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Abstract. The within-writer variability of handwriting forms one of the problems
in the automatic recognition of cursive script. Variability can be handled by
choosing handwriting features based upon the process of handwriting generation
or upon computational models. Handwriting patterns are represented by a
sequence of motor actions, i.e., "strokes", which can be identified by invariant
segmentation. Each stroke is characterized by features related to motor memory
parameters which can be identified by their high signal-to-noise ratios.
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1. Introduction

Automatic recognition of cursive handwriting is difficult because handwriting
comes in great variety of graphical shapes. Not only do different writing styles
exist, but, also within a writer, identical letters vary between instances. In order
to make automatic recognition systems robust with respect to these variations it is
not only instructive to study human perception and reading, but also the production
process of handwriting. This paper provides a guide for finding and verifying
handwriting features which are relatively insensitive to spontaneous variations of
cursive-script. These features form the corner stone for non-chaotic handwriting
recognition systems. A macroscopic handwriting production model will be
discussed, and various computational handwriting models will be presented.
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2

The macroscopic model of handwriting production proposed, consists of a
sequence of modules. The higher-level modules have been hypothesized on the
basis of slips of the pen [1], and neurologic disturbances [2]. The lower-level
modules have been hypothesized on the basis of delays in movement initiation and
movement execution [3, 4]. The handwriting motor system contains in its most
simplified form (1) a motor memory, where all letter shapes have been stored [5],
(2) movement-unit retrieval, where the appropriate allographs are extracted from
that motor memory, and (3) a motor-pattern buffer, the contents of which can be
defined as the motor program. Subsequently, this motor program needs to be
adapted to each concrete execution condition. The adaptation is done at two
levels: (4) At the parameter-setting level, where muscle-independent global scale
parameters (e.g., speed, size) are specified, and (5) at the muscular-initiation level,
where muscle-dependent parameters (e.g., orientation, slant, limb) are specified [3].

A serial-module model is applicable if feedback loops between modules are not
essential. In cursive script, several letters are prepared in advance during writing.
Subsequent letters of a writing pattern are prepared while executing the first letters
and processing feedback from previous letters [4]. In the multi-module model,
feedback loops are included, but, play only a marginal role because handwriting
is performed as fast as 200 - 400 ms per letter, which is too fast for processing
feedback to monitor letter formation. For example, a sudden increase or decrease
of pen-to-paper friction results in an immediate reduction of the letter size and
several letters are produced before letter size is restored on the basis of visual or
tactile feedback [6]. As biomechanical properties of the wrist and finger joints do
not seem to be corrected [7], visual feedback is apparently not used to monitor the
performance of straight lines. Only orientation and slant are controlled by visual
feedback [8].

A cursive-script recognition system, should operate in the reverse way as the
handwriting production system. Firstly, the cursive-script recognition system
segments the continuous handwriting movement, into units of movement. Then,
lower-level, global features, such as orientation, size, slant, and speed are
normalized. Subsequently, features are estimated which are closely related to the
movement parameters in motor memory. In order to check the completeness of
the features extracted, a legible handwriting pattern should be reconstructible, but
not necessarily an exact reproduction.

2. Segmentation of Cursive Script into Strokes

Movement parameters in motor memory are not global parameters but rather local
parameters generating small segments of the handwriting pattern. Handwriting
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patterns need to be separated into discrete segments, each representing a single
movement command corresponding to a ballistic "stroke". It consists of an
acceleration phase, a velocity peak, and a deceleration phase. Before discussing
the features, the invariant segmentation of handwriting will be addressed.
Although Guiard [9] questioned whether continuous movement sequences can at
all be segmented into discrete aiming movements, segmentation offers a great
advantage in reducing the complexity of handwriting patterns. The ideal
segmentation procedure should segment similar writing patterns in an invariant
way, regardless of the writing speed. In Teulings et al. [10] a highly invariant
segmentation procedure has been proposed. Other cursive-script segments have
been suggested, e.g., segments of constant parameter settings [11]; partly
overlapping segments of constant curvature [12]; pen-down segments [13];
segments of constant curvature versus speed relation [14]; overlapping speed and
curvature profiles [15]; segments between absolute velocity minima that are robust
under lowpass filtering [16]; segments between top, bottom, or stroke crossing
[17]; segments at top and bottom [18-20]; and segments between two tops yielding
a pair of ballistic strokes and between two bottoms yielding the overlapping stroke
pairs [21-23].

