasks igdee by each variant of the test appli-
cations. For the case of the unoptimized applications aads#niants using thresholds, the values were
independent of the tool and the execution. However, for #reants using memoization, the values varied
between the two tools and even between different executimpdoying the same tool, because under these
variants the amount of subtasks is subject to dynamic faet®a consequence of relying on two approaches
to distributed object sharing, this is, an object replmatmechanism for the case of Satin shared objects,
and a spoke-hub object distribution scheme for the casesffE®®/memcached.

With respect to the resulting execution times, it can be nleskfrom the Table that EasyFJP incurred
in some overheads compared to Satin for the executableswtith fine granularity. Basically, this is due
to the extremely small granularity (CPU requirements) @irtiparallel tasks, which in turn caused the
EasyFJP executables to spend more time asking whetheiktorfaot, than doing useful computations. In
other words, in this scenario, evaluating policies is moggeasive than executing the associated subtasks
itself. Contrarily, for the Satin variants, deciding whetho fork or not was cheaper, since this behavior
was absent in the unoptimized applications and hardcod#étinode of their optimized counterparts. In
this line, the amount of injected parallel tasks to the @uper time unit was smaller for EasyFJP, which
caused cluster nodes to have less tasks available to exatcatsy given time, as evidenced by the low
percentage of task steals (i.e. amount of successful taalssiver the amount of steal attempts).

23

An Approach for Non-Intrusively Adding Mall eable Fork/Join Parallelisminto Ordinary
JavaBeans Conpliant Applications. (C. Mateos, A Zunino, M Campo). Computer Languages,
Systenms and Structures. Elsevier Science. |SSN: 1477-8424. Ed.: R S. Ledley and

B. Kal yanasundaram Vol. 36, Num 3, pp 288-315. 2010. DO : doi: 10.1016/j.cl.2009.12. 003

Table 5: Evaluation of the EasyFJP policy mechanism: Perdoice results

Application # of subtasks Satin EasyFJP
Average execution time Average execution time
(seconds) (seconds)
Extra Fine Medium Extra Fine Medium
fine fine

Fibonacci 866,988,873 62.69 102.41 284.84 76.97 118.52 303.05
(unoptimized)
Fibonacci 331,160,281 24.60 71.19 276.40 30.01 76.31 280.48
(threshold=4)
Fibonacci 204,668,309 15.52 66.40 288.86 19.49 70.75 292.97
(threshold=5)
Fibonacci Avg. Satin 30.03 39.32 82.90 25.32 34.45 34.16

(memoization) ~ (204,668,383);
Avg. EasyFJP
(204,668,315)

N.over K 1,131,445,439 82.70 138.94 392.26 100.47 155.86 400.72
(unoptimized)

N over K 549,754,738 40.26 108.23 400.89 50.25 117.98 410.27
(threshold=5)

N over K 333,793,708 25.27 95.46 402.04 3151 102.41 408.51
(threshold=6)

N over K Avg. Satin 71.57 96.43 211.17 59.92 84.07 83.40

(memoization) (530,365,082);
Avg. EasyFJP
(530,365,051)

However, the tests with the extra fine-grained variants efapplications served us as a basis for fur-
ther comparison, since FJP clearly benefits problems wigintbe split into several CPU-intensive but less
granular tasks. In this sense, Figure 8 shows the perforearerhead (percentage) of the EasyFJP appli-
cations with respect to their Satin counterparts as theudmaity of the runtime tasks slightly increases. The
Figure shows the results for the unoptimized variants aad/éiniants using threshold policies. It can be
seen that the average percentage overhead decreasediciiynat the performance penalty introduced
by the policy framework rapidly became small with respedhimtotal execution time of the applications.
Besides, the overheads just involve performance penaitibe order of seconds for applications that take
few minutes to execute. Certainly, for typical CPU-inteegparallel applications, which usually comprise
a number of coarse-grained tasks that together take semarates or even hours to finish, the overheads
would intuitively be insignificant. This reasonable exwégiion suggests that developers can take ad-
vantage of the non-invasive nature of the policy mechanistha the same time delivering competitive
performance for typical FIP applications.

Figure 9 shows the speedups introduced by the optimizedntarii.e. the ones using policies) of
the test applications with respect to their unoptimizedapealr variants, computed according to the for-
mula Ty/Tpoi, being Ty and Tyg the time required to run-the unoptimized and policy-basethmags of
the Fibonacci and N over K applications, respective@n one hand, for the variants using threshold-
based optimizations, the effectiveness of EasyFJP pslmmieved to be competitive (see Figure 9 (a) and
Figure 9 (b)). As explained before, some of the codes withiomedranularity did not improve from em-
ploying threshold rules (i.e. the bars with speedup factby, because as the task granularity increases, the
performance gains that may result from avoiding forkingg¢adecrease. Nevertheless, the obtained results
show that the effectiveness levels achieved by EasyFJBhbic policies were similar to those achieved
by Satin. On the other hand, the EasyFJP variants based omization outperformed their respective
Satin counterparts (see Figure 9 (c) and Figure 9 (d)). Meatioin in Satin was achieved through a shared
object, a built-in Satin mechanism by which parallel taslkesensupplied with an up-to-date local copy of

24

An Approach for Non-Intrusively Adding Mall eable Fork/Join Parallelisminto Ordinary
JavaBeans Conpliant Applications. (C. Mateos, A Zunino, M Campo). Computer Languages,
Systenms and Structures. Elsevier Science. |SSN: 1477-8424. Ed.: R S. Ledley and

B. Kal yanasundaram Vol. 36, Num 3, pp 288-315. 2010. DO : doi: 10.1016/j.cl.2009.12. 003

20
Fibonacci (unoptimized) kxxXx>
Fibonacci (threshold=4) =222
Fibonacci (threshold=5) <=~
15% N over K (unoptimized)
N over K (threshold=5)
N over K (threshold=6)
15 :
Q
&\/ 12%
®
[0
<
2
o L 9% u
3 10
% 7% 7%
S 6% 6%
XS %
(0] K
o 335
5+ EQE i
5 e
5%
&
0 2053 L
Fine Medium
Granularity

Figure 8: Performance overhead of the EasyFJP applicatithsespect to their Satin counterparts as the
task granularity increases

the results cache. Upon creating and forking subtasksarts task must pass on to them a pointer to the
shared object, which potentially involves moving throulgl hetwork more state when subtasks are stolen
by remote nodes for execution. Alternatively, our curremiing scheme uses a spoke-hub architecture, by
which cluster nodes maintain a local frontend (or level Thesin front of one or more backend (or level 2)
cache servers. In this way, communication between |locaremibte caches are performed only when a
miss occurs at a frontend cache. As depicted, in this exgetiah scenario, our caching support proved
to be more efficient than Satin shared objects, for the thraeeujarities. However, the semi-centralized
nature of this support may lead to scalability issues whengularger clusters, for which Satin shared
objects are designed. As mentioned in Section 4, we are ngiki scalable distributed caching support
to address such problems.

