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Abstract

Kernel learning methods, whether Bayesian or frequentist, typically involve mul-
tiple levels of inference, with the coefficients of the kernel expansion being deter-
mined at the first level and the kernel and regularisation parameters carefully
tuned at the second level, a process known as model selection. Model selec-
tion for kernel machines is commonly performed via optimisation of a suitable
model selection criterion, often based on cross-validation or theoretical perfor-
mance bounds. However, if there are a large number of kernel parameters,
as for instance in the case of automatic relevance determination (ARD), there
is a substantial risk of over-fitting the model selection criterion, resulting in
poor generalisation performance. In this paper we investigate the possibility of
learning the kernel, for the Least-Squares Support Vector Machine (LS-SVM)
classifier, at the first level of inference, i.e. parameter optimisation. The kernel
parameters and the coefficients of the kernel expansion are jointly optimised at
the first level of inference, minimising a training criterion with an additional
regularisation term acting on the kernel parameters. The key advantage of this
approach is that the values of only two regularisation parameters need be deter-
mined in model selection, substantially alleviating the problem of over-fitting the
model selection criterion. The benefits of this approach are demonstrated using
a suite of synthetic and real-world binary classification benchmark problems,
where kernel learning at the first level of inference is shown to be statistically
superior to the conventional approach, improves on our previous work (Cawley
and Talbot, 2007) and is competitive with Multiple Kernel Learning approaches,
but with reduced computational expense.
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1. Introduction

The training procedures for artificial neural networks (Bishop, 1995; MacKay,
1992), kernel learning methods (Schölkopf and Smola, 2002) and Gaussian pro-
cess classifiers (Williams and Barber, 1998; MacKay, 1998; Rasmussen and
Williams, 2006), can be viewed as multi-level optimisation problems (Guyon
et al., 2009). The model parameters are optimised at the first level of inference,
for instance the weights of an artificial neural network, or the coefficients of the
kernel expansion of a kernel machine. However, there are normally a number of
hyper-parameters that must be determined, for example the number of hidden
layer units in a multi-layer perceptron network, the choice of kernel and the val-
ues of any associated kernel parameters for a kernel machine, or regularisation
parameters controlling the complexity of the model. These hyper-parameters are
normally optimised at a second level of inference, a process known as model se-
lection (Guyon, 2009). The division between parameters and hyper-parameters
typically arises due to computational considerations. The dual parameters of a
kernel machine, for example, are generally given by the solution of a convex op-
timisation problem, for which computationally efficient algorithms are available
(Boyd and Vandenberghe, 2004). It is therefore computationally convenient to
alternate between optimising the coefficients of the kernel expansion at the first
level of inference and optimising the kernel and regularisation parameters at the
second level of inference, taking advantage of the simple mathematical structure
of the problem at the first level of inference.

In the case of kernel learning methods, the convex nature of the optimi-
sation problem at the first level of inference implies a single, global optimum,
thus avoiding the potential pitfall of multiple local minima that complicates
the application of multi-layer perceptron networks. However, in order to max-
imise generalisation performance in practical applications, the values of a small
number of regularisation and kernel parameters must also be carefully tuned
during model selection (Chapelle et al., 2002). This is most often achieved via
minimisation of a cross-validation estimate of generalisation performance, using
grid search, Nelder-Mead simplex (Nelder and Mead, 1965) or gradient descent-
based methods (Chapelle et al., 2002). This approach has been shown to be
highly effective for kernel machines with a small number of hyper-parameters
(e.g. Cawley, 2006). However, as the number of hyper-parameters becomes
large, there is an increasing risk of over-fitting the model selection criterion, re-
sulting in poor performance (Cawley and Talbot, 2007, 2010). Chapelle (2002)
suggests the additional estimation error might reasonably be expected to grow
with the square root of the number of hyper-parameters. This danger has been
observed previously (Bengio, 2000), and is especially evident in studies involving
Automatic Relevance Determination (ARD), where the kernel includes separate
scaling parameters for each feature. It is also well understood that the model
selection criterion should not be also used for performance estimation as its di-
rect optimisation during model selection will introduce an optimistic bias, and
hence procedures such as nested cross-validation are necessary (Cherkassky and
Mulier, 1998; Hastie et al., 2001; Cawley and Talbot, 2010). While over-fitting
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of the model selection criterion is clearly a significant problem, research towards
a potential solution appears to have received relatively little attention. Cawley
and Talbot (2007) propose the addition of a regularisation term to the model
selection criterion penalising large values of the kernel parameters, and thus
promoting a relatively smooth model. Regularisation of the kernel parameters
is shown to be effective in some cases, however the problem of over-fitting in
model selection is far from solved. The use of automatic relevance determination
has several distinct benefits, including (c.f. Chapelle et al., 2002):

• The potential for improved generalisation performance — it is intuitively
reasonable to expect that surpressing irrelevant attributes should result
in improvements in accuracy.

• Explanation of the data — determination of which attributes have useful
explanatory power, and which do not, is often a useful scientific finding.

• Reduced cost of data collection — if redundant attributes can be identified
and eliminated, there is no need to determine the values of that attribute in
operation. In some applications (such as medical diagnosis, where some
screening tests are more expensive to conduct than others), the cost of
evaluating the attributes may be an important practical consideration.

Thus, even if the use of automatic relevance determination does not give a
performance advantage over the more basic RBF kernel, it is worth developing
methods to avoid over-fitting in model selection so that the second and third
benefits of ARD can be obtained more fully and reliably. In many applications,
especially where data are in limited supply, a simple but incorrect model will
out-perform a more correct, but more complex model because the parameters
of the model can be estimated more reliably. A common example is the use
of naive Bayes in text classification, where the assumption of independence is
clearly not justified. If explaining the data is an important concern, the correct
model should be used, and methods developed to allow the parameters to be
estimated more accurately and reliably.

The approach presented in this paper seeks to minimise the risk of over-
fitting in model selection by minimising the number of hyper-parameters to
be optimised during model selection, hence minimising the degrees of freedom
available to over-fit the model selection criterion. This is achieved by demoting
the selection of kernel parameters from the second level of inference to the first,
such that they are jointly optimised with the dual model parameters, minimising
a single regularised training criterion. An additional regularisation term is used
to penalise values of the kernel parameters likely to result in poor generalisation
performance. As the values of only two regularisation parameters need then
be determined in model selection, it is reasonable to expect the chance of over-
fitting the model selection criterion to be substantially reduced, even when many
kernel parameters are used. The optimisation of kernel parameters at the first
level of inference is similar to the design of radial basis function networks via
gradient descent methods (Webb and Shannon, 1998); however the addition of
a regularisation term is required to maintain generalisation performance.
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The remainder of this paper is structured as follows: Section 2 describes
a training algorithm for kernel ridge regression with optimisation of the kernel
parameters at the first level of inference. Results obtained on a suite of synthetic
and real-world benchmark datasets is presented in Section 3. Section 4 provides
discussion, including suggestions for further research and recommendations for
practical applications. Finally, the work is summarised and conclusions drawn
in Section 5.