Segmenting at speed minima does not always yield a desirable result [27].
Firstly, at low handwriting rates, a simple, straight stroke is not always ballistic so
that several absolute velocity minima appear, suggesting several ballistic
"substrokes". Secondly, perfect circles at constant velocities do not yield any
segmentation points at all because of the perfectly out-of-phase movement
components. In order to make the segmentation more invariant and more
intuitively correct (i.e., corresponding to integer up or down strokes), four
refinements of the algorithm are necessary [27]. (1) In the estimate of the absolute
velocity the horizontal component squared is weighted by 0.1 relative to the
vertical component, i.e., v = ( 0.1 * vx**2 + vy**2 ) **1/2, which shows low
minima between vertical segments, and moderate minima between horizontal
segments. (2) Only velocity minima are accepted, which do not have a lower
minimum within a time window of -60 and +60 ms. This period corresponds to
the time constants in the muscles and the nerves. (3) Segments, shorter than the
minimum stroke size of about 0.5 mm, are considered non-significant and are
joined with the previous segment. (4) Finally, a segmentation point is removed
when the direction changes less then 15 degrees. The change of direction is
defined as the angle between the vectors from the current segmentation point to the
previous and the following points of speed maxima. This refined segmentation
appears to be invariant when handwriting rate is changed across a wide range.
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3. Frequency Spectra

When handwriting rate is increased, one may suggest that individual motor
commands increasingly overlap [24], or increasingly become smoothed by the
hypothetical low-pass filtering of the pen-hand system [25]. In order to check
whether this may cause segmentation problems, the frequency spectrum of the
handwriting movements was inspected. The frequency amplitude spectrum of the
horizontal and the vertical velocity components forms a symmetrical peak around
5 Hz [26]. When the rate of handwriting is increased, it appears that all
component frequencies of the spectrum increase proportionally [27]. There is no
evidence that the pen-hand system acts as a fixed low-pass filter, nor that the
strokes become increasingly overlapping with writing speed. Only topological
distortions seem to occur which cause atypical letter shapes.

3.1. Theoretical Minimum Number of Features

A time function of limited frequency bandwidth W and duration T can be
reconstructed by 2WT (isochronous) samples (sampling theorem; See [28] for an
overview). Handwriting consists of two time functions, one for the horizontal and
the other for the vertical component. If both functions are independent, 4WT
samples are required to reconstruct a handwriting segment of duration T. The
frequency spectrum of handwriting shows a gradual descent to noise level at about
W = 10 Hz [26]. Durations of the fastest ballistic strokes are about T = 0.1 s. At
least 4 samples, or 2 coordinate pairs, per ballistic stroke are required. Depending
upon the speed of writing, the samples will be at different phases of the strokes,
and therefore these 4 samples are highly variable and not appropriate as features.
Nevertheless, the notion can be upheld that 4 features are sufficient to
disambiguate a stroke. In order to compare the invariance of features, a measure
for the invariance will be proposed.

4. Defining Invariant Stroke Features by the Signal-to-Noise Ratio (SNR)

When a handwriting pattern is segmented into a sequence of strokes and when
each stroke yields a feature, the "pattern" of a stroke feature can be defined. If
several replications of a handwriting pattern are available, the random variations
of these sequences can be considered as the motor noise of a feature. The signal-
to-noise ratio (SNR) is a dimensionless measure, which is useful comparing the
extent of invariance of different stroke features. The SNR is the ratio of the
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standard deviations of the movement amplitude, and that of the movement noise:

SNR = (sd(Signal) / sd(Noise))

The standard deviations can be derived as follows. Assume Xij describes the
pattern of a feature for all strokes i (I strokes) and replications j (J replications).
Averages across replications j are denoted as Xi., etc. An analysis of variance
schema for the main effect Strokes (I levels) based on J replications yields:

sd(Noise)**2 = Σ[j=1,J] Σ[i=1,I] (Xij - Xi. - X.j + X..)**2 / (I-1)(J-1)