Complementary, Figure 10 depicts the speedup fagjdi,o of the variants using policies with respect
to the sequential versions of the Fibonacci and N over K appitins. Basically, for the variants based
on threshold policies, the obtained speedups confirm treusked trend of the behavior of the policies
supportillustrated in Figure 8, this is, the larger the gitarity or computational size of the parallel tasks,
the less the negative effect of the policy framework in thecetion times of the policy-based applications.
On the other hand, the EasyFJP applications using memmizatilicies significantly improved speedup
as task granularity increased while outperformed theimSaiunterparts. In any case, the better-than--
ideal speedup factors obtained in some executions areiegglay the well-known “super linear speedup”
effect that arises when paralleling a sequential programgalvith an extensive use of caching techniques
for avoiding recalculating subresults. The same effecsisily observed, for example, when performing
backtracking in parallel and dynamically allowing the réisg program to dynamically prune branches of
the initial exhaustive search space.

25

An Approach for Non-Intrusively Adding Mall eable Fork/Join Parallelisminto Ordinary
JavaBeans Conpliant Applications. (C. Mateos, A Zunino, M Campo). Computer Languages,
Systenms and Structures. Elsevier Science. |SSN: 1477-8424. Ed.: R S. Ledley and

B. Kal yanasundaram Vol. 36, Num 3, pp 288-315. 2010. DO : doi: 10.1016/j.cl.2009.12. 003

s Satin (threshold=4) —— ¢ Satin (threshold=5) ——
Satin (threshold=5) ——1 Satin (threshold=6) ———1
EasyFJP (threshold=4) === 35| EasyFJP (threshold=5) === |
EasyFJP (threshold=5) - EasyFJP (threshold=6)
4t —
3L
s st 5 %5f
8 8
S s 2
3 3
8]
& 2r & sl
1 | R A . .
1 | S s RO |
H H H I "l
0 L I \ 0 L \ L
Extra fine Fine Medium Extra fine Fine Medium
Granularity. Granularity
(a) Fibonacci with threshold-based optimizations (b) N over K with threshold-based optimizations
10 5
Satin =—=1 Satin ==
EasyFJP s EasyFJP o
8t J s
5.6t 4 5 3¢t
8 8
E E
2 2
& ef 15z
| —‘ I I | | I I
0 . . . 0 . . .
Extra fine Fine Medium Extra fine Fine Medium
Granularity Granularity
(c) Fibonacci with memoization-based optimizations (d) N over K with memoization-based optimizations

Figure 9: Speedups of the optimized test applications wipect to their unoptimized parallel counterparts

5.3. Areal-world example: Sequence alignment

The third evaluation involved the execution of an applwatior local pairwise sequence alignment
Broadly, this application represents a biological entitglsas a gene in a computer-interpretable way (e.g.
strings of characters) and manipulatesthe resulting septation by using sequence alignment algorithms.
We first obtained a sequential fork-join implementatiorhid pplication by adapting an existing sequence
alignment code extracted from the JPPF project [74], and the parallelized it by using Satin and
EasyFJP. The original application used the jaligner [68]diy, an open source implementation of an
improved version of the Smith-Waterman algorithm [39]. &ia pair of sequences, the algorithm outputs
a coefficient that represents the level of similarity betwteese two by using a scoring matrix from a set
of predefined matrixes. To execute the experiments, we Ume®AMI120 matrix, which works well in
most cases.

The application aligned an unknown input target sequenaiagan entire sequence database, which
was replicated across the nodes of our experimental wigle-@rid to allow local access to the sequence
data. The application operated by dividing the portionshefdata to compare against into two different
subproblems until a certain threshold on the data was relackiée used the same thresholds for both
Satin and EasyFJP. Moreover, we compared input sequenasstageal-world databases of Influenza A
sequences extracted from the National Center for Biotdoigyanformation (NCBI) Web sit& The NCBI
is an organization devoted to computational biology thatiains public genomes databases, disseminates
biomedical information and develops bioinformatics safitec Concretely, we used the databases shown

Shttp://en. w ki pedi a. or g/ wi ki / Sequence_al i gnment
4htt p: // waw. ncbi . nl m ni h. gov

26

An Approach for Non-Intrusively Adding Mall eable Fork/Join Parallelisminto Ordinary
JavaBeans Conpliant Applications. (C. Mateos, A Zunino, M Campo). Computer Languages,
Systenms and Structures. Elsevier Science. |SSN: 1477-8424. Ed.: R S. Ledley and

B. Kal yanasundaram Vol. 36, Num 3, pp 288-315. 2010. DO : doi: 10.1016/j.cl.2009.12. 003

Satin (threshold=4) ——1 EasyFJP (threshold=5) mmm— Satin (threshold=5) ——1 EasyFJP (threshold=6)
Satin (threshold=5) ———1 Theoretical maximum F&=zza Satin (threshold=6) =——=1 Theoretical maximum F&=zza
16 EasyFJP (threshold=4) === 4 16 | EasyFJP (threshold=5) ===

Speedup factor
Speedup factor

Extra fine Fine Medium Extra fine Fine Medium
Granularity Granularity
(a) Fibonacci with threshold-based optimizations (b) N over K with threshold-based optimizations

40

or Satin ==
EasyFJP
Theoretical maximum

Satin ==—=
EasyFJP s
35 L Theoretical maximum

60

30
50 -

25

Speedup factor
Speedup factor
N
8
T

30

20

; o] |
Fine Medium Extra fine Fine Medium
Granularity Granularity

(c) Fibonacci with memoization-based optimizations (d) N over K with memoization-based optimizations

Extra fine

Figure 10: Speedups of the optimized test applications repect to their pure sequential counterpart

in Table 6. It is worth noting that the tests conceived theyEdR implementation of the application as a
mean to provide more evidence about the performance of BByt it is not our goal to come out with
a better implementation of sequence alignment in Gridregtifor which specialized frameworks such as
mpiBLAST [9] and G-BLAST [85] already exist.

