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ABSTRACT 
Performance space exploration (PSE) determines the range of 
feasible performance values of a circuit block for a given topology 
and technology. In this paper, we present two deterministic 
approaches for PSE. One approximates the feasible performance 
space based on linearized circuit models and is suitable for 
investigating a large number of performances. The other one 
computes discretizations of the Pareto front of competing 
performances. In addition, a motivation and application of PSE 
using a hierarchical design example is presented. 

Categories and Subject Descriptors 
B.7.2 [Hardware]: Integrated Circuits—Design Aids 

General Terms: Algorithms, Design 

Keywords 
Performance Space Exploration, Analog Integrated Circuits, Pareto 
Optimization, Fourier Motzkin Elimination 

1. INTRODUCTION, BASIC CONCEPTS 
Analog components play an important role in integrated circuits and 
systems. Virtually most of the chips designed today contain analog 
parts, for instance for A/D-D/A signal conversion or clock 
generation. With the dramatically increasing requirements on design 
time, quality and complexity, analog parts turn out to be a 
bottleneck in the design flow. Due to its physical nature, analog 
design is very difficult to automate, and in addition to structure and 
layout synthesis, it includes circuit sizing. 

1.1 Circuit sizing 
Circuit sizing aims at sizing circuit parameters p1 like transistor 
widths or resistor values such that circuit performances f like gain, 
bandwidth, slew rate are optimized. Minimum performance 
requirements are given by permissible values called specifications 
f(p) < fB

2. Circuit sizing is often referred to as parametric synthesis, 

                                                                 
1 Vectors are denoted in bold letters, matrices in bold capitals, vector 

inequalities are interpreted element-wise. 
2 Lower permissible values are included in this formulation by 

multiplication with –1.  
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nominal design or circuit optimization. If statistical variations of 
parameters, e.g. due to process fluctuations, are involved and the 
percentage of circuits satisfying the specs (parametric yield) is to be 
maximized, circuit sizing is referred to as design centering, yield 
optimization or tolerance design [29]. 

1.2 Circuit simulation 
Circuit sizing is based on a method to evaluate a set of performances 
for a set of parameter values: 

)(pfp a    (1) 

This mapping is usually done by circuit simulation with spice-like 
analog mixed-signal simulators. Simulations are called very often 
within a loop during automatic circuit sizing. As circuit simulation 
is extremely expensive in terms of computational cost, tools for 
automatic circuit sizing have to be designed to use a minimum 
number of simulations. 

Many methods use performance models instead of circuit simulation 
for the sizing process [5,6,7,8,9,20,21,22,23,24]. Please note that 
this includes a preparation phase which again involves a large 
number of simulations. 

1.3 Multi-objective optimization 
As a number n of usually competing objectives f1…fn have to be 
optimized, circuit sizing is a multi-objective optimization3 problem 
[11] over the circuit parameters p such that certain sizing 
constraints4 c(p) ≥ 0 are satisfied: 
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Usually it is not possible to find a set of parameters for which all 
performances are maximal. Most of the time, a trade-off situation 
between performances occurs, where it is only possible to improve 
one performance at the cost of another.  

This introduces the concept of Pareto optimality. A set of 
performances a is considered more optimal than a set b if it 
dominates b: 
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3 Optimization is formulated as maximization. Minimization can be 

included by maximization of the negative objective value. 
4 Sizing constraints describe the valid parameter space and are crucial for 

successful optimization of analog circuits. Please see Sec. 7. 
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A set of performances f* is Pareto optimal if it is not dominated by 
any other set f. The whole of all Pareto optimal sets of performances 
make up the Pareto optimal front. This front describes the 
capabilities of a given circuit and the trade-offs between competing 
performances. In Fig. 1, the curve between  f*1 and f*2 illustrates  
such a Pareto front for two performances f1 and f2. The shaded area 
is the feasible performance space that can be achieved considering 
the sizing constraints c(p) ≥ 0. 

1.3.1 Finding one optimal solution  
In the past, many tools for circuit sizing were developed that 
focused on finding a single point on the Pareto front, e.g. 
[7,10,12,14,15,29]. Towards this, the multi-objective optimization 
problem is transformed into a scalar optimization problem through a 
weighted sum of the performances: 

0)(   s.t.   )(
1

)(max ≥∑
=

= pcpp if
n

i
iwo   (4) 

A set of weights wi, i=1,…n, leads to a respective solution on the 
Pareto front. 

