UNIVERSITEIT
GENT

biblio.ugent.be

The UGent Institutional Repository is the electronic archiving and dissemination platform for all
UGent research publications. Ghent University has implemented a mandate stipulating that all
academic publications of UGent researchers should be deposited and archived in this repository.
Except for items where current copyright restrictions apply, these papers are available in Open
Access.

This item is the archived peer-reviewed author-version of:

NinSuna: a fully integrated platform for format-independent multimedia content adaptation
and delivery using semantic web technologies

Davy Van Deursen, Wim Van Lancker, Wesley De Neve, Tom Paridaens, Erik Mannens, and
Rik Van de Walle

In: Multimedia Tools and Applications — Special Issue on Data Semantics for Multimedia
Systems, Volume 46, Numbers 2-3, January, 2010

http://www.springerlink.com/content/461380502m756877/

To refer to or to cite this work, please use the citation to the published version:

D. Van Deursen, W. Van Lancker, W. De Neve, T. Paridaens, E. Mannens, and R. Van de
Walle (2010). NinSuna: a fully integrated platform for format-independent multimedia
content adaptation and delivery using semantic web technologies. Multimedia Tools and
Applications — Special Issue on Data Semantics for Multimedia Systems 46(2-3) pp. 371-
398. 10.1007/s11042-009-0354-0


http://www.springerlink.com/content/461380502m756877/

NinSuna: a Fully Integrated Platform for
Format-independent Multimedia Content Adaptation and
Delivery using Semantic Web Technologies

Davy Van Deursen, Wim Van Lancker, Wesley De Neve;
Tom Paridaens, Erik Mannens, Rik Van de Walle

Ghent University — IBBT
Departement of Electronics and Information Systems — Multimedia Lab
Gaston Crommenlaan 8, bus 201, 9050 Ledeberg-Ghent, Belgium
{davy.vandeursen,wim.vanlancker } @elis.ugent.be, wesley.deneve@kaist.ac.kr,
{tom.paridaens,erik.mannens,rik.vandewalle } @elis.ugent.be

Abstract

The current multimedia landscape is characterized by a significant heterogeneity in terms of
coding and delivery formats, usage environments, and user preferences. The main contribution
of this paper is a discussion of the design and functioning of a fully integrated platform for
multimedia adaptation and delivery, called NinSuna. This platform is able to efficiently deal
with the aforementioned heterogeneity in the present-day multimedia ecosystem, thanks to the
use of format-agnostic adaptation engines (i.e., engines independent of the underlying coding
format) and format-agnostic packaging engines (i.e., engines independent of the underlying
delivery format). Moreover, NinSuna also provides a seamless integration between metadata
standards and adaptation processes. Both our format-independent adaptation and packaging
techniques rely on a model for multimedia bitstreams, describing the structural, semantic, and
scalability properties of these multimedia streams. News sequences were used as a test case
for our platform, enabling the user to select news fragments matching his/her specific interests
and usage environment characteristics.

Keywords: BSDL, Format-independent, Multimedia adaptation, Multimedia delivery, Multi-
media model, Semantic Web, XML

*At the time of writing, Wesley De Neve was also with the Image and Video Systems Lab of the Korea Advanced
Institute of Science and Technology (KAIST), Daejeon, Republic of Korea.



1 Introduction

Recent years have witnessed an increasing heterogeneity in the multimedia landscape on different
fronts. First, there is a growing diversity in end-user devices that are able to consume multimedia
content. In particular, these devices may vary in terms of screen size, processing power, and battery
life. Next, network technologies, used to transport the multimedia content to the end-user, may
differ in terms of bandwidth, jitter, and error robustness. Furthermore, the number of multimedia
coding standards has grown significantly over the last few years, especially with the introduction
of new coding formats such as H.264/AVC [29], Scalable Video Coding (SVC, [38]), AAC [28], and
JPEG XR [40]. At the same time, older standards such as H.262/MPEG-2 Video [27], MPEG-1
Audio [26], and JPEG2000 [11] are still present. Next to coding formats, there also exists a wide
variety of delivery formats, i.e., formats encapsulating encoded multimedia streams (e.g., the MP4
file format [22] or the Real-time Transport Protocol (RTP, [1])). Finally, end-users with specific
preferences often want to obtain a personalized version of multimedia content (e.g., an end-user
only requesting scenes satisfying his/her interests). Therefore, metadata have an increasingly
important role in multimedia search, adaptation, and delivery processes because they enable the
effective organization, access, and interpretation of multimedia content.

The major contribution of this paper is the design and functioning of a fully integrated platform
for multimedia adaptation and delivery. This platform is able to efficiently deal with the hetero-
geneity in the current and future multimedia landscape in terms of coding and delivery formats,
usage environments, and user preferences. To satisfy these requirements and to obtain Universal
Multimedia Access (UMA, [43]), our platform relies on format-agnostic adaptation engines (i.e.,
engines independent of the underlying coding format) and format-agnostic packaging engines (i.e.,
engines independent of the underlying delivery format). Moreover, the proposed platform enables
a seamless integration between metadata standards and adaptation processes.

Format-agnostic content adaptation techniques have already been extensively described in the
scientific literature [15, 34]. These techniques® are usually based on automatically generated XML-
based descriptions of the high-level structure of multimedia resources [8]. The XML descriptions,
further denoted as Bitstream Syntax Descriptions (BSDs), typically contain high-level syntax el-
ements and pointers to data ranges in the original bitstream. BSDs are used to realize simple,
high-level adaptation operations on compressed bitstreams. Examples are the removal of particular
data blocks or the modification of the value of certain syntax elements. The actual adaptation
takes place in the XML domain by transforming the BSDs using XML filters. A transformed BSD
and its corresponding (original) bitstream are then used to create an adapted bitstream. The Bit-
stream Syntax Description Language (BSDL, [9]) is one such example of a standardized, format-
independent content adaptation tool. BSDL comes with two standardized, format-independent
parsers: a BintoBSD parser that is responsible for producing BSDs and a BSDtoBin parser that is
used for generating adapted bitstreams. Both parsers are steered by a Bitstream Syntax Schema
(BS Schema), which contains a description of the high-level structure and syntax elements of a par-
ticular coding format [20]. Other examples of format-independent content adaptation techniques
are MPEG-21 generic Bitstream Syntax Schema (gBS Schema, [23]) and XFlavor [19].

Because format-agnostic content adaptation techniques try to abstract the adaptation process,
some restrictions regarding the adaptation possibilities need to be taken into account. The use of
format-independent content adaptation for instance implies that only high-level bitstream struc-
tures can be removed and that only high-level syntax elements can be modified. In other words,
the compressed media bitstreams need to be encoded in such a way that it is possible to perform
the adaptations without the need of a complete or partial recode process (which is computation-
ally complex, compared to bitstream extraction). Therefore, typical target adaptation operations
are the exploitation of scalability in multimedia bitstreams and high-level semantic adaptations.
Exploitation of scalability is performed to adapt media bitstreams in order to meet the terminal
and network characteristics of the end-user. Lowering the frame rate or the spatial resolution are
examples of such adaptation operations. High-level semantic adaptations are adaptations based
on semantic information about the multimedia content. Examples of semantic adaptations are the

1In the remainder of this paper, ‘XML-driven content adaptation’ is used as a collective term to refer to these
techniques.



selection of a Region Of Interest (ROI) or the selection of specific temporal segments that are of
interest to the user.

In this paper, we present the design and functioning of NinSuna?, which is a fully integrated
and format-independent platform for the purpose of multimedia adaptation and delivery. Its basic
design is inspired by the principles of XML-driven content adaptation techniques, while its final
design consists of a hybrid architecture using both XML and Semantic Web technologies such
as the Resource Description Framework (RDF, [30]), the Web Ontology Language (OWL, [31]),
and the SPARQL Protocol And RDF Query Language (SPARQL, [36]). Furthermore, a tight
coupling exists between NinSuna’s design and a model for describing the structural, semantic,
and scalability properties of multimedia streams. This model, implemented using OWL, provides
support for a seamless integration of adaptation operations and semantic metadata. Furthermore,
it allows format-independent packaging and delivery of multimedia content.