Database Size (# of Size (MB) Host Period
seguences)
DB 1 9,620 4.8 Human Jan-2007/Dec-2008
DB 2 12,325 6.2 Human Jan-2006/Dec-2008
DB 3 19,745 7.5 Human Jan-2004/Dec-2008
DB 4 42,334 21.4 Avian All registered cases up
to now

Table 6: Protein sequence databases used in the experiments

As mentioned earlier, the objective of this evaluation wagdsess the effects of the parallelization
mechanisms of EasyFJP in the performance of a complex afiplicwhile using more coarse task granu-
larities than the ones employed in the experiments repart8dctions 5.1 and 5.2. To this end, we derived
several variants of each implementation of the sequengaraént application by varying the computa-
tional granularity of the resulting runtime tasks, thisvig assigned large portions of the database to each
forked task for aligning purposes. This allowed us to bett@iuate the effect of our heuristic for inserting

27

An Approach for Non-Intrusively Adding Mall eable Fork/Join Parallelisminto Ordinary
JavaBeans Conpliant Applications. (C. Mateos, A Zunino, M Campo). Computer Languages,
Systenms and Structures. Elsevier Science. |SSN: 1477-8424. Ed.: R S. Ledley and

B. Kal yanasundaram Vol. 36, Num 3, pp 288-315. 2010. DO : doi: 10.1016/j.cl.2009.12. 003

Satin =3 Satin =3
EasyFJP mmmm EasyFJP mmmm

25

Average execution time (minutes)
Average execution time (minutes)

0.5 -

.
15 30 60 15 30 60
of generated tasks per input sequence # of generated tasks per input sequence

(a) DB1 (9,620 sequences) (b) DB2 (12,325 sequences)

Satin == — Satin ==
EasyFJP o 12 b EasyFJP oo |

Average execution time (minutes)
Average execution time (minutes)

.
15 30 60 15 30 60
of generated tasks per input sequence # of generated tasks per input sequence

(c) DB3 (19,745 sequences) (d) DB4 (42,334 sequences)

Figure 11: Performance of the sequence alignment apitati

join points in the resulting performance since not fully leiing policies clearly reduces the incidence of
this latter mechanism in the execution times. In other wdrdspposition to the evaluation in Section 5.2,
using coarse granularities means that the policies cormfibiarthe EasyFJP applications are invoked only
few times during their execution and thus the effect of thikcgdramework is dramatically reduced. Fi-
nally, parallelizing code extracted from a neutral impletation of the sequence alignment application
(i.e. based on JPPF) allowed us to also consider in the testisnplications of both Satin and EasyFJP
on the input application. In this way, the process of obtairthe different parallel variants from the same
initial source code in either cases conveys the framewpekcific mechanisms for controlling the synchro-
nization and the granularity of the resulting parallel taakruntime. With respect to source code lines, the
original JPPF application had 327 lines, whereas the SatinrEmsyFJP counterparts had similar number
of lines, this is, around 440.

Figure 11 shows the average execution time for 40 runs of #tie &nd EasyFJP variants of the ap-
plication. For each target database, we run three diffarersions of these two alternatives by varying
the computational granularity, or in this case, the sizenefgortion of the database that is analyzed per
forked task. Again, the EasyFJP variants were implemeritethveshold policies, whereas the Satin ones
controlled such granularity by including thresholds dikeinto the application code. On one hand, we
considered a very coarse granularity, by which the apjtinatvas instructed to generate one task per
available cluster node (i.e. 15 tasks in total to align ag¢asgquence), plus somewhat optimized, more
granular variants that injected 30 and 60 tasks into the &@nidntime. Furthermore, as the sequence align-
ment application is not only CPU-intensive but also datafisive, we did not achieved a very significant
CPU load when aligning one target sequence per executioereldre, we decided to process two input
sequences simultaneously per execution.

As illustrated in the figure, EasyFJP behaved better than 8atall databases. Deviations were con-

28

An Approach for Non-Intrusively Adding Mall eable Fork/Join Parallelisminto Ordinary
JavaBeans Conpliant Applications. (C. Mateos, A Zunino, M Campo). Computer Languages,
Systenms and Structures. Elsevier Science. |SSN: 1477-8424. Ed.: R S. Ledley and

B. Kal yanasundaram Vol. 36, Num 3, pp 288-315. 2010. DO : doi: 10.1016/j.cl.2009.12. 003

Theoretical
maximum

Theoretical
maximum

Speedup factor
®
Speedup factor
®

15 30 60 15 30 60
of generated tasks per.input sequence # of generated tasks per input sequence

(a) DB1 (9,620 sequences) (b) DB2 (12,325 sequences)

Theoretical
maximum

Theoretical
maximum

Speedup factor
®
Speedup factor
®

15 30 60 15 30 60
of generated tasks per input sequence # of generated tasks per input sequence

(c) DB3 (19,745 sequences) (d) DB4 (42,334 sequences)

Figure 12: Speedups of the sequence alignment applicattbmegpect to their pure sequential counterpart

sistently in the range of 2-5% for the case of the EasyFJRnari whereas they were between 2-11% for
the case of Satin with slightly greater deviations as thelremof forked tasks increased. The most inter-
esting aspect of these results are, on one hand, that thistieefar inserting synchronization of EasyFJP,
evaluated in the tests via the variants with maximum contfmurtal granularity, leads to competitive per-
formance not only for the benchmark applications discubsfdre but also for complex applications. On
the other hand, the EasyFJP variants of the applicatiomgebn the other two granularities (i.e. the ones
creating 30 and 60 tasks per input sequence) outperforne@d3htin counterparts, which shows that the
policy framework is useful for real-world applications. Asorollary, this latter implication is consistent
with the results reported in Section 5.2, which suggestatittte administrative overhead of policies may
be negligible for parallelized applications relying on smtask computational granularities. Finally, Fig-
ure 12 depicts the speedup factor achieved by the paratlaksee alignment applications with respect to
the sequential version, which was executed on the fastesteclmachine. Interestingly, for the variants
generating 30 and 60 tasks, EasyFJP improved the speed@adiofby a factor of up to 1.24 and 1.73,
respectively.