The solution methods can be classified according to whether they 
use circuit simulation [12,14,15,29] or performance models [7,10] 
for performance evaluation, whether they implement a deterministic 
[7,12,14,29] or stochastic [10,15] optimization process, or whether 
they include tolerance design [29]. Methods for finding a single 
Pareto optimal point are mature and available from CAD vendors 
today, e.g. [30]. 

1.3.2 Finding many optimal solutions 
In recent years, the research focus changed from finding one optimal 
solution to exploring the whole range of Pareto optimal solutions 
for competing performance objectives [1,2,6,8,9,17,18,19,23,25,28].  

This is referred to as design/performance space exploration (PSE). 
As PSE includes many individual sizing processes, it becomes much 
more critical concerning the computational cost. Nevertheless, PSE 
is required in nowadays complex analog-mixed-signal designs of 
filters, converters, phase-locked loops etc. Due to the increased 
complexity of such systems, neither a one-step design of the 
complete system nor the simulation of its transistor netlist is 
possible. As a consequence, the system is partitioned and 
hierarchically modeled on behavioral level (e.g. with Verilog-AMS 
or VHDL-AMS) and circuit level (e.g. with transistor netlists). This 
mixed behavioral-transistor level modeling of analog systems leads 
to a hierarchical design process, where system specifications are 
propagated top-down from the behavioral level to the transistor level 
[2,3,4,13,18,20,22,23,25,26,27,28]. Many of the current works aim 
at the automation of this well-known hierarchical design process. 

PSE provides a complete bottom-up characterization of the 
performance potential of available topologies for system blocks (e.g. 
opamps in a filter, oscillator in a phase-locked loop). It is a key to a 
true hierarchical sizing and design process for two reasons: 

First, PSE contributes to an automatic topology selection, as it can 
be applied to compare different variants and select the best one for 
the given requirements. Second, it provides the achievable space of 
system parameters and prevents system sizing from producing 
requirements that cannot be fulfilled by circuit sizing on transistor 
level. Hence it contributes to an automatic hierarchical sizing 
process [2]. 

Research these days works on developing tools for PSE which are 
applicable for a broad range of design problems. However, very 
often expensive stochastic optimization techniques [9,17,18] and 
intermediate performance modeling [6,8,19,23,25] are used. 

Instead in the following, two deterministic, simulation-based 
methods for PSE will be given; one aims at accurate results (Sec. 2), 
the other one at fast results (Sec. 3). Sec. 4 will apply these methods 
to PSE for topology selection. Sec. 5 will then apply one of these 
methods to a hierarchical sizing process of a filter. Sec. 6 concludes. 

2. PSE BY DISCRETIZED PARETO 
FRONTS (DISC) 
A common way to compute the Pareto front is to calculate discrete 
points of it by solving the optimization problem (4) with a suitable 
sweep over the weights wi. The challenge lies in selecting sets of 
weights such that the Pareto front is covered with as less discrete 
points as possible. This is a difficult task, as the curvature of the 
Pareto front may differ largely from design to design and as it may 
be non-convex. In [1], a different approach has been described that 
is illustrated in Fig. 1 for two performances f1 and f2. 

In a first step, the maximum achievable values of all individual 
performances are determined. Although this is a scalar optimization 
problem, it imposes the challenge to find the global optima, in order 
to cover the full Pareto curve. In Fig. 1, the individual optima are 
marked by lines intersecting the f1 and f2 axes. The corresponding 
vectors of all performance values at each individual optimum are 
denoted by f*1 and f*2. The convex hull between the individual 
optima, geometrically this is the hyperplane spanned between the 
individual optima, is described by: 
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Figure 1. Computing the Pareto front by searching along normal 
rays on the intersected convex hull between the individual 
optima of performances. 
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This convex hull is equally intersected as illustrated in Fig. 1. Along 
the normal ray of each of the obtained discrete points of the convex 
hull, described in parametric form by the parameter t and a normal 
vector n, the following optimization problem is solved to obtain the 
DISCrete points of the Pareto front of performances. 
 

0pcpfnwF
p

≥∧=⋅+⋅ )()( λ   t.s.λmax
λ,

 (6) 

The solution of (6) can be obtained by suitable optimization 
algorithms based on circuit simulation for performance evaluation 
[1]. This method can also handle non-convex Pareto fronts and is 
suitable to compute an accurate discretization of the Pareto fronts 
for a relatively small number of performances. 
 