and

sd(Signal)**2 = Σ[i=1,I] (Xi. - X..)**2 / (I-1) - sd(Noise)**2 / J

According to Fitts’ law, the expected magnitude of the signal-to-noise ratios can
be estimated from the speed-accuracy tradeoff. Fitts’ law states that the duration
T of reciprocal aiming movements of amplitude A (or within a circle of width 2A)
towards a target of width W increases linearly with the accuracy measure log2
(2A/W) in "bits" of information. The duration increase with accuracy is less then
50 ms/bit (26 ms/bit and 43 ms/bit for the finger and wrist movements,
respectively [29]). This suggests that during short handwriting strokes of 100 ms,
the movement amplitude, or stroke sawe, contains about 2 bits of information.
Two bits of information implies an "effective quantization" into 4 levels, which
corresponds to typical SNR values of 4 [10, 30]. It is possible to estimate the
number of discriminable classes of letters under the assumptions that 4 features
exist with SNR values of 4 and that the average number of strokes per letter is 4.
Then, only 64 different letter shapes can be disambiguated. More than 64 different
letter shapes may exist (e.g., 26 lower-case letters and their allographic variations).
Some of the features may be dependent, and the SNR values of most features are
less than 4. For these reasons it is imperative to employ the features with the
highest SNRs and a high extent of independence.

5. Independence of Features

The abstract movement parameters stored in motor memory are the ideal features
for the recognizer’s database of cursive-script prototypes. One may suppose that
these parameters are highly invariant under many different conditions, as they are
used to generate all other movement parameters, required to perform the writing



6

pattern in many different conditions. The reverse seems also reasonable. Invariant
handwriting features are closely related to the memory representation of the motor
program. Therefore, invariant features observed in replications of a handwriting
pattern are useful in cursive-script recognition.

In order to evaluate the appropriateness of a set of stroke features, various
hierarchical relations can be discerned. A top-down hierarchy can be discerned
with high-level features, related to the movement information in memory, and
lower-level features, derived from these higher-level features. Furthermore, a
random variation occurring in one stroke may, to some extent, occur in
neighboring strokes. This constitutes the sequence hierarchy.

5.1. Top-Down Hierarchy

The top-down hierarchy assumes that movement memory contains a parsimonious
set of source features which generate the lower-order features. The lower-order
features show more and more noise and therefore less and less invariance. Source
features can be identified by their high invariance [10, 30]. The following is an
example of hierarchical features, which are related through a mechanical rule. The
stroke size S is proportional with peak acceleration A and duration T squared, i.e.,
S = Eff * A * T**2, where Eff refers to an efficiency constant, characterizing the
effect of a particular shape of the acceleration-versus-time curve [30]. It appeared
that the pattern of normalized stroke sizes S is more invariant than the pattern of
stroke durations T, peak accelerations A, or efficiencies Eff [10, 30] (See Table 1).
This suggests that the patterns of duration, peak acceleration, and efficiency are
derived from the stroke size according to some rules. In handwriting recognition,
normalized stroke size is a more useful feature than the dynamic features such as
stroke duration and peak acceleration.

The "between-feature correlation" provides additional evidence in favor of a top-
down hierarchy. One may assume that random variations of a higher-order feature
are not compensated by variations of lower-order features. If features A, B, and
C satisfy a mechanical relation such as A = B + C or A = B * C, and if B and C
are independent, then their absolute or relative variances are additive, i.e.: var(A)
= var(B) + var(C) or var(A) / mean(A)**2 = var(B) / mean(B)**2 + var(C) /
mean(C)**2, respectively. If B and C are negatively correlated, then the (relative)
variance of A will be significantly smaller then expected in the uncorrelated case,
supporting the conclusion that feature A is a higher-order invariant feature,
controlling both B and C. Note that the correlation between B and C can only be
caused by noise in the motor system, as opposed to any movement law describing
how B changes with varying C, because B and C are based on "identical" strokes
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in a series of "identical" writing patterns.
Under the assumption that the same memory representation is used to perform

a writing pattern under various execution conditions, such as, different sizes,
speeds, limbs, orientations, or slants there should be a high similarity between the
higher-order patterns of features generated by the same memory representation.
If the pattern of a feature changes proportionally or, at least, linearly from one
condition to the other, then the "between-condition correlation" will be high. A
feature needs to be rescaled or normalized if the transformation of a feature
between conditions is proportional.

5.2. Sequence Hierarchy

Sequence hierarchy deals with the variations affecting neighboring strokes. The
extreme case of sequence hierarchy is "rescalability", or the proportional change
of a feature of all strokes. Depending upon the extent of the sequence hierarchy,
two or more consecutive strokes have to be taken into account when representing
prototypes in a cursive-script recognizer’s database. If the sequence hierarchy
would be nonsignificant, only separate strokes would be sufficient to store all
prototype letters. This may seem reasonable if one realizes that, within a writer’s
handwriting, ascenders and descenders of different letters are similar. However,
when motor-noise affects each stroke separately, atypical letters would result [22].
In fact, there is evidence that whole letters, counting several strokes, form units in
the handwriting motor system [5], so that it is likely that sequential strokes are
affected by similar noise sources.