2 Motivation

As discussed in the introduction, current format-independent content adaptation techniques are
based on automatically generated XML descriptions (BSDs), i.e. structural metadata. Despite
its format-independent nature, XML-driven content adaptation has a number of disadvantages.
The XML filters are dependent on the structure of the metadata and underlying coding formats.
Furthermore, due to interoperability problems between XML-based metadata standards [14, 10],
integration with semantic metadata occurs in an ad-hoc manner. Mappings between different
XML-based metadata formats need to be implemented in different XML filters. Hence, creators
of these XML filters cannot think in terms of high-level adaptation operations but have to be
aware of the underlying coding and metadata formats. For example, expressing the semantic
adaptation operation “select sport fragments” in a scenario where two different content metadata
standards are used (e.g., annotations are provided in both MPEG-7 and TV-Anytime), requires
the development of two different XML filters (i.e., one that can interpret MPEG-7 and one that
can interpret TV-Anytime).

The interoperability problems between XML-based metadata standards are due to the fact that
XML Schema just describes grammars. There is no way to recognize a semantic unit from a par-
ticular domain because XML aims at document structure and imposes no common interpretation
of the data contained in the document. For instance, taking into account different metadata stan-
dards, the same tags can have a different meaning, while tags with the same meaning can occur in
different structures. Therefore, as will be illustrated in Section 3, Semantic Web technologies such
as RDF and OWL can be used to enhance the interoperability among different metadata standards
for multimedia content, thanks to the natural representation of objects and relationships [7, 14, 10].

A logical step after the adaptation of multimedia content is multimedia delivery. Multimedia
content is usually not delivered as elementary bitstreams but packed in a particular delivery format.
Today, a significant number of delivery or packaging formats exists; examples are MPEG-4 Part 14
(MP4 file format, [22]), Material eXchange Format (MXF, [39]), and Real-time Transport Protocol
(RTP, [1]). As illustrated in Figure 1, we have to deal with different coding formats on the one
hand, and different delivery formats on the other hand. Our goal is to develop a format-independent
multimedia packager, i.e., a generic software module that is independent of the incoming coding
format and the outgoing delivery format. An additional challenge in the context of this paper is
the coupling of format-independent multimedia adaptation with format-independent multimedia
packaging.

3 Format-independent Multimedia Content Adaptation
In this section, we present a new multimedia content adaptation framework inspired by the prin-

ciples of XML-driven content adaptation techniques. Its design is based on Semantic Web tech-
nologies and a model for multimedia streams covering the structural, semantic, and scalability

2NinSuna is short for “The NinSuna INtelligent Search framework for UNiversal multimedia Access”.



Video/Audio

MPEG-4
Visual

Format-independent
multimedia packager

Figure 1: Obtaining a format-independent multimedia packager.

properties of these multimedia streams. In Section 4, our adaptation framework will be extended
in order to support the format-independent packaging of adapted multimedia content.

3.1 Model for Multimedia Bitstreams

The model for multimedia bitstreams provides support for a seamless integration of adaptation
operations and semantic metadata. As such, it enables the definition of adaptation operations on
a higher level (i.e., based on the model), on the condition that current and future coding formats
can be mapped to this model. We have avoided the use of XML Schema to describe our model
because the use of XML as underlying technology causes interoperability problems between different
metadata standards, as discussed in Section 2. In contrast to XML, Semantic Web technologies
such as RDF and OWL enhance the interoperability among metadata standards for multimedia
content. Therefore, our model for media bitstreams is implemented as an OWL DL ontology.
The instances of the model (i.e., the structural metadata or BSDs) are expressed in RDF. The
transformation of the structural metadata is implemented by using SPARQL queries, which are
independent of the coding format. A visualization of an excerpt of our model is given in Figure 2.

The structural metadata part of the model (1) describes information regarding the high-level
structure of a compressed MultimediaBitstream. Such a MultimediaBitstream points to the physical
location of the multimedia bitstream by means of the bitstreamSource property. Further, it also
provides the MIME type of the underlying coding format® by means of the format property.

A MultimediaBitstream points to a list of RandomAccessUnits by means of the hasStructure
property. Random access refers to the ability of the decoder to start decoding at a point in a com-
pressed multimedia bitstream other than at the beginning and to recover an exact representation
of the decoded bitstream [18]. Note that RandomAccessUnits cannot overlap with each other.

Each random access unit points to a list of DataBlocks by means of the hasStructure property.
Note that this property is transitive in order to express that DataBlocks are always contained in
MultimediaBitstreams (even if they are located within a RandomAccessUnit). A DataBlock points
to a particular segment of the compressed multimedia bitstream by means of a bitstream position
and a bitstream length in terms of bits*. DataBlocks that must be available in every resulting
multimedia bitstream (e.g., Sequence or Picture Parameter Sets in H.264/AVC) are data blocks
that do not belong to any random access unit. More specifically, the multimedia bitstream points
directly to these data blocks by means of the hasStructure property. Note that a DataBlock
does not necessarily represent a well-defined structure in a coding format (such as a frame or
slice); it just represents a single byte range pointer. Further, DataBlocks cannot overlap with
each other. Additionally, a data block can contain ScalabilityInformation (3), indicating to which
scalability layers the data block belongs (in the assumption that the underlying bitstream is a
scalable bitstream [33]).

The semantic metadata part of the model (2) contains a content description of the multimedia
bitstream (i.e., AnnotatedMultimedia). MultimediaBitstreams are linked to an Annotated Multi-

3The mime-type class is defined in the Core Ontology for MultiMedia (COMM, [10]).
4To express the unit of measure, we use concepts of the Suggested Upper Merged Ontology (SUMO, [2]). Note
that we use the OWL DL implementation of SUMO, which is available at http://www.stuarthendren.net/sumodl.



()

anyURI

) 4
bitstream
format  source

isRepresentedBy- G:Hﬁ;ﬁgg

xsd:dateTime
hasStructure hasTemporalSegment /
+ start
hasBitstreamData_{ 1emporal Yy durationm xsg:duration
Segment

hasTemporal
hasStructure Segment

Datablock hasScalabiliylnfo————={  SCAa0IY

rdfs:subClassOf | rdfs:subClassOf

rdfs:subClassOf
Truncatable
Payload

3

Figure 2: Excerpt of the model for multimedia bitstreams. FEllipses and arrows represent OWL
classes and properties respectively.

Random
Access

@ hasStructure

sumo:MeasureFn

media instance by means of the isRepresentedBy property. AnnotatedMultimedia points to a list
of TemporalSegments by means of the hasTemporalSegment property. TemporalSegments can be
decomposed further into other TemporalSegments by means of the hasTemporalSegment property.
Note that different TemporalSegments can overlap with each other. Each TemporalSegment points
to a specific segment of the multimedia content by means of timestamps (i.e., start and duration).
The connection between the semantic and structural metadata is realized by linking temporal
segments (i.e., timestamps) to random access units (i.e., bits) by means of the hasBitstreamData
property. Furthermore, already existing (domain-specific) ontologies can be linked to the semantic
part of the model to create detailed semantic descriptions of the multimedia content.

Support for existing coding formats is provided by mapping them to the structural part of
the model. When coding formats are mapped to the model and (domain-specific) ontologies are
linked, instances of the model can be generated, resulting in a collection of RDF triples describing
a particular multimedia bitstream. Several possibilities exist to generate metadata compatible
with the model. For instance, the semantic metadata could be obtained using feature extraction
algorithms or by (manual) annotation. The resulting semantic metadata will consist of instances
of AnnotatedMultimedia and TemporalSegments. The structural metadata could be generated
during the encoding of a multimedia bitstream or by using generic software similar to the BSDL
approach. As a result, a MultimediaBitstream instance is created accompanied by instances of
RandomAccessUnits, DataBlocks, etc. Note that the structural metadata generation process can
take the semantic metadata as input in order to connect the structural metadata with the semantic
metadata (i.e., to link the bits of the encoded bitstream to the timestamps available in the semantic
metadata). As previously discussed in this section, this is realized by linking RandomAccessUnits
to TemporalSegments by using the hasBitstreamData property.

3.2 RDF-driven Content Adaptation

RDF-driven content adaptation is a new technique for multimedia content adaptation in a format-
independent way. On the one hand, a model for multimedia bitstreams covering the structural,



-

' RDF triples Original
RDF store describing one bitstream
data block

Data block
binarization

Data block
adaptation

Data block
selection

Based on terminal and network characteristics
and user preferences Adapted

bitstream

Figure 3: The general workflow of RDF-driven content adaptation.