3. PSE BY POLYTOPAL APPROXIMATION 
(POLY) 
In this section, we will outline a different approach for PSE, which 
is more efficient at the price of lower accuracy. It is based on a 
linearized circuit model and a POLYtopal approximation of the 
whole feasible performance space. A detailed description of this 
method can be found in [2]. 
The basic task of PSE can be interpreted as transferring the des-
cription of the valid parameter space (sizing constraints) c(p) ≥ 0 
using performance evaluation (circuit simulation) f = f(p) into a 
description of the feasible performance space k(f) ≥ 0 that does not 
depend on parameters (i.e. is implementation-independent): 

0fkpff0pc ≥→=∧≥ )()()(   (7) 

This can be done by introducing a linearized approximation for the 
nonlinear constraint and performance functions c and f and 
calculating a linear model for the feasible performance space: 

00 kfKfpFcpC ≥∆⋅→∆=∆⋅∧≥∆⋅  (8) 

Usually, the number of parameters np is larger than the number of 
performances nf, hence we introduce a suitable partitioning of 
parameters and rewrite (8): 

02211 cpCpC ≥∆⋅+∆⋅ >−<>−×<><>×< fpfpcffc nnnnnnnn  (9a) 

fpFpF ∆=∆⋅+∆⋅ >−<>−×<><>×< fpfpffff nnnnnnnn 2211  (9b)  

Inserting ∆p1 from (9b) into (9a), assuming that F1 is not rank-
deficient, leads to: 

( ) 022
1

112
1

11 cpFFCCfFC ≥∆⋅−+∆⋅ −−   (10)  

Based on Fourier-Motzkin elimination and a sophisticated 
redundancy detection [2], (10) can be transformed into the required 
linear description k(f) ≥ 0 of the feasible performance space. This 
method is suitable to efficiently approximate the feasible 
performance space for a large number of performances. In the 
following section, the deterministic PSE methods DISC and POLY 
presented in this section and Sec. 2 will be applied to two opamp 
topologies and compared with respect to accuracy and efficiency. 

4. TOPOLOGY SELECTION 
In general, the designer can choose between several architectures or 
topologies to build an analog circuit with the desired functionality. 
At that stage of the design process, usually no circuit sizing is 
available and the designer has little information about the different 
performance values achievable by each topology. PSE helps him 
make this choice. In the following, this is illustrated for two opamp 
topologies, which are compared in terms of speed and power 
consumption. The opamps shall meet the following AC 
specifications: phase margin greater than 60 degrees to guarantee 
stability, DC gain greater than 75dB and transit frequency greater 
than 10 MHz. These application-specific performance specifications 
can be handled equally to sizing constraints during the exploration 
process. Fig. 2 shows the results for the two approaches introduced 
in the previous sections. 

Figure 2. PSE results for two opamp topologies 

We can see that the polytopal approximation is able to capture the 
qualitative from of the Pareto front quite well. In this case, the 
Miller opamp is superior in terms of speed and power consumption. 
This may not be true for a different set of AC specifications. 
Especially if a high phase margin is demanded, the Folded-Cascode 
topology becomes superior. The corresponding graph is not shown 
here. 
Table 1 shows that PSE based on polytopal approximation by 
POLY is significantly faster compared to the discretization by 
DISC. Experience showed that the accuracy of this method depends 
heavily on a suitable choice of the linearization point and that the 
approximation of the border of the feasible performance space is 
more reliable if it is close to this point.  

Table 1. Computation time on a cluster of 15 Pentium IV 

Topology DISC POLY 

Miller 18 min 25 sec 3 sec 

Folded Cascode 55min 38 sec 1min 45 sec 
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5. HIERARCHICAL SIZING 
With the example of a bandpass filter we want to illustrate a 
hierarchical sizing algorithm based on behavioral models and PSE. 
Fig. 3 shows the system level model of an OTA-C biquad filter. In 
this case, the system level model is a structure consisting of eight 
operational transconductance amplifiers (OTAs) and two capacitors 
C1 and C2 as system blocks.  

Figure 3. System: OTA-C biquad filter, system level (structural) model 

The system performances and system specifications (AC behavior) 
of the filter are given in Table 2. The system block OTA is modeled 
with VHDL-AMS based on the model given in [5]. This behavioral 
model5 is given in Table 3. It features 5 system design parameters, 
given in Table 4. 
 