6. Conclusions and future work

In this article, we presented EasyFJP, an approach to seiminatically and non-invasively introduc-
ing FJP into divide and conquer sequential applicationg mhin goal of EasyFJP is to isolate application
logic as much as possible from the code that performs asgnols task execution, synchronization and
tuning of applications. The benefits of this approach arddldo On one hand, users who are not proficient
in parallel programming are allowed to quickly obtain peslatounterparts of their sequential applications,
which in the short term may help “sequential” Java develspergradually move into parallel program-

29

An Approach for Non-Intrusively Adding Mall eable Fork/Join Parallelisminto Ordinary
JavaBeans Conpliant Applications. (C. Mateos, A Zunino, M Campo). Computer Languages,
Systenms and Structures. Elsevier Science. |SSN: 1477-8424. Ed.: R S. Ledley and

B. Kal yanasundaram Vol. 36, Num 3, pp 288-315. 2010. DO : doi: 10.1016/j.cl.2009.12. 003

ming. On the other hand, the same sequential applicatiobeaeamlessly and easily ported to different
parallel libraries and environments.

The cornerstones of EasyFJP are an heuristic algorithrathiamatically spots the points in which join
primitives must be introduced, and a policy-based suppoiftd§P —currently supporting threshold-related
and cache-based optimizations— that allows users to tipatformance of the resulting parallel appli-
cation without modifying its source code. We evaluated @praach by executing some CPU-intensive
classic divide and conquer applications both generateBlaggFJP (with its binding to Satin) and manually
implemented by using Satin. First, we compared the perfoomaf the EasyFJP applications with respect
to the Satin implementations to assess the effectivenemsrdfeuristic code analysis techniques. The ap-
plications were run in a local and a wide-area cluster (8adil). Second, we used the former setting to
parallelize and tune two benchmark applications via EaBy#ds policies, and Satin (Section 5.2). These
two evaluations involved the usage of applications with Istoanoderate tasks granularities. Third, we
parallelized an existing implementation of the sequenigaalent application by using Satin and EasyFJP
and executed the resulting parallel codes in the wide-atimg. The goal of this evaluation was to test
the effectiveness of EasyFJP when dealing with more cormggplications and large task granularities.

With respect to the first evaluation, the EasyFJP applinatjperformed closely to the Satin imple-
mentations in the local cluster, while outperformed Satithie wide-area cluster. These positive results
cannot be generalized, however they are very encouragiog sidding parallelism to an application with
EasyFJP-is almost independent of the targeted parall@riibin other words, these results suggest that
our generic heuristic for inserting fork and join primiténstantiated in the evaluation through the Satin
parallel library, may lead to parallel software whose perfance is competitive with respect to manually
using a parallel library to parallelize sequential codegvéitheless, we are planning to conduct further
experiments with other applications and parallel librari¢ikewise, the comparisons between EasyFJP
applications and policies versus applications manuallyniped with Satin resulted in very acceptable
execution time overheads and some performance gains feshbld and memoization policies, respec-
tively. This is also encouraging, as-it confirms that sugpgrpolicies to effectively and non-invasively
tune EasyFJP parallel applications is feasible from a malgboint of view. Finally, the execution of the
sequence alignment application yielded as a result goddnpesinces and speedups in favor of EasyFJP,
which suggest that our framework is also applicable to veald applications.

Itis worth emphasizing that EasyFJP does not aim at repgaeiplicit parallelism. Instead, our utmost
goal is to target users who need to rapidly-turn their sedaiertdes into parallel ones, but deal with as few
parallel programmming details as possible. EasyFJP asklekis requirement by handling parallelism at
a high level of abstraction, this'is, automates the procésbtining an FJP application in a backend--
independent way, and provides mechanisms that capture oarpatterns for tuning the performance of
FJP applications. However, it is a well-known fact in pagtirogramming that such a high-level, implicit
approach may produce applications whose performanceasviibk levels that can be obtained by using
explicit parallelism [35]. In the context of our work, thise@ns that using EasyFJP neither necessarily
leads to exploiting parallelism in an optimal way nor regiabackend knowledge. In fact, in the experi-
ments, the applications are configured to use a particudrsgeheduling algorithm of Satin depending on
the experimental setting (i.e. local-area or wide-areatel). EasyFJP in turn captures recurrent parallel
synchronization and tuning patterns present in FJP apigiicawhile achieving competitive performance
with respect to manual parallelism, as suggested by thdiymsixperimental evidence reported in the
paper.

We are extending our work in several directions. We are waykin builders for other parallel libraries
(currently Doug Lea’s framework and GridGain) and othetribated infrastructures (currently Terracotta
and GMAC) for supporting memoization at the caching levelthis way, users will be allowed to select
the target technologies that best suit their needs whenrgimg parallel applications. Particularly, the
inclusion of builders for parallel libraries such as Douglsdramework and GridGain, which are able to
exploit multi-core individual machines and multi-core stlers, respectively, will create the opportunity for
a follow-up study of the interrelation of the EasyFJP fraragwnand such kind of execution environments.
Nevertheless, in this paper we provided a consistent, sigoevaluation of EasyFJP through the paral-
lelization of a representative set of applications undercaltarea and a wide-area cluster to evidence the
applicability of the approach.

Moreover, despite the policies illustrated in the papereieplemented in pure Java, we are developing

30

An Approach for Non-Intrusively Adding Mall eable Fork/Join Parallelisminto Ordinary
JavaBeans Conpliant Applications. (C. Mateos, A Zunino, M Campo). Computer Languages,
Systenms and Structures. Elsevier Science. |SSN: 1477-8424. Ed.: R S. Ledley and

B. Kal yanasundaram Vol. 36, Num 3, pp 288-315. 2010. DO : doi: 10.1016/j.cl.2009.12. 003

a policy support based on the Java scripting API [75], whitdwe developers to run scripts implemented
in various languages (e.g. BeanShell, Python, Ruby, etoin fwithin a Java application. Using these
languages will produce more compact policy code, and wikalisers to avoid the tedious code-compile-
run task sequence when tuning applications, thus enaldingnére flexible application tuning scenarios.
We are also investigating and implementing more sophistitpolicies in order to offer developers a wide
variety of general-purpose optimization rules to regutageamount of parallelism of their applications
for typical situations. Alternatives include policies thake into account aspects such as task granular-
ities, amount of network communication, historic execasioetc. From a conceptual perspective, these
“smarter” policies for controlling the (non-functionaliring behavior of application components, together
with the flexibility inherent to scripting languages to dymiaally change the rules that govern such behav-
ior, smoothly align with the recent trend of Autonomic Cortipg (AC) [8]. AC represent a vast number
of systems —including some of approaches mentioned bafareely GCM and K-Components— that sup-
port the construction of self-managed distributed apfibice. Particularly, a class of AC systems are those
that enable dynamic adaptations of applications througtptbvision of rules external to the application
code that can be-added, modified or removed at runtime.

