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Abstract

Motivated by the advent of powerful hardware such as SMP machines and execution environments such
as Grids, research in parallel programming has gained much attention within the Distributed Computing
community. There is a substantial body of efforts in the formof parallel libraries and frameworks that
supply developers with programming tools to exploit parallelism in their applications. Still, many of these
efforts prioritize performance over other important characteristics such as code invasiveness, ease of use
and independence of the underlying executing hardware/environment. In this paper, we present EasyFJP,
a new approach for semi-automatically injecting parallelism into sequential Java applications that offers
a convenient balance to these four aspects. EasyFJP is basedupon the popular fork/join parallel pattern,
and combines implicit, application-level parallelism with explicit, non-invasive application tuning. Experi-
ments performed with several classic CPU-intensive benchmarks and a real-world application confirm that
EasyFJP effectively addresses these problems while delivers very competitive performance.
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1. Introduction

Fork/join parallelism (FJP) is a simple but effective design technique for parallelizing sequential appli-
cations [56]. FJP is based on expressing parallelism by means of two basic primitives:fork, which starts
the execution of a code fragment –commonly a procedure or a method– in parallel, andjoin, which blocks
the main application thread until the execution of these code fragments finishes. To handle the execution
of forked code fragments in parallel, FJP-oriented libraries rely on specialized schedulers responsible for
efficiently handling parallel subcomputations.

Particularly, FJP is suitable for parallelizing the familyof divide and conquer algorithms. Divide and
conquer applications solve problems by breaking them down into several subproblems of the same type,
until trivial problems are obtained, which are solved directly. The solutions to the different subproblems
are then combined to build the solution to the whole problem.Like divide and conquer algorithms, most
FJP algorithms are recursive [56]: they repeatedly generate subtasks (i.e. forks) for each subproblem
whose solutions are combined (i.e. join) to give a solution to the original problem. Small subproblems are
commonly solved by calling a fragment of sequential code.

To some extent, FJP provides an alternative to the well-known thread programming model for par-
allelizing applications. This model has been receiving strong criticism [57] due to the complexity of
programming, testing and debugging threads. In fact, an FJPframework is planned to be included in the
next release (estimated in early 2010) of Java1, which has offered threads as first-class citizens for many
years. Intuitively, parallel but easy-to-use programmingpatterns like FJP are of major importance given the
increasing availability of multi-core/multi-processor machines, so as to boost the performance of today’s
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sequential applications without the need for programmers with a solid background on parallel program-
ming. In other words, FJP frameworks provide a convenient balance between delivered performance and
ease of programming compared to multithread programming.

Noticeably, FJP is not only circumscribed to SMP machines, but can be also applied in other execu-
tion environments where the notions of task and processor exist, such as computer clusters [84]. In this
context, tasks resulting from issuing forks can be executedin parallel on the machines of a cluster, thus
potentially further increasing performance and scalability. More recently, Grid Computing [33, 34] has
emerged as an exciting paradigm for parallel distributed computing. A Grid arranges the hardware re-
sources from geographically dispersed sites to provide applications with vast amounts of computational
resources. Interestingly, SMP machines, clusters and Grids alike can be used to execute FJP tasks, since
these environments can be viewed in a general sense as a number of processing nodes (i.e. CPUs or individ-
ual machines) interconnected through a “network” infrastructure that provides communication capabilities
(i.e. a system bus, a high-speed LAN or a WAN). This uniformity suggests that the same FJP application
could be run in any of these environments, provided there is aspecialized scheduler able to handle tasks
according to the characteristics of the underlying execution hardware support. For example, a requirement
for higher performance on a multi-core application may be fulfilled by modifying the application to exploit
a Grid scheduler.

In dealing with the hardware and software diversity inherent to parallel environments, and specially
Grids, Java has gained much popularity due to its “write once, run anywhere” property that promotes
platform independence and the fact that its delivered performance is competitive with respect to that of
conventional HPC languages [63]. However, historically, Java parallel libraries have focused on pro-
viding support for running applications on a particular parallel environment. Several tools for SMP (e.g.
JOMP [15], Doug Lea’s framework [56]), cluster (e.g. MPJ [16], jPVM [81], Hyperion [43]) and Grid
programming (e.g. ProActive [10], JavaSymphony [50], Satin [84]) have been proposed. Basically, the
aim of these tools is to supply developers with programming APIs and directives for starting and coordi-
nating the execution of subtasks in parallel. However, thisapproach leads to source codes polluted with
parallel instructions that depend on the library being used, compromising maintainability and portability
to other libraries and execution environments. In other words, there is not a clear separation between the
tasks of writing the application logic and parallelizing it. Besides, using these tools requires expertise on
parallel programming. This intrusive approach to parallelism is also followed by several contemporary
parallel languages designed to increase application programmer’s productivity, such as Fortress (Sun) [6],
X10 (IBM) [21], Axum [42] (Microsoft) and Chapel (Cray) [18]. However, whether these relatively
new parallel languages will become widespread remains to beseen. In fact, many researchers promote
the idea of extending for parallelism commonly employed languages rather than building parallel-specific
languages from scratch. Examples of such dialects are UPC [31] (C), Intel® Threading Building Blocks
(TBB) [69] (C++), Athapascan [37] (C/C++), and Titanium [86] (Java).

A crucial issue when introducing parallelism is to determine whether a sequential code will benefit
from being parallelized or not. In particular, for FJP applications, small task granularities2 may negatively
affect speedup, as the cost of managing computations (e.g. creating and starting individual runtime tasks
for them) may be greater than the computation times themselves. This is often avoided by using thresholds
in the code to establish limits in the number of tasks injected into the runtime system, ormemoization,
this is, reusing results when subcomputations overlap. Again, existing Java parallel libraries follow an
intrusive approach to tune the performance of parallelizedapplications, since these optimizations must be
explicit in the application source code, which compromisesmaintainability and testability. Moreover, the
optimizations introduced into an application may not be applicable when ported to a different execution
environment, which leads to even more code modifications. There is, however, an increasing degree of
consensus among the HPC community on the idea that for parallel applications not only performance is
important, but also how well parallelism is abstracted and hidden from the application code [52].

This paper proposes EasyFJP, a new approach to mitigate these problems, which takes advantage of

2Throughout the rest of the paper, the term “granularity” should be understood as the computational requirements of the paral-
lel runtime tasks resulting from parallelizing an application and should not be confused with the component granularity notion of
component-based software systems.
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the implicit fork/join structure of sequential divide and conquer applications to generate a parallel version
of the code that accesses a parallel API or library of the user’s choice. A recursive call within the code is
interpreted as a fork, whereas an instruction in which a result of a forked computation is read is interpreted
as a join. Fork and join points are spotted through a generic algorithm that generates the actual parallel
code subordinated to a particular parallel library. In addition, a fork point can be attached apolicy, which
is a user-provided rule that dynamically decides whether the fork takes place or the associated code is se-
quentially executed instead. Policies encapsulate the logic to efficiently execute applications by relying on
an intuitive framework that captures common optimization heuristics for divide and conquer applications.
Policies are non-invasively associated to the applicationcode through an external configuration file, which
is processed at runtime.

EasyFJP is targeted at parallelizing Java programs that follow a recursive (divide and conquer) struc-
ture, which is indeed applicable to a broad range of problems[58]. The contribution of this paper is a
method for developing task-based Java parallel applications that (a) is based on application-level implicit
FJP parallelism that does not require explicit usage of parallelism within the application code, (b) features
integration with existing libraries and platforms for parallel and distributed development, and (c) offers
a non-intrusive, rule-based mechanism to tune the same source code to various target execution environ-
ments. EasyFJP uses a generative programming approach to build FJP applications from sequential codes,
and is materialized as a proof-of-concept tool that automatically outputs parallel code for a target parallel
library including placeholders for attaching policies.

The rest of the paper is organized as follows. The next section discusses related works, and explains
how EasyFJP complements them and improves over them. Section 3 overviews EasyFJP. Later, Section 4
briefly describes its implementation. After that, Section 5reports an experimental evaluation of EasyFJP.
Finally, Section 6 concludes the paper.

2. Background

The advent of sophisticated hardware and execution environments has motivated the development of
many libraries and platforms for parallel programming. Particularly, we are interested in Java programming
tools for implementing CPU-intensive applications based on FJP or similar embarrassingly parallel models,
such as master-worker and bag-of-tasks [71]. Models exclusively based on explicit message passing and/or
thread programming, or oriented towards data intensive applications are out of the scope of this section.
Below we summarize these efforts.

With respect to parallelism on single machines, Javar [12] is a restructuring tool that paralellizes
loops and recursive calls by converting them into multithreaded structures to run in parallel. Doug Lea’s
framework [56] is a set of classes (bundled into Java since version 5) that provides common functional-
ity for managing synchronization state, blocking/unblocking of concurrent subcomputations and queuing.
JCilk [25] extends the Java language with thespawnandsyncfork/join primitives from the Cilk [14]
multithreaded language. For each spawnable method, two different clones are created: a fast clone that
executes in the common case where serial semantics suffice, and a slow clone that executes when paral-
lel semantics are required. All communication due to scheduling is performed only when executing slow
clones. This mechanism, which is prescribed by the computation model of the Cilk language, is known as
the “two-clones” strategy [36]. Moreover, JCilk obeys the ordinary sequential semantics of the try/catch
construct when executed on a single processor machine, but causes parallel computations to abort whenever
an exception is thrown when executed on an SMP machine. JAC [44] simplifies concurrent programming
by separating the application logic from thread declaration and synchronization through Java annotations.
JAC emphasizes on removing the differences between sequential and concurrent code, promoting code
reuse. In addition, a precompiler to translate from JAC to Doug Lea’s framework exists [90]. Similarly,
JOMP [15] is a Java implementation of OpenMP [20], a standardset of directives and library routines
for shared memory parallel programming. JOMP provides a compiler and a runtime library that support a
large subset of the OpenMP specification.

There are also several tools for Java-based parallel programming in distributed environments. JR [19]
is a dialect of Java that provides a rich concurrency model supporting remote virtual machine/object cre-
ation and method invocation, asynchronous communication,rendezvous and dynamic process creation. JR
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programs are then translated into standard Java programs. JCluster [88] is a platform for executing task--
based parallel applications in heterogeneous clusters. Subcomputations are scheduled according to a novel
algorithm called transitive random stealing (TRS), which improves random stealing. JCluster also features
PVM [38] and MPI [29] interfaces for implementing message-based parallel applications. PJ [51] pro-
vides an uniform API for loop parallelism and MPI-like message passing for cluster/SMP programming.
Satin [84] is a library for parallelizing divide and conquercodes on LANs and WANs that follows the
semantics of Cilk. Programmers mark through API classes andmethods the operations that must be run
in parallel. Then, Satin instruments the compiled code to execute the application in parallel on a Grid.
JavaSymphony [50] is a performance-oriented platform witha semi-automatic execution model that trans-
parently deals with migration, parallelism and load balancing of Grid applications, and at the same time
allows programmers to control such features via API calls inthe application code. Similarly, VCluster [89]
supports execution of thread-based applications on SMP clusters. Threads can migrate between hosts for
load balancing purposes and interchange data through certain virtual channelsthat are independent of the
location of threads. Another related platform is Babylon [82], which support code mobility, parallelism
and inter-thread communication in an uniform API.