Significantly negative correlations between successive stroke sizes both in x and
in y directions were found [10] (See Table 1), indicating that when motor noise
causes one stroke-size component to be bigger or smaller than normal, the
subsequent stroke will be bigger or smaller in the opposite direction. Noteworthy
is that stroke durations do not satisfy any sequence hierarchy, as the correlations
between successive stroke durations appear not to be robust. The latter finding
confirms that a writing pattern can be split into a strict sequence of movement
units. Recognition systems dealing with stroke pairs seem to take the sequence
hierarchy of stroke sizes into account to some extent. However, recognition rates
of complete letters, counting up to 6 strokes, is not higher than recognition rates
of letters on the basis of separate strokes [31] which may indicate that the
sequence hierarchy is limited to a few strokes.
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Table 1

SNRs and correlations among various stroke features, forming a mechanical relation:

vertical strokes size (Sy), vertical peak acceleration (Ay), stroke duration (T), and efficiency

(Effy). Results are based on 16 replications of the writing pattern "elementary" in the

normal condition and compared to the fast condition in a subject.

Features

Sy = Effy * Ay * T**2

Sequence Hierarchy

Correlation between Strokes -0.45 - - -0.15

Top-Down Hierarchy

SNR 5.2 2.5 2.0 3.6

Correlation between Features +0.24 -0.46 -0.15

+0.59 -0.41

+0.41

Correlation between Conditions 0.99 0.95 0.95 0.95

6. Context

Context is a specific case of mutual influencing of letters in handwriting. Yet, the
context effects between cursive "e" and "l", are only marginal, especially for spatial
features [32]. The major context effects due to size concern the duration of the
neighboring strokes. In on-line cursive-script recognition, duration plays a role
when characterizing strokes, unless resampling to constant velocity is done [33].
For that reason, it is useful to examine the relation between time and size. Three
context levels have been discerned [34]. In each context, specific duration-versus-
size relations exist:

o Macro context (i.e., a word in the context of other words of different sizes).

o Meso context (i.e., a single stroke in the context of other strokes of different
sizes).
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o Micro context (i.e., the local curve radius in the context of a single stroke with
varying curvature).

In macro context, complete writing patterns are considered in isolation. As
mentioned earlier, in the frictionless case, stroke size S is proportional to the peak
acceleration A and the stroke duration T squared: S = Eff * A * T**2, where Eff
is an efficiency factor characterizing the effect of a particular shape of the
acceleration-versus-time curve. The efficiency Eff plays a minor role in
controlling stroke sizes in handwriting [30], which is consistent with the finding
that the shapes of the acceleration-versus-time curves are rather constant [35]. The
time to produce a writing pattern is virtually independent of size in writing sizes
between 0.25 and 1 cm [6, 36, 37]. Apparently, duration is limited by the
frequency bandwidth of the pen-hand system so that size is controlled by
acceleration level, which is proportional to force level, under the assumption of
low friction. Consequently, duration T is constant in the range of writing sizes,
so that peak acceleration A is proportional with stroke size S. Force levels will
reach a ceiling when the writing sizes are much larger than 1 cm. The height of
the ceiling depends on the instructed pace or time pressure [37]. Therefore, when
producing large writing sizes or arm movements, force levels remain constant, and
size variations are programmed entirely by variation of duration. In macro context,
a power relation between T and S, can be proposed:

T = k * S**b (b = 0 if S < 1 cm; b = 1/2 if S >> 1 cm)

where k is constant per context and instruction.
Meso context refers to the adjacency of strokes of different sizes (such as in

"el"). Most observations are compatible with an increase of both time and force.
The following power function to describe the relation between duration T and size
S in meso context is proposed [34]:

T = k * S**b (b = 0.33)

where k is a constant depending upon macro context. The data of "el" or "le"
pairs in the literature [32, 34, 11, 38, 39, respectively] yield values for b = 0.22,
0.34, 0.34, 0.38, and 0.41, respectively.