2. Kernel Learning at the First Level of Inference

Let D = {(xi, yi)}`i=1, represent the training sample, where xi ∈ X ⊂
Rd is a vector of explanatory variables describing the ith example, and yi ∈
{−1,+1}, is the corresponding desired response indicating the class to which
the example belongs. The Least-Squares Support Vector Machine (LS-SVM)
classifier (Suykens et al., 2002) constructs a linear classifier, f(x) = w ·φ(x)+b,
in a feature space, F , defined via a fixed transformation φ : X → F . However,
rather than define the feature space directly, it is instead induced by a positive
definite kernel function, K : X × X → R, giving the inner product between
points in the feature space, such that K(x,x′) = φ(x) ·φ(x′). In this study, we
adopt the simple Gaussian Radial Basis Function (RBF) kernel,

K(x,x′;θ) = exp
(
−θ1‖x− x′‖2

)
, (1)

where θ1 is a kernel parameter controlling the sensitivity of the kernel, and the
automatic relevance determination (ARD) or feature scaling variant of the RBF
kernel (Chapelle et al., 2002),

K(x,x′;θ) = exp

(
−

d∑
i=1

θi[xi − x′i]2
)
, (2)

where θi are kernel parameters allowing the sensitivity of the kernel with respect
to each of the explanatory variables to be tuned independently. Ideally, the ker-
nel parameters associated with irrelevant features will adopt very small values,
implementing a form of Automatic Relevance Determination (ARD) (MacKay,
1994; Neal, 1996). For fixed θ, the primal model parameters, (w, b), are given
by the minimiser of a convex training criterion

L(w, b) =
∑̀
i=1

c (yi, f(x;w, b)) +
λ

2
‖w‖2,

where c(·, ·) is a convex loss (in this case, the squared loss c(y, f) = 0.5(y− f)2)
representing the data misfit and λ is a regularisation parameter controlling the
bias-variance trade-off (Geman et al., 1992). It can be shown that the vector
of model parameters, w, can be expressed as an expansion over the training
examples, such that

w =
∑̀
i=1

αiφ(xi) =⇒ f(x;w, b) =
∑̀
i=1

αiK(xi,x) + b,
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where α = (αi)`
i=1 is a vector of dual model parameters. For a fixed value of

the regularisation parameter, λ, the optimal dual model parameters are given
by the solution of a system of linear equations,[

K + λI 1
1T 0

] [
α
b

]
=
[
y
0

]
(3)

where
K = [Kij = K(xi,xj)]`i,j=1 , (4)

which may be found efficiently via Cholesky decomposition of K+λI (Suykens
et al., 2002).

The use of a squared loss is common in regression tasks, and may seem some-
what incongruous in a statistical pattern recognition setting, however there are
theoretical and practical justifications for it’s use. Firstly, the use of the least-
squares loss in regression on class labels assymptotically provides estimates of
Bayesian a-posteriori probability of class membership (White, 1989). Further-
more, Saerens et al. (2002) shows that any reasonable cost function (including
the least-squares loss) can be used for a posteriori probability estimation. Sta-
tistical learning theory provides similar bounds, based on covering numbers, on
the generalisation peformance of regularized least squares and support vector
machines (Vapnik, 1998; Bousquet and Elisseeff, 2002; Rifkin, 2004). Secondly,
it can be shown (e.g. Webb and Copsey, 2011) that least-squares regression on
the class labels is equivalent to Fisher’s Linear Discriminant Analysis (LDA),
a classic statistical pattern recognition method (Fisher, 1936). Similarly, there
is a close correspondence (Xu et al., 2001; Zhang et al., 2010) between the
LS-SVM and Kernel Fisher Discriminant (KFD) analysis (Mika et al., 1999).
Van Gestel et al. (2002) present a Bayesian treatment of the LS-SVM classi-
fier and motivate the use of a least-squeares loss for binary classification by
considering the case where the data belonging to each class are distributed in
feature space according to Gaussian distributions with identical covariance ma-
trices (a common motivation for linear classifiers, e.g. Duda et al., 2001). If the
linear model constructed in the feature space achieves an output of ±1 at the
means of these Gaussian distributions, then the residual errors will also have a
Gaussian distribution, matching the implied noise model for a least-squares loss
function. Lastly, KRR (Saunders et al., 1998), LS-SVM (Suykens et al., 2002),
KFD (Mika et al., 1999), Regularized Least Squares (Rifkin et al., 2003) and
Proximal Support Vector Machine (Fung, 2001) classifiers are widely used1 and
have proven highly effective in practical applications and show state-of-the-art
performance on benchmark learning tasks (e.g. Mika et al., 1999; Rifkin, 2002;
Cawley and Talbot, 2003; Van Gestel et al., 2004). Kernel Logistic Regression,
with a cross-entropy loss that is more obviously suited to statistical pattern
recognition, does not out-perform kernel Fisher discriminant analysis (Cawley

1at the time of writing 370, 5406, 1660, 151 and 592 citations respectively, according to
Google Scholar.
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and Talbot, 2008). Furthermore, we have used these methods in winning en-
tries in a number of open machine learning challenges and highly competitive
baseline methods in others (Cawley, 2006; Guyon et al., 2008; Cawley, 2009,
2011). The principal benefit of the LS-SVM, is that it has a simple and efficient
implementation, and the leave-one-out cross-validation error can be evaluated
in closed form at essentially negligible computational expense (Cawley, 2006),
providing an efficient model selection criterion.

In this study, rather than optimise the kernel parameters of a least-squares
support vector machine classifier (Suykens et al., 2002) during model selection,
we chose instead to optimise them jointly with the model parameters, at the
first level of inference, by minimising a single training criterion,

L(w, b,θ) =
∑̀
i=1

c (yi, f(xi)) +
λ

2
‖w‖2 +

µ

2
‖θ‖2, (5)

where the squared norm of the kernel parameters is used as a regularisation term
penalising large values of the scaling parameters of the radial basis function or
automatic relevance determination kernels, thus promoting a relatively smooth
model and avoiding over-fitting. With only two regularisation parameters (λ, µ)
to be determined at the second level of inference, the scope for over-fitting in
model selection should also be reduced.