Furthermore, ProActive [10, 54] is a platform for implementing object-oriented parallel mobile ap-
plications. A ProActive application is composed of mobile entities calledactive objects. Active objects
serve methods calls originated from other (active) objects, and call methods implemented by other local
or remote (active) objects. Method calls are asynchronously handled through thewait-by-necessitymech-
anism, which is equivalent to future objects in Java. Activeobject creation, parallelism and mobility must
be specified in the application code through API calls. JGRIM[64] is a method for Grid-enabling ordi-
nary component-based applications. JGRIM focuses on non-invasively injecting existing Grid middleware
services such as component brokering, mobility, and parallelism into sequential codes via Dependency In-
jection techniques [49]. Moreover, the Grid Component Model (GCM) [23, 3] of the CoreGRID NoE
defines a model for creating component-based Grid applications, by which a component’s behavior can be
seamlessly attached extra-functional behavior related todistribution and parallelism. At present, there is
an open source reference implementation of GCM called GridCOMP [47], which materializes this model
on top of the ProActive platform and lets developers to establish the non-functional behavior of compo-
nents via external pluggable rules [3]. Unlike EasyFJP, thecomponent models prescribed by JGRIM and
GCM aim at providing higher levels of composability and interoperability of user-level and platform-level
components by promoting the convergence of Grid and SOA [11]concepts. Finally, with respect to the
plethora of open source Java APIs for executing bag-of-tasks distributed applications, some examples are
JPPF [74], GridGain [41], Xgrid [46] and JCGrid [73].

From a programming language perspective, the approaches toparallelism can be classified into implicit
and explicit [35]. On one hand, implicit parallelism allowsprogrammers to write their programs without
any concern about the exploitation of parallelism, which isinstead automatically performed by the com-
piler or the runtime system. On the other hand, explicit parallelism aims at supplying constructs or APIs
for describing and coordinating parallel computations. Programmers have more control over the parallel
execution, thus it is feasible to fully exploit parallelismto implement very efficient applications. However,
explicit parallelism is difficult to deal with [35], since the burden of initiating, stopping and synchronizing
parallel computations is placed on the programmer.

Do programmers
have any concern
about parallelism?

No (implicit parallelism)

Yes (explicit parallelism)
Must sequential codes be
manually modified to
introduce parallelism?

Yes

No or
aiming
to

− API functions
− Method−level compiler
  directives
− Framework−based
  skeletons/templates

− AOP
− Metaobjects
− Code annotations
− Dependency Injection
− Non−intrusive skeletons

Figure 1: Approaches to parallelization in Java: A taxonomy

Although designed with simplicity in mind, many of the aboveefforts fall into the category of tools
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based on explicit parallelism. This has two clear disadvantages. First, parallelizing an application requires
learning the parallel API of the tool being used, which may bedifficult for an average programmer. Second,
from a software engineering perspective, the resulting code is difficult to maintain and to port to other
frameworks and libraries. Moreover, explicit parallelismusually leads to code that contains not only the
boilerplate instructions for creating and coordinating subcomputations but also statements for tuning the
execution of the subcomputations according to the nature ofthe application and the environment where it
executes. This potentially makes the tuning rules invalid as soon as the application is ported to a different
environment, for example, from a local cluster to a wide-area cluster.

An alternative solution to conventional explicit parallelism is to treat parallelism as a concern and thus
to avoid mixing the logic of applications with the code that implements its parallel behavior (see Figure 1).
This idea has been gaining momentum as shown by existing tools which are partially or entirely based
on mechanisms for separation of concerns such as code annotations (JAC, Satin, GridGain), metaobjects
(ProActive), Dependency Injection [49] (JGRIM) and dynamically pluggable rules (GridCOMP). More-
over, some efforts [17, 87, 24, 13] have supported the same idea through the application of AOP [53] to
seamlessly combine sequential code (i.e. application logic) with code in charge of parallelism and applica-
tion tuning (i.e. aspects). Similarly, other frameworks have proposed the use of skeletons, which capture
recurring parallel programming patterns such as pipes, master-worker and farms without ideally affecting
applications. Roughly, the modeled patterns are instantiated by programmers through the creation of the
involved interacting components by either wrapping existing sequential applications (e.g. Muskel [5, 4])
or the specialization of framework classes (e.g. JaSkel [72], CO2P3S [59]). All in all, the key problems of
the existing approaches to parallelism pursuing separation of concerns relate to:

• Applicability: Naturally, approaches designed to exploit single machines are not applicable to cluster
and Grid settings. Conversely, many approaches designed totake advantage of such settings expe-
rience overheads due to the distributed nature of the platforms underneath [1], which makes them
potentially less efficient when exploiting, for example, SMP machines. These problems violate the
“handling heterogeneity” principle for parallel tools introduced in [26], which states that parallel
applications should be easy to port to different parallel execution environments.

• Code intrusiveness: Approaches based on code annotationsrequire explicit source code modifica-
tions to introduce task parallelism and application-specific optimizations, thus the resulting code is
somewhat more difficult to handle thereafter from a softwareengineering standpoint. Metaobjects
and specially AOP techniques have proven to be effective techniques in avoiding code modifications
when introducing parallelism [27], but at the expense of demanding developers to learn and use
another programming paradigm.

• Expertise: Roughly, approaches aimed at providing support for various parallel patterns and tem-
plates feature good applicability with respect to the rangeof applications that can be parallelized, but
employing these approaches require a solid knowledge on parallel programming from developers.
In addition, with these tools, the code structure of a sequential application is usually very different
to that of its parallel counterpart. Therefore, introducing modifications to the application logic after
parallelization unavoidably demands first to understand the produced parallel code. In opposition,
by restricting the offered parallel patterns just to FJP, one would nevertheless provide a model for
parallelizing a broad range of applications while not incurring too much in such structural difference.

In this sense, we exploit the concept of separation of concerns to provide a hybrid approach to develop
parallel applications thatimplicitly introduces parallel behavior into existing sequential applications, and
(optionally) allows programmers toexplicitly tune the resulting parallel code by means of an uniform API
without affecting the application logic. The goal is to get the best from both worlds: the simplicity of
implicit parallelism [35], and both the flexibility and efficiency of explicit parallelism [35]. The execu-
tion and coordination of parallel applications are performed by transparently leveraging existing parallel
libraries for cluster/Grid and SMP programming. Then, EasyFJP is suited for developers with limited
knowledge on parallel programming.

In our view, EasyFJP does not compete but complements existing work by offering developers who are
not experienced in parallel programming a versatile and effective tool for easily parallelizing applications.
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This is achieved by circumscribing parallelism to the popular FJP model and using a generative program-
ming approach to automatically build parallel code that uses existing parallel libraries. Besides, developers
who are proficient in parallel programming can manually optimize the code generated by our tool. The
next section describes EasyFJP.

3. Approach

EasyFJP is a new approach for simplifying the parallelization of sequential Java applications. EasyFJP
differs from similar efforts in that it offers a convenient balance to the dimensions of applicability, code
intrusiveness and expertise discussed above. First, broadapplicability is achieved by targeting the Java
language and the FJP parallel model, and leveraging the services of existing parallel libraries. Second, low
intrusiveness is achieved by using a generative programming approach to generate parallel code from se-
quential code, and keeping the tuning behavior away from thegenerated parallel application. Precisely, this
separation, together with the simplicity of FJP, makes EasyFJP suitable for developers with little expertise
on parallel programming.

EasyFJP represents an alternative approach to simplify thedevelopment of parallel programs in the
form of an “amalgam” that combines several good ideas already present in existing tools but not simulta-
neously exploited, namely:

• Wide applicability, to allow developers to run in parallela broad range of sequential applications in
various parallel environments such as multi-core machinesand local/wide-area clusters.

• Flexibility and extensibility, to seamlessly exploit thescheduling and the synchronization capabilities
featured by existing multi-core and distributed parallel libraries.

• Little intrusiveness, to minimize the impact of introducing parallelism into a sequential application.

• Use of standard Java and a simplified parallel programming model, thus novice developers can take
advantage of parallelism without using a parallel dialect of Java or being proficient in parallel con-
cepts.

• Malleability, to allow experienced parallel developers to tune the parallel applications resulting from
using EasyFJP according to both the nature of the applications and the environments where they
execute.

At the heart of EasyFJP is a semi-automatic parallelizationprocess to introduce parallelism into applica-
tions. EasyFJP accepts as input ordinary sequential divideand conquer Java applications, and generates
library-dependent parallel applications with hooks for incorporating application-specific and environment-
specific optimizations. As depicted in Figure 2, this process comprises three steps, which conceptually
operate as follows:

Sequential 
application

Step 2: Policy
injection

Step 1: Source
code analysis

Step 3: Parallel
code generation

public class Fibonacci { 

 public long fib(long n){ 
  . . .
  long f1 = fib(n−1);
  long f2 = fib(n−2);
  . . .
  return f1+f2;
 }

}

public class Fibonacci { 

 public long fib(long n){ 
  . . .
  long f1 = fib(n−1);
  long f2 = fib(n−2);
  . . .
  return f1+f2;
 }

}

public class Fibonacci { 

 public long fib(long n){ 
  . . .
  long f1 = fib(n−1);
  long f2 = fib(n−2);
  . . .
  return f1+f2;
 }

}
User policy: "Spawn 
fib(long) if ... otherwise
execute it sequentially"

Parallelized
malleable

application

EasyFJP
step

Input/output
source code

Figure 2: An overview of EasyFJP
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• Source code analysis(Section 3.1): The source code of the input sequential divide and conquer
application is analyzed in order to spot the points in which recursive calls are performed and the
results of such calls are accessed. These points are interpreted by EasyFJP as implicit forks and joins,
respectively. Before feeding our analyzer, the programmerhas to assign the results of recursive calls
to local variables declared at the beginning of methods in his sequential application. Note that this
is a simple code convention that does not involve API calls. Asimilar convention is also required by
parallel frameworks such as Satin.

In general, existing parallel libraries provide means to launch the execution in parallel of a single fork
or a list of forks. Therefore, the parallelization of individual spotted forks can be straightforwardly
performed at step 3 by replacing each fork by the necessary API code to individually execute each
fork in parallel. However, there are semantic differences among parallel libraries with respect to
the primitives offered to express join points. Operationally, join primitives can be grouped into two
types: single-fork and multi-fork. The former models one-to-one relationships between fork and
join points, this is, for every fork a join call must be issuedwithin the code to wait for the result of a
particular fork. Conversely, multi-fork joins only allow the application to wait for the results of the
forks previously issued up to the join call. For example, in the application code of Figure 2 (step 1),
a multi-fork join before thereturn sentence would cause the application to block untilboth f1 and f2
are available, whereas two single-fork joins would be necessary to obtain the same behavior.

Parallel libraries supporting single-fork joins (e.g. GridGain, JPPF) greatly simplify the task of
automatically inserting library code to handle join pointsthat is carried out at step 3, since each
individual join can be trivially replaced by the corresponding parallel API call. However, multi-fork
join primitives such as the one provided by Satin make this task more difficult, as it is necessary
to perform a smarter analysis of the code to find proper placesto insert synchronization by taking
into account aspects such as the structure of sentences, variable scopes, etc. To this end, EasyFJP
includes a library-independent code analysis algorithm, which is explained in Section 3.1.

• Policy injection(Section 3.2): The policy support is a non-intrusive mechanism by which program-
mers can customize for efficiency purposes the way a parallelapplication behaves at runtime. A
policy is a user-supplied class that dynamically decides whether to actually fork a recursive call or
execute it sequentially instead. For example, theFibonacci application (Figure 2) could be instructed
to fork a call tofib provided the depth within the execution tree is below some given threshold.
Moreover, policies are non-invasively associated to fork points through an external configuration
file. Then, these configured policies, which are basically the rules that control the amount of paral-
lelism of an application, can be changed without modifying the application code.

Interestingly, this approach to tuning allows developers to adjust parallelism according to the nature
of their applications (e.g. using thresholds or memoization) as well as the dynamics and character-
istics of the underlying execution environment (e.g. avoiding too many forks with large parameters
in a high-latency network) without affecting the application logic. For building policies, EasyFJP
offers a profiling API for obtaining runtime information about both the running application and the
execution infrastructure. The usage of policies is not mandatory for parallelizing applications. In
addition, the separation promoted by this mechanism between the tasks of writing application logic
and tuning it contributes to the application development process, as these two groups of tasks can be
carried out independently by programmers with different skills. For example, policy coding could
be performed by a programmer proficient in parallel conceptsand our policy API.