Finally, micro-context describes the time needed per infinitesimal part of the
writing trajectory. An estimator of "local size" is curve radius r of the circle,
fitting the curve at that point. An estimator of "local duration" is the inverse
angular velocity, i.e., r/v = 1/omega. In a large variety of drawing tasks the "2/3-
power law" appears to hold [40]:
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omega = r/v = k r**b (b = 2/3)

where k is a constant gain factor which depends upon meso and macro context.
The 2/3-power law can be derived for sinusoidal movements, i.e., two equal-
frequency movement components without left-to-right translation, which produces
only arbitrary ellipses. In normal handwriting the 2/3-power law holds only
marginally [34]. A normal handwriting pattern yields b = 0.41 (instead of 2/3) and
correlation 0.83 (instead of approximately 1.0) which are virtually the same values
as those of a random-walk. Only continuous ellipses and "llll" patterns yield
values which are closer to the ideal value, than to those of a random walk: b =
0.59 and correlations as high as 0.95. The 2/3-power law does not hold for
handwriting in general due to the width of the frequency band of handwriting [26],
and the left-to-right, which mainly takes place during the upstrokes [41, 42].

7. The choice of features

On-line handwriting can be recorded at a high accuracy [43] without the thinning
and sequencing problem known in optical scanning. An appropriate set of features
to characterize on-line handwriting can be derived from the movement parameters
used in computational models of handwriting production. The set of features
contains enough information to reconstruct writing patterns as a legible word.
Presenting reconstructed words to subjects, yields indications on the importance of
certain features. It is suggested that the downstrokes are more important for
recognizing words than the upstrokes, which has been exploited in recognition
systems [18].

Stroke features used in cursive-script recognition which show high SNRs [31,
44] are the horizontal and vertical stroke sizes (SNRs = 5.3 and 5.2, respectively),
path length (SNR = 4.9), direction of the straight line from begin to end (SNR =
7.8), stroke duration (SNR = 3.6), and the surface of loops (SNR = 5.4).
Characterization of stroke shapes can be done by the directions of 5 equal-duration
subsegments (SNRs = 6.8, 7.5, 6.5, 4.2, and 2.9, respectively). The SNR values
are typical values based on 16 replications of a pattern ’elementary’ by one
subject. It is interesting to note that the directions of the subsegments at the end
of a stroke tend to be unreliable; this is probably due to the programming of the
endpoint of the stroke without programming the exact path towards the endpoint
[31]. The axial pen pressure is not relevant in on-line handwriting recognition as
pen pressure is not related to particular letters or shapes [45].

The following models will be discussed: Orientation-free models, which do not
require normalization of orientation of the writing pattern, mass-spring or
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oscillatory models, movement optimization models, which allow the reconstruction
of dynamics from off-line cursive script, and symbolical models.

7.1 Orientation-Free Models

There is a class of models which does not assume any specific x or y axes, nor
axes related to biomechanical joints. Movement patterns are unlikely to be
specified in the body-oriented horizontal and vertical coordinates [12]. Instead,
discrete "circular strokes" are proposed while the inertia of the finger-hand-arm
system smooths the movement by acting as a low-pass filter [25]. Circular strokes
are described by the following [12]: (1) Circle segments of specific curve radius,
arc length, and orientation are fitted to the trace at the point of peak velocity, (2)
a half Gaussian velocity function is fitted from the previous absolute-velocity peak
to the current peak and the other half phase from the current peak to the following
peak, (3) the overlapping functions are averaged sample-by-sample. Therefore, 6
features per ballistic stroke are needed: curve radius, arc length, orientation, peak
velocity, duration between previous and following velocity peak, and the
asymmetric position of the peak velocity between the previous and following ones.
The accuracy of this model does not seem as high as the simpler models, which
were based on component movements per axis [35].

A model which allows a more accurate reconstruction of writing patterns has
been proposed, but it requires more features per stroke [15]. As in the previous
model, absolute velocity is approximated by a piecewise Gaussian function, but,
instead of the constant-radius approximation, the angular velocity is also
approximated by a piecewise Gaussian function. The piecewise Gaussian functions
are generated by a hypothetical neural velocity signal consisting of a sequence of
rectangular time functions. The height of each block represents the gain of the
muscular speed-generator. In order to simulate sharp movement reversals,
discontinuities had to be inserted in the angular velocity. The cursive-script word
"bug", containing about 12 ballistic strokes, could be reconstructed accurately using
60 features for the tangential velocity, and, 52 features for the angular velocity, or
9 features per ballistic stroke.

