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a b s t r a c t

Remote sensing allows monitoring heavy metal pollution in crops for agricultural production and food
security. This paper presents an approach to wavelet-fractal analysis for exploring a set of sensitive spec-
tral parameters to monitor the heavy metal pollution levels in rice crops from hyperspectral reflectance
data. Hyperspectral and biochemical data were collected from three study farms in Changchun, Jilin
Province, China. Our study explored the fractal dimension of reflectance with wavelet transform (FDWT)
that demonstrated a better performance than other existing methods. Our results obtained in this study
show that the red edge position (REP) was the most sensitive indicator for monitoring the heavy metal
pollution levels in rice crops among common indices. As compared with REP, the FDWT is more sensitive
ractal analysis to biochemical composition, namely with respect to chlorophyll concentrations, N, Cu and Cd. The estab-
lished linear models showed a correlation coefficient (R2) above 0.70, model efficiency (ME) above 0.65
and a root mean square error (RMSE) below 3.5. Minimum FDWT values occurred in rice with Level II
pollution followed by Level I pollution, and finally the safe level. This study suggests that wavelet trans-
form is well suited as a spectral analysis method to eliminate noise and amplify the stress information
from heavy metals. The wavelet transform in conjunction with fractal analysis is promising for detecting

ss in
heavy metal-induced stre

. Introduction

One of the major environmental problems resulting from rapid
ndustrial development in today’s China is the heavy metal con-
amination of soils. High levels of heavy metal concentrations may
nfluence plant growth in a negative way and, if these heavy metals
nd up in agricultural crops or in grazing lands, they pose a serious
ealth threat. As is well-known, rice, which is a staple food crop

n China, uses 24% of all agricultural land to provide about 40% of
he overall yield, suggesting that the heavy metal pollution lev-
ls in rice crops may be a critical problem for food safety in China
Hu et al., 2002). Therefore, timely and accurate detection of heavy

etal pollution levels in rice is an essential issue. Traditionally, soil
esting, plant tissue analysis, and long-term field trials have been
sed to assess the heavy metal pollution levels in rice crops (Hang
t al., 2009). These methods, however, are very labor-intensive and

ime-consuming. Hyperspectral remote sensing data have been an
lternative to conventional ground-based methods to detect plant
tress and play a valuable role in providing time-specific and time-
ritical information for precision farming, due to the ability to
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rice crops.
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measure biophysical indicators and detect spatial variability. The
existing studies demonstrated that metal stress related to spectral
features can be discriminated from field data by using high-spectral
resolution instrumentation and analysis techniques (Collins et al.,
1983; Clevers et al., 2004). Some researchers have applied original
hyperspectral reflectance to detect the heavy metal pollution levels
in crops under controlled laboratory conditions by adding copper,
lead, chromium, or zinc, etc. (Kemper and Sommer, 2002; Chi et al.,
2006). However, the pollution level in the real world ecosystems
is relatively low, which means that no visible symptoms exist in
leaf reflectance spectra. Other researchers have developed spec-
tral analysis methods, such as derivative transform (Gitelson et al.,
1996; Ren et al., 2008), continuum removal (van der Meer, 2006;
Liu et al., 2010c), in order to enhance the vegetative stress signals
through minimizing the effects of background materials. Several
studies using hyperspectral data of vegetation have already demon-
strated the benefits of wavelet transform for spectral smoothing
and noise removal (Bruce and Li, 2001; Schmidt and Skidmore,
2004). Recent studies have demonstrated the potential of fractal

analysis for analyzing the vegetation health status (Du et al., 2009)
from remotely sensed images and leaf or canopy reflectance spec-
tra. Few papers, however, were found to apply wavelet transform
in conjunction with fractal techniques to extract spectral parame-
ters for monitoring metal-induced stress on plants. Compared with

dx.doi.org/10.1016/j.jag.2010.12.006
http://www.sciencedirect.com/science/journal/03032434
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Fig. 1. Location map for experimental sites in Changchun, Jilin Province, China.

erivative analysis, wavelet transform is equally sensitive but has
he added advantage of being an excellent frequency filter and an
ntensity filter. Therefore, using it for field spectral data analysis
n the frequency domain can be shown to be more sensitive in
etecting stress and most effective in filtering out background noise

n the spectral data (Chang and Collins, 1983). In addition, fractal
imensions can be used to explain the comprehensive variation of
pectrum curves as a ‘global parameter’. So, it has the advantage of
apturing much more information provided by reflectance spectra
han previous analytical approaches such as red edge parameters
nd some spectral vegetation indices for investigating changes in
lant stress. This paper aims at detecting the heavy metal pollution

evels in rice crops through improving the sensitivity of spectral
arameters by applying wavelet analysis and fractal techniques to

eaf reflectance spectra.

