
Artificial Intelligence 141 (2002) 205–224

www.elsevier.com/locate/artint

Research Note

On forward checking for
non-binary constraint satisfaction ✩

Christian Bessière a,1,∗, Pedro Meseguer b, Eugene C. Freuder c,
Javier Larrosa d

a LIRMM-CNRS, 161 rue Ada, 34392 Montpellier, France
b IIIA-CSIC, Campus UAB, 08193 Bellaterra, Spain

c Cork Constraint Computation Centre, University College Cork, Cork, Ireland
d Dep. LSI, UPC, Jordi Girona Salgado, 1-3, 08034 Barcelona, Spain

Received 12 December 2001

Abstract

Solving non-binary constraint satisfaction problems, a crucial challenge today, can be tackled in
two different ways: translating the non-binary problem into an equivalent binary one, or extending
binary search algorithms to solve directly the original problem. The latter option raises some issues
when we want to extend definitions written for the binary case. This paper focuses on the well-known
forward checking algorithm, and shows that it can be generalized to several non-binary versions, all
fitting its binary definition. The classical non-binary version, proposed by Van Hentenryck, is only
one of these generalizations.
 2002 Elsevier Science B.V. All rights reserved.

Keywords:Constraint satisfaction; Non-binary constraints; Forward checking

✩ This work was supported by an Integrated Action financed by the Generalitat de Catalunya and by the
Spanish CICYT project TAP99-1086-C03 (P. Meseguer and J. Larrosa), by an “action incitative CNRS/NSF”
under Grant no. 0690 (C. Bessière), and by the National Science Foundation under Grant No. IRI-9504316
(E.C. Freuder). E.C. Freuder contributed to this work while at the University of New Hampshire Computer
Science Department; he is currently supported by a Science Foundation Ireland Principal Investigator Award.

* Corresponding author.
E-mail addresses:bessiere@lirmm.fr (C. Bessière), pedro@iiia.csic.es (P. Meseguer), e.freuder@4c.ucc.ie

(E.C. Freuder), larrosa@lsi.upc.es (J. Larrosa).
1 Member of the COCONUT group (http://www.lirmm.fr/~bessiere/COCONUT/).

0004-3702/02/$ – see front matter  2002 Elsevier Science B.V. All rights reserved.
PII: S0004-3702(02) 00 26 3- 1

206 C. Bessière et al. / Artificial Intelligence 141 (2002) 205–224

1. Introduction

In the last two decades, most of the research done in constraint satisfaction assumed that
constraint problems can be exclusively formulated in terms of binary constraints. While
many academic problems (n-queens, zebra, etc.) fit this condition, many real problems
include non-binary constraints. It is well known the equivalence between binary and non-
binary formulations [15]. Theoretically, this equivalence solves the issue of algorithms
for non-binary problems. In practice, however, it presents serious drawbacks concerning
spatial and temporal requirements, which often make it inapplicable. The translation
process generates new variables, which may have very large domains, causing extra
memory requirements for algorithms. In some cases, solving the binary formulation can be
very inefficient [1]. In any case, this forced binarization generates unnatural formulations,
which cause extra difficulties for constraint solver interfaces with human users.

An alternative approach consists in extending binary algorithms to non-binary versions,
able to solve non-binary problems in their original formulation. This approach eliminates
the translation process and its drawbacks, but it raises other issues, among which
how a binary algorithm is generalized is a central one. For some algorithms, such as
chronological backtracking(BT) [7] or maintaining arc consistency(MAC) [16], this
extension presents no conceptual difficulty: their binary definitions allow only one possible
non-binary generalization. For other algorithms, such as forward checking(FC) [8], several
generalizations are possible.

In this paper, we study how the popular FC algorithm can be extended to consider
non-binary constraints. We present different generalizations, all collapsing to the standard
version in the binary case. Our intention is mainly conceptual, trying to draw a clear picture
of the different options for non-binary FC. We also provide some experimental results to
initially assess the relative performance of the studied algorithms.

This paper is organized as follows. In Section 2, we present basic concepts used in
the rest of the paper. In Section 3, we show the different ways in which binary FC can
be generalized into non-binary versions. In Section 4, we provide properties and analysis
of these generalizations, relating them to the algorithm FC+ [1], an algorithm specially
designed to deal with the hidden binary formulation of non-binary problems. In Section 5,
we provide experimental results of the proposed algorithms. Finally, Section 6 contains
some conclusions and directions for further research.