7.2. Mass-Spring Model

The mass-spring model was introduced to model fluent movement trajectories in
a parsimonious way [11]. This model inspired several cursive-script recognizers
[21, 46]. A horizontal x axis, parallel to the left-to-right translation and a vertical
y axis, and fitted piecewise sinusoids as if they resulted from a frictionless mass-
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spring system. In the vertical movement component, the mass consists of the
weights of the pen and the fingers, whereas for the horizontal movement
component, the mass consists of the weights of the whole hand and the pen.
Various sinusoids can be concatenated to a fluent handwriting trajectory, while the
equilibrium points, the stiffness, and some initial conditions of the mass-spring
system are changed at specific moments. The major advantage of the model is that
it allows the generation of repetitive loops such as "eeee" very parsimoniously as
no features need to be changed during this pattern. The model is most easily
expressed in terms of the velocity-time functions Vx(t) and Vy(t), respectively:

Vx(t) = Vx_peak * sin (omega_x * t + phi_x) + c

Vy(t) = Vy_peak * sin (omega_y * t + phi_y)

where Vx_peak and Vy_peak are the velocity amplitudes, omega_x and omega_y
the angular frequencies, or frequencies multiplied by 2*pi, and phi_x and phi_y the
initial phases, respectively. The constant-velocity, horizontal left-to-right
movement c, is added to the horizontal component. The position-time functions
can be found by integration using zero initial velocity.

Three simplifications can be made. (1) Only the phase difference is relevant,
i.e., phi_x - phi_y = phi. (2) Peak velocities can be chosen equal to twice the
horizontal left-to-right velocity, i.e., Vx_peak = Vy_peak = 2c. (3) The horizontal
and vertical frequencies are equal, i.e., omega_x = omega_y = omega, because
unequal frequencies are only needed in rare patterns like "8". Varying the phase
difference phi yields various basic patterns: upright loops (phi = 90 degrees),
slanted loops (phi = 60 degrees), garlands (phi = 30 degrees), waves (phi = 0
degrees), and arcades (phi = -30 degrees). Another important parameter to
influence stroke shape is the horizontal velocity Vx, at the top of a stroke, where
Vy changes from upward to downward, i.e., Vx = c -Vx_peak * sin (phi). If a
sharp movement reversal has to be programmed, requiring Vx to change sign, the
parameters phi, Vx_peak and c need to be adjusted simultaneously.

Ascenders and descenders can be generated by both increasing Vy_peak and
decreasing omega. In order to maintain a stable baseline, Vy_peak can only be
changed at the top or at the bottom of a stroke, i.e., Vy = 0, yielding a descender
or ascender, respectively. If Vy_peak is changed, then the slant would change as
well. In terms of model parameters, the slant beta equals:

beta = arctan ( Vy_peak / ( Vx_peak*cos( phi ) ) ),

which again depends upon several parameters. When increasing Vy_peak in order
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to generate an ascender, either phi or Vx_peak have to be changed in order to
maintain slant. Changing two parameters simultaneously does not seem very
natural. Ascenders and descenders can be generated, without changing slant, by
decreasing angular frequency omega, but this does not seem to be natural either
[34].

In summary, it seems not easy to simulate handwriting patterns using these
parameters. It is difficult to generate more complex repetitive patterns such as
"ellellell...". Furthermore, normal handwriting does not have a predominant
sinusoidal movement [26], nor a constant left-to-right trend [41]. An example of
a simulation of the letter sequence "elye", counting 11 ballistic strokes, requires 30
parameter changes and time moments apart from the 10 initial parameter settings.
This yields only 3.6 parameters per stroke, which is parsimonious indeed, as it is
less than 4.

7.3. Movement Optimization Models in Off-line Cursive Script

A general trajectory-formation model minimizes the mean squared rate of force
change (i.e., jerk) [24]. In the frictionless case, force can be approximated by the
second time derivative of the horizontal and the vertical position time functions.
The rate of force change can be approximated by the third time derivative. This
model has been used in a cursive-script recognizer [22]. This model allows
generation of the "kinematics from shape", so that the recognizer would accept
thinned, static images. Scanned images of cursive script can be handled in less
flexible stroke models [19]. Pixel maps are analyzed in terms of common strokes
having the shapes of half ellipses, thus preventing awkward pixel-quantization
effects.