. Study area and data

.1. Field experiment design

The City of Changchun, Jilin Province is an important industrial
nd agricultural region in China. Some areas have been con-
aminated by industrial pollutants, particularly by heavy metals.
uburban farms have soils with copper (Cu) and cadmium (Cd) at
igher concentrations than what is considered to be normal for the
rea. Three field plots (43◦51′34.8′′ N–43◦51′37.0′′ N, 125◦09′07.2′′

–125◦10′25.3′′ E) adjacent to the China First Automobile Factory

i.e., the contamination source) in Changchun were selected (Fig. 1).
eavy metal contamination stress levels in the soil of the three field
lots (labeled A, B, and C) varied. The soil and the stress rates were
etermined according to a soil sample analysis (Table 1) to be at
he safe level, Level I pollution and Level II pollution, respectively.
ervation and Geoinformation 13 (2011) 246–255 247

The site is within the temperate continental climate zone with a
mean annual rainfall of 522–615 mm, where land is predominantly
of the black soil variety, with a pH of 7.0–7.3 and 2–4% of sufficient
organic matter. The crop selected in this site was rice, which is one
of the most important crops in China.

2.2. Field data

The data were collected during four days of typical rice growing
season: 8 July, 4 August, 29 August and 18 September 2008, which
corresponded to the seeding, tillering, booting and mature growth
stages of rice. Spectral measurements were taken under cloud-
less or near-cloudless conditions between 10:00 and 14:00, using
an ASD FieldSpec Pro spectrometer (Analytical Spectral Devices,
Boulder, CO, USA). This spectrometer was fitted with fiber optics
having a 10◦ field of view, and was operated in the 350–2500 nm
spectral regions with the sampling interval of 2 nm. Reflectance
spectra were measured through calibration with a standardized
white Spectralon panel. A panel radiance measurement was taken
before and after the crop measurement with 2 scans each time.
The measurements were carried out from a height of 1.0 m above
the rice canopy. Crop radiance measurements were taken at 30–40
sample sites over each plot and each site was scanned 10 times.
These measurements were then averaged for the particular site.

A simple method of determining the chlorophyll content is the
portable Chlorophyll Meter SPAD-502 (Minolta Corporation, NJ,
USA). Within rice canopy of the spectral measurement for each
sample site, four rice plants were selected, and the chlorophyll con-
tent in rice leaves was measured at six chosen leaves per individual
rice plant, namely random two leaves from the top, middle and bot-
tom, respectively, and the average value (the total of chlorophyll
meter reading/24) for each sample site was calculated. The chloro-
phyll concentration was calculated from the SPAD-502 chlorophyll
readings (Wood et al., 1993) by

y = 0.996x − 1.52 (1)

where x is the SPAD-502 chlorophyll readings and y is the chloro-
phyll concentration (�g/cm2).

Crop and soil samples were taken almost synchronously with
canopy spectral reflectance measurements. Both the leaves per
rice (used as chlorophyll measurement) and the soil per sam-
ple site were collected and placed into respective sealed plastic
bags to obtain biochemical composition, such as nutrient ele-
ments and heavy metal concentrations. Heavy metal concentration
(Cu, Zn, Pb, Cd, Cr, and As) in the soil and crop samples were
determined by flame atomic absorption spectrometry (AAS), after
nitric–perchloric acid (2:1) digestion. Soil extractable metals
were separated with 5 mM diethylenetriaminepentaacetic acid
(DTPA)/10 mM CaCl2/100 mM triethanolamine at pH 7.3 (Lindsay
and Norvell, 1978). Nitrogen in rice leaves was measured by ele-
mental analyzer (Leco, USA) at the Chinese Academy of Agricultural
Sciences (Bao, 2005).

3. Method

3.1. Hyperspectral data analysis

3.1.1. Discrete wavelet transform
Wavelets are mathematical functions that are used to dissect

data into different frequency components, each of which is char-

acterized with a resolution appropriate to its scale (Strang, 1993).
Wavelet transform has an excellent time and frequency property.
It can make the components of interest that are submerged in
an original signal become distinct with certain scales (Blackburn,
2007). In this study, hyperspectral reflectance was performed by
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Table 1
The information of the three field plots.

Geographical location Copper content (mg kg−1) Cadmium content (mg kg−1) Pollution level Soil quality standarda (mg kg−1)

43◦52.2′ N, 125◦10.2′ E 68.2 0.465 II II (50 ≤ Cu ≤ 400; 0.3 ≤ Cd ≤ 1.0)
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43◦54.6′ N, 125◦10.4′ E 45.5 0.182
44◦06.3′ N, 125◦10.2′ E 20.4 0.093

a Soil quality standard according to the Environment Monitoring Centre of China

iscrete wavelet transform to amplify the stress information asso-
iated with heavy metal pollution. The original spectral signal can
e expressed by

(�) = aj(�) +
j∑

i=1

di(�) (2)

here f(�) is the original signal, a is the low-frequency component
nd d is the high-frequency component.