1 PREFIX mmo: <multimedia_model.owl#>
CONSTRUCT {
# triples to describe a datablock:
?db rdf:type mmo:DataBlock.
5 # ...
}
WHERE {
# select multimedia content based on a keyword:
?annoMM rdf:type mmo:AnnotatedMultimedia.
10 7annoMM mmo:hasTemporalSegment ?segment.
?segment dc:creator 'John Smith'.

# select the corresponding datablocks:
?7annoMM mmo:isRepresentedBy ?bitstream.

15 ?bitstream rdf:type mmo:MultimediaBitstream.
?bitstream mmo:format 'video/H264'.
?bitstream mmo:hasStructure ?rau.

?segment mmo:hasBitstreamData ?rau.
?rau mmo:hasStructure 7?7db.
20 ?db rdf:type mmo:DataBlock.
# ...
¥

Listing 1: SPARQL query selecting data blocks based on user preferences.

semantic, and scalability properties (discussed in Section 3.1) is used to abstract the adaptation
process. On the other hand, Semantic Web technologies are used to represent the metadata for
multimedia content and to support the adaptation process.

The general workflow to create an adapted version of a multimedia bitstream using RDF-driven
content adaptation is depicted in Figure 3. For a particular multimedia bitstream, we assume that
all RDF triples compliant with the model are present in an RDF store. The adaptation process
consists of three steps: selection, adaptation, and binarization of data blocks. RDF graphs describ-
ing data blocks are queried during the data block selection step. These data blocks, corresponding
to the requested multimedia content, are selected using a SPARQL query. An example of such
a query is shown in Listing 1. Evaluating this query results in the construction of a list of data
blocks corresponding to the requested content. Hence, RDF graphs describing these data blocks
are selected, constructed, and further processed by the adaptation engine.

The primary goal of the data block transformation step is to make changes inside the selected
RDF graphs describing a data block. For instance, the value of a SyntazElement can be changed
or the length of a TruncatablePayload can be shortened. A second use case for data block transfor-
mation is the support for dynamic adaptations, this is, when the multimedia content is delivered



during varying usage environment conditions. That way, each time an adaptation property changes,
the initialization and evaluation of a new query can be avoided.

The binarization step takes as input the selected and transformed data blocks, together with
the original multimedia content. The adapted bitstream is created by copying parts of the original
bitstream based on the bit positions of the selected data blocks.

Note that the SPARQL query shown in Listing 1 expresses the semantic adaptation opera-
tion “select data blocks corresponding to temporal segments created by John Smith”. To show
why it is beneficial to make use of RDF instead of XML, we illustrate the selection of data
blocks from multimedia bitstreams that were annotated using two different metadata formats
(i.e., MPEG-7 [21] and Dublin Core [16]). Suppose we only want to extract fragments created
by a specific person. When making use of XML-driven content adaptation and when relying on
XML-based metadata, we need to take into account the structure and syntax of both MPEG-7
and Dublin Core descriptions. More specifically, we need to match the MPEG-7 creator tag (lo-
cated in mp7:CreationInformation/mp7:Creation/mp7:Creator) and the Dublin Core creator tag
(i.e., dc:creator). However, when the metadata is expressed in terms of RDF, we can state that
the properties mp7:Creator and dc:creator are equal by using the owl:equivalentProperty property.
Therefore, the SPARQL query shown in Listing 1 will select data blocks that are annotated by
both MPEG-7 and Dublin Core metadata. Hence, using Semantic Web technologies to represent
metadata enhances the interoperability between different metadata standards and allows us to
express semantic metadata operations independent of the different underlying semantic metadata
standards such as MPEG-7 and Dublin Core.

4 Format-independent Multimedia Content Packaging

Encapsulating multimedia content in a particular delivery format typically consists of two main
processes: fragmentation and packetization. The fragmentation process divides the input multi-
media bitstream into portions, each representing one fragment. A simple example of a fragment
in the context of video streams is a single frame. The packetization process selects (and possibly
aggregates) the obtained fragments and maps them to the output delivery format. This mapping
includes the assignment of timestamps and the addition of syntactical structures such as packet
headers.

In this section, we present a new method for format-independent multimedia content packag-
ing. We use MPEG-B BSDL to abstract the packed multimedia bitstream and to enable the use
of format-agnostic software modules. It is based on an extension of our model for multimedia
bitstreams, as previously outlined in Section 3.1. Furthermore, a seamless integration is obtained
between multimedia content adaptation and packaging in a format-independent way.

4.1 Extension of the Model for Multimedia Bitstreams

In Figure 4, an overview is given of the extensions added to the model for multimedia bitstreams
in order to support format-independent packaging. Two categories can be distinguished: support
for timestamps and support for delivery parameters.

A timestamp property is added to the DataBlock class, which represents a number related to the
display time of the data block. In order to actually calculate the display time, the timestampRate
property is added to the MultimediaBitstream class. The latter contains a number indicating
the amount of timestamps that are contained in one second. Note that a data block does not
necessarily correspond to a fragment (i.e., the outcome of the fragmentation process as described
above). Multiple data blocks can make one fragment (e.g., data blocks representing H.264/AVC
slices can be grouped in one fragment). However, one data block cannot be split up into several
fragments.

Our model represents both the presentation and decoding timestamps. The presentation times-
tamp is explicitly defined by means of the timestamp property. The decoding timestamp is im-
plicitly available through the order of occurrence of the data blocks (i.e., this order corresponds to
the decoding order). In order to determine the decoding timestamp of an access unit (i.e., one or
more data blocks having the same value for their timestamp property), we can apply the following



N

AN .
sumo: \ timestamp

d
/

Multimedia

\\ RealNumber /,/ Rate Bitstream \\
b — N\
\
delivery
hasStructure Parameter
\
\
L _—
\\/' N\
2\ ‘
N /
N // n
hasStructure delivery

Parameter

- - ~ ///
/ sumo: N\ -
‘\\ Integer //s*tlmestamp Datablock

Figure 4: Extending the model for multimedia bitstreams to support format-independent multi-
media packaging.

1 <#samplingFrequency> rdfs:subProperty0f mmo:deliveryParameter .
<#audioMMBitstream> <#samplingFrequency> [
a sumo:Integer;
sumo : RealNumberFn "48000"~"<http://www.w3.org/2001/XMLSchema#integer>;
5 sumo : MeasureFn sumo:Hertz ] .

Listing 2: RDF triples (in N3) expressing a delivery parameter corresponding to a sampling
frequency equal to 48000 Hz.

algorithm: the decoding time delta between two access units is equal to 1/timestampRate. Hence,
the decoding timestamps can be determined by combining the decoding order with these decoding
time deltas.

Next, in order to assist in the fragmentation and packetization process, it is possible to define
delivery parameters by means of the deliveryParameter property. This can be done at the level of
a multimedia bitstream, as well as at the level of a data block. An example of a delivery parameter
added at the level of a multimedia bitstream is the sampling frequency when the underlying coding
format is AAC. The sampling frequency is a delivery parameter that is needed by the packetization
process of AAC streams, since the value of this parameter may be needed in the headers of a
particular delivery format. The deliveryParameter property serves as a superproperty for format-
specific delivery parameters. For example, the property samplingFrequency can be defined as a
subproperty of deliveryParameter. Listing 2 shows the RDF triples (in N3) expressing a delivery
parameter corresponding to a sampling frequency equal to 48000 Hz.

4.2 Coupling RDF-driven Content Adaptation with Multimedia Pack-
aging

The two extensions of our model for multimedia bitstreams enable the creation of metadata (com-
pliant with the model) that can assist in the format-independent adaptation and packaging of
multimedia bitstreams. The general workflow of RDF-driven content adaptation and packaging is
depicted in Figure 5. Explanatory notes are given below.

(1) Metadata generation: multimedia bitstreams that need to be adapted and packaged in our
framework have to be equipped with metadata compliant with our (extended) multimedia
model. As discussed in Section 3.1, the metadata generation can occur during the encoding
process or by means of a (generic or format-specific) software module. Note that such a
generic solution could rely on the principles of techniques such as BSDL or XFlavor, where
structural metadata is generated based on a description of the high-level structures and syntax
elements of a particular coding format. The result of the metadata generation process is a
collection of RDF triples compliant with the model for multimedia bitstreams.



@)

Original | Metadata RDF triples
bitstream generation
2
Data block
selection and
adaptation
© Selected
Packed and BS Schema (an deaedcaete d)
adapted BSDtoBin )«¢—— (delivery AP
. RDF triples
bitstream format)
©) Y o
Transformation RDF-to-XML
stylesheet transformation
BSD BSD BSD
(packed transformation /% | (elementary
bitstream) bitstream)

Figure 5: The general workflow of RDF-driven content adaptation and packaging.