In the "minimum-jerk model" cursive script consists of a sequence of curved
segments, e.g., up-down or down-up stroke pairs [24]. In order to simulate curved
segments, the minimum-jerk model needed to be extended by a "via point" near
the point of maximum curvature [47]. Such a curved segment will be referred to
as a "via stroke". A via stroke corresponds to a pair of "ballistic strokes".
Minimization of the mean squared jerk with a via-point constraint yields 5th-order
spline functions:

x(t) = ax0 + ax1*t + ax2*t**2 + ... + ax5*t**5 + px*max(0,t-t1)**5,

where ax0 ... ax5 and px are the spline parameters and t1 is the optimized time
duration to reach the via point. A similar function follows for y(t).

Cursive-script patterns can be simulated using a limited set of basic via strokes:
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Hook (like cursive "i" without dot), cup (like cursive "v"), gamma (like cursive
"l"), and oval (like cursive "o"). However, the minimum-jerk model with only via-
point constraints did not allow simulation of the cup, gamma, and oval [24]. It
was unclear where extra via points were needed apart from the natural via point
near the point of maximum curvature. In order to generate the latter patterns, the
direction (i.e., dy/dx) at the beginning and endpoints of the via stroke was added
as a constraint. Under the border condition of zero velocities and accelerations at
the endpoints, the directions are undefined. According to the mathematical "de
l’Hopital" rule, the next nonzero derivative has to be constrained, which is jerk.
When jerk needs to be constrained, mean squared jerk should not be minimized,
but the mean squared fourth time derivative (i.e., snap). This yields a 7th-order
spline function, analogous to the 5th-order spline function above.

The minimum-snap model employs 18 parameters per via stroke: ax0, ... ax7,
px, ay0, ..., t1), however, most parameters, and even duration t1 to reach the via
point, are fixed by the boundary conditions. The boundary conditions are that the
beginning and end of the via strokes should have a smooth connection to the
adjacent via strokes, i.e., equal horizontal and vertical positions, velocities,
accelerations, and jerks. The two boundary conditions of the via point, fix 4
parameters per via stroke. The minimization equation for the mean squared snap
fixes two more parameters for x and y axes. In total, 6 parameters per via stroke
(or only 3 parameters per ballistic stroke) are required: x and y positions at
beginning and via points, and direction and amplitude of the jerk at the beginning
point.

7.4. Symbolical Models

A symbolic model simulates arbitrary texts of a particular writer’s handwriting
style [48]. Interesting features of this model are the implementation of visual
feedback, and the writer-specific motor memory containing "symbolic letter
descriptions". Visual feedback monitors the baseline and the lineation levels.
When monitoring a departure from the baseline or the lineation levels, an
exponentially decaying lineation memory is used as a reference to adjust vertical
sizes of future strokes.

It is interesting to note that the generated handwriting patterns are not based on
curve fitting of a particular pattern, but contain departures of the same magnitude
as those between individual replications. The correlations of the horizontal and
vertical stroke sizes and durations between the original patterns appeared similar
as those between the simulated pattern and the original ones. Therefore, the
simulation model is sufficiently accurate.
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The symbolic letter descriptions of the allographs were trained on the basis of
a corpus of a writer’s handwriting. Thus, each allograph is represented by a
sequence of strokes, where each stroke is represented by 4 stroke parameters: dX
(horizontal displacement per stroke), dY (vertical displacement per stroke), T
(compound stroke duration), and C (stroke-shape factor). These parameters have
been based upon the average of several manually selected replications of the same
allograph in various contexts. At the symbolic module, dX/dY was quantized into
close, normal, or far, and dY was quantized into descender, descender-plus, base-
minus, base, base-plus, body-minus, body, body-plus, ascender-minus, and
ascender.

Although there is no evidence that durations are represented in motor memory
[10, 30], the "compound stroke duration" T is used as a parameter to conveniently
interpret the required "stroke-shape factor" C. Unfortunately, the SNR of the
stroke-shape factor appears to be very low. Nevertheless, this model is useful as
an example of parsimonious coding of cursive script. The interval between
successive zero crossings in the x velocity component (i.e., t1 (vx=0) and t2
(vx=0), respectively) can be defined as the x-stroke duration, and similarly for the
y-stroke duration. The compound stroke duration is defined as the average of the
x and the y-stroke durations:

T = ( ( t2 (vx=0) - t1 (vx=0) ) + ( t2 (vy=0) - t1 (vy=0) ) ) / 2

T ranges between about 50 and 150 ms. The stroke-shape factor C is defined as
the time interval between two nearby zero crossings of x and y velocities, relative
to the compound stroke duration T:

C = ( t1 (vx=0) - t1 (vy=0) ) / T.