Here, rice reflectance spectra between 350 and 1300 nm was
aken into account. The primary reason is that heavy metal-induced
tress occurred in both the visible and near infrared parts of the
pectrum. Also this is because absorption by atmospheric water
apor occurred in the regions around 1400 and 1900 nm, and
he relative high noise level occurred in the spectra between
900 and 2500 nm. In this study, Daubechies db5 as mother wave
nd five decomposition levels were considered on the basis of
ur previous study (Liu et al., 2010a). Firstly, ‘db5’ wavelet func-
ion provides a good balance between wavebands and frequency
ocalization. Secondly, ‘db5’ wavelet function has proved to be suc-
essful in eliminating noise and amplifying the stress information
rom heavy metals through selection of the proper decomposi-
ion level of signal. The reflectance curve was filtered using a
iscrete wavelet transform implemented in Matlab. In this way,
he curve was decomposed into a low-frequency component (a5)
nd high-frequency components (d1, d2, d3, d4, and d5) and the
eneral flow for decomposition spectral reflectance curve is shown
n Fig. 2(3). High-frequency components are suitable for analyz-
ng subtle changes in the reflectance of adjacent wavebands. The
esults showed that the fifth high-frequency components (d5) had
good capacity for detecting stress information in a satisfactory
ay by reducing the impact of atmospheric scattering, absorption,

ackground and equipment noise on the spectral signal of rice (Liu
t al., 2010a).

.1.2. Fractal dimension calculation
Fractals, here referring to broken or irregular fragments, were

rst introduced by Mandelbrot (1967) to describe complex and
rregular natural objects. They can be generally defined as geomet-
ic shapes that have two properties: self-similarity and fractional
imensionality. A number of studies demonstrated that remotely
ensed images and hyperspectral reflectance proved to have fractal
haracteristics (Qiu et al., 1999; Du et al., 2009). Similarly, d5, which
elongs to the fraction of original reflectance, has fractal proper-
ies. Since there is a noticeable difference occurring in 480–850 nm
egion of the d5 curve for different stress levels of rice with heavy
etals (Liu et al., 2010a), fractal dimensions of original spectral

eflectance and d5 in the 480–850 nm and 350–1300 nm regions
ere both calculated to quantitatively and comprehensively ana-

yze stress levels of rice with heavy metals. In this study, fractal
imensions were calculated by the box-counting method, which is

ased on the division of an area into regular boxes with the same
ox edge length (Borodich, 1997).

= lim
n→∞

log M(n)
n log 2

(3)
I I (35 ≤ Cu < 50; 0.2 ≤ Cd < 0.3)
Safe Safe (Cu < 20.8; Cd < 0.097)

where D is the fractal dimension, M(n) and n is the count of boxes
in the grid divided curve and scales, respectively. Fractal dimen-
sion (D) is a quantitative measure of complexity in the shape of the
spectral signal. Its value ranges from 1.0 to 2.0. In this study, FD
and FDWT in the following text of this paper denote fractal dimen-
sions of original reflectance and fractal dimensions of reflectance
with wavelet transform (namely fractal dimension of d5), respec-
tively. We delineate the fractal dimensions of the 480–850 nm and
350–1300 nm regions, in order to facilitate interpretation and dis-
cussion, with subscripts indicating the range of the wavelength
used. FD480–850 or FDWT480–850 represents FD or FDWT involving
bands 480–850 nm and FD350–1300 or FDWT350–1300 denotes FD or
FDWT involving bands 350–1300 nm.

3.2. Spectral parameters

3.2.1. Common spectral parameters
Generally speaking, spectral indices for detecting heavy metal

pollution levels have been primarily classified into three categories
(Table 2). (i) Derivative spectral indices, such as blue edge, chloro-
phyll absorption edge and red edge. The shift of red edge position
(REP) was the most well known and widely applied spectral index
as a sensitive indicator for detecting heavy metal pollution levels
in rice crops (Gitelson et al., 1996; Ren et al., 2008). (ii) Normal-
ized spectral absorption depth, which is the standard transform
in spectroscopy through continuum removal to enhance the spec-
tral absorption features based on metal binding mechanisms. It
includes variations in absorption features, such as the peak depth
and peak area at specific wavebands (van der Meer, 2006; Liu et al.,
2010c). (iii) Integrated spectral indices, which combine two or more
spectral bands to enhance the vegetative signal while minimizing
background effects and are commonly used to measure the sen-
sitivity of vegetation to heavy metal stress (Kooistra et al., 2004;
Gallagher et al., 2008).

3.2.2. FDWT spectral parameters
In this study, we propose a novel procedure using wavelet

transform in combination with fractal analysis to estimate spec-
tral parameters to be used in the FDWT to detect the heavy metal
pollution levels in rice crops. The procedure for the calculation of
the FDWT spectral parameters can be summarized as follows (see
Fig. 2):

1) Hyperspectral reflectance was performed by wavelet transform
to reduce the impact of noise and amplify the stress information
associated with heavy metal pollution.