The additional regularisation term used here, based on the squared norm of
the kernel parameters, is intended to express a preference for relatively smooth
models, with small magnitude scaling parameters, such that the output of the
model is not unduly sensitive to small changes in any of the inputs and thereby
decrease the tendency of the model to overfit the training sample. This form of
regularisation, also known as weight decay (Krogh and Hertz, 1991), is used to
implement automatic relevance determination for multi-layer perceptron neural
networks (MacKay, 1994; Neal, 1996; Bishop, 1995), with similar justification.
This heuristic is further supported by performance bounds provided by Bartlett
(1998) and Anthony and Bartlett (1999), which suggest that generalisation per-
formance is more strongly affected by the magnitude of the weights (both input-
to-hidden and hidden-to-output layer) than the size of the network. The scaling
parameters of the automatic relevance determination variant of the radial basis
function kernel are analogous to the input-to-hidden layer weights of an MLP
network, in that they govern the flexibility of the feature space in which a linear
discriminant is constructed. It is somewhat surprising that regularisation of the
scaling parameters of radial basis function neural networks is not as commonly
encountered as in MLP networks, given that over-fitting is an important issue
for both types of neural network model. Lastly, the same choice of regularisation
term proved beneficial in previous work (Cawley and Talbot, 2007), although
in that case the leave-one-out cross-validation based model selection criterion
was regularised, rather than the training criterion, providing further empirical
justification.
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2.1. Training Algorithm
It would be feasible to optimise both model and kernel parameters jointly

via gradient descent methods; however for a fixed set of kernel parameters, the
dual parameters are given by a system of linear equations (3), which may be
solved efficiently via Cholesky decomposition. It seems sensible therefore to
alternate between exact updates of the dual model parameters and gradient
descent updates of the kernel parameters. Let zi = f(xi), then the necessary
gradient information is given by

∂L
∂θr

=
∑̀
i=1

[
∂ci
∂zi

+ λαi

]∑̀
j=1

∂αj

∂θr
Kij

+
∑̀
i=1

[
∂ci
∂zi

+
λαi

2

]∑̀
j=1

αj
∂Kji

∂θr

+
∂b

∂θr

∑̀
i=1

∂ci
∂zi

+ µθr,

where ci = c{yi, zi}. However, noting that at the minimum of L, we have that

∂L
∂αi

= 0 =⇒ ∂ci
∂zi

+ λαi = 0

and
∂L
∂b

= 0 =⇒
∑̀
i=1

∂ci
∂zi

= 0,

and so
∂L
∂θr

=
∑̀
i=1

αi

∑̀
j=1

∂Kij

∂θr

[
∂cj
∂zj

+
λαj

2

]
+ µθr.

Assuming the radial basis function kernel for automatic relevance determination,
the partial derivatives of the kernel function with respect to a kernel parameter
are

∂Kij

∂θr
= −Kij(xir − xjr)2

Let Dr =
[
(xir − xjr)2

]`
i,j=1

and ∆ = [∂ci/∂zi]
`
i=1 then the required partial

derivatives can be expressed in matrix form as

∂L
∂θr

= −αT (K ◦Dr)
(

∆ +
λ

2
α

)
+ µθr,

where ◦ represents the Hadamard (element-wise) matrix product. It is then
straightforward to optimise the kernel parameters via, for example, scaled conju-
gate gradient methods (as implemented by the fminunc routine of the MATLAB
Optimisation Toolbox), where the solution of (3) is implicit in the evaluation of
the cost function.
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2.2. Model Selection
The regularisation parameters, λ and µ, are determined in model selection

at the second level of inference. In this study, we simply minimise a k-fold
cross-validation estimate of the loss function c(·, ·). A logarithmic transfor-
mation of the (strictly positive) regularisation parameters is used to obtain an
unconstrained optimisation problem. While gradient descent optimisation of the
model selection criterion would be feasible, we adopt the Nelder-Mead simplex
procedure (as implemented by the fminsearch routine of the MATLAB Opti-
misation Toolbox) for ease of implementation. For the ARD kernel, the model
selection criterion for the LSSVM and training criterion for kernel learning at
the first level of inference is likely to exhibit multiple local minima. A sensible
heuristic approach is to initialise these models with the kernel parameter ob-
tained after model selection for an LSSVM model with an RBF kernel (which
is a special case of the ARD kernel and less susceptible to local minima). This
is computationally inexpensive and generally provides a good starting point for
the optimisation procedure.

2.3. Theoretical Perspective
The algorithm presented in this paper is intended to be an essentially heuris-

tic approach to the problem of over-fitting in model selection for kernel machines
involving a non-trivial number of kernel parameters. However, it is nevertheless
interesting to consider theoretical perspectives on the proposed method.

The training criterion (5) could be viewed as the negative logarithm of the
Bayesian posterior distribution (neglecting additive constants), for the parame-
ters of the model:

p(w, b,θ)|D) ∝ p(D|w, b,θ)× p(w, b,θ),

where

p(D|w, b,θ) ∝
∏̀
i=1

exp {−c(yi, f(xi))} ,

and

p(w, b,θ) = p(w)× p(θ) ∝ exp
{
−λ

2
‖w‖2

}
× exp

{
−µ

2
‖θ‖2

}
.

Minimisation of the regularised training criterion (5) then corresponds to maxi-
mum a-posteriori (MAP) estimation of the model within a Bayesian framework,
where the regularisation terms represent prior beliefs regarding the two sets of
model parameters w and θ. The model itself bears resemblance to several ear-
lier learning systems, in particular multi-layer perceptron neural networks and
radial basis function neural networks. Like an MLP neural network, the pa-
rameters of both layers of the model are tuned by optimisation of a regularised
loss function. Like the RBF neural network, the output layer parameters are
determined by solving a system of linear equations. However, like other ker-
nel machines, the basis functions need not be radial basis functions, and can
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be used to establish known invariances, or incorporate expert domain knowl-
edge (e.g. Shawe-Taylor and Cristianini, 2004). All of these learning systems
have Bayesian interpretations (MacKay, 1994; Neal, 1996; Barber and Schot-
tky, 1998; Van Gestel et al., 2002); a fully Bayesian treatment of the proposed
method would be an interesting direction for further work.

For the conventional Support Vector Machine (Cortes and Vapnik, 1995),
there are two types of hyper-parameters (Cherkassky and Mulier, 2007):

1. hyper-parameters controlling the size of the margin.
2. hyper-parameters controlling the complexity of the kernel.

There is substantial interaction between the two types of hyper-parameters,
which means that neither can be tuned independently (e.g. Cherkassky and
Mulier, 2007; Murphy, 2012). There is, however, a conceptual distinction be-
tween the two types of parameters: For a fixed kernel, the hyper-parameters of
the first type, controlling the size of the margin (or equivalently regularisation
parameters for other kernel machines), implement the structural risk minimisa-
tion (SRM) principle, defining a nested set of hypothesis classes of increasing
complexity. The aim is to find a model that minimises the empirical error,
whilst at the same time limiting the complexity of the hypothesis class from
which the model is drawn. This is achieved by determining the optimal value
of the hyper-parameters of the first type. However, this is only valid for a fixed
kernel, if we tune the kernel function to suit the particular sample of data, via
adaption of the hyper-parameters of the second kind, margin-based bounds on
generalisation are no longer fully valid. This means that the structural risk
minimisation provided by regularisation can be circumvented by tuning of the
kernel-parameters.

Kernel learning at the first level of inference addresses this problem by also
bringing the tuning of the kernel parameters within the framework of structural
risk minimisation. The regularised loss function (5) could also viewed as the
Lagrangian for the constrained optimisation problem:

minimize
w,b,θ

∑̀
i=1

c (yi, f(xi)) ,

subject to ‖w‖2 < L,

‖θ‖2 < M.