2. Preliminaries

A finite constraint networkCN is defined as a set of n variablesX = {x1, . . . , xn}, a
current domainD(xi) of possible values for each variable xi , and a set C of constraints
among variables. A constraint cj on the ordered set of variables var(cj) = (xj1, . . . , xjr(j))

specifies the relation rel(cj) of the allowed combinations of values for the variables
in var(cj). rel(cj) is a subset of D0(xj1) × · · · × D0(xjr(j)), where D0(xi) is the initial
domain of xi . (The definition of a constraint does not depend on the current domains.)
An element of D0(xj1) × · · · × D0(xjr(j)) is called a tuple on var(cj). An element of
D(xj1) × · · · × D(xjr(j)) is called a valid tuple on var(cj). We introduce the notions of

C. Bessière et al. / Artificial Intelligence 141 (2002) 205–224 207

initial and current domains to explicitly differentiate the initial network, CN 0, from a
network CN , obtained at a given node of a tree search after some operations (instantiations
and/or filtering). The tuple IP on the ordered set of past variables P represents the
sequence of instantiations performed to reach a given node. The set X \ P of the future
variables is denoted by F . The tuple IP on P is said to be consistentiff for all c ∈ C such
that var(c)⊆ P , IP satisfies c.

A value a for variable x is consistent witha constraint c iff x /∈ var(c), or there exists
a valid tuple in rel(c) with value a for x . A variable x is consistent witha constraint c iff
D(x) is not empty and all its values are consistent with c. A constraint c is arc consistent
iff for all x ∈ var(c), x is consistent with c. A set of constraints C is arc consistentiff all
its constraints are arc consistent [11,12].

Let C = {c1, . . . , ck} be a set of constraints. We will denote by AC(C) the procedure
which enforces arc consistency on the set C.2 Given an arbitrary ordering of constraints
c1, . . . , ck , we say that AC is applied on each constraint in one pass(denoted by
AC({c1}), . . . ,AC({ck})) when AC is executed once on each individual constraint following
the constraint ordering. Let σ be a tuple on the set of variables S. The projectionof σ on a
subset S′ of S, denoted by σ [S′], is the restriction of σ to the variables of S′. The projection
c[S′] of the constraint c on the subset S′ of var(c) is a constraint defined by var(c[S′]) = S′,
and rel(c[S′]) = {t[S′] | t ∈ rel(c)}. The join of σ and a relation rel(c) on var(c), denoted
by σ ✶ rel(c), is the set {t | t is a tuple on S∪var(c), and t[var(c)] ∈ rel(c), and t[S] = σ }.

3. From binary to non-binary FC

FC (from now on, bFC) was defined in [8] for binary constraint networks. They
described bFC as an algorithm pursuing this condition at each node:

there is no future unit having any of its labels inconsistent with any past unit-label pairs

where unit stands for variable, and label for value. Values in future domains are removed
to achieve this condition, and if a future domain becomes empty, bFC backtracks. This
condition is equivalent to require that the set Cb

p,f , consisting of constraints connecting
one past and one future variable, is arc consistent. To do this, it is enough performing
arc consistency on the set Cb

c,f of constraints involving the current and a future variable,
each time a new current variable is assigned (Proposition 2, Section 4.1). In addition, arc
consistency on this set can be achieved by computing arc consistency on each constraint
in one single pass (Corollary 1, Section 4.1). With this strategy, after assigning the current
variable we have

AC
(
Cb
p,f

) = AC
(
Cb
c,f

) = AC
({c1}

)
, . . . ,AC

({cq}) (α)

where ci ∈Cb
c,f and |Cb

c,f | = q . So, bFC works as follows:

2 Abusing notation, we will also denote by AC(C) the set of values removed by the procedure AC(C).

208 C. Bessière et al. / Artificial Intelligence 141 (2002) 205–224

bFC: After assigning the current variable, apply arc consistency on each constraint
of Cb

c,f in one pass. If success (i.e., no empty domain detected), continue with
a new variable, otherwise backtrack.

How can the FC strategy be extended for non-binary constraints? It seems reasonable
to achieve arc consistency (the same level of consistency as bFC) on a set of constraints
involving past and future variables. In the binary case, there is only one option for such a
set: constraints connecting onepast variable (the current variable) and onefuture variable.
In the non-binary case, there are different alternatives. We analyze the following ones:3

(1) constraints involving at least onepast variable and at least onefuture variable;
(2) constraints or constraint projections involving at least onepast variable and exactly

onefuture variable;
(3) constraints involving at least onepast variable and exactly onefuture variable.