2) Fractal dimension of d5 was calculated by the method of box
dimension. In this study, FDWT480–850 and FDWT350–1300 were

explored as the new proposed spectral parameters based on
the above analysis. According to the tillering growth stage as
the best-detected phase of rice with heavy metal pollution (Ren
et al., 2008), hyperspectral reflectance of rice from the tillering
growth stage were selected to obtain spectral parameters.



M. Liu et al. / International Journal of Applied Earth Observation and Geoinformation 13 (2011) 246–255 249

ress le

3

3

a
c
w
c
c
t
s
d
(
c
c
e
a
i
t
C
a
s
a
C
t
a
r

T
S

Fig. 2. The general flow chart of monitoring the st

.3. Analysis and testing of estimation model

.3.1. Sensitivity analysis
The variations of biochemical composition occur, when rice is

ffected by heavy metal in soils. The important variation of bio-
hemical composition in rice is the increase of heavy metal content,
hich results in the change of nutrient elements and pigment con-

entrations in rice (Chien et al., 2001; Chi et al., 2006). In this study,
hlorophyll, N, Cu, and Cd in rice leaves were selected as sensi-
ive biochemical composition to stress levels according to previous
tudies where the concentration of Cu and Cd in plants serve as
irect and useful indicators of Cu and Cd contaminations in soil
Pugh et al., 2002) and the chlorophyll concentration and nitrogen
ontent of plant were both affected by excessive Cu and Cd con-
entrations in plants (Fernandes and Henriques, 1991; Lagriffoul
t al., 1998; Chien et al., 2001; Liu et al., 2010b). In addition, the
bove four biochemical compositions correlate to each other. The
nteraction between Cu and Cd is complex and has an effect on
heir individual functions. Huang et al. (2009) demonstrated that
u greatly enhanced Cd accumulation, but the application of Cd had
negligible effect on Cu uptake by rice plants. Cu and Cd in rice are

ubstituted for magnesium (Mg), the central atom of chlorophyll,

nd then reduce the chlorophyll content (Lagriffoul et al., 1998;
hien et al., 2001). Some researchers demonstrated that crop N con-
ent is positively correlated to leaf chlorophyll content (Jongschaap
nd Booij, 2004; Botha et al., 2007). That is to say, Cu and Cd in
ice have indirect influence on N content in rice. A number of field

able 2
ummary of the common spectral indices for assessing of plant under heavy metal stress

Spectral indices Formula/meaning

Blue edge Maximum slope of reflectance in blue regions
Chlorophyll absorption position Maximum value in chlorophyll absorption
Red edge Maximum slope of reflectance spectra between
Dn Normalized spectral absorption depth at specifi
DVI DVI = Rnir − Rr

NDVI NDVI = Rnir−Rr
Rnir+Rr
vels of rice under different heavy metal pollution.

studies have demonstrated that the general shape of the spectrum
and the distinctive absorption features in the spectrum can change
due to variations of biochemical composition in crops with heavy
metal stress (Chang and Collins, 1983; Kooistra et al., 2004). There-
fore, hyperspectral reflectance is feasible to estimate changes in
biochemical composition.

3.3.2. Relationship between FDWT spectral parameters and stress
levels

Due to chlorophyll, N, Cu, and Cd as sensitive biochemical
composition to stress levels based on the above discussion, the
regression model was created to establish the relationship between
the spectral parameters and chlorophyll, N, Cu, and Cd. Whether the
function was linear or power or exponential depends on R2 between
the spectral parameter and the biochemical composition. To quan-
tify performance of model established for assessing stress level,
three evaluation parameters between the measured values and the
predicted values were calculated: model efficiency (ME), the corre-
lation coefficient (R2), and the root mean square error (RMSE). The
three parameters were computed by:

ME = 1 −
∑n

i (ypi − ymi)
2

(4)
∑n
i=1(ymi − ym)2

where ypi, ymi, ym are the predicated value, measured value and
average measured value, respectively; n is the sample number. ME
values range from 0 to 1. The higher ME values indicate the better

.

Spectral analysis method Reference

Derivative analysis Chang and Collins (1983)
Derivative analysis Chang and Collins (1983)

the red and NIR Derivative analysis Chang and Collins (1983)
ed bands Continuum removal Liu et al. (2010c)

Bands integrated Kooistra et al. (2004)
Bands integrated Gallagher et al. (2008)
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Table 3
The correlation relationship (R2) between spectral indices and chlorophyll, N, Cu,
and Cd.