• Parallel code generation(Section 3.3): This step involves the generation of the parallel code that
depends on the parallel library selected by the developer. To this end, the process prescribes the
existence ofbuilders, which are library-dependent components that comprise thenecessary func-
tionality to adapt a sequential application to the application structure of the target parallel library.
For example, some libraries require applications to extendfrom certain API-classes, include default
constructors, and so on. Besides, builders are in charge of taking advantage of the target library
to process fork and joins from the analysis at step 1, and to inject the glue code to invoke the user
policies defined at step 2.
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At present, we have implemented builders for Satin [84], butbindings to other parallel libraries are
underway. We are for example working on builders for Doug Lea’s framework [56] for multi-core
programmingand the GridGain [41] distributed platform. With regard to fork processing, developing
builders for libraries based on FJP such as Satin mainly involves translation, this is, recursive methods
in the input FJP application are forked in the output parallel application via appropriate calls to the
target library API. However, supporting libraries that rely on execution models such as master--
worker or bag-of-tasks (e.g. GridGain), in which there are no hierarchical relationships between
parallel tasks, is not straightforward since builders mustemulate FJP by using the non-FJP primitives
of the underlying parallel library. With respect to join processing, libraries based on multi-fork join
primitives such as Satin makes code generation significantly more challenging than those based on
single-fork join primitives, as it is necessary to deeply analyze the input application to introduce a
minimal number of calls to such primitives.

It is worth noting that this parallelization process does not aim at introducing parallelism into any kind
of Java application, but targets component-based Java applications only. Component-based program-
ming allows developers to implement applications comprising logical components with well-defined inter-
faces [78]. Besides, components are designed to not share state and to communicate with other components
through loosely-coupled operation calls. This leads to decoupled building blocks where any interaction that
involves tightly-coupled communication is disallowed, such as invoking component operations by passing
parameters by reference. This, in turn, allows communicating components to be executed in different ad-
dress spaces without the need of explicitly using more coupled communication mechanisms such as shared
objects. In fact, component-based notions are being extensively applied in distributed programming, as ev-
idenced by proposed Grid component models such as the GCM [23, 3] and the K-Components [30]. Also,
in Java, component-based programming is commonplace [64],given by the high popularity of component
models for Java such as JavaBeans [77] and Dependency Injection [49]. For these reasons, we believe the
applicability of EasyFJP is not compromised.

Precisely, the development model promoted by EasyFJP is based upon the JavaBeans [77] specifica-
tion, which states among other things that any individual application class must (a) be serializable, and
(b) contain getters and setters to access its properties. Inthis context, a component is just an ordinary class
that is implemented by following a number of coding and design conventions. Particularly, (a) is crucial to
our work as it ensures that application objects can be transparently migrated across machines when using
parallelism while targeting a distributed environment. Onthe other hand, (b) defines a convention to read
and to set the properties of a component from the outside. Theutility of this latter code convention for our
work will be discussed in Section 3.3.

The source code conventions imposed by EasyFJP are very simple to follow. Specifically, before pro-
cessing an application with EasyFJP, the developer must format its source code by following the coding
conventions discussed so far, namely adhering to the JavaBeans specification and storing results of re-
cursive calls in local variables. On one hand, JavaBeans were originally defined as reusable software
components that can be manipulated (e.g. created and composed) by means of graphical development
tools [77]. Note that most current IDEs for Java such as Eclipse allow developers to automatically refactor
ordinary classes to be compliant to the JavaBeans model (e.g. associating setters/getters to the instance
variables of a class) or to change the shape of the code implementing their methods. In this sense, using
these conventions does not mean greater development effort, because they are feasible to be automated
by exploiting IDE refactoring tools. For example, we are developing a plug-in for Eclipse to support the
parallelization process of EasyFJP, which as mentioned above already include tools for performing such
kind of code transformations.

Let us illustrate the parallelization process of EasyFJP with an example application. For instance, if we
have a class including a recursive solution to compute thenth Fibonacci number like:

public class Fibonacci {
private Hashtable preComputedValues = new Hashtable ();
public long fib(long n){
if (n < 2)

return n;
if (preComputedValues.containsKey (n))

return preComputedValues.get(n);
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return fib(n - 1) + fib(n - 2);
}
// Other methods
public static void main(String[] args){...}

}

, formatting the above application results in the followingcode:

1 public class Fibonacci implements Serializable{
2 private Hashtable preComputedValues = null;
3 public long fib(long n){
4 long f1 = 0; long f2 = 0;
5 if (n < 2)
6 return n;
7 if (getPreComputedValues().containsKey (n))
8 return getPreComputedValues().get(n);
9 f1 = fib(n - 1);
10 f2 = fib(n - 2);
11 return f1 + f2;
12 }
13 public Hashtable getPreComputedValues(){
14 return preComputedValues;
15 }
16 public Hashtable setPreComputedValues(Hashtable preComputedValues){
17 this.preComputedValues = preComputedValues;
18 }
19 // Other methods
20 public static void main(String[] args){...}
21 }

Basically, lines 9-10 were added to store the results of bothrecursive calls into two local variablesf1 andf2
declared at the beginning of the recursive method (line 4). Besides, we made the class serializable (line 1)
and added getters and setters for itspreComputedValues instance variable (lines 13-18), which must be used
within the code to properly access the variable (lines 7-8).Once these conventions are applied, the modified
source code along with some configuration are processed withEasyFJP to obtain the parallel counterpart
of the sequential application. Specifically, this configuration is an XML file that specifies which classes
(fully qualified names) and methods from these classes must be analyzed for introducing parallelism. In
our example, the configuration would be:

1 <application name="Fibonacci"
2 xsi:noNamespaceSchemaLocation="configuration.xsd"
3 xmlns:xsi ="http://www.w3.org/2001/XMLSchema -instance">
4 <components >
5 <component id="Fibonacci" class="Fibonacci ">
6 <method id="fib" name="fib">
7 <parameter type="long"/>
8 </method>
9 </component >
10 ...
11 </components >
12 <policies >
13 ...
14 </policies >
15 </application >

Thecomponents element specifies the application classes and methods that will be parallelized. It is also
possible to parallelize several methods from an individualclass. Finally, thepolicies element includes the
optimizations associated to the method(s) to be parallelized, which are explained in Section 3.2.

3.1. Step 1: Source code analysis

Before feeding EasyFJP with a sequential application, the results of recursive methods must be stored in
local variables. Roughly, this convention allows EasyFJP to automatically identify implicit fork sentences
and spot the points in which synchronization barriers are needed, so as to ensure that recursive results are
always available before they are accessed. In case a programmer targets a library including a single-fork
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join primitive such as Doug Lea’s framework or GridGain, theresulting joint points are equivalent to the
points in which those local variables are read. However, when generating code for a parallel library based
on a multi-fork join primitive such as Satin, a smarter code analysis is necessary to minimize the number
of inserted synchronization barriers.

A naive solution to the problem of automatically inserting synchronization is to blindly add a barrier
right before any access to a local variable representing a recursive result. However, this solution generates
more calls to the underlying join primitive than needed, anddepending on the library being used and
the cost of calling the primitive, this may negatively affect the performance of the resulting application.
Therefore, we designed an heuristic that aims at inserting aminimal number of synchronization barriers
and at the same time preserving the semantics of the originalapplication. The algorithm works by walking
through the instructions of a method and detecting the points in which a local variable is eitherdefinedor
usedby a sentence. A local variable is defined and thus becomes aparallel variablewhen the result of
a recursive method is assigned to it. On the contrary, a parallel variable is used when its value is read.
When executing in parallel, to work properly recursive methods can read parallel variables provided a join
has been previously invoked. Based on the identified join points at this step, EasyFJP modifies the source
code so as to ensure that a library-specific join primitive iscalled between the definition and use of any
parallel variable, for any execution path between these twopoints. When targeting a parallel library based
on single-fork join primitives, the analysis simply outputs the points in which a parallel variable is used.
However, when targeting a library relying on multi-fork join primitives, the analysis employs an heuristic
algorithm to keep the correctness of the resulting parallelapplication while minimizing the identified join
points. Any regular local variable that does not represent results from parallel computations (i.e. non--
parallel) is naturally ignored by the algorithm.

Algorithm 1 Spotting multi-fork join points

procedure IDENTIFYSYNCPOINTS(rootScope)
syncPoints← empty
for all sentence∈ TRAVERSEDEPTHFIRST(rootScope) do

if varName← ISPARALLELVAR(sentence) then
currentScope← GETSCOPE(sentence)
if BEINGUSED(varName,sentence) = true then

if GETFIRSTSTATE(varName,currentScope) = UNSAFE then
SYNCVARSINSCOPE(currentScope)
ADDELEMENT(syncPoints,sentence)

end if
else if BEINGDEFINED(varName,sentence) = true then

DESYNCVARUPTOROOT(varName,currentScope)
end if

end if
end for
return syncPoints

end procedure

Algorithm 1 summarizes the process of identifying the multi-fork join points (syncPoints) of a divide
and conquer method based on its associated tree-based representation. Basically, the nodes of the tree
represent the different scopes of the method, this is, the root scope given by the method itself and the
scopes resulting from container sentences (e.g. conditionals, loops, etc). The arcs of the three represent the
relationships between the scopes.

The algorithm traverses the sentences of the tree in a depth-first fashion looking for definitions and
uses of parallel variables. To this end, the algorithm maintains a map with the parallel variables and their
associated state per scope. Possible states are SAFE (up to the current analyzed instruction the variable
is safe to use; a synchronization barrier is not needed) and UNSAFE (unsafe to use; a barrier from where
the variable is defined is needed). The algorithm takes into account the scope at which parallel variables
are defined and used, this is, it computes the state of each variable according to the state it has within the
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(scope) node of the tree where the variable is read and the state of the same variable within the ancestors
of that node. The algorithm uses several helper functions, which are listed and summarized in Table 1.

Table 1: Helper functions of the algorithm for identifying multi-fork join points

Signature Functionality

isParallelVar

(aSentence)

Checks whetheraSentencereferences a parallel variable. In such a case, the variable

name within the method is returned.

getScope

(aSentence)

Returns the scope to whichaSentencebelongs. Clearly, sentences belong to one scope

only; if a parent scopeSP has a child scopeSc, a sentence ofSc does not belong toSP.

beingUsed

(varName,aSentence)

Checks whether thevarNameparallel variable is being read. Analogously,

beingDefined checks whether a parallel variable is assigned the result ofa recursive call.

For container sentences, both functions check whether the variable is accessed in the

header of the sentence, but not in the body.

getFirstState

(varName,scope)

Traverses the scope tree starting from the node representedby scopeupwards looking

for the occurrence of a parallel variablevarNamein any of the variable maps of these

scopes. When the variable is first found, the function returns the state it has in the

variable map of the scope it was first encountered.

syncVarsInScope

(scope)

Sets to SAFE the state of all parallel variables contained inscope(encountered up to the

current analyzed sentence) as well as the ancestors ofscope. The resulting pairs

<varName,SAFE> are only put into the map ofscope.

desyncVarUpToRoot

(varName,scope)

Sets the state of a specific parallel variable to UNSAFE from agiven scope up to the

root scope (i.e. the method). This means that the variable becomes UNSAFE inscope

as well as all its ancestor scopes.

Let us apply the algorithm to the sequential method shown below. The method contains one non--
parallel variable (nonParallelVar) and two parallel variables (varA andvarB). The points in which a call to a
multi-join barrier are needed are explicitly indicated in the source code. Figure 3 depicts the state ofvarA
andvarB within their associated scopes as the analysis progresses.It is worth mentioning that the method
does not implement any useful computation but it will be enough for illustration purposes.