(2) Data block selection and adaptation: as discussed in Section 3.2, adaptation of multimedia
bitstreams is performed by selecting the proper data blocks and by possibly adapting the
selected data blocks.

(3) RDF-to-XML transformation: instead of creating an adapted, elementary multimedia bit-
stream based on the selected (and adapted) data blocks, we perform a simple RDF-to-XML
transformation. The result of this transformation is a BSD (see Section 1) which can be
used to create a packaged version of the adapted multimedia bitstream. An example of such
a BSD is shown on the left-hand side of Figure 6. The classes and properties defined in
our model, needed for the packaging process, are mapped to XML elements and attributes
respectively. Note that the timestamps are represented in terms of seconds and milliseconds.

(4) BSD transformation: the actual packaging process starts with the transformation of the BSD
representing the adapted, elementary multimedia bitstream. The resulting BSD represents
an adapted and packaged multimedia bitstream. Figure 6 illustrates the BSD transformation
for the RTP packaging of an AAC bitstream. The obtained BSD is compliant with MPEG-B
BSDL, which implies that the BSDL framework can be used for further processing. The BSD
transformation can be implemented using XSLT or STX, which enables the use of a format-
independent transformation engine. However, it is important to note that the transformation
stylesheets are not only dependent on the target delivery format, but also on the incoming
coding format since each coding format requires a different packaging (i.e., fragmentation
and packetization) strategy.

(5) BS Schema creation: as discussed in Section 1, a BS Schema describes the high-level struc-
tures and syntax elements of a particular format. In this case, a BS Schema for the target
delivery format needs to be created. The BSD obtained in the previous step needs to be
compliant with this BS Schema.

(6) Adapted and packed bitstream generation: finally, an adapted and packaged multimedia bit-
stream can be created using BSDL’s format-independent BSDtoBin parser, based on the
BSD representing the adapted and packaged multimedia bitstream, the BS Schema for the
target delivery format, and the original multimedia bitstream.

As discussed above, packaging multimedia bitstreams typically consists of two main processes:
fragmentation and packetization. It is not trivial to see where these two processes actually occur in
the above discussed workflow for RDF-driven content adaptation and packaging. Fragmentation is



<RTP_stream
"http://foo.foo/example.aac™>
<rtp_packet>
<rtp_header>

<V>2</\V>
<P>0</P>
<X>0</X>
<CC>0</CC>
<MultimediaBitstream <M>1</M>
"http://foo.foo/example.aac"> <PT>96</PT>
<DeliveryParameters> <SN>0</SN>
<samplingFreq>48000</samplingFreq> <TS>0</TS>
</DeliveryParameters> <SSRC>0</SSRC>
<DataBlock "665279" "475" <au_Header_Section>
"0" "0"/> <length>16</length>
<DataBlock "665754" 447" <au_header>
"0" "21"1> <au_size_pl>14</au_size_pl>
<l > <au_size_p2>160</au_size_p2>
</MultimediaBitstream> </au_header>

</au_Header_Section>
</rtp_header>
<rtp_payload>665286 468</rtp_payload>
</rtp_packet>
<l ->
</RTP_stream>

Figure 6: BSD-driven RTP packaging of AAC multimedia bitstreams.

realized during the BSD transformation process, where the data blocks are mapped to fragments.
Packetization is spread across multiple steps. One aspect is the assignment of timestamps to frag-
ments. During the metadata generation step, the data blocks are labeled with initial timestamps
(i.e., timestamps of the original multimedia bitstreams). However, since the adaptation process
can cause gaps in the initial timestamps (e.g., a particular scene is deleted during the adaptation),
these timestamps need to be recalculated (i.e., the gaps need to be detected and corrected). The
latter is performed during the RDF-to-XML transformation. The packetization process also in-
cludes the addition of syntactical structures such as packet headers. This is done during the BSD
transformation.

The choice to go back from RDF to XML during the packaging process can be justified as
follows. We introduced Semantic Web technologies such as RDF to enhance the interoperability
between different metadata standards. However, the latter is mainly an adaptation issue. More
specifically, semantic adaptations such as scene selection based on semantic metadata are suffering
from these interoperability problems (in case the adaptation is performed in the XML domain).
In order to obtain packaging of multimedia bitstreams in a format-independent way, a description
of headers and syntax elements of the target delivery format is needed, together with pointers to
data segments in the original bitstream, which is exactly what already existing technologies such
as MPEG-B BSDL support.

5 The NinSuna Platform

In this section, we introduce NinSuna®, which is a fully integrated platform for multimedia adap-
tation and delivery in heterogeneous usage environments, relying on both XML and Semantic Web
technologies for the implementation of format-independent adaptation and packaging engines. Fur-
thermore, it aims at being deployable in streaming environments. Its multimedia content adap-
tation and packaging techniques rely on our model for multimedia bitstreams. Note that these
adaptation and packaging techniques were previously discussed in Section 3 and Section 4 respec-
tively. Next to the delivery of multimedia content, NinSuna also provides support for uploading
content with corresponding metadata.

5A website containing information regarding the NinSuna platform and an online demo is available on http:
//multimedialab.elis.ugent.be/NinSuna.

10



| |
9]
& > O Yy |-
S RDF Multimedia
n repository content
A A k*
Adaptation & Packaging R
Engine R3) (R (A3)
5 #-{ Data block selection ‘
> T
[+ . =
- Data block adaptation e Adaptation
E ‘ . }‘ ®D)| Decision- |@®y) Structural |(a2)
2 | RDF2XML transformation || | Taking Metadata
§ S wf : Engine (A1) Generator
£ ‘ B Dtranj ormation ‘ i A
- BSDtoBin |
[ | (R5)
. |
[ T
& * L] f Y vV
>
g Download Streaming Retrieval Authoring
S service service service service
£ 1 1
o (R6) L J (R6) . \
L — (R4) I
Yy v V v

‘ Consumer client }4 Authoring client

Figure 7: Architecture of the NinSuna platform.

5.1 Architecture

The NinSuna architecture is shown in Figure 7. Three layers can be distinguished: the storage
layer, the processing layer, and the front-end layer. The storage layer consists of a multimedia
content server, containing the multimedia bitstreams, and an RDF repository, containing all the
necessary metadata (i.e., RDF triples compliant with our model for multimedia bitstreams). The
processing layer contains an Adaptation and Packaging Engine (APE) (of which the working has
been discussed in Section 4.2), a Structural Metadata Generator (SMG) that enables the creation
of triples compliant with the structural part of the model, and an Adaptation Decision-Taking
Engine (ADTE). The ADTE calculates adaptation parameters, initializes the APE, and manages
the different client sessions [32]. The front-end layer provides access points for clients of the
NinSuna platform. New multimedia bitstreams can be uploaded with their corresponding metadata
using the authoring service. Information regarding multimedia bitstreams can be obtained using
the retrieval service. The adapted and packaged multimedia content is retrieved through the
download or streaming service. The streaming service implements the RTSP protocol [3], while
the download service makes multimedia content available through (progressive) download-and-play
scenarios (e.g., using MP4 as delivery format).

5.1.1 Workflow

Explanatory notes for the workflow within the NinSuna platform (see Figure 7) are given below.
The NinSuna platform allows authoring clients to communicate with the authoring service in order
to extend the multimedia database. The workflow for uploading new multimedia content to the
NinSuna platform is as follows.

(A1) The authoring client sends semantic annotations for a particular multimedia bitstream to the

11



authoring service. These annotations, stored in the RDF repository, consist of RDF triples
compliant with the semantic part of the model for multimedia bitstreams.

The authoring client uploads the actual multimedia content, encoded with a specific coding
format, to the multimedia content repository.

The SMG is used to generate the structural part of the metadata belonging to the uploaded
multimedia bitstream. It takes as input the encoded multimedia bitstream and its semantic
annotations and produces RDF triples compliant with the structural part of the multimedia
model. The RDF triples are subsequently stored in the RDF repository. Note that the
semantic metadata are needed by the SMG to create a mapping between the structural and
semantic metadata (i.e., to connect random access units with temporal segments using the
hasBitstreamData property, as discussed in Section 3.1).

Consumer clients of the NinSuna platform can make use of three services: retrieval, download,
and streaming. The workflow for retrieving multimedia content is given below.