Spectral indices Chlorophyll N Cu Cd

BEP 0.0001 0.0659 0.0001 0.0041
REP 0.6233 0.7413 0.1618 0.2742
CAP 0.1543 0.0319 0.2046 0.1650
Dn (680 nm) 0.6833 0.3201 0.3332 0.3659
DVI (734, 682 nm) 0.6334 0.5017 0.3576 0.3519

stress presented a typical spectrum with higher reflectance around
550 nm and a weak absorption peak around 680 nm. In the visi-
ble and near infrared region, the significant distinction was that
the spectral curve of rice with heavy metal pollution was slightly
smoother than that at the safe level. This distinction can show
ig. 3. The first derivative reflectance of rice under different heavy metal pollution.
EP and BEP denote red edge position and blue edge position measured in nm. (For

nterpretation of the references to color in this figure legend, the reader is referred
o the web version of the article.)

rediction model’s efficiency:

2 =
[∑n

i=1(ypi − yp)
∑m

i=1(ymi − ym)
]

∑n
i=1(ypi − yp)2∑n

i=1(ymi − ym)2

2

(5)

here ym and yp are the average measured value and the aver-
ge predicated value, respectively. R2 is the correlation coefficient,
hich represents the correlation between the predicted and mea-

ured value. The higher the R2 value is, the stronger the indication of
n existing linear relationship between the measured and predicted
alues.

MSE =
√∑n

i=1(ypi − ymi)
2

n − 1
(6)

here RMSE is the root mean square error between the predicted
nd measured value. The lower RMSE, the better the performance
f the model.

In this study, three-dimensional (3D) models were established
o visually describe the relationship between spectral parameters
nd stress levels, in which the x and y coordinates are used as the
ample grids and the z coordinate represents the FDWT (fractal
imension of d5) or FD (fractal dimension of original reflectance)
orresponding to the sample grids of cultivated rice. z values are
imulated by the famous Delaunay, which is used to create a trian-
ular grid for scattered data points (Weatherill and Hassan, 1994).
he 3D models were conducted using a routine written in Matlab.
ntervals of the different curved surfaces can suggest that spec-
ral parameters matching with z can distinguish the heavy metal
tress levels in rice crops effectively. The intersection of the dif-
erent curved surfaces indicates that spectral parameters matching
ith z is poor at differentiating the heavy metal stress levels in rice

rops.

. Results

.1. Comparison of spectral indices

In order to ascertain the sensitivity of the common spectral

ndices to heavy metal stress levels in our field experiment, Fig. 3
hows the first derivative reflectance curves from different heavy
etal stress levels. As shown in Fig. 3, there is no significant dif-

erence in the REP of rice from different heavy metal pollutions.
ompared with the REP of rice at the safe level, the REP of rice under
NDVI (734, 682 nm) 0.6203 0.3527 0.3309 0.3838

Note: The parentheses contain specific wavebands. BEP, REP, CAP stand for blue edge
position, red edge position, chlorophyll absorption position, respectively.

the Level II and Level I pollutions shifted 6 nm and 3 nm towards
the short wavelength, respectively; while the shift of the blue edge
position had nearly no variation. Furthermore, R2 between bio-
chemical composition and the three types of indices, derivative
spectral indices, normalized chlorophyll absorption depth (Dn680),
Difference vegetation index (DVI) and normalized difference vege-
tation index (NDVI) as representative of the integrated indices that
are calculated and listed in Table 3. Cu and Cd had relatively low
R2 with all spectral indices. This indicated that the spectral indices
failed to estimate changes in the concentration of Cu and Cd in
rice leaves. REP, Dn680, DVI and NDVI had a better relationship
with chlorophyll concentration, with R2 equaling 0.6233, 0.6833,
0.6334 and 0.6203, respectively. Furthermore, REP and DVI were
well correlated to N with somewhat higher R2 values of 0.7413 and
0.5017, respectively. However, none of spectral indices examined
was simultaneously sensitive to all four biochemical compositions.
Compared with other spectral indices (Table 3), REP was sensitive
to heavy metal stress levels in rice crops with relatively higher R2

values, with chlorophyll concentration and N. The result agrees well
with previous studies (Mutanga and Skidmore, 2007).

4.2. Feature analysis

Fig. 4 shows respective average value of spectral reflectance
from rice with three different heavy metal pollution levels, namely,
Level II pollution, Level I pollution, and the safe level. The subtle
difference of the original spectral reflectance was observed in the
red valley, the reflectance of rice under Level II pollution in the red
valley was higher than Level I pollution and than that occurring
at the safe level. The original reflectance of rice with heavy metal
Fig. 4. The original reflectance of rice under different heavy metal pollution.
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Table 4
Statistics of FD480–850 and FD350–1300 with different heavy metal pollution levels in
rice crops.

Pollution
level

FD480–850 FD350–1300

Min Max Mean Stdev Min Max Mean Stdev

Level II 1.034 1.081 1.058 0.013 1.066 1.094 1.077 0.006
Level I 1.041 1.078 1.061 0.010 1.065 1.095 1.078 0.006
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long wavelength around 770 nm. The wavelet analysis tech-

T
S

N
s
o

Safe level 1.034 1.095 1.063 0.012 1.069 1.100 1.084 0.007

ote: FD denotes fractal dimension of original reflectance, the subscript of FD rep-
esents the wavebands’ regions.

he values of fractal dimension in the original spectral reflectance
ith heavy metal pollution lower than what happens at the safe

evel. In order to explain the resultant overall variation of origi-
al reflectance, the fractal dimensions for all rice samples in the
80–850 nm and 350–1300 nm regions are computed and summa-
ized (Table 4). Regardless of whether FD480–850 or FD350–1300 was
he focus, the difference of mean values for FD with different stress
evels was subtle, thus indicating that there were no visible symp-
oms in original leaf reflectance spectra due to spectral noise, such
s background and atmospheric effects.