The policy concept can potentially provide a solution to somlated problems that arise as a con-
sequence of thetransformational approach to parallelisiBasyFJP, which allows an individual user
application to be easily ported to several backends, batftrces the underlying task execution engine
to rely on‘'randomized schedulers to handle the runtime tagkresulting from executing an FJP applica-
tion. This in turn may lead to suboptimal cache usage or tagk-ocessor mapping in many cases. With
respect to the former problem, depth-first task executitieises allow for better cache exploitation and
reduced number of runtime tasks (with the consequent sawntgrms of allocated task space), however
breadth-first schemes commonly maximize parallelism. T&léadown this problem, modern backends
such as Intel® TBB- [69] rely on a hybrid scheme of task procgssHere, EasyFJP policies could be
used to indicate the underlying scheduler what scheme tgpuseided the target backend offers this flex-
ibility. With respect to the latter problem, recent HPC fidains such as Google’s MapReduce [55] and
GridGain [41] support the concept dta affinity this is, ensuring that a group of related cache entries is
contained within a single cache patrtition (e.g. a clustete)o Then, tasks are mapped to processors not
only based on their computational requirements but alstb@nequired data. Again, we could use policies
to allow developers to control some aspects of these majygisgd on the nature of the involved tasks. In
summary, we will study whether the policy framework can beeerged to support the above notions.

Finally, we are planning to evaluate EasyFJP from a softeaggneering perspective. A recent study
in the context of th&€O,P5S [59] parallel pattern-based language has shown that gérepaogramming
approaches contribute to increment the productivity oafpalrsoftware development [60]. Therefore, we
could evaluate the implications of using EasyFJP and itallgdization model for implementing parallel
software compared to generative programming approadtesS@,PsSand the GAUGE Grid system [45]
by conducting a controlled case study that takes into adquaductivity as well as human factors.

Acknowledgments

We thank Cristian Clasadonte for his good predispositicth eaduable help managing the comput-
ing infrastructure used for conducting the experimentgidiesd in this paper. We also deeply thank the
anonymous reviewers for their helpful comments and suggesto improve the quality of the paper. We
acknowledge the financial support provided by ANPCyT thioggants PAE-PICT 2007-02311 and PAE-
PICT 2007-02312.

References

[1] J. Al-Jaroodi, N. Mohamed, H. Jiang, D. Swanson, Aldguoris and Tools for Parallel Computing
on Heterogeneous Clusters, chap. An Overview of ParalléIRistributed Java for Heterogeneous
Systems: Approaches and Open Issues, Nova Science Puslistaippauge, NY, USA, 2007, pp.
1-14.

31

An Approach for Non-Intrusively Adding Mall eable Fork/Join Parallelisminto Ordinary
JavaBeans Conpliant Applications. (C. Mateos, A Zunino, M Campo). Computer Languages,
Systenms and Structures. Elsevier Science. |SSN: 1477-8424. Ed.: R S. Ledley and

B. Kal yanasundaram Vol. 36, Num 3, pp 288-315. 2010. DO : doi: 10.1016/j.cl.2009.12. 003

[2] E. Alba, C. Blum, P. Asasi, C. Leon, J. A. Gomez, OptimiaatTechniques for Solving Complex
Problems, Parallel and Distributed Computing, Wiley Pshitig, 2009.

[3] M. Aldinucci, S. Campa, M. Danelutto, M. Vanneschi, Plgéitrick, P. Dazzi, D. Laforenza, N. Tonel-
lotto, Behavioural skeletons in GCM: Autonomic managenaéi@rid components, in: 16th Euromi-
cro Conference on Parallel, Distributed and Network-Ba&edessing (PDP '08), Toulouse, France,
IEEE Computer Society, Washington, DC, USA, 2008, pp. 54-63

[4] M. Aldinucci, M. Danelutto, Skeleton-based parallebgramming: Functional and parallel semantics
in a single shot, Computer Languages, Systems & Structi®¢3-3) (2007) 179-192.

[5] M. Aldinucci, M. Danelutto, P. Dazzi, Muskel: An expartula skeleton environment, Scalable Com-
puting: Practice and Experience 8 (4) (2007) 325-341.

[6] E. Allen, D. Chase, J. Hallett, V. Luchangco, J.-W. MaassS. Ryu, G. Steele, S. Tobin-Hochstadt,
The Fortress language specificatidn,t p: / / www. ci s. udel . edu/ ~cavazos/ ci sc879/ paper s/
fortress:pdf (Mar. 2007).

[7] 1. Alshabani, R. Olejnik, B. Toursel, Service orientethative Java applications, in: 3rd Workshop on
Middleware for Service Oriented Computing (MW4SOC '08)uken, Belgium, ACM Press, New
York, NY, USA, 2008, pp. 43-48.

[8] A. Andrzejak, A. Reinefeld, F. Schintke, T. Schitt, FigGeneration Grids, chap. On Adaptability
in Grid Systems, CoreGRID series, Springer US, USA, 20062pp46.

[9] J. Archuleta, W.-C. Feng, E. Tilevich, A pluggable franmk for parallel pairwise sequence search,
in: 29th Annual International Conference of the IEEE - Ergiring in Medicine and Biology Society
(EMBS '07), Lyon, France, IEEE Service Center, USA, 2007,8v¥-130.

[10] L. Baduel, F. Baude, D. Caromel, A. Contes, F. Huet, Mr&oR. Quilici, Grid Computing: Software
Environments and Tools, chap. Programming, Composingldy&m on the Grid, Springer, Berlin,
Heidelberg, and New York, 2006, pp. 205-229.

[11] M. Bichler, K.-J. Lin, Service-Oriented Computing, @puter 39 (3) (2006) 99-101.

[12] A.BIk, J. Villacis, D. Gannon, Javar: A prototype Jaestructuring compiler, Concurrency: Practice
and Experience 9 (11) (1998) 1181-1191.

[13] W. Blochinger, C. Dangelmayr, S. Schulz, Aspect-otéehparallel discrete optimization on the Co-
hesion desktop Grid platform, in: 6th IEEE Internationaivpsium on Cluster Computing and the
Grid (CCGRID '06), IEEE Computer Society, Washington, DGGAJ 2006, pp. 49-56.

[14] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leisersk. H. Randall, Y. Zhou, Cilk: An
efficient multithreaded runtime system, Parallel and [sted Computing 37 (1) (1996) 55-69.