For a fixed value of M , L defines a nested set of models of increasing complexity
as L increases. Similarly, for a fixed value of L, M defines a nested set of
models of increasing complexity with increasing values of M . Thus the proposed
learning system embodies the Structural Risk Minimisation (SRM) principle, as
the aim is to find a model that minimises the empirical error, whilst at the
same time limiting the complexity of the hypothesis class from which the model
is drawn, with respect to both the margin of the linear model in the feature
space and the complexity of the kernel. Note that, like kernel learning at the
first level of inference, the regularisation parameter of the conventional support
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vector machine (which controls the complexity of the hypothesis class) is selected
via cross-validation (e.g. Chang and Lin, 2011).

3. Results

In this section, we provide an empirical evaluation of kernel learning at the
first level of inference, using the conventional Least-Squares Support Vector Ma-
chine classifier as the baseline. We begin with an illustrative example that shows
the model selection problem for kernel learning at the first level of inference is
relatively straightforward. The performance of the proposed learning system
is then compared against the baseline method, using both RBF and ARD ker-
nels, over a suite of fourteen benchmarks datasets. An analysis of the kernel
parameters demonstrates that the proposed approach reduces the variance of
parameter estimates, which explains the improvement in performance using the
ARD kernel. The section concludes by assessing whether the proposed method
fully solves the problem of over-fitting in model selection and puts the work into
context via comparisons with previous work and multiple kernel learning.

Table 1 shows the synthetic and real-world binary classification benchmark
datasets used in the empirical evaluation of the proposed learning system. These
comprise the binary classification datasets used in a previous study by Rätsch
et al. (2001), and many others, augmented by Ripley’s synthetic (Ripley, 1996)
benchmark. For each dataset there are 100 random partitions of the data to
form training and test sets (20 in the case of the larger image and splice
benchmarks). The attributes are standardised, as in previous studies using
this suite of benchmarks (e.g. Rätsch et al., 2001), for compatibility with the
spherical RBF kernel (e.g. Murphy, 2012, section 14.5.3). Model selection is
performed independently for each replicate, as described in section 2.2, in order
to avoid biased performance evaluation due to over-fitting that occurs in model
selection (Cawley and Talbot, 2010).

3.1. An Illustrative Example
Figure 1(a) shows the output of a least-squares support vector machine

classifier for Ripley’s synthetic benchmark (Ripley, 1996) with kernel learning at
the first level of inference, using the automatic relevance determination variant
of the radial basis function kernel (2). Clearly, the regularisation terms over the
dual model parameters and over the kernel parameters are effective in avoiding
over-fitting, and a good model is obtained. Figure 1(b) shows the five-fold
cross-validation estimate of the test sum of squared error, used as the model
selection criterion, as a function of the regularisation parameters, λ and µ. While
the model selection criterion is non-convex, it is smooth and unimodal, which
suggests that the numerical optimisation problem involved in model selection is
likely to be relatively straightforward.
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Table 1: Details of datasets used in empirical comparison.

Dataset
Training Testing Number of Input
Patterns Patterns Replicates Features

Banana 400 4900 100 2
Breast cancer 200 77 100 9
Diabetis 468 300 100 8
Flare solar 666 400 100 9
German 700 300 100 20
Heart 170 100 100 13
Image 1300 1010 20 18
Ringnorm 400 7000 100 20
Splice 1000 2175 20 60
Synthetic 250 1000 100 2
Thyroid 140 75 100 5
Titanic 150 2051 100 3
Twonorm 400 7000 100 20
Waveform 400 4600 100 21
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Figure 1: (a) Least-squares support vector machine classifier for Ripley’s syn-
thetic benchmark (Ripley, 1996) with kernel learning at the first level of infer-
ence. (b) Five-fold cross-validation estimate of the sum of squared errors as a
function of the two regularisation parameters, λ and µ.

11



3.2. Analysis of Results using the RBF Kernel
We begin by evaluating the performance of kernel learning at the first level

of inference using a simple spherical RBF kernel, where over-fitting in model
selection is unlikely to be a substantial problem as there is only one kernel pa-
rameter. Table 2 shows the mean test error rates and their standard errors for
the conventional least-squares support vector machine classifier with leave-one-
out (RBF-LOO-LSSVM) and five-fold cross-validation (RBF-XVAL-LSSVM)
based model selection, and LSSVM with kernel learning at the first level of in-
ference (RBF-FLKL-LSSVM, c.f. Equation (5)). In each case, a simple radial
basis function kernel (1), with a single scale parameter, is used. The results for
RBF-LOO-LSSVM are representative of current best practice for this family of
kernel machines, the results for RBF-XVAL-LSSVM are included to illustrate
the difference in performance that might potentially be explained by the differ-
ence in cross-validation based model selection criterion. Conventional LSSVM
with leave-one-out cross-validation based model selection achieves the highest
average rank. The RBF kernel has only a single kernel parameter, so the RBF-
FLKL-LSSVM approach is unable to reduce the number of hyper-parameters
to be tuned in model selection, and so it is unsurprising that it does not out-
perform the conventional approach in this case. In fact the RBF-FLKL-LSSVM
performs slightly worse, although the difference is not statistically significant
(see below), which suggests that the regularisation of the kernel parameters
may not be beneficial, at least for the RBF kernel.

Following the recommendation of Demšar (2006), we use Friedman’s test
(Friedman, 1937, 1940) to determine whether there is a statistically significant
difference in the performance of the three classifiers. The null hypothesis as-
sumes that all k algorithms are equivalent, and so their average ranks over all
N benchmarks, Ri, should be equal. The statistic,

χ2
F =

12N
(k + 1)

[
k∑

i=1

R2
i −

k(k + 1)2

4

]
,

is then distributed according to χ2 with k − 1 degrees of freedom. A less con-
servative test (Iman and Davenport, 1980) adopts the statistic

FF =
(N − 1)χ2

F

N(k − 1)− χ2
F

,

which is distributed according to the F-distribution with k−1 and (k−1)(N−1)
degrees of freedom. If the value of this statistic exceeds the appropriate tabu-
lated critical value, the null hypothesis is rejected. In this case, the Nemenyi
post-hoc test (Nemenyi, 1963) is used to test the significance of pairwise differ-
ences in average ranks. The performance of two classifiers is considered signifi-
cantly different, at the p = 0.1 level, if their average ranks differ by at least the
critical difference (CD),

CD = 2.052

√
k(k + 1)

6N
.
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Table 2: Error rates of conventional least-squares support vector machine, with
the spherical RBF kernel Equation (1) and leave-one-out (RBF-LOO-LSSVM)
and 5-fold cross-validation (RBF-XVAL-LSSVM) -based model selection, and
LSSVM with first-level kernel learning (RBF-FLKL-LSSVM). Error rates are
given for fourteen benchmark datasets (Rätsch et al., 2001; Ripley, 1996), pre-
sented in the form of the mean error rate over test data for 100 realisations of
each dataset (20 in the case of the image and splice benchmarks), along with
their associated standard errors. The best result for each benchmark is shown
in bold, results that are statistically indistinguishable from the best, according
to the Wilcoxon signed ranks test (Wilcoxon, 1945) (α = 0.95), are shown in
italics.