In order to evaluate the sensitivity of FD to stress levels, the rela-
ionships between FD and Cu, Cd, leaf chlorophyll concentrations, N
oncentrations were established, respectively. The results showed
hat FD480–850 and FD350–1300 had a weak relationship with four bio-
hemical compositions in rice, the R2 value ranged between 0.02
nd 0.13. That is to say, FD480–850 and FD350–1300 failed to match
he changes in biochemical composition levels in metal-stressed
lants, and thus, FD480–850 and FD350–1300 were not good indicators
f the heavy metal-induced plant stress.

Based on the above analysis, FD480–850 and FD350–1300 were less
ensitive to heavy metal stress. The primary reason is that the
nvironment-induced noise in the field spectra is generally greater
y two orders of magnitude than the subtle features associated
ith stress (Collins et al., 1983). Therefore, it is necessary to remove
oise and amplify stress information in original reflectance. Heavy
etal stress information was revealed by transient changes in the

eflectance of adjacent wavebands and was closely associated with
ingularity points, which were discontinuous (shocks) points at the
0 waveband in the original spectrum signals or the derivatives
f the spectrum signals (Peng and Chu, 2007). Whereas, wavelet
ransform seems to be suited for analyzing short-lived phenomena
uch as discontinuities (shocks) and transient structures in hyper-

pectral signals, the fifth level high-frequency compositions (d5)
hrough wavelet transform have been proved successful in iden-
ifying crop heavy metal stress for the foregoing. Fig. 5 shows the
verage d5 values of rice with different heavy metal pollution lev-

able 5
tatistics of absorption feature edge of rice at different heavy metal pollution levels in 48

Pollution Number 1 2 3 4

Level II MMPP (nm) 555 577 601 620
Module maxima 10−3 2.20 1.79 1.67 5.1
DS (nm) 0 0 −3 −1
Relative deviation (%) 34.91 46.41 40.36 44.2

Level I MMPP (nm) 554 577 604 621
Amplitude 10−3 2.80 2.77 2.24 3.9
DS (nm) 0 0 0 0
Relative deviation (%) 17.16 17.07 20.00 8.6

Safe level MMPP (nm) 554 577 604 621
Module maxima 10−3 3.38 3.34 2.80 3.5

ote: MMPP stands for module maximum points position. DS represents distance of shift
afe level and unit is nanometer; +, towards longer wavelength; −, towards shorter wavele
f d5 under heavy metal stress, B is module maxima of d5 under safe level.
Fig. 5. The fifth high frequency reflectance (d5) of rice under different heavy metal
pollution.

els. The three lines were arranged vertically with d5 of Level II
pollution, Level I pollution and the safe level at the top, central
and bottom of the series, respectively. By arranging the data in this
way we can quite clearly interpret the changes that took place at
the module maximum points of d5, which correspond well to the
singularity points of original reflectance (Liu et al., 2010a). Verti-
cal lines were drawn to locate module maximum points at 480 nm,
684 nm and 850 nm, respectively, in the d5 spectral curve. Accurate
results are summarized in Table 5. As shown in Fig. 5 and Table 5,
the variation of module maxima and the shift of module maximal
points position for d5 led to the following observations:

(i) The module maxima around 680–700 nm with Level II pollu-
tion was larger than Level I pollution, and then the safe level.
The relative deviations of module maxima of rice with heavy
metals around 680–700 nm exceeded 80% as opposed to what
occurs at the safe level.

(ii) There were no apparent shifts of module maximum points
position in the spectral region below 680 nm, regardless of
the rice’s pollution level. While obvious shifts of module max-
imum points position occurred beyond 700 nm, especially
around 701 nm, 730 nm, 748 nm, and 769 nm, respectively.
These shifts of module maximum points position were asso-
ciated with metal stress. The shift of module maximum points
position with Level II pollution was larger than Level I pollu-
tion, and then the safe level. In addition, maximum shift of
module maximum points position moved 14 nm towards the
niques have been tried on the hyperspectral data to quantify
these shifts.

(iii) The fluctuation of module maxima under Level II pollution was
bigger than Level I pollution and the safe level in 480–850 nm

0–850 nm regions.