1 public String recursiveMethod() { // Scope 1
2 ...
3 boolean nonParallelVar = (Math.random() > 0.5) ? true : false;
4 String varA = recursiveMethod();
5 if (!nonParallelVar) { // Scope 1.1
6 String varB = recursiveMethod();
7 if (Math.random() > 0.5) { // Block 1.1.1
8 // A multi-fork join should be issued here
9 System.out.println(varB);
10 varA = recursiveMethod();
11 }
12 }
13 if (nonParallelVar) { // Scope 1.2
14 // A multi-fork join should be issued here too
15 System.out.println(varA);
16 }
17 ...
18 }

The algorithm iterates the instructions up to line 4, in which varA is defined. Hence,varA becomes UN-
SAFE in scope 1 (see Figure 3 (a)). At line 6,varB is defined within scope 1.1, which makes it UNSAFE
in scope 1.1 and its parent scope 1 (see Figure 3 (b)). At line 9, varB is used within scope 1.1.1. Its first
occurrence is encountered in the parent of scope 1.1.1 as UNSAFE. All parallel variables in the variable
maps of scope 1.1.1 (none) and its ancestors (varA andvarB) are set to SAFE in scope 1.1.1, and the line
right before line 9 is regarded as a multi-fork join point (Figure 3 (c)). At line 10, another definition ofvarA
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1.1

1.1.1

1.2
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{<varA,UNSAFE>}

(a)

1

1.1

1.1.1

1.2

syncPoints=[]

{<varA,UNSAFE>,

<varB,UNSAFE>}

{<varB,UNSAFE>}

(b)

1

1.1

1.1.1

1.2

syncPoints=[line 9]

{<varA,UNSAFE>,

<varB,UNSAFE>}

{<varB,UNSAFE>}

{<varA,SAFE>,

<varB,SAFE>}

(c)

1

1.1

1.1.1

1.2

syncPoints=[line 9]

{<varA,UNSAFE>,

<varB,UNSAFE>}

{<varA,UNSAFE>,

<varB,SAFE>}

{<varA,UNSAFE>,

<varB,UNSAFE>}

(d)

1

1.1

1.1.1

1.2

syncPoints=[line 9, line 15]

{<varA,UNSAFE>,

<varB,UNSAFE>}

{<varA,UNSAFE>,

<varB,SAFE>}

{<varA,UNSAFE>,

<varB,UNSAFE>}
{<varA,SAFE>,

<varB,SAFE>}

(e)

Figure 3: Contents of the variable maps of the example methodin the different steps of the algorithm

is found, which makes the variable UNSAFE in scopes 1.1.1, 1.1 and 1 (Figure 3 (d)). At line 15,varA is
being used within scope 1.2. According to its parent scope 1,the first state of this variable is UNSAFE.
This causes to set to SAFE in scope 1.2 all variables found in the maps of scope 1.2 (none) and its ancestors
(varA andvarB), and to regard the line right before line 15 as a multi-fork join point (Figure 3 (e)).

Inserting a call to a multi-fork join primitive right beforethe spotted pointssyncPoints(i.e. lines 9
and 15) provides proper synchronization and guarantees theoperational semantics of the sequential code.
As shown, the algorithm minimizes the identified points thatare passed on to the code generator of Sec-
tion 3.3 to gain efficiency. Similarly, the algorithm performs a best-effort analysis to place such points
optimally . A common case of optimization is when inserting synchronization within loops. For example,
in the following code:

int[] varA = recursiveMethod(...);
...
for (int i=0; i < varA.length; i++){

System.out.println(varA[i]);
}

, the line of the first use of the parallel variable (i.e. when the ith element ofvarA is accessed) is not
considered as the multi-fork join point –as the above unoptimized algorithm would do– but the line corre-
sponding to the header of the loop. In consequence, the resulting code performs only one invocation to the
join primitive instead ofvarA.length calls.

3.2. Step 2: Policy injection

In a broad sense, policies represent a mechanism that allowsdevelopers to express, separately from
the application logic, customized strategies for applications to achieve better performance [62]. Policies
have been widely employed in diverse areas such as mobile distributed computing [66], migratory Web
agents [62], and Grid development [64]. Conceptually, a policy implements a user-specified rule that gov-
erns the behavior of an application within the underlying execution environment. Unlike approaches aimed
at automatically tuning parallel applications [61, 67, 7],policies are oriented towards providing a flexible
programmatic support to specify tuning decisions. Particularly, EasyFJP provides a policy-inspired tuning
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support that let developers to introduce common FJP optimization heuristics without altering application
code by means of special Java classes.

Policies considered by EasyFJP fall into two types: application-specific and environment-specific. The
former represents tuning decisions that are more affected by the algorithmic nature of the application being
parallelized, whereas the latter represents optimizationrules that aim at adjusting the level of parallelism
of an application according to the capabilities of the environment where the application executes. On one
hand, application-specific policies model the notions of threshold and memoization. On the other hand,
environment-specific policies use runtime information provided by the environment (CPU and memory
availability, network conditions, topology, etc.) to maketheir decisions. There is not, however, a clear
line between these two types of policies as programmers can implement hybrid policies that combine
threshold and/or memoization techniques together with environmental conditions. For example, the amount
of memoized results for a memory-intensive application maybe controlled by also taking into account the
available memory in the executing cluster.

Threshold policies are employed to avoid forking a method more than needed and otherwise execute the
method sequentially. For example, in the Fibonacci application, we may want to put a limit on the number
of forks that are injected into the runtime system dependingon the depth of the execution tree associated
to the method at runtime. This decision is indicated to EasyFJP by associating the following policy to the
fib method:

import easyFJP.policy.Policy;
import easyFJP.policy.ExecutionContext;

public class MyThresholdPolicy implements Policy{
static final int THRESHOLD = 10;
public boolean shouldFork (ExecutionContext ctx){
return (ctx.getCurrentDepth() <= THRESHOLD );

}
}

The code implements thePolicy interface from the EasyFJP policy API and allows each execution of fib to
be forked provided the current depth of the execution tree associated to the method is below 10. This depth
is encapsulated in anExecutionContext object, which additionally provides operations to furtherintrospect
the execution of the application, namely obtaining the values of method parameters. For example, for a
recursive binary search method over an array, a similar policy may be associated to restrict parallelism
depending on the size of the input array. Assuming the signature of the method issearch(int element, int[]
array), the policy would be:

...
public boolean shouldFork (ExecutionContext ctx){

int[] array = (int[])ctx.getArgument (1); // search(element,array)
return (array.length > MIN_ARRAY_SIZE);

}
...

The above code uses the execution context object to access the value of the second argument of each call
to search to decide whether the size of the received array is large enough to justify a fork. Now, recall the
structure of the configuration file that specifies the policies for an application. Then, for example, to attach
the above threshold policy to the Fibonacci application, wemust add the following declaration within the
policies element:

...
<policies >

<policy id="myThreshold " class="MyThresholdPolicy">
<!-- Instances of the same policy can be attached

to methods from different components -->
<actUpon componentId ="Fibonacci" methodId="fib"/>

</policy>
</policies>
...

Memoization is another common optimization technique usedto gain efficiency by having applications to
avoid forking a method in case its associated result has beenalready computed and stored into a cache. In
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this sense, in our Fibonacci application, we may want to avoid recalculating previously computed results,
as the nature of the application makes subcomputations to overlap. From a programmer’s perspective,
coding a memoization policy requires deciding whether to fork or not, and in the latter case to identify the
particular result that should be reused:

import easyFJP.policy.MemoizationPolicy;
import easyFJP.policy.ExecutionContext;

public class MyMemoizationPolicy implements MemoizationPolicy{
public boolean shouldFork (ExecutionContext ctx){
long n = (Long)ctx.getArgument (0); // fib(n)
return (n % 2 == 0);

}
public String buildResultKey(ExecutionContext ctx){
return String.valueOf(ctx.getArgument (0));

}
}

The policy indicates EasyFJP to fork (and hence to ignore thecontents of the cache) whenever the argument
of a call tofib is an even number. Moreover, whenevershouldFork evaluates tofalse, EasyFJP attempts to
reuse the value from the cache with the key as indicated bybuildResultKey. However, ifshouldFork evalu-
ates tofalse but the key is invalid and leads to a cache miss, the normal execution (in parallel) takes place.
Depending on the target execution environment for the application (e.g. multi-core, cluster), memoization
works by using a local in-memory or a distributed cache. For example, our current distributed bindings
rely on spymemcached [70], a general-purpose and very efficient distributed object caching system writ-
ten in Java. We expect, however, to extend our implementation to support other caching technologies (see
Section 4).

It is worth noting that we have explicitly implementedMyMemoizationPolicy so that the application
does not reuseeverypreviously computed result. This may not seem to be, in principle, a good tuning rule.
However, memoization strategies like the one implemented by this policy, in which only a subset of already
calculated results are reused, is useful in parallel optimization problems where creating a new fork for a
subproblem may yield a better solution than reusing a similar, previously computed suboptimal result [2].

Moreover, for coding environment-specific policies, EasyFJP provides a well-defined interface to useful
system metrics. To this end, EasyFJP provides two profiling modules: a local one, which is intended to
be used when employing EasyFJP in conjunction with SMP parallel libraries, and a distributed one, which
is useful when implementing policies for cluster and Grid applications. Within a single machine, metrics
are gathered by using JMX [76], a platform-independent API for obtaining runtime information such as
CPU load, available threads and memory, disk usage, etc. Moreover, to return cluster-wide values for the
above metrics, EasyFJP implements a distributed monitoring service that predicts the global performance
of both network and computational resources by using regression models and communicates these values
via GMAC [40], a lightweight P2P protocol that provides efficient multicast services across distributed
environments. With this support, users are able for exampleto query for theoverall cluster CPU load or
the amount of parallel runtime tasks under execution. In this light, by using the profiling API, a developer
may code for instance a policy to relate the amount of parallelism of an application as an inverse function
of the average CPU availability.

3.3. Step 3: Parallel code generation

Based on the synchronization points obtained from the source code analysis carried out at Step 1, the
XML configuration of the input application, and the parallellibrary targeted by the developer, EasyFJP
generates the final parallel application. To this end, for each class of the sequential application being
parallelized, EasyFJP creates apeer class whose source code is derived from the sequential classbut
modified so that the peer exploits the target parallel library. Then, ordinary classes and created peers are
seamlessly “wired” at load time by employing a simple bytecode rewriting technique. This essentially aims
at avoiding modifying the source code of the original classes while supporting parallelism for them through
those peers.

Basically, this technique takes advantage of thejava.lang.instrument package, a built-in Java API that
defines hooks for modifying classes at load time. The packageis intended to be used through special
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libraries called Java agents, this is, pluggable user libraries –JAR (Java ARchive) files– that customize the
class loading process. Java agents are accessed by the JVM every time an application requests to load a
class. In our case, the classes that are subject to modification are the ones specified by the user as targets
for parallelization in the corresponding XML configuration.

When rewriting a sequential class for such purposes, EasyFJP replaces the body of its divide and con-
quer method with a stub that delegates the execution of the method to the parallel counterpart in the associ-
ated peer. Therefore, for example, thefib method of the Fibonacci application of Section 3 is dynamically
rewritten as:

public class Fibonacci implements Serializable{
...
public long fib(long n){

Fibonacci_Peer peer = new Fibonacci_Peer();
copyProperties(this, peer);
// Assuming we are targeting Satin
ExecutorManager manager = ExecutorManagerFactory.getExecutor ("Satin");
return manager.execute(peer, "fib", new Object[]{n});

}
...