The shape factor is a generalized phase difference between x and y velocity-versus-
time functions. If the x velocity component is ahead of the y component, then the
stroke shape will form (part of) a counterclockwise loop (i.e., -1.5 < C < 0). In
the opposite case, the stroke shape will form (part of) a clockwise loop (i.e., 0 <
C < 1.5). In the special case that the x and y zero crossings occur simultaneously
(C = 0), there will be a sharp stroke ending, followed by a movement reversal.

The procedure to translate the allographic-code into the required movement
patterns is as follows: In the symbolic module, specific connecting strokes have to
be inserted between pairs of allographs and punctuation signs. The connecting
stroke depends upon the final stroke of the preceding allograph and the initial
stroke of the subsequent allograph. The parameters of the connecting stroke have
been estimated by the average of the replications in a corpus of handwriting. The
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"cursive connections grammar" contains the generic rules prescribing the
connecting strokes; for example, the input "an ad..." is expanded to: "(pendown)
(a) (base to midline, clockwise, close progression) (n) (base to base-plus, sharp
ending, close progression) (penup) (space) (pendown) (a) (base to midline, sharp
ending, normal progression) (d) ...". Note that penup and pendown signals are part
of the coding.

At the quantitative level, the strokes per allograph are selected from a letter data
base. The "quantitative letter descriptors" describe the strokes in terms of dX, dY,
T, and C. The compound stroke duration T, and the form factor C, allow the
approximation of the moments in time where x and y velocities change sign. In
order to generate the kinematics of a handwriting trajectory, a general form of the
velocity pattern is selected. For convenience, a sinusoid velocity time function is
selected to fit between successive zero crossings of x and y velocities, which
appear to approximate handwriting movement patterns relatively well [35].

8. Summary

1. This paper provides a guide for finding and verifying appropriate handwriting
features for on-line cursive-script recognition. Appropriate features for on-line
cursive-script recognition systems can be derived from handwriting production
models and will be only slightly sensitive to the within-writer motor-noise
variations. A macroscopic model of handwriting production, having several
modules, was presented. The highest module is a movement memory containing
the parsimonious and abstract description of the handwriting letters. In the lower
modules, the abstract description is translated into individual motor actions.

2. In order to extract features, handwriting patterns are split into a sequence of
motor actions such as ballistic strokes. For that purpose, an invariant segmentation
procedure is proposed, using a mixture of motor-based rules (segment at absolute-
velocity minima; segmentations at least 60 ms apart) and empirical rules (weigh
the horizontal velocity component less than the vertical velocity component when
estimating the absolute-velocity; concatenate short strokes and parallel strokes).

3. A spectral analysis shows that the frequency bandwidth increases with
writing speed. The bandwidth of 10 Hz and stroke durations of 0.1 s suggests that
four sample values are enough to describe both components of an individual stroke.
Ideally, four features per stroke are needed in order to disambiguate strokes.

4. Invariant features are the ones showing a high signal-to-noise ratio (SNR).
In order to estimate the SNR various replications of a writing pattern are required.
SNR values of invariant features are of the order of 4.

5. Invariant features may be closely related to the movement information stored
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in motor memory, whereas less invariant features may be derived at the lower
levels. The top-down hierarchy describes the causal relations between higher-level
and lower-level features. The most invariant features are graphical features, e.g.,
stroke sizes and directions. Less invariant features are the dynamical parameters,
e.g., forces and durations.

Variations in one stroke may affect neighboring strokes. This is described by
the sequence hierarchy. Stroke sizes show a sequence hierarchy but stroke
duration does not. This supports that the segmentation into strokes yields a
sequence of motor actions, but, that strokes do not vary individually. Strokes
should be considered in their context. Features which change proportionally or
linearly for all strokes are subject to lower-level scale transformations and have to
be normalized.

6. Context of stroke size and stroke curvature mainly affects durations and
speeds. In normal handwriting, stroke size is varied by both duration and
accelerative force. Absolute velocity reaches minima at points of high curvature.

7. The most important features for cursive-script recognition are stroke sizes
and stroke directions as they have high SNRs. Computational models suggest
complete sets of features which allow legible reconstruction of writing patterns.
Movement optimization models allow the reconstruction of the handwriting
movement from static images and, therefore, lead to optical recognition of cursive
script.
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