Considering option (1), we define the set Cn
p,f of the constraints involving at leastone

past variable and at leastone future variable, and the set Cn
c,f consisting of constraints

involving the current variable and at leastone future variable (no restriction on the number
of past variables). The big difference with the binary case is that, in these sets, we have
to deal with partially instantiated constraints, with more than one uninstantiated variable.
In this situation, the equivalences of (α) no longer hold for the non-binary case. After
assigning the current variable we have:

AC
(
Cn
p,f

) �= AC
(
Cn
c,f

) �= AC
({c1}

)
, . . . ,AC

({cq}) (β)

where ci ∈Cn
c,f and |Cn

c,f | = q . Then, we have different alternatives, depending on the set
of constraints considered (Cn

p,f or Cn
c,f) and whether arc consistency is achieved on the

whole set, or applied on each constraint one by one. They are the following:

nFC5: After assigning the current variable, make the set Cn
p,f arc consistent. If success,

continue with a new variable, otherwise backtrack.
nFC4: After assigning the current variable, apply arc consistency on each constraint of

Cn
p,f in one pass. If success, continue with a new variable, otherwise backtrack.

nFC3: After assigning the current variable, make the set Cn
c,f arc consistent. If success,

continue with a new variable, otherwise backtrack.
nFC2: After assigning the current variable, apply arc consistency on each constraint

of Cn
c,f in one pass. If success, continue with a new variable, otherwise backtrack.

Regarding options (2) and (3), we define the set Cn
p,1 of the constraints involving at

least one past variable and exactly one future variable, and the set Cn
c,1 of the constraints

involving the current variable and exactly one future variable (no restriction on the number

3 It is worth noting that our analysis is complete. The remaining alternative, constraint or constraint projections
involving at least onepast variable and at least onefuture variable is redundant with option (1), since arc
consistency on a constraint implies arc consistency on all its projections.

C. Bessière et al. / Artificial Intelligence 141 (2002) 205–224 209

of past variables). Analogously, we define the set CPn
p,1 of the constraint projections4

involving at least one past variable and exactly one future variable, and the set CPn
c,1 of

the constraint projections involving the current variable and exactly one future variable (no
restriction on the number of past variables). Both cases are concerned with the following
generalization of (α) (proved in Section 4.1), stating that after assigning the current variable
we have:

AC
(
Cn
p,1

) = AC
(
Cn
c,1

) = AC
({c1}

)
, . . . ,AC

({cq}) (γ)

where ci ∈ Cn
c,1 and |Cn

c,1| = q . As a result, only one alternative exists for each of the
options (2) and (3), and they are respectively the following:

nFC1: [10] After assigning the current variable, apply arc consistency on each constraint
of Cn

c,1 ∪ CPn
c,1 in one pass. If success, continue with a new variable, otherwise

backtrack.
nFC0: [19] After assigning the current variable, apply arc consistency on each constraint

of Cn
c,1 in one pass. If success, continue with a new variable, otherwise backtrack.

To illustrate the differences between the six presented algorithms, a simple example
is presented in Fig. 1. It is composed of 6 variables {x, y, z,u, v,w}, sharing the same
domain {a, b, c}, and subject to three ternary constraints, c1(x, y, z), c2(u, v,w) and
c3(x, y,w). After the assignment (x, a), none of the constraints have two instantiated
variables. Therefore, nFC0 does no filtering. nFC1 applies arc consistency on the constraint
projections of c1 and c3 on the subsets {x, y}, {x, z} and {x,w}, removing c from D(y)

and b from D(w). nFC2 applies arc consistency on c1 and later on c3, pruning the same
values as nFC1. Notice that if we consider these constraints in a different order, the filtering
will be different. nFC3 achieves arc consistency on the subset {c1, c3}, which causes the
filtering of nFC2 plus the removal of b from D(z). Given that x is the first instantiated
variable, nFC4 applies arc consistency on the same constraints as nFC2, and it causes the
same filtering. For the same reason, nFC5 performs the same filtering as nFC3.