}

, so that its computation is performed in parallel by the peer(Fibonacci_Peer), whose properties are in-
stantiated via Java reflection from the running sequential object. Basically, copying properties is a generic
procedure that is possible thanks to the uniformity provided by following the getters/setters convention
of the JavaBean specification. Finally,ExecutorManager represents the EasyFJP class API that commu-
nicates with the middleware-level support that executes peers by performing the corresponding parallel
library-specific initialization and disposal tasks. To generate peers, EasyFJP relies on builders, which are
library-dependent components that know how to properly incorporate fork and join calls into sequential
code. In addition, builders inject into peers the glue code to interact with the policies declared for the ap-
plication. Let us illustrate all these transformations based on the Satin library, for which EasyFJP provides
a builder.

To manually use Satin, divide and conquer methods considered for parallel execution must be identified
through amarker interfacethat includes their exact signature and extends theSpawnableinterface. The
class containing parallel methods extends theSatinObjectclass and implements the marker interface. In
addition, the invocations to parallel methods are stored inlocal variables. After specifying parallel methods
and inserting synchronization calls into the application code, the developer must feed a compiled version of
the application to the Satin compiler that translates, through Java bytecode instrumentation, each invocation
to a parallel method into a Satin runtime task, so that a fork is issued at runtime. In a broad sense, bytecode
instrumentation is the task of transforming the compiled version of a program to alter its semantics [28].

The purpose of the Satin builder is to automatically reproduce these tasks. The Satin builder generates
the marker interface based on the operations specified within the XML configuration file of the application,
and makes the peer extend and implement the required API classes and interfaces. Besides, the builder
inserts appropriate calls tosync (the multi-fork join primitive of Satin) based on the outputof the source
code analysis of Step 1. Passing the source code of our example Fibonacci application through the builder
(without taking into account policies) results in the generation of the following code:

1 // Marker interface
2 public interface Fibonacci_Marker extends satin.Spawnable{
3 public long fib(long n, long depth);
4 }
5 // Peer
6 public class Fibonacci_Peer extends satin.SatinObject
7 implements Fibonacci_Marker , Serializable{
8 // Properties are copied "as is" from the original class
9 ...
10 public long fib(long n){
11 return fib(n, 0);
12 }
13 // The Satin-enabled method, according to lines 2-4
14 public long fib(long n, int depth){
15 ...
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16 f1 = fib(n - 1, depth + 1);
17 f2 = fib(n - 2, depth + 1);
18 // The Satin multi-fork join primitive
19 super.sync();
20 return f1 + f2;
21 }
22 ...
23 }

A new method (lines 10-12) is added in order to invoke the actual parallel method (lines 14-21), whose code
has been derived from the originalfib method but modified to include Satin synchronization (line 19), and to
keep track of the depth of the execution tree at runtime. Thisinformation, together with the current method
parameters are encapsulated in anExecutionContext object, which is used to feed policies by further mod-
ifying the source code of the newly generated parallel method. Figure 4 details the code transformations
performed to support threshold policies (left) and memoization policies (right). Basically, before executing

public long fib(long n, int depth){
ExecutionContext ctx =

new ExecutionContext();
ctx.setCurrentDepth(depth);
ctx.addArgument (n);
if (PolicyManager.fork(pId,ctx)){

...
f1 = fib(n - 1, depth + 1);
f2 = fib(n - 2, depth + 1);
super.sync();
return f1 + f2;

}
return fibSeq(n);

}

public long fib(long n, int depth){
ExecutionContext ctx = new ExecutionContext();
ctx.setCurrentDepth(depth);
ctx.addArgument (n);
if (!PolicyManager.fork(pId,ctx)){

MemoizationPolicy mPolicy =
PolicyManager.getMPolicy (pId);

Object entry = CacheManager.get(
mPolicy.buildResultKey(ctx));

if (entry != null)
return (Long)entry;

}
...
f1 = fib(n - 1, depth + 1);
f2 = fib(n - 2, depth + 1);
super.sync();
MemoizationPolicy mPolicy =

PolicyManager.getMPolicy (pId);
CacheManager.put(

mPolicy.buildResultKey(ctx),f1+f2);
return f1 + f2;

}

Figure 4: Source code transformations for injecting threshold policies (left) and memoization policies
(right)

the target method in parallel, its associated policy (identified in the example aspId and extracted from the
XML configuration of the application) is evaluated to test whether the execution of the method should be
forked or executed sequentially instead. In this sense, peers keep an unmodified version of the original (se-
quential) divide and conquer methods, this is,fibSeq in our example (see Figure 4 (left)). From the point
of view of source code generation, this mechanism shares many similarities with the two-clones strategy of
the Cilk multithreaded language [36]. Roughly, based on explicit method-level directives for forking and
coordinating methods, Cilk generates two versions (clones) of the method(s) being parallelized: a sequen-
tial one, which is executed when serial semantics are sufficient, and a parallel one, which contains calls to
the Cilk API to exploit parallelism. However, from a development standpoint, EasyFJP does not rely on
explicit code directives, but employs implicit parallelism and automatic techniques for spotting fork and
joint points. Besides, EasyFJP is oriented towards generation of code for various target parallel libraries.

Furthermore, the code introduced to handle memoization policies uses a cache to store computed re-
sults. This latter behavior is transparently achieved by putting extra code right before each return sentence
within a parallel method in order to update the contents of the cache. It is worth mentioning that EasyFJP
also includes source code transformations to allow threshold and memoization techniques to simultane-
ously control the same parallel method. However, they have been omitted from the explanation for the sake
of simplicity.
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3.4. EasyFJP: Applicability guidelines and related issues
Up to this point, we have described the parallelization and tuning process promoted by EasyFJP to

parallelize sequential codes, which addresses the problems exhibited by current approaches to parallelism
that usually assume expertise from developers in parallel technologies. However, determining whether a
user code will effectively benefit from using EasyFJP depends on a number of issues that users should have
in mind. This section explains what users should expect fromour approach and what not.

One one hand, EasyFJP is designed to parallelize applications that follow the JavaBeans component
specification –an extremely popular way to structure classes among Java developers– and obey some simple
coding conventions. This positively impacts on the applicability of EasyFJP, and do not affect programma-
bility, as the code structure expected by EasyFJP can be obtained by using the refactoring tools of modern
Java IDEs. However, it is worth pointing out that feeding EasyFJP with a properly structured code does not
necessarily mean it will benefit from our parallelization process or even the process will be applicable.

Regarding the first issue, the choice of parallelizing an application (or an individual component op-
eration) depends on whether the operation is suitable for being executed in parallel. In other words, the
potential performance gains in parallelizing an application is subject to its computational requirements,
which is a design factor that must be first addressed by the user. EasyFJP automates the process of gener-
ating a parallel, tunable application “skeleton”, but doesnot aim at automatically determining the portions
of an application suitable for being parallelized. Furthermore, the choice of targeting a specific parallel
backend is mostly subject to availability factors, this is,whether an execution environment running the
desired parallel library is available or not. For example, anovice user would likely target a parallel library
he knows is installed on a particular hardware, rather than the other way around.

On the other hand, the policy support discussed so far is not designed to automate application tuning,
but to provide a customizable framework that captures common optimization patterns in FJP applications.
Again, whether these patterns benefit a particular parallelized application depends on its nature. For exam-
ple, a subset of FJP applications can exploit caching techniques.

An issue that may affect the applicability of EasyFJP is concerned with compatibility and interrelations
with commonly-used techniques and libraries, such as multithreading and AOP. In a broad sense, these
techniques literally alter the ordinary semantics of a sequential application. Particularly, multithreading
makes deterministic sequential code non-deterministic [57], while AOP modifies the normal control flow
of applications through the implicit use of artifacts containing aspect-specific behavior. Therefore, when
using EasyFJP to parallelize such applications, various compatibility problems may arise depending on the
backend selected for parallelization. Note that this is notan inherent limitation of EasyFJP, but of the target
backend. Thus, before parallelizing an application with EasyFJP, a prior analysis should be carried out to
determine whether the target parallel runtime is compatible with the libraries the application relies on.

Finally, EasyFJP applications do not differ from the pack interms of debuggability, in which parallel
programming has been historically conceived as a notoriously hard task [65]. Specifically, when not using
policies, debugging EasyFJP applications that target certain backends should be as difficult as debugging
the counterparts obtained by manually using those backends. On the other hand, policies may make de-
bugging more complex as they change the operational semantics of a program. Nevertheless, this problem
is also shared by approaches to parallel development based on separating the functional behavior of a pro-
gram from its parallel concerns, such as those tools that rely on AOP techniques or rules to parallelize/tune
applications. Interestingly, both these approaches and EasyFJP arguably ease the task of testing the algo-
rithmic correctness of programs prior to parallelization,which is more difficult to achieve with intrusive
parallelization tools.

4. Prototype implementation

We have developed a proof-of-concept implementation of theEasyFJP approach to materialize the
three steps described in the previous section. Our tool performs the initial code analysis over an in-memory
tree structure derived from parsing an XML version of the sequential user application obtained through
java2xml [48], a library for converting Java source to XML and viceversa. We are nevertheless working
on porting the analyzer to Eclipse by implementing a plug-in. Eclipse provides an API to manipulate the
abstract syntax tree of Java classes at a very deep level of detail. Targeting Eclipse will make our tool more
attractive to Java developers and therefore will facilitate its adoption.
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As EasyFJP employs the agent support of Java to connect ordinary classes to their generated parallel
counterpart (i.e. peers), the developer must enable the-javaagent JVM flag upon executing the applica-
tion. This is, the startup command to execute the main application class must include-javaagent:easyFJP-
agent.jar=<config-file>, whereeasyFJP-agent.jar is the implementation of the EasyFJP agent that rewrites
sequential classes based on the XML configuration specified in config-file. Within the agent, class trans-
formations are performed by using Javassist [22], a high-level library for dynamically instrumenting byte-
codes.

As explained earlier, EasyFJP currently provides parallelcode generation capabilities that target the
Satin platform, which offers efficient scheduling algorithms to parallelize ordinary divide and conquer
applications on local and wide-area clusters. However, we are adapting our ideas to target Doug Lea’s
framework, an API for programming concurrent SMP applications, and GridGain, a platform for develop-
ing master-worker applications on LANs and WANs. Basically, the former exposes an API to parallelize
applications hiding many low-level details related to parallelism such as thread creation and synchroniza-
tion from the programmer. Specifically, the API contains classes to manage thread pools, fork subtasks
and wait for asynchronous results by exploiting the future object synchronization pattern. For example, the
Doug Lea’s framework version of the Fibonacci application would be:

1 import java.util.concurrent .Callable;
2 import java.util.concurrent .ExecutorService;
3 import java.util.concurrent .Future;
4 public class Fibonacci implements Callable<Long >{
5 private long n;
6 private ExecutorService pool;
7 public Fibonacci(long n, ExecutorService pool){
8 this.n = n;
9 this.pool = pool;
10 }
11 public Long call(){
12 return fib(this.n);
13 }
14 public Long fib(long n){
15 if (n < 2)
16 return new Long(n);
17 Future <Long> f1 = pool.submit(new Fibonacci (n - 1, pool));
18 Future <Long> f2 = pool.submit(new Fibonacci (n - 2, pool));
19 return f1.get() + f2.get();
20 }
21 }

The example employs an instance of theExecutorService API class representing a pool of threads (lines
6-7) to asynchronously execute the recursive calls tofib in parallel. Since the pool internally maintains sev-
eral threads, this code would automatically exploit SMP machines. Note that this framework implements
an approach to synchronization based on a single-fork join primitive. In the above example, the points in
which the application must wait for the parallel results of forked tasks are the accesses to the value off1
and f2 at line 19. Furthermore, the GridGain platform builds upon this API, but supports the execution
of such forked tasks on clusters. GridGain is also able to exploit SMP machines. In this sense, the two
builders for these backends rely on the same generic heuristic for synchronization, which basically replaces
each recursive call in the (sequential) input code by a call to the correspondingCallable object in the paral-
lelized code, and also translates the places of the originalapplication that access to subresults (in our case
line 19) by using the associated future objects.