[15] J. M. Bull, M. E. Kambites, JOMP-an OpenMP-like interéefor Java, in: ACM Conference on Java
Grande (JAVA '00), San Francisco, CA, USA, ACM Press, NewkydtY, USA, 2000, pp. 44-53.

[16] B. Carpenter, V. Getov, G. Judd, A. Skjellum, G. Fox, MRIPI-like message passing for Java,
Concurrency: Practice and Experience 12 (11) (2000) 100381

[17] M. Chalabine, C. Kessler, Crosscutting concerns iral@ization by invasive software composition
and aspect weaving, in: 39th Annual Hawaii Internationahf@cence on System Sciences (HICSS
'06), Kauai, Hawaii, vol. 9, IEEE Computer Society, Los Alidos, CA, USA, 2006, p. 214b.

[18] B. Chamberlain, D. Callahan, H. Zima, Parallel prognaability and the Chapel language, Interna-
tional Journal of High Performance Computing Applicati@iy3) (2007) 291-312.

32

An Approach for Non-Intrusively Adding Mall eable Fork/Join Parallelisminto Ordinary
JavaBeans Conpliant Applications. (C. Mateos, A Zunino, M Campo). Computer Languages,
Systenms and Structures. Elsevier Science. |SSN: 1477-8424. Ed.: R S. Ledley and

B. Kal yanasundaram Vol. 36, Num 3, pp 288-315. 2010. DO : doi: 10.1016/j.cl.2009.12. 003

[19] H.N. A.Chan, A. J. Gallagher, A. S. Goundan, Y. L. W. Auwlivg, A. W. Keen, R. A. Olsson, Generic
operations and capabilities in the JR concurrent prograrmgitainguage, Computer Languages, Sys-
tems & Structures 35 (3) (2009) 293-305.

[20] R. Chandra, L. Dagum, D. Kohr, D. Maydan, J. McDonald,NRenon, Parallel Programming in
OpenMP, Morgan-Kaufmann Publishers Inc., San FrancisépUSA, 2000.

[21] P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A. &lie, K. Ebcioglu, C. von Praun, V. Sarkar,
X10: An object-oriented approach to non-uniform clustempating, ACM SIGPLAN Notices
40 (10) (2005) 519-538.

[22] S. Chiba, M. Nishizawa, An easy-to-use toolkit for g#fitt Java bytecode translators, in: Generative
Programming and Component Engineering, Lecture Notes mplwer Science, Springer, Berlin /
Heidelberg, 2003, pp. 364-376.

[23] CoreGRID NoE, Deliverable D.PM.04, basic features dfe t Grid Component Model
(assessed)htt p://wwv. coregri d. net/ manbo/ i mages/ stori es/ Del i verabl es/ d. pm 04. pdf
(last accessed September 2009) (2007).

[24] C. A. da Silva Cunha, J. L. F. Sobral, M. P. Monteiro, Rele aspect-oriented implementations of
concurrency patterns and mechanisms, in: R. Filman (etth)nfernational Conference on Aspect-
Oriented Software Development, Aspect-Oriented Softvizeeelopment, ACM Press, New York,
NY, USA, 2006, pp. 134-145.

[25] J. S. Danaher, I. A. Lee, C. E. Leiserson, Programming @xceptions in JCilk, Science of Computer
Programming, Special Issue on Synchronization and Coecayrin Object-Oriented Languages
63 (2) (2006) 147-171.

[26] M. Danelutto, M. Aldinucci, Algorithmic skeletons migeg Grids, Parallel Computing 32 (7) (2006)
449-462.

[27] C. Dangelmayr, W. Blochinger, Aspect-oriented comgmirassembly - a case study in parallel soft-
ware design, Software: Practice and Experience 39 (9) (280B-832.

[28] M. Denker, S. Ducass, Eric Tanter, Runtime bytecodesfiarmation for Smalltalk, Computer Lan-
guages, Systems & Structures 32 (2-3) (2006)125-139.

[29] J. Dongarra, D. Walker, MPI: A standard Message Passitegface, Supercomputer 12 (1) (1996)
56-68.

[30] J. Dowling, V. Cahill, Self-managed decentralisedteyss using K-components and collaborative
reinforcement learning, in: 1st ACM SIGSOFT Workshop onf-8&knaged Systems (WOSS '04),
Newport Beach, California, ACM Press; New York, NY, USA, 200p. 39-43.

[31] T. EI-Ghazawi, L. Smith, UPC: Unified Parallel C, in: ZD8CM/IEEE Conference on Supercom-
puting (SC '06), Tampa, Florida, USA, ACM Press, New York,,N)SA, 2006, p. 27.

[32] B. Fitzpatrick, Distributed caching with memcachedhiix Journal 2004 (124) (2004) 5.
[33] I. Foster, The Grid: Computing without bounds, SciBa#hmerican 288 (4) (2003) 78-85.

[34] I. Foster, C. Kesselman, The Grid 2: Blueprint for a Newntputing Infrastructure, Morgan-
Kaufmann Publishers Inc., San Francisco, CA, USA, 2003.

[35] V. W. Freeh, A comparison of implicit and explicit paedlprogramming, Journal of Parallel and
Distributed Computing 34 (1) (1996) 50-65.

[36] M. Frigo, C. E. Leiserson, K. H. Randall, The implemdiaa of the Cilk-5 multithreaded language,
SIGPLAN Notices 33 (5) (1998) 212—-223.

33

An Approach for Non-Intrusively Adding Mall eable Fork/Join Parallelisminto Ordinary
JavaBeans Conpliant Applications. (C. Mateos, A Zunino, M Campo). Computer Languages,
Systenms and Structures. Elsevier Science. |SSN: 1477-8424. Ed.: R S. Ledley and

B. Kal yanasundaram Vol. 36, Num 3, pp 288-315. 2010. DO : doi: 10.1016/j.cl.2009.12. 003

[37] T. Gautier, R. Revire, J. L. Roch, Athapascan: An APldeynchronous parallel programming, Tech.
Rep. RT-0276, INRIA (2003).

[38] A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. ManchékSunderam, PVM Parallel Virtual Ma-
chine, A User’s Guide and Tutorial for Networked Paralleh@umting, MIT Press, Cambridge, MA,
USA, 1994,

[39] O. Gotoh, An improved algorithm for matching biologisequences, Journal of Molecular Biology
162 (3) (1982) 705—708.