Table 2. Filter, system performances and specifications 

center frequency fc  fc = 2 MHz 
center frequency gain Gc  Gc > 20 dB 
quality factor Q Q > 15 

 
Table 3. OTA, system level (behavioral) model 

ENTITY ota is 
GENERIC (gdm:real;Cin:real;CT:real;Cout:real;Rout:real;); 
PORT ( terminal Tplus, Tminus, Tout, Tvdd, Tvss , Tibias: 
electrical); 
END ENTITY ota; 
-- Simple Ota architecture 
architecture behavioural_simple of ota is 
---***external quantities*** 
... 
---***internal quantities*** 
... 
begin  -- behavioural_simple 
---***input stage*** 
  icd == cin*vd'dot; 
  vd == ird*rin;  
---***transfer stage***                  
  iT == vd / rT; 
  iT == icT + irT; 
  vT == irT*rT; 
  icT == cT*vT'dot; 
---***output stage*** 
  vout == irout*rout; 
  icout == cout*vout'dot; 
  iout0 == vT *gdm; 
  iout == iout0+icout+irout; 
end behavioural_simple; 

                                                                 
5 Analogously, a system level structural macromodel of an OTA could be 

given by a three-stage equivalent circuit. 

 

Table 4. Filter, system design parameters 

OTA transconductances gdm OTA output resistances Rout 

OTA input capacitances Cin OTA capacitances Cout 

OTA capacitances CT C1, C2 

 
The transistor implementation of an OTA has an offset in the phase 
φ(f) of its transfer function, which has a dominant influence on the 
system behavior. CT models this offset with the following fitting 
function: 

))(tan(2
1

cTc
T fRf

C
ϕπ−

=    (7) 

The system model parameters gdm, Cin, CT, Rout and Cout can be 
obtained from simulation of the OTA on circuit level. That means 
that they also constitute the circuit performances of a system block 
OTA. The circuit schematic of an OTA is given in Fig. 4. 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. OTA, circuit level (transistor netlist) model 

For each OTA, eight independent transistor widths and lengths form 
the circuit design parameters. As two OTA pairs are sized 
identically due to symmetries in the design, we have 48 circuit 
parameters. Together with the two system design parameters C1 and 
C2 we have 50 design parameters in total to be sized. 
A simulation of a transistor implementation of the filter is a two-
stage process. For a given set of transistor widths, all OTAs are first 
simulated on circuit (transistor) level with the netlist in Fig. 4. The 
resulting circuit performances are part of the system design 
parameters according to Table 4 and input to the OTA system level 
(behavioral) model in Table 3 using (7). The filter is simulated in a 
second step with the system model in Fig. 3 and Table 3 in order to 
obtain the filter performances.6  
In the following, we illustrate the hierarchical sizing process. 
As demonstrated, the OTA blocks are modeled by behavioral 
models on system level. These models depend on system design 
parameters (Table 4) that are independent of transistor geometries 
and therefore implementation-independent. 
                                                                 
6 Although this example could as well be simulated flat on transistor level, 

the two-step procedure over behavioral and transistor level is usually 
mandatory because the system complexity induces prohibitive flat 
simulation cost. 
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Table 5. OTA-C filter during hierarchical sizing with PSE 
System performance after fc [MHz] Gc [dB] Q 

system sizing  2.001 20.64 16.23 

circuit sizing 2.001�  20.23�  15.46�  

Table 6. OTA5 during hierarchical sizing with PSE 
 gm     

[µS] 
Cin     
[fF] 

φ(fc) 
[deg] 

Rout 
[MΩ] 

Cout 
[fF] 