After the assignment (u, a), none of the constraints have two instantiated variables. So,
nFC0 does no filtering. nFC1 applies arc consistency on the constraint projections of c1 on
the subsets {u,v} and {u,w}, removing c from D(v) and c from D(w). nFC2 applies arc
consistency on c2, and it removes b and c from D(v) and c from D(w). nFC3 achieves arc
consistency on the subset {c2}, thus causing the same filtering as nFC2 (differences in D(z)

come from the previous assignment). nFC4 applies arc consistency on the constraints c1,
c2 and c3, removing b from D(y) and D(z), b and c from D(v) and c from D(w). nFC5
achieves arc consistency on the whole constraint set. It removes b from D(y), c from D(z),
b and c from D(v) and c from D(w).

4 A constraint projection is computed from the constraint definition which involves initial domains.

210 C. Bessière et al. / Artificial Intelligence 141 (2002) 205–224

Fig. 1. A simple problem and the filtering caused by the six algorithms, after the assignments (x, a) and (u, a).

4. Formal results on nFC

4.1. Properties

In the next results, we prove the equivalences of (γ) used in Section 3.

Proposition 1. Let c be a constraint such that all its variables but one are instantiated. If
c is made arc consistent, it remains arc consistent after achieving arc consistency on any
other problem constraint.

Proof. Let xj be the only uninstantiated variable of c, and let ch be another constraint
involving xj . If ch is made arc consistent after c, this may cause further filtering in D(xj)

but c will remain arc consistent since all remaining values in D(xj) are already consistent
with c. ✷

C. Bessière et al. / Artificial Intelligence 141 (2002) 205–224 211

Corollary 1. Let C be a set of constraints such that all their variables but one are
instantiated. Achieving arc consistency onC is equivalent to make each of its constraints
arc consistent in one pass.

Proposition 2. LetP be the ordered set of past variables. LetCp,1 be the set of constraints
involving at least one past variable and exactly one future variable. If each time a variable
of P was assigned, the setCc,1 of constraints involving that variable and one future
variable was made arc consistent, then the setCp,1 is arc consistent.

Proof. Let us assume that Cc,1 has been made arc consistent after assigning each variable
in P . If Cp,1 is not arc consistent, this means that there is at least one of its constraints ch
which is not arc consistent. Let xk be the last assigned variable in var(ch). ch has been
made arc consistent after xk assignment. And because of Proposition 1 ch remained
arc consistent. This is in contradiction with the assumption. Therefore, Cp,1 is arc
consistent. ✷

Regarding the correctness of the proposed algorithms, we have to show that they
are sound (they find only solutions), complete (find all solutions) and terminate. All
algorithms follow a depth-first strategy with chronological backtracking, so it is clear that
all terminate. Then, we have to show soundness and completeness.

Proposition 3. AnynFCi (i : {0, . . . ,5}) is correct.

Proof. Soundness. We prove that, after achieving the corresponding arc consistency
condition, the tuple IP of past variables reached by any algorithm is consistent. When
this tuple includes all variables, we have a solution. The sets of constraints to be made arc
consistent by the proposed algorithms all include the set Cp,1 of nFC0. By Proposition 1,
we know that once those constraints are made arc consistent, they remain arc consistent
after processing any other constraint. So, proving this result for nFC0 makes it valid for any
nFCi algorithm (i : {0, . . . ,5}). If IP of nFC0 is inconsistent then at least one constraint c
involving only variables in P is inconsistent. Let xi and xj be the two last assigned
variables in var(c), in this order. After assigning xi , c was in Cp,1 which was made arc
consistent (Proposition 2). Assigning xj a value inconsistent with c is in contradiction
with the assumption that Cp,1 was arc consistent. So, IP is consistent.

Completeness. We show completeness for nFC5, proofs for other algorithms are similar.
Given a variable ordering, it is clear that nFC5 visits all successors of nodes compatible
with such ordering where the set Cn

p,f can be made arc consistent. Let us suppose that
there is a node solution, IP , where all variables are past. If xn is the last variable to be
instantiated, the parent node IP \{xn} is a node where Cn

p,f can be made arc consistent. By
induction, nFC5 visits the node solution IP . ✷

At a given node θ , we define the filtering caused by an algorithm nFCi , Φ(nFCi, θ),
as the set of pairs (x, a) where a is a value removed from the future domain D(x) by the
corresponding arc consistency condition.