Regarding the EasyFJP policy framework, we have implemented the distributed caching support by
using spymemcached [70], a Java client for memcached [32], apopular high-performance and distributed
object caching backend. Nevertheless, we have designed theprototype of EasyFJP so that other distributed
caching systems can be easily plugged. In this sense, alternatives include the Terracotta [80] object clus-
tering platform, and a caching service on top of our GMAC P2P protocol [40], which is also used for
implementing the monitoring service for collecting systemmetrics in EasyFJP.
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5. Experimental evaluation

In this section, we describe the experiments that were performed to evaluate the practical soundness of
EasyFJP. We evaluated two essential aspects of our approach: we assessed the effectiveness of its generic
heuristic for inserting synchronization barriers and we quantified the benefits and potential overheads re-
garding the policy support of EasyFJP. In addition, to provide a down-to-earth evaluation of EasyFJP, we
also performed the parallelization of a real-world application. Basically, Sections 5.1 and 5.2 describe the
evaluations of EasyFJP using small to moderate computational granularities, whereas Section 5.3 reports
experiments with large task granularities.

The first evaluation was performed by running EasyFJP, targeting the Satin parallel library, and pure
Satin versions of a number of CPU-intensive classic divide and conquer applications on a local cluster and
a wide-area cluster. As we wanted to accurately test the effects of our multi-fork join insertion techniques
in the performance of the test applications in these two environments, we temporarily disabled the injection
of the code for supporting policies illustrated in Figure 4.These experiments are reported in Section 5.1.

In a second round of tests, we enabled the injection of policycode to quantify the incidence as well as
the effectiveness of the EasyFJP policy support for two fork-intensive benchmark applications when using
both threshold and memoization policies. These experiments are presented in Section 5.2, and were run on
a local cluster to better evaluate the policy layer.

Finally, the third evaluation involved the parallelization via both EasyFJP and Satin of a sequential
implementation of a sequence alignment application, a common problem in the area of bioinformatics.
Roughly, sequence alignment is the process of comparing DNAor protein sequences to find similarities.
This evaluation is reported in Section 5.3.

It is worth noting that it is out of the scope of this paper to evaluate the performance of the distributed
monitoring service for environment-specific policies. A rigorous evaluation of this support in terms of both
the effectiveness of this kind of policies and the efficiencyof its underlying GMAC protocol can be found
in [64] and [40], respectively.

5.1. Evaluation of the heuristic for inserting synchronization

This evaluation involved the execution of five CPU-intensive applications, which for the sake of fairness
were obtained from the Satin project [84]. To obtain the EasyFJP versions of these applications, we first
removed from their source code any sentence related to parallelism and/or application tuning, to derive
the sequential divide and conquer counterparts of the applications. Then, we used the EasyFJP binding to
Satin to obtain the parallel implementations of the sequential codes, but without including API code for
supporting policies. Table 2 summarizes the applications and the parameters used in the experiments.

To run the tests, we used a cluster of 15 machines running Mandriva Linux 2009.0, Java 5 and Satin 2.1
connected through a 100 Mbps LAN. We used 8 single core machines with a 2.80 MHz CPU and 1.25 MB
of RAM, and 7 single core machines with a 3 MHz CPU and 1.5 MB of RAM. In spite of that, as discussed
in Section 4, EasyFJP targets multi-core parallel libraries, we used single-core machines in the experiments
since Satin is not designed to directly exploit multi-core machines. Figure 5 shows the average execution
time for 25 runs of these applications. In all cases, deviations were below 5%. Despite being an acceptable
deviation when experimenting on wide area Grids, this percentage is rather high for a LAN-based cluster.
The cause of this effect is that Satin –and thus the EasyFJP and pure Satin applications– relies on a random
task stealing algorithm.

EasyFJP performed in a very competitive way compared to Satin, despite the fact that EasyFJP em-
ploys an heuristic algorithm for inserting synchronization and introduces some technological noise, which
intuitively should translate into performance overhead. Basically, this noise is caused by the Java agent
that wires ordinary application and peers together and the library-dependent executor objects that handle
the execution of parallel methods. For 3 out of 5 test applications (PF, Cov, MM), EasyFJP introduced
performance gains with respect to Satin, which could be explained in part by the random nature of the
Satin scheduler, the differences between the number of calls tosync and the places of the application code
in which these calls are located. Naturally, these differences stem from the fact that the Satin versions of
the applications were parallelized and therefore providedwith synchronization by hand, while the EasyFJP
counterparts were parallelized by applying our heuristic on the sequential recursive codes derived from the
pure Satin applications. However, our goal is not to outperform existing parallel libraries, but simplifying
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Table 2: Test applications used for evaluating the heuristic for identifying multi-fork join points

Application Description Run size

Prime
factorization
(PF)

Splits an integerI into its prime factors. The
multiplication of these factors is equal toI

I = 15,576,890,767

The set
covering
problem (Cov)

Finds a minimal number of subsets from a list of
setsL which covers all elements withinL. The
problem takes as a parameter the size ofL

List of 33 sets with
random elements

The knapsack
problem (KS)

Finds a set of items, each with a weightW and a
valueV, so that the total value is maximal, while not
exceeding a fixed weight limit. The problem receives
as a parameter the initial number of items

A list of 32 items
with random weights
and values

Matrix
multiplication
(MM)

Implements the popular Strassen’s algorithm A matrix of
3,072x3,072 with
random cell values

Adaptive
numerical
integration (Ad)

Approximates a functionf (x) within a given interval
(a,b) by replacing its curve by a straight line
from (a, f (a)) to (b, f (b)). The application receives
as parametersf (x), a, b, and anepsilonthat controls
the mechanics of the algorithm

f (x) = 0.1∗x∗sin(x),
a = 0, b = 250,000,
epsilon= 0.000001

their usage without incurring in an excessive penalty in terms of performance. This experiment shows that
EasyFJP facilitates the construction of Satin applications, while stays competitive compared to directly
employing Satin, which is explained by the effectiveness ofour generic heuristic.

Later, we executed a subset of the above applications on a wide-area cluster, which was established by
using WANem [79], a software for simulating WAN conditions over a LAN. We simulated 3 Internet--
connected local clustersC1, C2 andC3 by using 4, 5 and 6 of the machines of the local cluster, respectively.
Each WAN link was a T1 connection with a round-trip latency of200 ms and a jitter of 10 ms. Both the
EasyFJP and the pure Satin variants of the applications wereconfigured to use the Cluster-aware Random
Stealing (CRS) [84] algorithm of the Satin framework, instead of its default Random Stealing algorithm.
With CRS, when a machine becomes idle, it attempts to steal anunfinished task from both remote or
local machines, but intra-cluster steals have a greater priority than wide-area steals, saving bandwidth and
minimizing WAN latencies. Furthermore, the computation tonetwork data transfer ratio ofMM in this
setting was very small, which severely and negatively affected processor usage. Therefore, we decided to
left the application out of the analysis since it did not experienced a CPU-bound behavior in this testbed.
Table 3 summarizes the obtained results for both the local and the wide-area clusters.

Figure 6 depicts the average execution time for 40 runs of theselected applications. In all cases,
deviations were around 11%, which as explained before is mainly due to the random nature of the Satin
scheduler plus the fact that we used WAN links with jitter to connect the local clusters. As shown, the
EasyFJP applications performed better than their respective Satin versions. For the case ofKS andAd,
and unlike the previous LAN experiment, EasyFJP outperformed Satin. Moreover, for the case ofPF and
Cov, the performance gains introduced by EasyFJP were even greater than the gains obtained for these
applications in the LAN setting (1-2% versus 5-6%). Hence, it seems that executing these four applications
in the wide-area cluster accentuated the differences regarding the way synchronization is added when
using both tools. However, this trend should be further corroborated. All in all, these results show that the
EasyFJP applications performed very well, which aligns with the promissory results obtained in the LAN
environment.

As a complement, Figure 7 depicts the speedup factor achieved by the Satin and EasyFJP variants
when executing the test applications in the local-area cluster (left) and the wide-area cluster (right). This
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Figure 5: Performance of the test applications in the local cluster

Table 3: Evaluation of the heuristic for inserting synchronization: Performance results
Application Satin EasyFJP

Average execution time
(seconds)

Average execution time
(seconds)

Local
cluster

Wide-area
cluster

Local
cluster

Wide-area
cluster

Prime factorization
(PF)

98.4 129.0 97.8 122.4

The set covering
problem (Cov)

107.4 138.0 105.0 129.6

The knapsack
problem (KS)

84.0 117.0 84.6 111.6

Matrix multiplication
(MM)

69.6 N/A 67.8 N/A

Adaptive numerical
integration (Ad)

78.6 117.0 78.6 102.6

factor was computed asTs/Tp, whereTs andTp are the times required to execute the sequential and parallel
versions of these applications, respectively. Basically,to computeTs, the sequential codes where run on the
machine of the experimental setting with the best hardware capabilities in terms of CPU and memory. The
figures also depict the theoretical maximum speedup factor,given by the number of available machines
in either experimental settings, this is, fifteen. Moreover, note that all the applications executed in the
local-area cluster achieved important speedups except forMM, which is due to its low computation to data
transfer ratio with respect to the rest of the applications.Overall, the implications of the obtained speedups
are twofold. First, the original applications certainly benefited from being parallelized, which makes them
representative to provide the basis for a significant evaluation of our synchronization heuristics. Second,
EasyFJP achieved speedups levels that are competitive to those achieved by Satin in both settings.

These positive results are consistent with the main goal of the synchronization techniques of EasyFJP,
which is to automatically incorporate synchronization as similar as a human programmer would do. It is
worth emphasizing that we cannot conclude from the tests that our heuristic is better than that of Satin.
Specifically, despite the fact that EasyFJP outperformed Satin in the WAN testbed for the above bench-
marks, Satin and EasyFJP performance were similar for the sequence alignment application of Section 5.3
in the same setting. In this sense, results suggest that evenwhen not fully exploiting policies, applica-
tions parallelized via our automatic synchronization techniques arecompetitivein terms of performance
compared to the manual approach to parallelism and synchronization followed by Satin.
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Figure 6: Performance of the test applications in the wide-area cluster
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Figure 7: Speedup

5.2. Evaluation of the policy support

The second part of the evaluation involved the execution of divide and conquer versions of two bench-
mark applications, namely theNthFibonacci and the binomial coefficient (also known as “N overK”). Sim-
ilarly to the experiments reported in the previous subsection, we processed the source codes with EasyFJP
by enabling the injection of code for supporting policies, and we coded alternative parallel versions with
Satin. Then, we derived variants of the EasyFJP and Satin implementations by introducing threshold and
memoization. Roughly, the purpose of the evaluation was to assess the overhead and effectiveness of tuning
applications through policies versus using the same optimization rules within the application code, which
was the case of the Satin versions. For the Fibonacci application we usedN = 42, whereas for the binomial
coefficient application we usedN = 33 (K was set toN/2). Note that with these arguments, the number
of tasks generated by the applications at runtime was huge, thus it was a rather challenging scenario to
EasyFJP.

First, we obtained the Satin versions of the Fibonacci and N over K applications by manually paralleliz-
ing their sequential recursive codes, and then we derived four variants of the parallelized codes by including
threshold optimizations so as to compute in parallel the subtasks associated to any inputN providedN is
greater or equal to some given threshold. Furthermore, we obtained two more variants by using a simple
memoization strategy that stored the result of a subtask provided the associatedN is below some limit (for
consistency purposes, we employed similar limits to the threshold-based variants). Memoization in Satin
was implemented by means ofshared objects[83], a mechanism provided by Satin to transparently share
and update the state of a Java object (in this case a cache) among the distributed parallel computations of
an executing application. These variants were carefully designed and implemented to perform as few write
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operations on the shared object as possible, which are the operations broadcasted by Satin and thus the
ones that generate network traffic.