(R1)

(R3)

The retrieval service makes it possible to query the RDF repository (by making use of
SPARQL) in order to browse through the multimedia content, based on the available se-
mantic metadata. Hence, the retrieval service can be compared to a SPARQL endpoint [12]
with a number of additional shortcuts to retrieve multimedia bitstreams. Note that only the
semantic metadata part can be browsed: the structural metadata are masked for the retrieval
service since these metadata are irrelevant for the consumer client.

The consumer client sends a SPARQL query in order to request a particular multimedia
bitstream (for an example of such a query, see Listing 1), together with a description of its
usage environment, to the retrieval service which passes this information to the ADTE. The
latter creates a new session and selects coding and delivery formats based on the given usage
environment characteristics. When the client desires both audio and video, two appropriate
coding formats are selected. Next, the ADTE calculates the adaptation parameters for the
selected coding formats by matching the scalability information of the requested content
with the information about the usage environment (e.g., by comparing the video resolution
with the screen size of the end-user device). Note that in the current implementation of our
platform, the exchange and interpretation of usage environment information occurs in a trivial
way. More specifically, the client indicates the desired coding and delivery format, together
with its preferred scalability options (e.g., a frame rate of 15 fps) by means of a proprietary
format. Future work may consist of extending the platform with support for a standardized
usage environment description format such as the Usage Environment Description (UED)
tools that are standardized within MPEG-21 Digital Item Adaptation [23].

The ADTE initializes one or more APEs (see further) with the received SPARQL query and
the calculated adaptation parameters. Furthermore, it creates an URL for the consumer
client which indicates where the requested multimedia content can be found. This URL,
which contains a session ID, is send back to the consumer client.

The number of APEs that is initialized depends on the number of requested bitstreams and
the delivery service used: if only one bitstream is requested, then one APE is initialized;
if two or more bitstreams are requested (e.g., a video stream with a corresponding audio
stream), then the number of APEs that need to be initialized depends on the requested
delivery service (i.e., streaming or download). The latter is illustrated in Figure 8 for a video
and corresponding audio stream. If the bitstreams need to be delivered using the streaming
service, two APEs are initialized (Figure 8(a)). This is because the streaming service expects
one stream of RTP packets for each bitstream. Hence, two separate streams of RTP packets
are created for the streaming service (i.e., each stream corresponds to a different RTP session).
When the bitstreams are delivered through the download service, only one output stream is
expected. Therefore, the selected streams are merged within the APE. More specifically, the
two streams are associated with different adaptation processes (i.e., data block selection and

12



APE (video) APE (audio) APE (audio+video)

DB selectlon DB selectlon ‘ DB selection ‘ ‘ DB selection ‘

DB adaptatlon DB adaptatlon ‘ DB adaptation ‘ ‘ DB adaptation ‘

| || |
| || |
\ RDFZXML \ \ RDFZXML \
| || |
| || |

RDF2XML

T T
BSD transf BSD transf BSD transf.
BSDtoBln BSDtoBln BSDtoBin

— v v

Streaming Download
service service
(@ (b)

Figure 8: Structural variations of APEs during the adaptation and delivery of corresponding audio
and video streams.

adaptation), but these are merged at the beginning of the packaging process (i.e., the RDF-
to-XML transformation) (Figure 8(b)). This way, the bitstreams can be packed together in
a delivery format targeted for (progressive) download-and-play scenarios (e.g., MP4).

(R4) Dependent on the received URL, the consumer client contacts the progressive download or
streaming service to retrieve the desired content. When the streaming service was selected,
the consumer client starts an RTP/RTSP session with the NinSuna platform.

(R5) By using the session ID (included in the URL), the download or streaming service contacts
the ADTE in order to obtain the proper session. Hence, based on the answer of the ADTE,
the download or streaming service can determine which APE(s) will provide the requested
content.

(R6) The APEs start working (as described in Section 4.2) and provide the adapted and packaged
multimedia bitstream to the download or streaming service. When the streaming service is
selected, the APE provides a stream of RTP packets. The latter are sent out by the streaming
service to the consumer client according to the RT'SP protocol.

(R7) When the usage environment conditions change (e.g., the network connection changes from
broadband to smallband), adaptation parameters can be dynamically adjusted. The con-
sumer client uses the retrieval service to announce its new usage environment. The ADTE
recalculates and changes the adaptation parameters. As discussed in Section 3.2, to avoid
the initialization and evaluation of a new query each time an adaptation property changes,
support for dynamic adaptations is provided in the data block transformation step.

5.1.2 Distributing NinSuna across the Network

Communication within the NinSuna platform is realized using the HTTP protocol [4]. Hence, the
different components can be distributed across a network. First of all, the different layers (storage,
processing, and front-end) can be divided across different machines. Furthermore, a pool of APEs
and SMGs can be created to serve a large number of clients. These pools can also be divided across
multiple machines. The management of the APEs can be done by the ADTE, which will choose
the proper APE based on its current load. Management of the SMGs can be done by the authoring
service. Note that such a distributed architecture increases the scalability of the platform, since
it allows extending the platform with additional components in order to anticipate an increasing
load.

13



5.1.3 Extensibility

One of the main features of the NinSuna platform is its format-independency. Both the adaptation
and packaging process are format-independent. Hence, it is rather straightforward to extend the
platform with support for new coding, metadata, and delivery formats. Adding support for a new
coding format consists of the following steps.

e A mapping needs to be created between the coding format and the model for multimedia bit-
streams. Note that this mapping is actually implemented and performed during the metadata
generation step.

o XML transformation filters (implemented in STX or XSLT') need to be created for use during
the BSD transformation step. More specifically, delivery formats that support the encapsu-
lation of the new coding format and that are already available in the platform (i.e., a BS
Schema exists for the delivery format) need to be taken into account. Hence, for each delivery
format that needs to be supported for the new coding format, an XML transformation filter
needs to be created.

New metadata formats are inherently supported thanks to the use of our OWL-based model for
multimedia bitstreams: it is only necessary to align the new metadata format (i.e., ontology) with
the semantic part of the model. Finally, a new delivery format is supported by taking the following
steps.

e A BS Schema needs to be created, which describes the high-level syntax structures and syntax
elements of the delivery format (as discussed in Section 4.2).

e XML transformation filters (implemented in STX or XSLT) need to be created for use during
the BSD transformation step. More specifically, coding formats that are already supported
by the platform and that are allowed to be incapsulated in the new delivery format need to
be taken into account. Hence, for each coding format that needs to be supported for the new
delivery format, an XML transformation filter needs to be created.

5.2 Implementation

The Java Platform, Enterprise Edition (Java EE) is used to implement NinSuna. Java EE enables
the development of robust and scalable server-side Java applications; furthermore, complete web
services support is available. Sesame (version 2.1), which is an open source RDF database with
support for RDF Schema inferencing and querying, is used as RDF repository. The Sesame RDF
APT is used to access the repository and to evaluate the SPARQL queries. Within the APE,
Saxon 6.5.5 and Joost v.2008-05-28 are used as XSLT and STX transformation engine respectively.
Also, an own Java implementation of the BSDtoBin parser is used. Note that we did not use the
BSDL reference software due to a lack of support for multithreading. The SMG consists of parsers
generated by Flavor [17], enhanced with support for the generation of RDF triples compliant with
the structural part of the model for multimedia bitstreams. Finally, the streaming service uses the
RTSP implementation available in the C++ library of Live555 Streaming Media.

5.3 Performance Measurements

In this section, a number of performance measurements are presented to provide the reader with
an impression of the performance of the NinSuna platform. First, a use case scenario is discussed,
which is then followed by the experimental results.

5.3.1 Use Case Scenario

A number of news sequences were used to test our adaptation and delivery platform. Semi-
automatic annotation was used for each news sequence, i.e., shots were automatically detected after
which each detected shot was manually annotated by a number of keywords. When mapping these
metadata to our model for multimedia bitstreams, each shot corresponds to a TemporalSegment
which contains a keyword property (values for this property correspond to the keywords).

14



Video Audio

Name | Length | Size Bit rate Size | Bit rate

(s) (MB) | (MBit/s) | (MB) | (KBit/s)
newsl 1302 217.5 1.34 19.7 124
news2 | 1301 198.7 1.22 19.4 122
news3 1274 184.7 1.16 19.9 128
newsd | 1284 196.9 1.23 20.0 128
news5 | 1460 198.2 1.09 22.3 125
news6 | 1269 187.3 1.18 19.2 124
news7 | 1305 174.4 1.07 20.4 128

Table 1: Overview of the bitstream characteristics.