Dataset
Radial Basis Function

RBF-LOO-LSSVM RBF-XVAL-LSSVM RBF-FLKL-LSSVM

banana 10.605 ± 0.052 10.587 ± 0.051 10.614 ± 0.053

breast cancer 27.000 ± 0.476 26.753 ± 0.470 26.610 ± 0.506

diabetis 23.320 ± 0.166 23.390 ± 0.170 23.933 ± 0.189

flare solar 34.230 ± 0.168 34.325 ± 0.176 34.295 ± 0.182

german 23.543 ± 0.217 23.620 ± 0.240 24.987 ± 0.253

heart 16.550 ± 0.354 16.590 ± 0.366 17.140 ± 0.337

image 2.995 ± 0.159 2.861 ± 0.172 2.960 ± 0.166

ringnorm 1.610 ± 0.015 1.650 ± 0.015 1.608 ± 0.011

splice 10.828 ± 0.138 10.811 ± 0.148 10.926 ± 0.150

synthetic 9.642 ± 0.059 9.657 ± 0.060 9.658 ± 0.057

thyroid 4.707 ± 0.229 4.627 ± 0.233 4.720 ± 0.235

titanic 22.581 ± 0.102 22.568 ± 0.095 22.531 ± 0.089

twonorm 2.845 ± 0.021 2.802 ± 0.019 2.578 ± 0.015

waveform 9.786 ± 0.045 9.805 ± 0.044 9.970 ± 0.044

Mean Rank 1.8571 1.8571 2.2857
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In this case, there is insufficient evidence for the null hypothesis to be rejected,
and so all three classifiers demonstrate statistically equivalent performance, as
illustrated by Figure 2.

CD

3 2 1

1.8571 RBF−LOO−LSSVM

1.8571 RBF−XVAL−LSSVM

2.2857RBF−FLKL−LSSVM

Figure 2: Critical difference diagram depicting the mean ranks of the classifiers
using the spherical RBF kernel. Groups of classifiers that are not significantly
different (at p = 0.1) are shown connected by a heavy bar.

3.3. Analysis of Results using the ARD Kernel
We now move on to results obtained using an automatic relevance determina-

tion kernel, where there are many more kernel parameters, and hence over-fitting
in model selection is a much greater risk for conventional approaches. In order
to ensure that poor performance of a model with an ARD kernel could not be
attributed to local minima in the model selection criterion, the regularisation
and kernel parameters were initialised using the corresponding model based on
the RBF kernel (which is a special case of the ARD kernel). The final value of
the model selection criterion for the ARD kernel can not then be higher than
that of the corresponding model based on the RBF kernel, so if the general-
isation performance of the model with the ARD kernel is worse than that of
the RBF based model it can only be due to over-fitting the model selection
criterion. Table 3 shows the corresponding error rates for classifiers based on
the automatic relevance determination (ARD) kernel. This illustrates the sus-
ceptibility of each approach to over-fitting of the model selection criterion, due
to the increase in the degrees of freedom introduced by the additional kernel
parameters. The ARD-FLKL-LSSVM achieves the highest average rank. In
this case, the Friedman test shows that there is a statistically significant differ-
ence in the rankings of the classifiers (i.e. the null hypothesis is rejected), and
the Nemenyi post-hoc tests reveal that the ARD-FLKL-LSSVM is statistically
superior to the ARD-LOO-LSSVM and ARD-XVAL-LSSVM models, as shown
in Figure 3. This unequivocally demonstrates that first level kernel learning is
able to successfully address the problem of over-fitting in model selection.

3.4. Analysis of Kernel Parameters
Figure 4 (a) and (b) show box plots of the kernel parameter for RBF-XVAL-

LSSVM and RBF-FLKL-LSSVM respectively, for the simple RBF kernel func-
tion (1). It is immediately apparent that the kernel parameter values for RBF-
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Table 3: Error rates of conventional least-squares support vector machine, with
the eliptical ARD kernel Equation (2) and leave-one-out (RBF-LOO-LSSVM)
and 5-fold cross-validation (RBF-XVAL-LSSVM) -based model selection, and
LSSVM with first-level kernel learning (RBF-FLKL-LSSVM). Error rates are
given for fourteen benchmark datasets (Rätsch et al., 2001; Ripley, 1996), pre-
sented in the form of the mean error rate over test data for 100 realisations of
each dataset (20 in the case of the image and splice benchmarks), along with
their associated standard errors. The best result for each benchmark is shown
in bold, results that are statistically indistinguishable from the best, according
to the Wilcoxon signed ranks test (Wilcoxon, 1945) (α = 0.95), are shown in
italics.

Dataset
Automatic Relevance Determination

ARD-LOO-LSSVM ARD-XVAL-LSSVM ARD-FLKL-LSSVM

banana 10.670 ± 0.058 10.656 ± 0.059 10.600 ± 0.054

breast cancer 29.208 ± 0.479 28.377 ± 0.421 26.584 ± 0.454

diabetis 23.933 ± 0.202 24.277 ± 0.199 23.560 ± 0.170

flare solar 33.953 ± 0.188 34.237 ± 0.181 34.160 ± 0.160

german 24.787 ± 0.244 24.777 ± 0.246 24.523 ± 0.234

heart 20.540 ± 0.443 20.230 ± 0.425 17.650 ± 0.338

image 2.129 ± 0.145 2.158 ± 0.129 2.198 ± 0.096

ringnorm 2.062 ± 0.038 2.056 ± 0.027 1.942 ± 0.021

splice 4.887 ± 0.105 4.621 ± 0.108 4.306 ± 0.094

synthetic 9.743 ± 0.065 9.741 ± 0.063 9.685 ± 0.060

thyroid 4.907 ± 0.203 4.760 ± 0.213 4.640 ± 0.209

titanic 22.574 ± 0.115 22.551 ± 0.104 22.452 ± 0.089

twonorm 4.477 ± 0.062 4.353 ± 0.061 3.027 ± 0.024

waveform 12.674 ± 0.120 12.569 ± 0.109 10.516 ± 0.052

Mean Rank 2.6429 2.1429 1.2143
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1.2143 ARD−FLKL−LSSVM

2.1429 ARD−XVAL−LSSVM

2.6429ARD−LOO−LSSVM

Figure 3: Critical difference diagram depicting the mean ranks of the classifiers
using the ARD kernel. Groups of classifiers that are not significantly different
(at p = 0.1) are shown connected by a heavy bar.
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Figure 4: Box plots of kernel parameter values for least-squares support vector
machine classifiers with (a) conventional cross-validation based model selec-
tion (RBF-XVAL-LSSVM) and (b) kernel learning at the first level of inference
(RBF-FLKL-LSSVM), using the spherical RBF kernel.