Similarly, based on the sequential Fibonacci and N over K applications, we generated the correspond-
ing EasyFJP variants. Basically, the unoptimized variantsused a policy that always forks subtasks, while
the rest of the variants implemented the above optimizationrules through the use of threshold and memo-
ization policies. Interestingly, this only involved configuring different policies for the two template parallel
applications that were first obtained via the EasyFJP code generator. Table 4 shows the number of source
code lines of the policy-based test applications after parallelizing the original sequential codes via both
Satin and EasyFJP. This can be used as a very rough estimationof the tuning effort in either cases. In order
to carry out a fair comparison, before taking metrics, the codes were transformed to a uniform formatting
standard, and Java import statements were optimized by employing the source code optimizing tools of the
Eclipse IDE. As shown in the Table, the unoptimized EasyFJP variants had more source code lines than
their corresponding unoptimized Satin variants because weenabled back the generation of instructions to
support policies. However, these instructions are injected into sequential codes automatically. The Table
also includes the code size of the optimized variants. The threshold-based EasyFJP variants had some more
lines than their Satin counterparts, but memoization required less source code in EasyFJP, since most of
the behavior for caching results is transparently managed at the framework level.

Table 4: Policy-based test applications: source code lines

Application Original

(sequential)

Satin EasyFJP

Unoptimized Threshold Memoization Unoptimized Threshold Memoization

Fibonacci 29 40 57 73 54 66 65

N over K 32 49 66 115 70 81 79

Table 5 shows the average execution time (in seconds) for 25 executions of the applications on the
local cluster described in the previous subsection under the same execution conditions. For each variant
(leftmost column), we considered three different executables by varying the granularity of the runtime
tasks:extra fine(i.e. the unoptimized/optimized parallel codes),fineandmedium. These two latter were
obtained by adding to these codes a fake counting loop up to two different numbers within the body of
the recursive methods. For the Satin and EasyFJP variants using medium granularity and thresholds, the
obtained execution times were slightly better or in some cases even worse than their associated unoptimized
variants. Nevertheless, for the sake of consistency, the threshold values used in those experiments were the
same as the extra fine-grained and fine-grained variants.

In addition, the Table shows the amount of runtime tasks generated by each variant of the test appli-
cations. For the case of the unoptimized applications and the variants using thresholds, the values were
independent of the tool and the execution. However, for the variants using memoization, the values varied
between the two tools and even between different executionsemploying the same tool, because under these
variants the amount of subtasks is subject to dynamic factors as a consequence of relying on two approaches
to distributed object sharing, this is, an object replication mechanism for the case of Satin shared objects,
and a spoke-hub object distribution scheme for the case of EasyFJP/memcached.

With respect to the resulting execution times, it can be observed from the Table that EasyFJP incurred
in some overheads compared to Satin for the executables withextra fine granularity. Basically, this is due
to the extremely small granularity (CPU requirements) of their parallel tasks, which in turn caused the
EasyFJP executables to spend more time asking whether to fork or not, than doing useful computations. In
other words, in this scenario, evaluating policies is more expensive than executing the associated subtasks
itself. Contrarily, for the Satin variants, deciding whether to fork or not was cheaper, since this behavior
was absent in the unoptimized applications and hardcoded inthe code of their optimized counterparts. In
this line, the amount of injected parallel tasks to the cluster per time unit was smaller for EasyFJP, which
caused cluster nodes to have less tasks available to executeat any given time, as evidenced by the low
percentage of task steals (i.e. amount of successful task steals over the amount of steal attempts).
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Table 5: Evaluation of the EasyFJP policy mechanism: Performance results
Application # of subtasks Satin EasyFJP

Average execution time
(seconds)

Average execution time
(seconds)

Extra
fine

Fine Medium Extra
fine

Fine Medium

Fibonacci
(unoptimized)

866,988,873 62.69 102.41 284.84 76.97 118.52 303.05

Fibonacci
(threshold=4)

331,160,281 24.60 71.19 276.40 30.01 76.31 280.48

Fibonacci
(threshold=5)

204,668,309 15.52 66.40 288.86 19.49 70.75 292.97

Fibonacci
(memoization)

Avg. Satin
(204,668,383);
Avg. EasyFJP
(204,668,315)

30.03 39.32 82.90 25.32 34.45 34.16

N over K
(unoptimized)

1,131,445,439 82.70 138.94 392.26 100.47 155.86 400.72

N over K
(threshold=5)

549,754,738 40.26 108.23 400.89 50.25 117.98 410.27

N over K
(threshold=6)

333,793,708 25.27 95.46 402.04 31.51 102.41 408.51

N over K
(memoization)

Avg. Satin
(530,365,082);
Avg. EasyFJP
(530,365,051)

71.57 96.43 211.17 59.92 84.07 83.40

However, the tests with the extra fine-grained variants of the applications served us as a basis for fur-
ther comparison, since FJP clearly benefits problems which can be split into several CPU-intensive but less
granular tasks. In this sense, Figure 8 shows the performance overhead (percentage) of the EasyFJP appli-
cations with respect to their Satin counterparts as the granularity of the runtime tasks slightly increases. The
Figure shows the results for the unoptimized variants and the variants using threshold policies. It can be
seen that the average percentage overhead decreased dramatically, as the performance penalty introduced
by the policy framework rapidly became small with respect tothe total execution time of the applications.
Besides, the overheads just involve performance penaltiesin the order of seconds for applications that take
few minutes to execute. Certainly, for typical CPU-intensive parallel applications, which usually comprise
a number of coarse-grained tasks that together take severalminutes or even hours to finish, the overheads
would intuitively be insignificant. This reasonable extrapolation suggests that developers can take ad-
vantage of the non-invasive nature of the policy mechanism and at the same time delivering competitive
performance for typical FJP applications.

Figure 9 shows the speedups introduced by the optimized variants (i.e. the ones using policies) of
the test applications with respect to their unoptimized parallel variants, computed according to the for-
mula Tu/Tpol, beingTu andTpol the time required to run the unoptimized and policy-based variants of
the Fibonacci and N over K applications, respectively. On one hand, for the variants using threshold-
based optimizations, the effectiveness of EasyFJP policies proved to be competitive (see Figure 9 (a) and
Figure 9 (b)). As explained before, some of the codes with medium granularity did not improve from em-
ploying threshold rules (i.e. the bars with speedup factor <1), because as the task granularity increases, the
performance gains that may result from avoiding forking tasks decrease. Nevertheless, the obtained results
show that the effectiveness levels achieved by EasyFJP threshold policies were similar to those achieved
by Satin. On the other hand, the EasyFJP variants based on memoization outperformed their respective
Satin counterparts (see Figure 9 (c) and Figure 9 (d)). Memoization in Satin was achieved through a shared
object, a built-in Satin mechanism by which parallel tasks were supplied with an up-to-date local copy of
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Figure 8: Performance overhead of the EasyFJP applicationswith respect to their Satin counterparts as the
task granularity increases

the results cache. Upon creating and forking subtasks, its parent task must pass on to them a pointer to the
shared object, which potentially involves moving through the network more state when subtasks are stolen
by remote nodes for execution. Alternatively, our current caching scheme uses a spoke-hub architecture, by
which cluster nodes maintain a local frontend (or level 1) cache in front of one or more backend (or level 2)
cache servers. In this way, communication between local andremote caches are performed only when a
miss occurs at a frontend cache. As depicted, in this experimental scenario, our caching support proved
to be more efficient than Satin shared objects, for the three granularities. However, the semi-centralized
nature of this support may lead to scalability issues when using larger clusters, for which Satin shared
objects are designed. As mentioned in Section 4, we are working on scalable distributed caching support
to address such problems.

Complementary, Figure 10 depicts the speedup factorTs/Tpol of the variants using policies with respect
to the sequential versions of the Fibonacci and N over K applications. Basically, for the variants based
on threshold policies, the obtained speedups confirm the discussed trend of the behavior of the policies
support illustrated in Figure 8, this is, the larger the granularity or computational size of the parallel tasks,
the less the negative effect of the policy framework in the execution times of the policy-based applications.
On the other hand, the EasyFJP applications using memoization policies significantly improved speedup
as task granularity increased while outperformed their Satin counterparts. In any case, the better-than--
ideal speedup factors obtained in some executions are explained by the well-known “super linear speedup”
effect that arises when paralleling a sequential program along with an extensive use of caching techniques
for avoiding recalculating subresults. The same effect is usually observed, for example, when performing
backtracking in parallel and dynamically allowing the resulting program to dynamically prune branches of
the initial exhaustive search space.
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Figure 9: Speedups of the optimized test applications with respect to their unoptimized parallel counterparts

5.3. A real-world example: Sequence alignment

The third evaluation involved the execution of an application for local pairwise sequence alignment3.
Broadly, this application represents a biological entity such as a gene in a computer-interpretable way (e.g.
strings of characters) and manipulates the resulting representation by using sequence alignment algorithms.
We first obtained a sequential fork-join implementation of this application by adapting an existing sequence
alignment code extracted from the JPPF project [74], and then we parallelized it by using Satin and
EasyFJP. The original application used the jaligner [68] library, an open source implementation of an
improved version of the Smith-Waterman algorithm [39]. Given a pair of sequences, the algorithm outputs
a coefficient that represents the level of similarity between these two by using a scoring matrix from a set
of predefined matrixes. To execute the experiments, we used the PAM120 matrix, which works well in
most cases.

The application aligned an unknown input target sequence against an entire sequence database, which
was replicated across the nodes of our experimental wide-area Grid to allow local access to the sequence
data. The application operated by dividing the portions of the data to compare against into two different
subproblems until a certain threshold on the data was reached. We used the same thresholds for both
Satin and EasyFJP. Moreover, we compared input sequences against real-world databases of Influenza A
sequences extracted from the National Center for Biotechnology Information (NCBI) Web site4. The NCBI
is an organization devoted to computational biology that maintains public genomes databases, disseminates
biomedical information and develops bioinformatics software. Concretely, we used the databases shown

3http://en.wikipedia.org/wiki/Sequence_alignment
4http://www.ncbi.nlm.nih.gov
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Figure 10: Speedups of the optimized test applications withrespect to their pure sequential counterpart

in Table 6. It is worth noting that the tests conceived the EasyFJP implementation of the application as a
mean to provide more evidence about the performance of EasyFJP, but it is not our goal to come out with
a better implementation of sequence alignment in Grid settings, for which specialized frameworks such as
mpiBLAST [9] and G-BLAST [85] already exist.

Database Size (# of
sequences)

Size (MB) Host Period

DB 1 9,620 4.8 Human Jan-2007/Dec-2008

DB 2 12,325 6.2 Human Jan-2006/Dec-2008

DB 3 19,745 7.5 Human Jan-2004/Dec-2008

DB 4 42,334 21.4 Avian All registered cases up
to now

Table 6: Protein sequence databases used in the experiments

As mentioned earlier, the objective of this evaluation was to assess the effects of the parallelization
mechanisms of EasyFJP in the performance of a complex application while using more coarse task granu-
larities than the ones employed in the experiments reportedin Sections 5.1 and 5.2. To this end, we derived
several variants of each implementation of the sequence alignment application by varying the computa-
tional granularity of the resulting runtime tasks, this is,we assigned large portions of the database to each
forked task for aligning purposes. This allowed us to betterevaluate the effect of our heuristic for inserting
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Figure 11: Performance of the sequence alignment application

join points in the resulting performance since not fully exploiting policies clearly reduces the incidence of
this latter mechanism in the execution times. In other words, in opposition to the evaluation in Section 5.2,
using coarse granularities means that the policies configured to the EasyFJP applications are invoked only
few times during their execution and thus the effect of the policy framework is dramatically reduced. Fi-
nally, parallelizing code extracted from a neutral implementation of the sequence alignment application
(i.e. based on JPPF) allowed us to also consider in the tests the implications of both Satin and EasyFJP
on the input application. In this way, the process of obtaining the different parallel variants from the same
initial source code in either cases conveys the framework-specific mechanisms for controlling the synchro-
nization and the granularity of the resulting parallel tasks at runtime. With respect to source code lines, the
original JPPF application had 327 lines, whereas the Satin and EasyFJP counterparts had similar number
of lines, this is, around 440.