[40] P. Gotthelf, A. Zunino, C. Mateos, M. Campo, GMAC: An olay multicast network for mobile
agent platforms, Journal of Parallel and Distributed Cotimgu68 (8) (2008) 1081-1096.

[41] GridGain Systems, The GridGain Open Cloud Platfarbh,p: / / www. gri dgai n. com(2009).

[42] N. Gustafsson, Axum:-Language overview (VOI8)t p: / / downl oad. mi cr osof t . com downl oad/
B/ D 5/ BD51FFB2- C777- 43B0- AC24- BDE3C88E231F/ Axun?20Languaged?0Spec. pdf (last ac-
cessed May 2009) (2009).

[43] P. Hatcher, M. Reno, G. Antoniu, L. Bouge, Cluster cotmmiwith Java, Computing in Science and
Engineering 7 (2) (2005) 34-39.

[44] M. Haustein, K.-P. Lohr, JAC: Declarative Java coneuagy, Concurrency and Computation: Practice
and Experience 18 (5) (2006) 519-546.

[45] F. Hernandez, P. Bangalore, J. Gray, Z. Guan, K. REBIKJGE: Grid Automation and Generative
Environment, Concurrency and Computation: Practice arpbE&nce 18 (10) (2006) 1293-1316.

[46] B. Hughes, Building computational Grids with Apple’g¥d middleware, in: 2006 Australasian
Workshops on Grid computing and e-Research (ACSW Froné)s Hobart, Tasmania, Australia,
Australian Computer Society, Inc., Darlinghurst, AusaaRustralia, 2006, pp. 47-54.

[47] IST Programme of the European Commission; GridCOMPmEdt tp://gri dconp.ercimorg
(last accessed October 2009)(2009).

[48] java.net, java2xmhtt ps://java2xn . dev. java. net (last accessed May 2009) (2004).
[49] R. Johnson, J2EE development frameworks, Computet 3&2005) 107-110.

[50] A. Jugravu, T. Fahringer, JavaSymphony, a programmiaglel for the Grid, Future Generation
Computer Systems 21 (1) (2005) 239-246.

[51] A. Kaminsky, Parallel Java: A unified API for shared megnand cluster parallel programming in
100Distributed Processing Symposium (IPDPS'07), LongsBe@A, USA, IEEE Computer Society,
Washington, DC, USA, 2007, pp. 1-8.

[52] H. Kasim, V. March, R. Zhang, S. See, Survey on paraltegpamming model, in: Network and
Parallel Computing, vol. 5245 of Lecture Notes in ComputgeBce, Springer, Berlin / Heidelberg,
2008, pp. 266-275.

[53] G. Kiczales, J. Lamping, A. Menhdhekar, C. Maeda, C. égyp].-M. Loingtier, J. Irwin, Aspect-
oriented programming, in: M. Aksit, S. Matsuoka (eds.)thlLEuropean Conference on Object-
Oriented Programming (ECOOP '97), vol. 1241 of Lecture Ndte Computer Science, Springer,
New York, NY, USA, 1997, pp. 220-242.

[54] K. Kurowski, W. de Back, W. Dubitzky, L. Gulyas, G. KangpiM. Mamonski, G. Szemes, M. Swain,
Complex system simulations with QosCosGrid, in: Compatatl Science - 9th International Confer-
ence (ICCS’09), Baton Rouge, LA, USA, vol. 5544 of Lectura@in Computer Science, Springer,
Berlin / Heidelberg, 2009, pp. 387-396.

34

An Approach for Non-Intrusively Adding Mall eable Fork/Join Parallelisminto Ordinary
JavaBeans Conpliant Applications. (C. Mateos, A Zunino, M Campo). Computer Languages,
Systenms and Structures. Elsevier Science. |SSN: 1477-8424. Ed.: R S. Ledley and

B. Kal yanasundaram Vol. 36, Num 3, pp 288-315. 2010. DO : doi: 10.1016/j.cl.2009.12. 003

[55] R. Lammel, Google’s MapReduce programming model —siésdl, Science of Computer Program-
ming 68 (3) (2007) 208-237.

[56] D. Lea, The java.util.concurrent synchronizer frameky Science of Computer Programming 58 (3)
(2005) 293-309.

[57] E. A. Lee, The problem with threads, Computer 39 (5) @0EB—42.

[58] W.-M. Lin, Performance modeling and analysis of caatetl parallel computations, Parallel Comput-
ing 34 (9) (2008) 521-538.

[59] S. MacDonald, J. Anvik, S. Bromling, J. Schaeffer, Da8an, K. Tan, From patterns to frameworks
to parallel programs, Parallel Computing 28 (12) (2002)366583.

[60] S. MacDonald, K. Tan, J. Schaeffer, D. Szafron, Defeyrdesign pattern decisions and automating
structural pattern changes using a design-pattern-baegdgmmming system, ACM Transactions on
Programming Languages and Systems 31 (3) (2009) 1-49.

[61] K. E. Maghraoui, T. J. Desell, B. K. Szymanski, C. A. MareThe Internet Operating System: Mid-
dleware for adaptive distributed computing, Internaticlaurnal of High Performance Computing
Applications 20 (4) (2006) 467—-480.

[62] C. Mateos, A. Zunino, M. Campo, Extending Movilog forpgorting Web Services, Computer Lan-
guages, Systems & Structures'33 (1) (2007) 11-31.

[63] C. Mateos, A. Zunino, M..Campo, A survey on approachegridification, Software: Practice and
Experience 38 (5) (2008) 523-556.

[64] C. Mateos, A. Zunino, M. Campo, Grid-enabling applicas with JGRIM, International Journal of
Grid and High Performance Computing 1 (3) (2009) 52—72.

[65] C. E. McDowell, D: P Helmbold, Debugging concurrendgrams, ACM Computing Surveys 21 (4)
(1989) 593-622.

[66] R. Montanari, E. Lupu, C. Stefanelli, Policy-based dgmic reconfiguration of mobile-code applica-
tions, Computer 37 (7) (2004) 73-80.

[67] A. Morajko, T. Margalef, E. Luque, Design and implematidn of a dynamic tuning environment,
Journal of Parallel and Distributed Computing 67 (4) (20073-490.

[68] A. Moustafa, JAligner: Open source Java implementatibSmith-Watermarhttp://j al i gner.
sour cef or ge. net (last accessed September 2009) (2008).

[69] C. Pheatt, Intel®threading building blocks, JournaComputing Sciences in Colleges 23 (4) (2008)
298-298.