FLKL-LSSVM generally show less variability than those of the RBF-XVAL-
LSSVM classifier, although this does not appear to have any significant effect
on the generalisation performances of the two classifiers. This appears to be due
to the regularisation of the kernel parameters in RBF-FLKL-LSSVM, which re-
duces the variance of the parameter estimates. Figure 5 shows box-plots of the
kernel parameters for ARD-XVAL-LSSVM and ARD-FLKL-LSSVM for three
illustrative benchmark datasets, twonorm, thyroid and splice.

The twonorm dataset consists of patterns drawn from two Gaussian distri-
butions representing each class in a twenty dimensional feature space. For this
problem, all attributes are of equal importance and have the same characteristic
scale, so a classifier with the ARD kernel function should have no advantage over
a similar classifier with the basic RBF kernel. However conventional LSSVM
with the ARD kernel (ARD-XVAL-LSSVM) exhibits a significantly higher error
on this benchmark (4.353%±0.061) than the equivalent classifier with the RBF
kernel (RBF-XVAL-LSSVM, 2.802% ± 0.019). The reason for this poor per-
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formance is apparent in Figure 5(a); while the kernel parameters have similar
values for each attribute, as expected, there is a considerable variability in the
value of the kernel parameters for different partitions of the data to form train-
ing and test sets. This high variability suggests substantial over-fitting of the
model selection criterion, which explains the poor generalisation performance
of ARD-XVAL-LSSVM on this benchmark. The corresponding kernel param-
eters for ARD-FLKL-LSSVM, shown in Figure 5(b), display substantially less
variability, suggesting that regularisation is effective in avoiding over-fitting in
learning the kernel.

The thyroid benchmark is representative of datasets where all attributes
are useful, but some may be more discriminative than others, or where different
attributes benefit from different scalings. A box plot of the kernel parameters
for ARD-XVAL-LSSVM are shown in Figure 5(c), and again demonstrate con-
siderable variability, perhaps explaining the poor performance of this model,
which achieves a mean error rate of 4.760% ± 0.213. This is slightly greater
than the error for the corresponding model with the basic RBF kernel (RBF-
XVAL-LSSVM, 4.627%±0.233). The variability of the kernel parameters of the
ARD-FLKL-LSSVM model, shown in Figure 5(d), display far less variability,
and as might be expected a lower error rate of 4.640%± 0.209, which improves
on that of the conventional ARD-XVAL-LSSVM model. We conclude from this
that over-fitting the model selection criterion prevents the ARD-XVAL-LSSVM
classifier from benefiting from individual scaling of the attributes, but less so the
ARD-FLKL-LSSVM classifier as a result of learning the kernel parameters at
the first level of inference with regularisation, and simplified model selection re-
quiring only the values of two regularisation parameters to be tuned. Even in the
absense of a clear gain in generalisation performance, the ARD-FLKL-LSSVM
classifier obtains more reliable estimates of the feature scaling parameters than
ARD-XVAL-LSSVM, and so is more useful in helping to understand the data.

The splice benchmark is representative of datasets where some of the at-
tributes may be uninformative. Box plots of the kernel parameters for ARD-
FLKL-LSSVM and conventional ARD-XVAL-LSSVM are shown in Figure 5(e)
and (f ). Again the kernel parameters of the informative attributes for the ARD-
FLKL-LSSVM classifier exhibit less variability than those of the ARD-XVAL-
LSSVM classifier, explaining some of the difference in the mean error rates of
the two approaches (4.306% ± 0.094 and 4.621% ± 0.108 respectively). Note,
however, that the ARD-FLKL-LSSVM classifier also surpresses the less informa-
tive features much more strongly than the ARD-XVAL-LSSVM classifier, due
to the regularisation term penalising large values of the kernel parameters. This
implies that the ARD-FLKL-LSSVM classifier is potentially more able to explic-
itly identify uninformative features than the conventional approach, which may
be beneficial, even in the absence of a clear gain in generalisation performance.

3.5. Does First-Level Kernel Learning Solve the Problem?
Figure 6 shows a critical difference diagram for kernel ridge regression with

conventional five-fold cross-validation based model selection (RBF-XVAL-LSSVM
and ARD-XVAL-LSSVM) and with kernel learning at the first level of inference
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Figure 5: Box plots of kernel parameter values for least-squares support vec-
tor machine classifiers with the eliptical ARD kernel and (a,c,e) conventional
cross-validation based model selection (ARD-XVAL-LSSVM) and (b,d,f ) kernel
learning at the first level of inference (ARD-FLKL-LSSVM), for three bench-
mark datasets (a,b) twonorm, (c,d) thyroid and (e,f ) splice.
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(RBF-FLKL-KRR and ARD-FLKL-LSSVM) with radial basis function and au-
tomatic relevance determination kernels. Clearly, first-level kernel learning ame-
liorates the problem of over-fitting in model selection for the ARD kernel, at
least to the extent that the results obtained for the ARD kernel are no longer
statistically inferior to those obtained using the RBF kernel. However, as the
RBF kernel is a special case of the ARD kernel, if the problem of estimating
the optimal values for the kernel parameters had been fully solved, one might
expect the results obtained using the ARD kernel to be at least as good, if not
superior to those obtained using the RBF kernel. This suggests that kernel
learning at the first level of inference, at least in its current form, probably has
not fully solved the problem of over-fitting in model selection, but does repre-
sent a substantial step in the right direction. However, as ARD-FLKL-LSSVM
provides more reliable kernel parameter estimates than ARD-XVAL-LSSVM,
and is more able to explicitly identify uninformative features, it would remain
a potentially useful algorithm for explaining the data and reducing operational
costs, even in the absence of gains in generalisation performance.

CD

4 3 2 1

2 RBF−XVAL−LSSVM

2.0714 ARD−FLKL−LSSVM2.5714RBF−FLKL−LSSVM

3.3571ARD−XVAL−LSSVM

Figure 6: Critical difference diagram depicting the mean ranks of classifiers
using the RBF and ARD kernels. Groups of classifiers that are not significantly
different (at p = 0.1) are shown connected by a heavy bar.

3.6. Comparison with Earlier Work
In previous work (Cawley and Talbot, 2007), we investigated the regularisa-

tion of a leave-one-out cross-validation based model selection criterion, penal-
ising kernel parameters with large values, where the additional regularisation
parameter is integrated out analytically using an uninformative Jeffrey’s prior
(Buntine and Weigend, 1991). Figure 7 shows a critical difference diagram
depicting the mean ranks of least-squares support vector machine classifiers
with Bayesian regularisation of the model selection criterion (ARD-BR-LSSVM)
(Cawley and Talbot, 2007), LSSVM with first level kernel learning (ARD-FLKL-
LSSVM), and with conventional five-fold cross-validation based model selection
(ARD-XVAL-LSSVM) as a baseline for comparison; the automatic relevance
determination (ARD) kernel is used in each case. The mean rankings are com-
puted over the thirteen of the fourteen benchmark datasets common to both
studies (i.e. excluding the synthetic benchmark). It can be seen that both
ARD-FLKL-LSSVM and ARD-BR-LSSVM are effective in avoiding the over-
fitting in model selection that can occur using the ARD kernel. However, while
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the difference in mean ranking between these two methods is not statistically
significant, ARD-FLKL-LSSVM is statistically superior to the conventional ap-
proach (ARD-XVAL-LSSVM), while ARD-BR-LSSVM is not. We therefore
recommend ARD-FLKL-LSSVM for practical applications using the ARD ker-
nel.