Figure 11 shows the average execution time for 40 runs of the Satin and EasyFJP variants of the ap-
plication. For each target database, we run three differentversions of these two alternatives by varying
the computational granularity, or in this case, the size of the portion of the database that is analyzed per
forked task. Again, the EasyFJP variants were implemented via threshold policies, whereas the Satin ones
controlled such granularity by including thresholds directly into the application code. On one hand, we
considered a very coarse granularity, by which the application was instructed to generate one task per
available cluster node (i.e. 15 tasks in total to align a target sequence), plus somewhat optimized, more
granular variants that injected 30 and 60 tasks into the Gridat runtime. Furthermore, as the sequence align-
ment application is not only CPU-intensive but also data-intensive, we did not achieved a very significant
CPU load when aligning one target sequence per execution. Therefore, we decided to process two input
sequences simultaneously per execution.

As illustrated in the figure, EasyFJP behaved better than Satin for all databases. Deviations were con-

28



An Approach for Non-Intrusively Adding Malleable Fork/Join Parallelism into Ordinary
JavaBeans Compliant Applications. (C. Mateos, A. Zunino, M. Campo). Computer Languages,
Systems and Structures. Elsevier Science. ISSN: 1477-8424. Ed.: R. S. Ledley and
B. Kalyanasundaram. Vol. 36, Num. 3, pp 288-315. 2010. DOI: doi:10.1016/j.cl.2009.12.003

 0

 2

 4

 6

 8

 10

 12

 14

 16

15 30 60

S
p

e
e

d
u

p
 f

a
c
to

r

# of generated tasks per input sequence

Satin
EasyFJP

Theoretical
maximum

(a) DB1 (9,620 sequences)

 0

 2

 4

 6

 8

 10

 12

 14

 16

15 30 60

S
p

e
e

d
u

p
 f

a
c
to

r

# of generated tasks per input sequence

Satin
EasyFJP

Theoretical
maximum

(b) DB2 (12,325 sequences)

 0

 2

 4

 6

 8

 10

 12

 14

 16

15 30 60

S
p

e
e

d
u

p
 f

a
c
to

r

# of generated tasks per input sequence

Satin
EasyFJP

Theoretical
maximum

(c) DB3 (19,745 sequences)

 0

 2

 4

 6

 8

 10

 12

 14

 16

15 30 60

S
p

e
e

d
u

p
 f

a
c
to

r

# of generated tasks per input sequence

Satin
EasyFJP

Theoretical
maximum

(d) DB4 (42,334 sequences)

Figure 12: Speedups of the sequence alignment application with respect to their pure sequential counterpart

sistently in the range of 2-5% for the case of the EasyFJP variants, whereas they were between 2-11% for
the case of Satin with slightly greater deviations as the number of forked tasks increased. The most inter-
esting aspect of these results are, on one hand, that the heuristic for inserting synchronization of EasyFJP,
evaluated in the tests via the variants with maximum computational granularity, leads to competitive per-
formance not only for the benchmark applications discussedbefore but also for complex applications. On
the other hand, the EasyFJP variants of the application relying on the other two granularities (i.e. the ones
creating 30 and 60 tasks per input sequence) outperformed their Satin counterparts, which shows that the
policy framework is useful for real-world applications. Asa corollary, this latter implication is consistent
with the results reported in Section 5.2, which suggested that the administrative overhead of policies may
be negligible for parallelized applications relying on coarse task computational granularities. Finally, Fig-
ure 12 depicts the speedup factor achieved by the parallel sequence alignment applications with respect to
the sequential version, which was executed on the fastest cluster machine. Interestingly, for the variants
generating 30 and 60 tasks, EasyFJP improved the speedups ofSatin by a factor of up to 1.24 and 1.73,
respectively.

6. Conclusions and future work

In this article, we presented EasyFJP, an approach to semi-automatically and non-invasively introduc-
ing FJP into divide and conquer sequential applications. The main goal of EasyFJP is to isolate application
logic as much as possible from the code that performs asynchronous task execution, synchronization and
tuning of applications. The benefits of this approach are twofold. On one hand, users who are not proficient
in parallel programming are allowed to quickly obtain parallel counterparts of their sequential applications,
which in the short term may help “sequential” Java developers to gradually move into parallel program-
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ming. On the other hand, the same sequential application canbe seamlessly and easily ported to different
parallel libraries and environments.

The cornerstones of EasyFJP are an heuristic algorithm thatautomatically spots the points in which join
primitives must be introduced, and a policy-based support for FJP –currently supporting threshold-related
and cache-based optimizations– that allows users to tune the performance of the resulting parallel appli-
cation without modifying its source code. We evaluated our approach by executing some CPU-intensive
classic divide and conquer applications both generated viaEasyFJP (with its binding to Satin) and manually
implemented by using Satin. First, we compared the performance of the EasyFJP applications with respect
to the Satin implementations to assess the effectiveness ofour heuristic code analysis techniques. The ap-
plications were run in a local and a wide-area cluster (Section 5.1). Second, we used the former setting to
parallelize and tune two benchmark applications via EasyFJP plus policies, and Satin (Section 5.2). These
two evaluations involved the usage of applications with small to moderate tasks granularities. Third, we
parallelized an existing implementation of the sequence alignment application by using Satin and EasyFJP
and executed the resulting parallel codes in the wide-area setting. The goal of this evaluation was to test
the effectiveness of EasyFJP when dealing with more complexapplications and large task granularities.

With respect to the first evaluation, the EasyFJP applications performed closely to the Satin imple-
mentations in the local cluster, while outperformed Satin in the wide-area cluster. These positive results
cannot be generalized, however they are very encouraging since adding parallelism to an application with
EasyFJP is almost independent of the targeted parallel library. In other words, these results suggest that
our generic heuristic for inserting fork and join primitives, instantiated in the evaluation through the Satin
parallel library, may lead to parallel software whose performance is competitive with respect to manually
using a parallel library to parallelize sequential codes. Nevertheless, we are planning to conduct further
experiments with other applications and parallel libraries. Likewise, the comparisons between EasyFJP
applications and policies versus applications manually optimized with Satin resulted in very acceptable
execution time overheads and some performance gains for threshold and memoization policies, respec-
tively. This is also encouraging, as it confirms that supporting policies to effectively and non-invasively
tune EasyFJP parallel applications is feasible from a practical point of view. Finally, the execution of the
sequence alignment application yielded as a result good performances and speedups in favor of EasyFJP,
which suggest that our framework is also applicable to real-world applications.

It is worth emphasizing that EasyFJP does not aim at replacing explicit parallelism. Instead, our utmost
goal is to target users who need to rapidly turn their sequential codes into parallel ones, but deal with as few
parallel programmming details as possible. EasyFJP addresses this requirement by handling parallelism at
a high level of abstraction, this is, automates the process of obtaining an FJP application in a backend--
independent way, and provides mechanisms that capture common patterns for tuning the performance of
FJP applications. However, it is a well-known fact in parallel programming that such a high-level, implicit
approach may produce applications whose performance is below the levels that can be obtained by using
explicit parallelism [35]. In the context of our work, this means that using EasyFJP neither necessarily
leads to exploiting parallelism in an optimal way nor replaces backend knowledge. In fact, in the experi-
ments, the applications are configured to use a particular task scheduling algorithm of Satin depending on
the experimental setting (i.e. local-area or wide-area cluster). EasyFJP in turn captures recurrent parallel
synchronization and tuning patterns present in FJP applications while achieving competitive performance
with respect to manual parallelism, as suggested by the positive experimental evidence reported in the
paper.

We are extending our work in several directions. We are working on builders for other parallel libraries
(currently Doug Lea’s framework and GridGain) and other distributed infrastructures (currently Terracotta
and GMAC) for supporting memoization at the caching level. In this way, users will be allowed to select
the target technologies that best suit their needs when generating parallel applications. Particularly, the
inclusion of builders for parallel libraries such as Doug Lea’s framework and GridGain, which are able to
exploit multi-core individual machines and multi-core clusters, respectively, will create the opportunity for
a follow-up study of the interrelation of the EasyFJP framework and such kind of execution environments.
Nevertheless, in this paper we provided a consistent, rigorous evaluation of EasyFJP through the paral-
lelization of a representative set of applications under a local-area and a wide-area cluster to evidence the
applicability of the approach.

Moreover, despite the policies illustrated in the paper were implemented in pure Java, we are developing
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a policy support based on the Java scripting API [75], which allows developers to run scripts implemented
in various languages (e.g. BeanShell, Python, Ruby, etc.) from within a Java application. Using these
languages will produce more compact policy code, and will allow users to avoid the tedious code-compile-
run task sequence when tuning applications, thus enabling for more flexible application tuning scenarios.
We are also investigating and implementing more sophisticated policies in order to offer developers a wide
variety of general-purpose optimization rules to regulatethe amount of parallelism of their applications
for typical situations. Alternatives include policies that take into account aspects such as task granular-
ities, amount of network communication, historic executions, etc. From a conceptual perspective, these
“smarter” policies for controlling the (non-functional) tuning behavior of application components, together
with the flexibility inherent to scripting languages to dynamically change the rules that govern such behav-
ior, smoothly align with the recent trend of Autonomic Computing (AC) [8]. AC represent a vast number
of systems –including some of approaches mentioned before,namely GCM and K-Components– that sup-
port the construction of self-managed distributed applications. Particularly, a class of AC systems are those
that enable dynamic adaptations of applications through the provision of rules external to the application
code that can be added, modified or removed at runtime.

The policy concept can potentially provide a solution to some related problems that arise as a con-
sequence of the transformational approach to parallelism of EasyFJP, which allows an individual user
application to be easily ported to several backends, but this forces the underlying task execution engine
to rely on randomized schedulers to handle the runtime task tree resulting from executing an FJP applica-
tion. This in turn may lead to suboptimal cache usage or task-to-processor mapping in many cases. With
respect to the former problem, depth-first task execution schemes allow for better cache exploitation and
reduced number of runtime tasks (with the consequent savings in terms of allocated task space), however
breadth-first schemes commonly maximize parallelism. To tackle down this problem, modern backends
such as Intel® TBB [69] rely on a hybrid scheme of task processing. Here, EasyFJP policies could be
used to indicate the underlying scheduler what scheme to use, provided the target backend offers this flex-
ibility. With respect to the latter problem, recent HPC platforms such as Google’s MapReduce [55] and
GridGain [41] support the concept ofdata affinity, this is, ensuring that a group of related cache entries is
contained within a single cache partition (e.g. a cluster node). Then, tasks are mapped to processors not
only based on their computational requirements but also on the required data. Again, we could use policies
to allow developers to control some aspects of these mappingbased on the nature of the involved tasks. In
summary, we will study whether the policy framework can be extended to support the above notions.

Finally, we are planning to evaluate EasyFJP from a softwareengineering perspective. A recent study
in the context of theCO2P3S [59] parallel pattern-based language has shown that generative programming
approaches contribute to increment the productivity of parallel software development [60]. Therefore, we
could evaluate the implications of using EasyFJP and its parallelization model for implementing parallel
software compared to generative programming approaches likeCO2P3Sand the GAUGE Grid system [45]
by conducting a controlled case study that takes into account productivity as well as human factors.
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