The scenario to obtain (parts of) a news sequence is as follows. The user searches, based on
keywords, for news sequences containing news topics that are of his/her particular interest. Next,
the user requests the selected news scenes and provides a description of the usage environment to
the NinSuna platform. The latter selects the requested audio and video scenes, performs structural
adaptations if needed (i.e., exploitation of scalability such as frame rate scaling), and packages the
selected streams.

The multimedia content archive of NinSuna contained seven news sequences, each having a
resolution of 720x432, a frame rate of 25 fps, and a length of approximately 22 minutes. The video
streams of the news sequences were encoded using H.264/AVC. A hierarchical coding structure
was used to obtain three layers of temporal scalability (i.e., the videos can be rescaled from 25 fps
to 12.5 fps and 6.25 fps) [13]. Instantaneous Decoding Refresh (IDR) frames were inserted every 16
frames to obtain feasible random access. Further, the audio streams of the news sequences were en-
coded using AAC (with a sampling frequency equal to 48000). Additional bitstream characteristics
can be found in Table 1.

Two delivery formats are available in our scenario: RTP (streaming service) and MP4 (down-
load service). Hence, three XML transformation stylesheets were developed: one STX stylesheet
to guide the packaging of an H.264/AVC stream into RTP packets, one STX stylesheet to guide the
packaging of an AAC stream into RTP packets, and one XSLT stylesheet to guide the packaging
of an H.264/AVC and AAC stream into an MP4 container. We use STX for RTP because of its
streaming capabilities. Note that our RTP STX stylesheet implements the different RTP pack-
etization modes for H.264/AVC (i.e., Fragmentation Unit (FU), Multi-Time Aggregation Packet
(MTAP), and Single-Time Aggregation Packet (STAP)) [5]. The latter is only possible if the data
blocks are accompanied by a delivery parameter representing the Network Abstraction Layer Unit
(NALU) type. Hence, thanks to this delivery parameter, we can determine the beginning of a
NALU and its type, which is necessary to implement the packetization modes of the RTP format
for H.264/AVC. Furthermore, the Sequence and Picture Parameter Sets are transmitted through
the Session Description Protocol (SDP, [6]). Within the streaming service, the SDP descriptions are
sent within the reply of the client’s RT'SP DESCRIBE message. Note that such SDP descriptions
are also created within the RTP packaging filter for H.264/AVC.

XSLT is used for MP4 because the format defines header values containing information related
to the whole multimedia bitstream, and these values need to be calculated at runtime (e.g., length of
the resulting MP4 file and random access points in the multimedia bitstreams). Note that we could
have also used STX to implement the packaging process for MP4, but that would have introduced
a significant overhead in terms of implementation effort because of the streaming character of STX.

5.3.2 Experimental Results

Performance measurements were done on a PC having an Intel Pentium D 2.8 GHz CPU and
1 GB of system memory at its disposal. The operating system used was Windows XP Pro SP2,
running Java 2 Runtime Environment (SE version 1.5.0_09). JProfiler 5.1.4 was used to profile our
platform components. All time measurements were executed six times, whereupon an average was
calculated over the last five runs to avoid startup effects.

15



Video Audio

Name | Time Speed # Data | Time Speed # Data

(s) | (MBit/s) | blocks (s) | (KBit/s) | blocks
newsl | 695.8 2.5 32561 | 398.3 405.5 61051
news2 | 753.0 2.1 32538 381.8 417.0 61008
news3 | 634.2 2.3 31875 395.7 412.0 59765
news4 | 625.1 2.5 32111 396.2 413.4 60207
newsb | 779.8 2.0 41008 | 474.4 385.3 76889
news6 | 736.6 2.0 31729 | 403.0 391.3 59491
news7 | 659.7 2.1 32638 392.5 425.6 61196

Table 2: Execution times for the generation of structural metadata.

Structural Metadata Generation

As discussed in Section 5.1, the SMG enables the creation of triples compliant with the structural
part of the model for multimedia bitstreams. Enhanced Flavor-based [17] parsers are used to
implement the SMG. For each of the seven news sequences, the SMG is used to generate their
structural metadata. The memory usage of the SMG is low and constant (approximatly 3 MB). Its
execution times are provided in Table 2. For all multimedia bitstreams (audio and video streams),
the SMG is able to generate the structural metadata in real time (i.e., the execution speed is higher
than the bit rate of the multimedia bitstream). The execution speed of the SMG is dependent on
the following parameters.

o # parse units per second: a higher number of parse units per second implies a lower execution
speed for the SMG. Note that the number of parse units per second is dependent on the coding
format (and its encoding parameters). For instance, a parse unit in H.264/AVC corresponds
to a NALU. We have encoded the seven video news sequences in such a way that each NALU
corresponds to one frame. Hence, the video streams are characterized by 25 parse units
per second. Further, parse units for the audio news sequences correspond to AAC frames
(containing 1024 samples), implying that the audio news sequences are characterized by 46.9
parse units per second.

o # skipped bytes per parse unit: a higher number of skipped bytes per parse unit implies a
higher execution speed for the SMG. These skipped bytes correspond to the coded (audio or
video) data (e.g., motion vectors and transform coefficients), because the SMG only parses
high-level syntax structures of a multimedia bitstream. In our example, the video news
sequences have a higher bit rate than the audio news sequences (see Table 1), implying that

the video streams contain more coded data and hence that more bytes can be skipped by the
SMG.

Table 2 also shows the number of data blocks that is generated for each multimedia bitstream.
In our case, a data block corresponds to a parse unit (i.e., a NALU for H.264/AVC and a frame for
AAC). Since each data block is represented as an RDF graph, we can calculate the number of RDF
triples that is necessary to represent the structural metadata. One RDF data block graph consists
of 5 RDF triples. Further, one RAU (consisting of 3 RDF triples) points to 16 data blocks (for
video) or 30 data blocks (for audio). For example, the total amount of RDF triples to represent the
structural metadata for the news! video sequence is equal to (32561%5)+((32561,/16)*3) = 168910.

Delivery of News Fragments

Three scenarios are considered to evaluate the delivery of (partial) multimedia bitstreams. In
the first scenario, a fragment of the multimedia bitstream is selected occuring in the beginning
of the multimedia bitstream. The second scenario takes a fragment at the end of the multimedia
bitstream. The third scenario takes both fragments of scenarios 1 and 2. We distinguish these
three scenarios in order to be able to investigate the impact of the temporal location of fragments

16



Original start | Fragment Fragment Peak memory Latency
offset (s) length (s) | size (MB) usage (MB) (s)
MP4 | RTP | MP4 | RTP | MP4 | RTP
Scenario 1 18 128 11.8 | 12.0 24 10 24 0.2
Scenario 2 810 139 18.5 | 18.0 25 10 2.5 0.2
Scenario 3 18 267 30.3 | 30.8 37 10 8.2 0.2

Table 3: Characteristics of the three delivery scenarios applied to the news2 sequence.

100% ‘ 100% \

90% B SAXtoBin 90% +—— it B SAXtoBin
80% SRDFtoSAX 80% | [ | SRDFtoSAX
L®RDF query RDF query

70% T
i
50% T

Scenario 2 Scenario 3

Scenario 1

Scenario 2 Scenario 3

Scenario 1

(a) News fragments delivered using RTP. (b) News fragments delivered using MP4
Figure 9: Proportion in terms of execution time percentages between components of the NinSuna
platform.

in the original bitstream and the length of the selected fragments. More information regarding the
resulting multimedia fragments of the news2 audio and video sequences is provided in Table 3.

We have evaluated the media adaptation and delivery process within NinSuna in terms of peak
memory consumption and execution times. Regarding the peak memory consumption, we do not
consider the memory usage of the Java Virtual Machine and the Java Application Server, i.e., only
the memory usage is measured for the APE (i.e., data block selection and adaptation, RDF-to-XML
transformation, and BSD transformation and BSDtoBin). As shown in Table 3, RTP delivery is
characterized by a low and constant memory usage (i.e., 10 MB). On the contrary, delivery using
MP4 introduces memory usage that is dependent on the length (in terms of data blocks) of the
multimedia fragments. This is due to the XSLT transformation that needs to store the full XML
document, resulting from the RDF-to-SAX transformation, in memory. Note that this is necessary
due to the presence of headers occurring in front of the MP4 file and covering information regarding
the full bitstream (e.g., a list of random access points). In future developments, the XSLT stylesheet
should be replaced by a more efficient streaming XML filter. Also in Table 3, the time between
the client’s request and the first delivered byte (measured at server-side to avoid network delay)
is provided (i.e., the latency). For RTP, the latency is low and independent of the length and
position of the media fragment (i.e., 0.2s). For MP4, the latency is dependent on the length of
the requested media fragment. For instance, for scenario 3, the resulting MP4 file is available for
(progressive) download after 8.2s.