CD
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1.3846 ARD−FLKL−LSSVM

2 ARD−BR−LSSVM

2.6154ARD−XVAL−LSSVM

Figure 7: Critical difference diagram depicting the mean ranks of the ARD-
XVAL-LSSVM, ARD-BR-LSSVM and ARD-FLKL-LSSVM classifiers using the
ARD kernel. Groups of classifiers that are not significantly different (at p = 0.1)
are shown connected by a heavy bar.

3.7. Comparison with Multiple Kernel Learning
Multiple Kernel Learning (MKL) is a recent approach to defining the ker-

nel that has attracted considerable interest (Gönen and Alpaydin, 2011, and
references therein). Rather than optimise the kernel parameters directly, the
majority of multiple kernel learning algorithms seek to define the kernel as a
non-negatively weighted sum of a set of pre-defined candidate kernel functions,
each with a fixed set of parameters, θi, i.e.

K(x,x′;η) =
k∑

i=1

ηiKi(x,x′;θi) subject to ηi ≥ 0, ∀i ∈ {1, 2, . . . , k}.

Gehler and Nowozin (2008) extend multiple kernel learning to the case where
the candidate kernel functions may also have tunable hyper-parameters, result-
ing in the Infinite Kernel Learning (IKL) procedure; they also evaluate the
performance of SimpleMKL (Rakotomamonjy et al., 2008) and IKL algorithms
on the suite of thirteen benchmark datasets introduced by Rätsch et al. (2001).
Three candidate kernel functions are investigated, the first is the single kernel
(equivalent to the RBF kernel),

Ksingle(x,x′;θ) = exp

{
−θ2

d∑
i=1

([x]i − [x′]i)2
}
,

where [x]i represents the ith element of the vector x. The second is the sepa-
rate kernel, where the candidates consist of the single kernel, with additional
univariate kernels of the form

Kseparate(x,x′;θ) = exp
{
−θ2i ([x]i − [x′]i)2

}
,
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which provides a limited ability to model the data using different characteristic
scales for each attribute. The final candidate kernel, corresponding to the ARD
kernel, is the products kernel,

Kproducts(x,x′;θ) = exp

{
d∑

i=1

−θ2i ([x]i − [x′]i)2
}
,

which provides independent scaling parameters for each attribute. IKL with the
products kernel thus provides the multiple kernel learning algorithm providing
the most direct competitor for kernel learning at the first level of inference.

A comparison of results obtained by MKL, IKL, LSSVM with cross-validation
based model selection and kernel learning at the first level of inference is given
in Table 4. It should be noted that the results for RBF-XVAL-LSSVM and
ARD-FLKL-LSSVM were obtained using an unbiased procedure, where model
selection is performed independently in each fold, but the results for MKL and
IKL were obtained using the median protocol in which the hyper-parameters
were optimised individually in the first five folds, and the median of those val-
ues used throughout the performance evaluation. The median protocol has been
demonstrated to produce optimistically biased performance estimates (Cawley
and Talbot, 2010); however, as only a single regularisation parameter is tuned
in the cases of MKL and IKL, it is likely that this bias will be relatively small.
Clearly the IKL model performs very well on the image and splice datasets,
but very poorly on others, e.g. twonorm, heart and waveform. As a result, nei-
ther MKL nor IKL out-perform ARD-FLKL-LSSVM overall, as illustrated by
the critical difference diagram, shown in Figure 8. The improved performance
of ILK on the image and splice benchmarks is however obtained at the cost of
a substantial increase in computational expense in operation and in a reduction
in interpretability, due to the large number of candidate kernels retained by the
model (a mean of 27.1 for image and 72.8 for splice). Gehler and Nowozin
(2008) conclude that the practitioner should choose between two models, the
SVM (or equivalently LSSVM) or the IKL algorithm, because the enlarged ker-
nel class might lead to significant performance increases for some datasets. We
would suggest that the ARD-FLKL-LSSVM algorithm should also be consid-
ered as it also provides substantial performance increases on some datasets, but
with much lower computational expense and higher interpretability than IKL.

4. Discussion

A number of studies involving automatic relevance determination have noted
that the optimisation of a large number of hyper-parameters is likely to degrade
performance (e.g. Bengio, 2000; Bo et al., 2006; Keerthi et al., 2006). Caw-
ley and Talbot (2007) demonstrate that regularisation of the kernel parameters
is effective in preventing over-fitting. In this study, we show that the kernel
parameters can be regarded as parameters rather than hyper-parameters, and
optimised during training rather than model selection, and that again regulari-
sation is effective in avoiding over-fitting. The method proposed in this paper is
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Table 4: Error rates of the conventional least-squares support vector machine,
with 5-fold cross-validation based model selection (RBF-XVAL-KRR), kernel
ridge regression with first-level kernel learning (ARD-FLKL-KRR), multiple
kernel learning (MKL) and infinite kernel learning (IKL), see text for details.
For MKL and IKL, the mean number of canidate kernels used is given as #k.
Error rates are given for thirteen benchmark datasets (Rätsch et al., 2001); the
results for each method are presented in the form of the mean error rate over
test data for 100 realisations of each dataset (20 in the case of the image and
splice benchmarks) and their associated standard deviations. The best result
for each benchmark is shown in bold. The results for MKL and IKL are taken
from Gehler and Nowozin (2008), which also gives details of the experimental
method used.