5 6 7 8 9 10

653 683 705 735 754 783
8 9.51 20.31 20.83 11.30 4.99 2.42

−1 −1 +4 +13 +6 +14
9 175.65 224.44 169.47 132.99 17.79 57.69

653 683 703 734 751 782
0 6.13 13.61 13.92 6.26 4.70 2.01

−1 −1 +2 +12 +3 +13
4 77.68 117.41 80.08 29.07 22.57 64.86

654 684 701 722 748 769
9 3.45 6.26 7.73 4.85 6.07 5.72

for module maximum points position of rice under heavy metal pollution against
ngth. In the equation RD = ∣

A − B
∣

/B, RD is relative deviation, A is module maxima
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Table 6
Statistics of FDWT in 480–850 nm and 350–1300 nm regions of rice at different heavy
metal pollution levels.

Pollution
level

FDWT480–850 FDWT350–1300

Min Max Mean Stdev Min Max Mean Stdev

Level II 1.157 1.183 1.165 0.006 1.179 1.209 1.194 0.008
Level II 1.174 1.204 1.189 0.008 1.203 1.257 1.223 0.015

N
s

m
f
c
t
w
l
w
i
d
t
h
o

mon spectral indices resported in this paper such as REP and DVI

F
F

Safe level 1.220 1.289 1.262 0.017 1.286 1.320 1.305 0.009

ote: FDWT denotes fractal dimension of reflectance with wavelet transform, the
ubscript of FDWT represents the wavebands’ regions.

regions. In short, the larger shifts of module maximum points
and the bigger fluctuation of module maxima indicated the
more highly polluted rice suffering from heavy metals. The
variation of module maximum points indicated that metallic
elements had important influence on the molecular envi-
ronment of rice and induced electron transport. By applying
wavelet transform to original reflectance, the d5 curve had the
ability to capture very subtle changes associated with stress
responses to heavy metal pollution.

In order to explain the resultant overall variation of module
aximum points, the FDWT (namely, the fractal dimension of d5)

or all rice samples in 480–850 nm and 350–1300 nm regions are
alculated and summarized in Table 6. The mean values of FDWT in
he 480–850 nm and 350–1300 nm regions with Level II pollution
ere both lower than Level I pollution as well as that of the safe

evel. The primary reason is that the original spectral curve of rice
ith heavy metal pollution in the visible and near infrared region

s slightly smoother than the safe level. The lower the value fractal

imension, the smoother of the original reflectance curve is. Given
he fact that the d5 value is the fraction of the original reflectance, it
as the fractal property coinciding with original reflectance. More-
ver, mean values in FD480–850 and FD350–1300 of rice at the same

ig. 6. The relationship between FDWT and chlorophyll concentration, N, Cu, and Cd. FD
DWT indicates the wavebands’ regions.
ervation and Geoinformation 13 (2011) 246–255

pollution levels being identical, suggested the spectral character-
istic change at wavelengths of 480–850 nm played an important
role in the whole 350–1300 nm spectrum region. Thus, it further
proves that the change of spectral region of the metal-induced
stress occurred in the visible and near infrared region, which is in
agreement with the findings from previous studies (Kooistra et al.,
2004).

4.3. Sensitivity analysis

Comparing the different regression model, the quadratic models
had relative high R2 between FDWT and biochemical composi-
tion. So, a series of quadratic fit models were conducted from
FDWT480–850, FDWT350–1300 values with chlorophyll concentra-
tions, N concentrations, Cu and Cd (Fig. 6). In general, chlorophyll
and N correlate positively to FDWT480–850 or FDWT350–1300, while
Cu and Cd correlate negatively to FDWT480–850 or FDWT350–1300.
Regardless of whether FDWT480–850 or FDWT350–1300 was the focus,
both had high R2 values with all four biochemical components.
The maximum value (R2 = 0.89) occurred between FDWT480–850
and chlorophyll, while the minimum value (R2 = 0.62) occurred
between FDWT350–1300 and Cu. It indicates that FDWT are sensi-
tive to biochemical components and can well reflect the changes
in biochemical composition in metal-stressed plants. In addition,
FDWT values are stable parameters for identifying the difference in
biochemical components of rice with heavy metal stress, because
the R2 value of FDWT480–850 and FDWT350–1300 were exhibited to
a similar degree against the same biochemical composition. Com-
pared with the spectral parameters described above, FDWT values
were significantly correlated to chlorophyll and N as well as the
concentration of heavy metal in rice leaves. Nevertheless, the com-
were proved to be only well correlated to chlorophyll and N.
In this study, data sets consisting of 75 datasets for estab-

lishing the model and 40 datasets for verifying the model, were
obtained at different heavy metal pollution levels from the tillering

WT is fractal dimension of reflectance of with wavelet transform, the subscript of
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ig. 7. The relationship between predicated and measured chlorophyll concentrat
ubscript of FDWT shows the wavebands’ regions.

rowth stage of rice. To further evaluate the performance of FDWT,
he quadratic models established were verified using the valida-
ion dataset, which had the relatively high R2 value. FDWT480–850
nd FDWT350–1300 were selected to predict chlorophyll, N, Cu
nd Cd, respectively. FDWT480–850 values can yield more accu-
ate chlorophyll and Cu concentration predictions than that from
DWT350–1300. When it came to the N and Cd, FDWT350–1300 values
ere better than FDWT480–850 (Fig. 6). The relationship between

he predicted and measured biochemical compositions is shown in
ig. 7. Three performance parameters of the model validation for
stimating chlorophyll, N, Cu and Cd concentrations of rice leaves
re summarized in Table 7. The result suggests that the perfor-
ance of FDWT developed in this study was good. In detail, R2

etween the measured and the predicated biochemical composi-
ions was greater than 0.70, ME was above than 0.65 and RMSE
as less than 3.5, especially for chlorophyll concentrations having
igher accuracy of the predicted values than the measured values,
ith R2 and ME equaling 0.88 and 0.87, respectively.