In Figure 9, the proportion between components of the APE are shown in terms of execution
time percentages. RDF query, RDFtoSAX, and SAXtoBin correspond to data block selection,
data block adaptation and RDF-to-XML transformation, and BSD transformation and BSDtoBin
respectively. For RTP delivery, SAXtoBin takes most of the time with 65 % on average. RDFtoSAX
only requires a small proportion in terms of execution time (2%), while RDF query takes 33 %.
These proportions are independent of the length of the resulting media fragment, i.e., they are
only influenced by the resulting bit rate of the media fragment. For MP4 delivery, the proportions
between the APE components are not independent of the length of the media fragment (the longer
the fragment, the more time is spent by SAXtoBin). This is due to the decreasing performance
of the BSD transformation when the size of the incoming XML document, which is dependent on
the length of the media fragment, increases.

17



6 Directions for Future Research

Future work consists of the development of a more efficient MP4 packetizing filter. A SAX filter
could be created which is able to keep the header data of the MP4 file in memory, while already
writing the payload data to a temporary file. Note that the MP4 format also provides a solution
in the form of fragments. More specifically, instead of one header covering the whole MP4 file,
fragmented MP4 files contain multiple headers only covering parts of the MP4 file. This way, MP4
files can be created in an ‘on-the-fly’ fashion, making it no longer necessary to collect information
regarding the full bitstream to create the header. Unfortunately, fragmented MP4 files are not
supported yet by most media players.

Further, optimizations for the storage and retrieval of the structural metadata should be in-
vestigated. For example, one solution for this problem is to store the structural metadata and
scalability information in an RDF store which is specifically designed for the model for multimedia
bitstreams. In particular, the structural metadata and scalability information can be stored in
a highly scalable Relational Database Management System (RDBMS), using a database scheme
based on the structural and scalability part of the model for media bitstreams. Hence, such a
RDBMS can be seen as an efficient RDF store specifically designed for our model. RDBMSs
should be capable of dealing with a large amount of structural metadata since they are mature,
stable, and scalable, while also providing a high performance in terms of query execution speed.

Other future work consists of linking our model for multimedia bitstreams to other multimedia
ontologies. This will allow us to add fully detailed annotations to multimedia bitstreams. Ex-
isting multimedia ontologies are listed by the MultiMedia SEMantics (MMSEM) W3C Incubator
Group [7]. Following MMSEM, W3C has started a Media Annotation Working Group® which
has as mission to provide an ontology designed to facilitate cross-community data integration of
information related to media objects in the web, such as video, audio, and images.

Finally, additional topics for future research are the addition of support for the UED tools
of MPEG-21 DIA, extending the model for multimedia bitstreams to support spatial fragment
selection, and the development of a fully semantic-aware multimedia browser, which will serve as
a consumer client for the NinSuna platform.

7 Discussion and Conclusions

In this paper, we presented a format-independent multimedia content adaptation and delivery plat-
form, based on a model for multimedia bitstreams. This model covers the structural, semantic,
and scalability properties of multimedia bitstreams and is implemented by making use of OWL.
Further, it provides support for a seamless integration of adaptation operations and semantic meta-
data, and supports format-independent packaging of multimedia content. Multimedia adaptation
is performed by selecting and adapting portions of the structural metadata using SPARQL. Multi-
media packaging is obtained by encapsulating the selected and adapted structural metadata within
a specific delivery format. This packaging process is implemented using XML transformation filters
and MPEG-B BSDL.

In previous work by the authors [42], a fully integrated multimedia adaptation platform relying
on XML-driven content adaptation engines was presented. However, as discussed in Section 2,
semantic adaptations introduce difficulties due to interoperability problems of XML between dif-
ferent metadata standards. Furthermore, the multimedia delivery in [42] is implemented by means
of a dedicated and coding-format specific streaming server. Hence, no generic solution for multime-
dia packaging is present. The NinSuna platform provides solutions for these problems by offering
a seamless integration between adaptation processes and metadata standards, and by providing
fully format-independent multimedia content adaptation and packaging engines.

The Continuous Media Markup Language (CMML, [35]) allows to annotate and index continu-
ous media files. The presented architecture is able to extract temporal segments of media resources
using a temporal URI scheme. A new file format is presented (i.e., Annodex), which enables encap-
sulation of any type of streamable media resource (i.e., Annodex is coding-format independent).

6See http://www.w3.org/2008/01/media-annotations-wg.html for more information.

18



Annodex is based on the Ogg encapsulation format and is basically a bitstream consisting of mul-
timedia bitstreams combined with a CMML file. Comparing Annodex to our approach presented
in this paper, we can state that both solutions allow to extract temporal fragments from media
resources in a format-independent manner. However, Annodex requires the use of a single delivery
format (i.e., Ogg) while our approach is able to deliver media content using any delivery format,
in a format-independent way. Further, in contrast to our approach, Annodex does not support
structural adaptations of media resources (i.e., exploitation of scalability layers).

Digital Item Streaming (DIS, [24]) is part 18 of MPEG-21 and enables the incremental delivery
of a Digital Item (covering both metadata and media resources) in a piece-wise fashion. DIS
relies on the Bitstream Binding Language (BBL, [41]) for this purpose. BBL defines syntax and
semantics to describe instructions on how a Digital Item can be fragmented and mapped into one or
more delivery channels. It uses the same principles for serializing the packed multimedia bitstream
as our proposed method, i.e., MPEG-B BSDL is used to abstract the multimedia bitstream and
to enable the use of format-agnostic software modules. However, the BBL approach requires a
new language to be used to specify the fragmentation and packetization process. Our proposed
method to perform format-independent packaging only requires knowledge of commonly used XML
transformation languages such as XSLT or STX. Furthermore, our model for multimedia bitstreams
provides support for the multimedia packaging process (i.e., timestamp support and coding-format
specific parameters). Hence, this information can already be calculated during the metadata
generation step, which is in contrast to the BBL approach where this information needs to be
calculated during the packaging process.

Ransburg et al. propose to use Media Streaming Instructions within BSDs to implement a
generic streaming server [37]. More specifically, access units (i.e., the smallest unit of data to
which timing may be attached) are identified and timestamps are assigned to them. Note that
these Media Streaming Instructions have been adopted in the second amendment of the MPEG-
21 DIA specification [25]. Using Media Streaming Instructions, the fragmentation process and
timestamp calculation is performed during the BSD generation step (i.e., during structural meta-
data generation). However, the fragmentation process is dependent on the delivery format (e.g.,
fragmentation of H.264/AVC streams is different for RTP and MP4 packetization). Also, BSDs
including Media Streaming Instructions are processed by delivery-format specific software modules
(e.g., an RTP packetizer).

Finally, the Darwin Streaming Server’” (DSS) is an open source, cross-platform RTP/RTSP
streaming server. It provides a coding-format agnostic design, i.e., no codecs are present in the
server. The streaming of media resources is guided by hint tracks, which contain all the information
necessary to packetize and stream the media resource. Note that the creation of these hint tracks
is coding-format specific (e.g., MP4Box® is a commonly used tool for the creation of hint tracks).
Hint tracks can be compared to a part of our structural metadata (i.e., the mapping of timestamps
to byte ranges of the media resource). However, support for adaptation operations is not available
in DSS. Also, packing multimedia content with other delivery formats (other than RTP) is not
possible.

Acknowledgments

The research activities as described in this paper were funded by Ghent University, the Interdisci-
plinary Institute for Broadband Technology (IBBT), the Institute for the Promotion of Innovation
by Science and Technology in Flanders (IWT), the Fund for Scientific Research-Flanders (FWO-
Flanders), and the European Union.

References

[1] RFC 3550, “RTP: A Transport Protocol for Real-Time Applications,” Available on http:
//wuw.ietf.org/rfc/rfc3550.txt.

"http://developer.apple.com/opensource/server/streaming/
8http://gpac.sourceforge.net/packager.php

19



2]

[10]

[11]

[12]

[13]

“SUMO: Suggested Upper Merged Ontology,” Available on http://www.ontologyportal.
org/.