[70] D. Sallings, spymemcached: Java client for Memcachéatt p://code. googl e. com p/
spynentached (last accessed May 2009) (2009).

[71] L. Silva, R. Buyya, High Performance Cluster ComputirRrogramming and Applications, chap.
Parallel Programming Models and Paradigms, Prentice NaJIlUSA, 1999.

[72] J. Sobral, A. Proenca, Enabling JaSkel skeletons fastets and computational Grids, in: IEEE
International Conference on Cluster Computing, Austirkabe USA, IEEE Computer Society, Los
Alamitos, CA, USA, 2007, pp. 365-371.

[73] Sourceforge.net, JCGridtt p://j cgri d. sour cef orge. net (2004).
[74] Sourceforge.net, Java Parallel Processing Framewotrk: / / www. j ppf . or g (2009).

35

An Approach for Non-Intrusively Adding Mall eable Fork/Join Parallelisminto Ordinary
JavaBeans Conpliant Applications. (C. Mateos, A Zunino, M Campo). Computer Languages,
Systenms and Structures. Elsevier Science. |SSN: 1477-8424. Ed.: R S. Ledley and

B. Kal yanasundaram Vol. 36, Num 3, pp 288-315. 2010. DO : doi: 10.1016/j.cl.2009.12. 003

[75] Sourceforge.net, Java Scripting ARt t ps: //scri pting. dev.java. net (lastaccessed June 2009)
(2009).

[76] Sun Microsystems, Java Management Extensions (JMX),p://java.sun.com products/
JavaManagenent (last accessed June 2009) (2009).

[77] Sun Microsystems, JavaBeans Specificatitmi p://java. sun. conl javase/technol ogi es/
deskt op/ j avabeans/ docs/ spec. ht Ml (last accessed March 2009) (2009).

[78] C. Szyperski, Component technology - what, where, amd?) in: 25th International Conference
on Software Engineering (ICSE '03), Portland, Oregon, UBEE Computer Society, Washington,
DC, USA, 2003, pp. 684-693.

[79] TATA Consultancy Services, The Wide Area Network Entataght t p: / / wanem sour cef or ge. net
(last accessed June 2009) (2009).

[80] Terracotta Inc., The Definitive Guide to Terracottaugter the JVM for Spring, Hibernate and POJO
Scalability, APRESS, New York, NY, USA, 2008.

[81] University of Virginia, jPVM, http: // www. ¢s. vi rgini a. edu/ ~aj f2j /j pvm ht Ml (last accessed
April 2009) (1999).

[82] W. van Heiningen, S. MacDonald, T. Brecht, Babylon: Mlielvare for distributed, parallel, and
mobile Java applications; Concurrency and Computatioactiee and Experience 20 (10) (2008)
1195-1224.

[83] G. Wrzesinska, J. Maassen, K. Verstoep, H. E. Bal, $atiDivide-and-share on the Grid, in: 2nd
IEEE International Conference on e-Science and Grid ComgyE-SCIENCE '06), Amsterdam,
Netherlands, IEEE Computer Society, Washington, DC, US®&2p. 61.

[84] G. Wrzesinska, R.-van Nieuwport, J. Maassen, T. Kielmadt. Bal, Fault-tolerant scheduling of
fine-grained tasks in Grid environments, Internationardaliof High Performance Computing Ap-
plications 20 (1) (2006) 103-114.

[85] C.-T.Yang, T.-F. Han, H.-C. Kan, G-BLAST: A Grid-bassalution for mpiBLAST on computational
Grids, Concurrency and Computation: Practice Experiedq@2(2009) 225-255.

[86] K. Yelick, P. Hilfinger, S. Graham, D.-Bonachea, J. Su,Kamil, K. Datta, P. Colella, T. Wen,
Parallel languages and compilers: Perspective from tlanilim experience, International Journal of
High Performance Computing Applications 21 (3) (2007) Z883-

[87] C. Zambas, M. Lujan, Introducing aspects tothe impletagon of a Java fork/join framework, in:
Algorithms and Architectures for Parallel Processing,tuez Notes in Computer Science, Springer,
Berlin / Heidelberg, 2008, pp. 294-304.

[88] B.-Y. Zhang, Z.-Y. Mo, G.-W. Yang, W.-M. Zheng, Dynamizad-balancing and high performance
communication in JCluster, 21th IEEE International Patahd Distributed Processing Symposium
(IPDPS '07), Long Beach, California, USA (2007) 227.

[89] H. Zhang, J. Lee, R. Guha, VCluster: A thread-based dsidalleware for SMP and heterogeneous
clusters with thread migration support, Software: Pracdicd Experience 38 (10) (2008) 1049-1071.

[90] H. Zhu, Z. Yin, Y. Ding, Java Annotated Concurrency lthea the concurrent package, in: 7th Inter-
national Conference on Parallel and Distributed Computipgplications and Technologies (PDCAT
'06), IEEE Computer Society, Washington, DC, USA, 2006, 3tp-43.

Cristian Mateos (http://ww. exa. uni cen. edu. ar/ ~cnat eos) received a Ph.D. degree in Computer
Science from UNICEN, Tandil, Argentina, in 2008. He is a Hidhcher Assistant at the Computer
Science Department of UNICEN and a research fellow of the @BN. His thesis was on solutions
to ease Grid application development and tuning througleégncy injection and policies.

36

An Approach for Non-Intrusively Adding Mall eable Fork/Join Parallelisminto Ordinary
JavaBeans Conpliant Applications. (C. Mateos, A Zunino, M Campo). Computer Languages,
Systenms and Structures. Elsevier Science. |SSN: 1477-8424. Ed.: R S. Ledley and

B. Kal yanasundaram Vol. 36, Num 3, pp 288-315. 2010. DO : doi: 10.1016/j.cl.2009.12. 003

Alejandro Zunino (http://al ej andr ozuni no. co. cc) received a Ph.D. degree in Computer Science
from UNICEN in 2003. He is a Full Assistant Professor at thenpater Science Department of

UNICEN and a research fellow of the CONICET. He has publisiset 30 papers in journals and
conferences.

Marcelo Campo (http://wam exa. uni cen. edu. ar/ ~ncanpo) received a Ph.D. degree in Computer
Science from UFRGS, Porto Alegre, Brazil. He is a Full AsateiProfessor at the Computer Sci-
ence Department and Head of the ISISTAN. He is also a reségliotv of the CONICET. He has
over 70 papers published in conferences and journals abfiutsse engineering topics.

37