Spec after system sizing 205.1 32.94 174.0 184.4 21.6 

Achieved after circuit sizing 204.9 30.3 174.0 184.6 21.8 

 
By sizing on system level, a set of optimal system design parameters 
is obtained in a first step. This set represents the behavior of the 
underlying system block which guarantees optimal performance of 
the complete filter. This set can therefore be seen as a list of 
specifications which are passed down to the blocks in a hierarchical 
top-down sizing approach [2,3]. On circuit level, the optimal system 
design parameters constitute circuit level specifications. In a second 
step, circuit level sizing is conducted on each OTA separately and 
simultaneously, using its transistor level netlist. This leads to a set of 
optimal circuit design parameters.  
Sizing of the filter on behavioral level usually tends to lead to 
unrealistic system model parameters, producing overly ambitious 
specifications, which can not be met by the underlying OTA circuit. 
As this turns out only after the circuit sizing step, unnecessary 
“resizing” loops are the consequence. Therefore the information of 
the capabilities of the OTA must be passed up to the behavioral 
level to avoid unrealistic specifications. In [4], this is done by 
optimizing on behavioral level for highest design flexibility, where 
design flexibility is a heuristic measure describing the capability of 
the underlying circuit blocks to meet their specification.  
The task of avoiding unrealistic specifications can be accomplished 
in a systematic way by applying PSE techniques. The obtained 
feasible performance space of an OTA can be interpreted as sizing 
constraints on system level similar to the sizing constraints on circuit 
level. This leads to a closed and complete automatic hierarchical 
sizing methodology. 
The proceeding is illustrated with the OTA-C filter. We use the PSE 
approach based on polytopal approximation in Sec. 3 to calculate 
the sizing constraints on system level.  
After performing the system level sizing, we obtain the system level 
performance as given in the first row of Table 5. E.g. for the OTA5 
we obtain the optimal system parameters given in the first row of 
Table 6, which are passed to the circuit level sizing process as 
specifications. 
Using the specifications obtained from system level sizing (e.g. 
those in the first row of Table 6 for OTA5), circuit level sizing for 
all OTAs is performed. E.g. for the OTA5, we achieve the circuit 
performances given in the second row of Table 6. Using the 
achieved circuit performances for all OTAs in system level 
simulation, we obtain the system performance in the second row of 
Table 5. 
We can see, that the result is fine. Often however, the system 
performance after circuit level sizing is not satisfying. This is the  

Table 7. OTA-C filter during hierarchical sizing without PSE 
System performance after fc [MHz] Gc [dB] Q 

system sizing  1.998 20.01 21.14 

circuit sizing 1.972�  14.98➘  12.34➘  

Table 8. OTA5 during hierarchical sizing without PSE 
 gm     

[µS] 
Cin     
[fF] 

φ(fc) 
[deg] 

Rout 
[MΩ] 

Cout 
[fF] 

Spec after system sizing 299.7 32.57 175.3 229.4 22.29

Achieved after circuit sizing 297.1 28.57 174.2 122.4 28.57

 
result of the inaccuracy induced by the POLY approximation of the 
system level sizing constraints. As a consequence, the system level 
sizing may drive circuit parameters into regions which are actually 
not achievable on circuit level. In that case, the top-down sizing 
process is iteratively repeated as described in [2]. 
The significance of the system level sizing constraints obtained by 
PSE can be demonstrated by running hierarchical sizing without 
them. The values of the system level parameters are now only 
limited by realistic box constraints. Table 7 shows the results. The 
system level sizing without PSE finds a good solution, but the 
system performances are poor after circuit level sizing. This is due to 
overly ambitious specifications passed down to the OTAs, which 
cannot be achieved by circuit sizing. For example we obtain the 
specifications shown in the first row of Table 8 for OTA 5. A 
relative high gm is demanded for this OTA. This specified gm can be 
obtained by circuit sizing as shown in the second row but on the 
expense of a lower φ(fc) and less Rout as specified. There is a trade-
off between gm, φ(fc) and Rout of the OTAs. Obviously if this 
information is not made available to the system sizing algorithm by 
PSE system level constraints, resizing loops become necessary. 

Conclusion 
We have described two deterministic, simulation-based methods for 
performance space exploration (PSE) and have applied them to 
hierarchical sizing. These two PSE methods feature the ability to use 
circuit simulation (in order to capture the exact physical circuit 
behavior) at reasonable computational cost. With the example of 
hierarchical sizing of a filter, it has been demonstrated that PSE 
provides the means for a first-time successful top-down sizing. 

6. Appendix: Sizing constraints 
Sizing constraints c(p) ≥ 0 are crucial for the success of analog 
circuit optimization [16] and form the basis to calculate the feasible 
performance space and for performance space exploration as in 
[1,2]. If not considered, optimization most often will fail to 
converge or to produce robust sizings. Sizing constraints describe 
the valid parameter space of transistor pairs and basic analog 
building blocks. These constraints refer to transistor widths and 
lengths and to DC properties of transistors and implement basic 
design knowledge e.g. concerning matching, transistor operation. 
Some approaches define box constraints for parameters [6,13], 
many methods for sizing just mention that sizing constraints exist 
[9,10]. In [16], a systematic library of sizing constraints and a tools 
for automatic structural analysis of analog circuits and creation of 
sizing constraints has been presented. Advanced sizing constraint 
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methods like [16] are technology-specific and automatically provide 
the actual sizing constraints for a given circuit topology. 
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