Dataset
RBF-XVAL ARD-FLKL MKL separate IKL products

-LSSVM -LSSVM err #k err #k

banana 10.6 ± 0.5 10.6 ± 0.5 10.5 ± 0.5 1.0 10.7 ± 0.5 3.7

breast cancer 26.8 ± 4.7 26.6 ± 4.5 26.7 ± 4.2 4.5 25.7 ± 4.1 16.1

diabetis 23.4 ± 1.7 23.6 ± 1.7 24.5 ± 1.6 4.0 24.3 ± 1.8 22.3

flare solar 34.3 ± 1.8 34.2 ± 1.6 34.3 ± 2.1 2.9 32.8 ± 1.9 2.6

german 23.6 ± 2.4 24.5 ± 2.3 25.1 ± 2.2 8.3 24.6 ± 2.4 46.1

heart 16.6 ± 3.7 17.6 ± 3.4 16.7 ± 4.1 9.0 20.1 ± 3.6 28.2

image 2.9 ± 0.8 2.2 ± 0.4 3.0 ± 0.6 1.6 1.4 ± 0.3 27.1

ringnorm 1.6 ± 0.2 1.9 ± 0.2 1.7 ± 0.1 2.6 2.1 ± 0.2 16.3

splice 10.8 ± 0.7 4.3 ± 0.4 6.0 ± 0.4 24.1 3.1 ± 0.3 72.8

thyroid 4.6 ± 2.3 4.6 ± 2.1 4.7 ± 2.1 1.0 4.1 ± 2.0 12.7

titanic 22.6 ± 0.9 22.5 ± 0.9 22.4 ± 1.0 1.9 22.4 ± 1.1 5.2

twonorm 2.8 ± 0.2 3.0 ± 0.2 2.5 ± 0.1 3.8 3.8 ± 0.4 36.2

waveform 9.8 ± 0.4 10.5 ± 0.5 10.2 ± 0.4 9.7 11.4 ± 0.6 33.7

Mean Rank 2.3462 2.4615 2.5000 2.6923
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Figure 8: Critical difference diagram depicting the mean ranks of the RBF-
XVAL-LSSVM, ARD-FLKL-LSSVM, multiple kernel learning (separate kernel)
and infinite kernel learning (products kernel). Groups of classifiers that are not
significantly different (at p = 0.1) are shown connected by a heavy bar.

not statistically superior to that presented in our previous work; however, unlike
our previous method, kernel learning at the first level of inference is statistically
superior to the conventional approach of learning the kernel parameters using
an unregularised cross-validation based model selection criterion. For this rea-
son, we recommend the method proposed in this paper for practical applications
when using ARD kernels.

The proposed method is not just applicable to the ARD variant of the radial
basis function kernel, provided a regularisation term can be constructed that
can be expected to favour more simple models. For simple standard kernel
functions, such as the polynomial kernel,

K(x,x′) = (x · x′ + c)d, c > 0, (6)

FLKL-LSSVM is not recommended as there are too few kernel parameters to
justify the exchanging kernel parameters for an additional regularisation pa-
rameter to be tuned in model selection. A better approach might be to add a
regularisation term to the model selection criterion, as suggested by Cawley and
Talbot (2007). In the case of the inhomogeneous polynomial (6), the feature
space consists of all monomials of degree up to d, where the kernel parameter
c influences the relative scaling of monomials of different degrees. A regulari-
sation term that favoured monomials of low degree, by penalising small values
of c might result in improved generalisation. ARD can also be used to extend
other kernels, such as the inhomogeneous polynomial kernel, by pre-scaling the
attributes, i.e.

K(x,x′) = (xΣx′ + c)d, c > 0,

where Σ = diag(η) is a diagonal matrix of attribute scaling parameters, in
which case FLKL-LSSVM would again be attractive due to the large number of
kernel parameters. FLKL-LSSVM might also be useful in computational biology
where the kernel, such as the sequence alignment kernel (Gordon et al., 2003),
depends on a matrix of pairwise substitution penalties between nucleotides or
even amino acids. The large number of kernel parameters involved would mean
that over-fitting the model selection criterion would be highly likely using the
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conventional approach and FLKL-LSSVM may result in improved performance.
In this case the regularisation term should reward substitution matrices with
simple structure.

It is interesting to consider whether it is better to regard learning the kernel
as being part of fitting the model or as part of model selection. From an op-
timisation perspective, there is little difference between these two approaches.
The coefficients of the kernel expansion are given by the solution of a convex
sub-problem (3) for both the FLKL-LSSVM and conventional XVAL-LSSVM
classifiers, and share an efficient implementation via Cholesky decomposition.
Likewise, for both approaches, the optimisation problems for tuning the kernel
and regularisation parameters are non-convex, and so both potentially suffer the
problem of local minima. For both approaches, gradient descent and Nelder-
Mead simplex methods are feasible for optimising the kernel and regularisation
parameters, and both approaches have broadly similar computational expense.
From a theoretical perspective, kernel machines are attractive because their
interpretation as a linear model constructed in a fixed kernel-induced feature
space provides mathematical tractability (Schölkopf and Smola, 2002). How-
ever, much of this mathematical tractability is essentially lost if the kernel is
not fixed, but is tuned to better suit the data, and so there is also relatively
little to choose between approaches from that perspective either.

The k-fold cross-validation procedure used to determine the regularisation
parameters of the FLKL-LSSVM is relatively expensive, due to the necessity of
re-training the model k times. An alternative would be to iteratively update
the regularisation parameters as the model is trained, as under the evidence
framework for artificial neural networks (MacKay, 1994). Again the Laplace
approximation could be used to estimate the Bayesian evidence for the model,
assuming a Gaussian posterior over both the model and kernel parameters. An
approximate leave-one-out cross-validation performance estimate (Myles et al.,
1997) would also provide a feasible criterion.

Lastly, where predictive performance is the primary concern, for some datasets
the RBF kernel will out-perform the ARD kernel, whether the FLKL-LSSVM
is used, or the conventional LS-SVM. For some, even the RBF kernel may not
be necessary and the linear kernel,

K(x,x′) = xTx′,

will give better performance. In this case, the choice of appropriate kernel
cannot be made on the basis of the model selection criterion because of over-
fitting of the model selection criterion (c.f. Cherkassky and Mulier, 2007; Cawley
and Talbot, 2010). The RBF kernel is a special case of the ARD kernel, and
so the ARD kernel will always be able to achieve a value of the model selection
criterion that is at least as low as that for the RBF kernel, and very likely
lower, due to the additional kernel parameters. As a result, the model selection
criterion will always favour the ARD kernel over the RBF kernel. Similarly, as
the RBF kernel has one kernel parameter, and the linear kernel none, even for
linear tasks the RBF kernel may achieve a lower value of the model selection
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criterion as the additional degree of freedom introduces a greater opportunity
to overfit the model selection criterion. Therefore, the choice of kernel should
be based on an independent estimate of generalisation performance, such as an
external cross-validation procedure.

5. Conclusions

Kernel learning is typically performed during model selection, commonly by
numerical minimisation of the cross-validation error. In this paper, we have
demonstrated that kernel learning at the first level of inference is also feasible,
jointly optimising the model and kernel parameters using a single training cri-
terion. A key benefit of this approach is that the risk of over-fitting the model
selection criterion is greatly reduced, as only the values of two regularisation pa-
rameters are then tuned in model selection. As a result, for the automatic rele-
vance determination kernel, the performance of the proposed method is shown to
be statistically superior to that of the existing cross-validation based approach
over a suite of 14 benchmark datasets, and also improves on our previous method
(Cawley and Talbot, 2007). ARD-FLKL-LSSVM is also competitive with mul-
tiple kernel learning approaches, but with reduced computational expense and
greater interpretability (as there is only a single kernel to evaluate). This is
a significant practical advance as automatic relevance determination is useful
in applications likely to have irrelevant features, or where identifying a small
subset of useful features is of inherent interest.
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