In order to further discuss the difference in sensitivity of FDWT

nd FD with respect to stress levels of heavy metals, the three-
imensionality of FDWT and FD are shown in Fig. 8. From Fig. 8,
D350–1300 and FD480–850 were unable to distinguish the stress
evels, whereas FDWT350–1300 and FDWT480–850 was able to dis-

able 7
erformance parameters of the model validation for estimating of chlorophyll, N,
u, and Cd concentration of rice leaves.

Biochemical composition R2 ME RMSE

Chlorophyll 0.88 0.87 3.29
N 0.75 0.68 0.25
Cu 0.74 0.72 2.10
Cd 0.77 0.76 0.85
, Cu, and Cd. FDWT is fractal dimension of reflectance of with wavelet transform,

criminate three stress levels, namely the safe level, Level I pollution
and Level II pollution. More particularly, curved surfaces corre-
sponding to the safe level, Level I pollution and Level II pollution
are located in the upper, medium, and lower plane of 3D space,
respectively. That is to say, the minimum values of FDWT occurred
in rice under Level II pollution, followed by Level I pollution, and
then the safe level.

5. Discussion

Four common spectral indices including REP, Dn680, DVI and
NDVI had better relationships (R2 above 0.6) with the leaf chloro-
phyll concentration of rice (Table 3). In addition, REP is also
sensitive to the nitrogen content of rice with heavy metal stress.
The fractal dimension of original reflectance in this study was ver-
ified and the result showed that it performed poorly in detecting
the heavy metal stress levels in rice crops. The primary reason is
that environment-induced noise in the field spectra masks subtle
features associated with stress. The noise, however, is to a large
extent non-spectral scattered energy which can be separated by
spectral analysis, using methods such as the derivative technique,
continuum removal and wavelet transform. The previous studies
demonstrated that wavelet transform was related to derivative
spectral analysis, but when used for field spectral surveys, wavelet
transform was more sensitive in the detection of stress and most
effective in filtering out background noise in the spectral data. In
this study, wavelet transform was used for noise removal in order
to improve the sensitivity of spectral signals to the heavy metal

stress levels. Furthermore, the fractal dimension of d5 through
wavelet transforms were calculated as a quantitative and compre-
hensive indicator by capturing more information in the detection
of the heavy metal stress levels. Therefore, compared with com-
mon indices and FD, the FDWT developed in this study was much
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ig. 8. The three-dimensional distribution of FD and FDWT of rice with differing h
ractal dimension of reflectance of with wavelet transform, subscript of FD and FDW

ore accurate for identifying the heavy metal stress levels, since
DWT included more spectral shifts, such as green peak, chloro-
hyll absorption edge and REP in addition to eliminating noise.

. Conclusions

In this paper, we have examined the spectral indices and frac-
al dimensions of original reflectance in monitoring the heavy

etal pollution levels in rice crops. In addition, FDWT480–850
nd FDWT350–1300 were explored as comprehensive indicators for
onitoring stress levels of rice with heavy metal pollution. The
ost important findings and conclusions drawn from this study

nclude:

) REP was the most sensitive indicator for monitoring the stress
levels of rice with heavy metal among common indices in this
study. As compared with REP, FDWT480–850 and FDWT350–1300
were more sensitive to chlorophyll concentration, N, Cu and Cd.
The established linear models showed that R2 was above 0.70,
ME above 0.65 and a RMSE below 3.5 between the measured
data and the predicated data.

) FDWT was proved to be successful in discriminating the heavy
metal pollution levels in rice crops. The minimum values of
FDWT occurred in rice under Level II pollution followed by Level
I pollution, and then the safe level. The lower FDWT value, the
higher heavy metal pollution level in rice crops.

) Wavelet transform developed in this study was indeed the opti-
mum method for eliminating noise and amplifying the stress
information from heavy metals; it proved be the most effective
at detecting the variation of module maximum points of spectral
signal of rice with heavy metal pollution.

In summary, wavelet transform in combination with frac-

al technique can provide an effective and accurate method for

onitoring the heavy metal pollution levels in rice crops. These
echniques may offer insight into investigating crops under var-
ous environmental stresses, such as the heavy metal-induced
tress.
metal pollution. FD is the fractal dimension of original reflectance curve; FDWT is
otes the wavebands’ regions.
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