RFC 2326, “Real Time Streaming Protocol,” Awvailable on http://www.ietf.org/rfc/
rfc2326.txt.

RFC 2616, “Hypertext Transfer Protocol — HTTP/1.1,” Available on http://www.w3.org/
Protocols/rfc2616/rfc2616.html.

RFC 3984: “RTP Payload Format for H.264 Video,” Available on http://www.ietf.org/
rfc/rfc3984.txt.

RFC 2327: “SDP: Session Description Protocol,” Available on http://www.ietf.org/rfc/
rfc2327.txt.

W3C Multimedia Semantics Incubator Group. Available on http://www.w3.org/2005/
Incubator/mmsem/.

M. Amielh and S. Devillers. Multimedia Content Adaptation with XML. In Proceedings
of 8th International Conference on Multimedia Modeling, pages 127-145, Amsterdam, The
Netherlands, November 2001.

M. Amielh and S. Devillers. Bitstream Syntax Description Language: Application of XML-
Schema to Multimedia Content Adaptation. In Proceedings of 11th International World Wide
Web Conference, Honolulu, Hawaii, May 2002. Available on http://wwwconf.ecs.soton.
ac.uk/archive/00000185/01/index.html.

R. Arndt, R. Troncy, S. Staab, L. Hardman, and M. Vacura. COMM: Designing a Well-
Founded Multimedia Ontology for the Web. In 6th International Semantic Web Conference
(ISWC 2007), Busan, Korea, November 2007.

C. Christopoulos, A. Skodras, and T. Ebrahimi. The JPEG2000 Still Image Coding System:
an Overview. IEEFE Trans. Consumer Electron., 46(4):1103-1127, November 2000.

K. Clark, L. Feigenbaum, and E. Torres, editors. SPARQL Protocol for RDF. W3C Recom-
mendation. World Wide Web Consortium, January 2008.

W. De Neve, D. Van Deursen, D. De Schrijver, K. De Wolf, and R. Van de Walle. Using
Bitstream Structure Descriptions for the Exploitation of Multi-layered Temporal Scalability in
H.264/AVC‘s Base Specification. Lecture Notes in Computer Science, 3768:641-652, November
2005.

S. Decker, S. Melnik, F. van Harmelen, D. Fensel, M. C. A. Klein, J. Broekstra, M. Erdmann,
and I. Horrocks. The Semantic Web: The Roles of XML and RDF. IEEE Internet Computing,
4(5):63-74, 2000.

S. Devillers, C. Timmerer, J. Heuer, and H. Hellwagner. Bitstream Syntax Description-Based
Adaptation in Streaming and Constrained Environments. IEEE Trans. Multimedia, 7(3):463—
470, June 2005.

Dublin Core Metadata Initiative. Dublin Core Metadata Element Set, version 1.1: Reference
Description. Technical report, Dublin Core Metadata Initiative, 2004. Available on http:
//www.dublincore.org/documents/dces/.

A. Eleftheriadis. Flavor: A Language for Media Representation. In Proceedings of ACM
Multimedia Conference, pages 1-9, Seattle, WA, November 1997.

M. M. Hannuksela, Y.-K. Wang, and M. Gabbouj. Isolated Regions in Video Coding. IEEFE
Trans. Multimedia, 6:259-267, April 2004.

D. Hong and A. Eleftheriadis. XFlavor: providing XML features in media representation.
Multimedia Tools and Applications, 39(1):101-116, 2008.

20



[20]

[21]

[22]

[23]

[24]

[25]

[26]

ISO/IEC. 23000-5: Information technology - MPEG-B Systems technologies Part 5: Bitstream
Syntax Description Language (BSDL).

ISO/IEC. 15938-5:2003 Information technology — Multimedia content description interface —
Part 5: Multimedia description schemes, September 2003.

ISO/IEC. 14496-14:2003 Information technology — Coding of Audio, Picture, Multimedia and
Hypermedia Information — Part 14: MP4 file format, February 2004.

ISO/IEC. 21000-7:2004 Information technology — Multimedia framework (MPEG-21) — Part
7: Digital Item Adaptation, October 2004.

ISO/IEC. 21000-18:2007 Information technology — Multimedia framework (MPEG-21) — Part
18: Digital Item Streaming, June 2007.

ISO/IEC. Information technology — Multimedia framework (MPEG-21) — Part 7: Digital
Item Adaptation, Amendment 2: Dynamic and Distributed Adaptation. ISO/IEC 21000-
7:2007/FPDAmd 2, January 2007.

ISO/IEC JTC 1. Information technology — Coding of moving pictures and associated audio
for digital storage media at up to about 1,5 Mbit/s — Part 3: Audio. ISO/IEC 11172-3:1993,
1993.

ISO/IEC JTC 1. Information technology — Generic coding of moving pictures and associated
audio information: Video. ISO/IEC 13818-2:2000, 2000.

ISO/IEC JTC 1. Information technology — Coding of audio-visual objects — Part 3: Audio.
ISO/IEC 14496-3:2005, 2005.

ITU-T and ISO/IEC JTC 1. Advanced Video Coding for Generic Audiovisual Services. ITU-T
Rec. H.264 and ISO/IEC 14496-10 AVC, 2003.

G. Klyne and J. J. Carroll, editors. Resource Description Framework (RDF): Concepts and
Abstract Syntax. W3C Recommendation. World Wide Web Consortium, February 2004.

D. McGuinness and F. van Harmelen, editors. OWL Web Ontology Language: QOverview.
W3C Recommendation. World Wide Web Consortium, February 2004.

D. Mukherjee, E. Delfosse, J.-G. Kim, and Y. Wang. Optimal Adaptation Decision-taking for
Terminal and Network Quality-of-service. IEEE Trans. Multimedia, 7(3):454-462, June 2005.

J.-R. Ohm. Advances in scalable video coding. Proc. IEEE, 93(1):42-56, January 2005.

G. Panis, A. Hutter, J. Heuer, H. Hellwagner, H. Kosch, C. Timmerer, S. Devillers, and
M. Amielh. Bitstream Syntax Description: a Tool for Multimedia Resource Adaptation within
MPEG-21. Signal Processing: Image Communication, 18(8):721-747, September 2003.

S. Pfeiffer, C. Parker, and C. Schremmer. Annodex: A Simple Architecture to Enable Hyper-
linking, Search & Retrieval of Time Continuous Data on the Web. In MIR ’03: Proceedings
of the 5th ACM SIGMM international workshop on Multimedia information retrieval, pages
87-93, Berkeley, California, November 2003.

E. Prud’hommeaux and A. Seaborne, editors. SPARQL Query Language for RDF. W3C
Recommendation. World Wide Web Consortium, November 2007.

M. Ransburg, S. Devillers, C. Timmerer, and H. Hellwagner. Processing and Delivery of
Multimedia Metadata for Multimedia Content Streaming. In Proceedings of 6th Workshop on
Multimedia Semantics - The Role of Metadata, Aachen, Germany, March 2007.

H. Schwarz, D. Marpe, and T. Wiegand. Overview of the Scalable Video Coding Extension
of the H.264/AVC Standard. IEEE Trans. Circuits Syst. Video Technol., 17(9):1103-1120,
September 2007.

21



[39]

[40]

[43]

SMPTE. Material Exchange Format (MXF) — File Format Specification (Standard). SMPTE
377M-2004, 2004.

S. Srinivasan, C. Tu, S. L. Regunathan, and G. J. Sullivan. HD Photo: a New Image Coding
Technology for Digital Photography. In Proceedings of the SPIE, volume 6696, San Diego,
US-CA, USA, August 2007.

J. Thomas-Kerr, I. Burnett, and C. Ritz. Format-Independent Rich Media Delivery Using the
Bitstream Binding Language. IEEE Trans. Multimedia, 10(3):514-522, April 2008.

D. Van Deursen, S. De Bruyne, W. Van Lancker, W. De Neve, H. Hellwagner, and R. Van de
Walle. MuMiVA: a Multimedia Delivery Platform using Format-agnostic, XML-driven Con-
tent Adaptation. In Proceedings of the 9th International Symposium on Multimedia, pages
131-138, Taichung, Taiwan, december 2007.

A. Vetro, C. Christopoulos, and T. Ebrahimi. Universal Multimedia Access. [EEE Signal
Processing Mag., 20(2):16, March 2003.

22