212 C. Bessière et al. / Artificial Intelligence 141 (2002) 205–224

Proposition 4. At any nodeθ , these relations hold:
(1) Φ(nFC0, θ) ⊆ Φ(nFC1, θ) ⊆ Φ(nFC2, θ),
(2) Φ(nFC2, θ) ⊆ Φ(nFC3, θ) ⊆ Φ(nFC5, θ),
(3) Φ(nFC2, θ) ⊆ Φ(nFC4, θ) ⊆ Φ(nFC5, θ).

Proof. Regarding nFC0 and nFC1, the relation is a direct consequence of Cn
c,1 ⊆

Cn
c,1 ∪CPn

c,1. Regarding nFC1 and nFC2, constraint projections are semantically included
in Cn

c,f . Regarding nFC2 and nFC3, applying arc consistency on each constraint of Cn
c,f

in one pass is part of the process of achieving arc consistency on the set Cn
c,f . Regarding

nFC3 and nFC5, Cn
c,f ⊆ Cn

p,f . Regarding nFC2 and nFC4, Cn
c,f ⊆ Cn

p,f . Regarding nFC4
and nFC5, applying arc consistency on each constraint of Cn

p,f in one pass is part of the
process of achieving arc consistency on the set Cn

p,f . ✷
Regarding nFC3 and nFC4, their filtering is incomparable as can be seen in the example

of Fig. 1. (After assigning (x, a), nFC3 filtering is stronger than nFC4 filtering; the opposite
occurs after assigning (u, a).) A direct consequence of Proposition 4 involves the set of
nodes visited by each algorithm. Defining nodes(nFCi) as the set of nodes visited by nFCi

until finding a solution,

Corollary 2. Given a constraint network with a fixed variable and value ordering, the
following relations hold,

(1) nodes(nFC2)⊆ nodes(nFC1) ⊆ nodes(nFC0),
(2) nodes(nFC5)⊆ nodes(nFC3) ⊆ nodes(nFC2),
(3) nodes(nFC5)⊆ nodes(nFC4) ⊆ nodes(nFC2).

4.2. Complexity analysis

In this subsection, we give upper bounds to the number of constraint checks the different
nFC algorithms perform at one node. First, let us give an upper bound to the number of
checks needed to make a future variable xj consistent with a given constraint ch. For each
value b in D(xj), we have to find a subtuple σ in

∏
x∈var(ch)\{xj } D(x) such that σ extended

to (xj , b) is allowed by ch. So, the number of checks needed to make xj consistent with ch
is in O(m · |V |), where V = ∏

x∈var(ch)\{xj } D(x), and m denotes the maximal size of a
domain.

In nFC0, a constraint ch is made arc consistent at a given node iff var(ch) contains only
one future variable xj . Thus, enforcing arc consistency on ch is in O(m) since |V | = 1.
(Domains of past variables are singletons.) Therefore, the number of checks performed by
nFC0 at one node is in O(|Cn

c,1| ·m). For the same reason the number of checks performed
by nFC1 at one node is in O(|Cn

c,1 ∪ CPn
c,1| ·m), assuming that the constraint projections

have been built in a preprocessing phase.
Let rh be the arity of a constraint ch. In nFC2 and nFC4, arc consistency is performed

on ch when it has at most rh − 1 future variables. Hence, |V | is bounded above by mrh−2

for a given constraint ch, and a given future variable xj in var(ch). Thus, making xj
consistent with ch is bounded above by m ·mrh−2, and enforcing arc consistency on ch is in

C. Bessière et al. / Artificial Intelligence 141 (2002) 205–224 213

O((rh − 1) ·mrh−1) since there are at most rh − 1 variables to make arc consistent with ch.
If a is the maximal arity of the constraints in C , at any node in the tree, the number of
checks performed is in O(|Cn

c,f | · (a − 1) ·ma−1) for nFC2, and O(|Cn
p,f | · (a − 1) ·ma−1)

for nFC4. We can point out that this is an upper bound exponential in the arity of the
constraints.

At a given node in the search, nFC3 (respectively nFC5) deals with the same set of
constraints as nFC2 (respectively nFC4). The difference comes from the propagations
nFC3 (respectively nFC5) performs in order to reach an arc consistent state on Cn

c,f

(respectively Cn
p,f), whereas nFC2 (respectively nFC4) performs one pass arc consistency

on them. Thus, if we suppose that arc consistency is achieved by an optimal algorithm,
such as GAC4 [12] or GAC2001 [2], the upper bound in the number of constraint checks
performed by nFC3 (respectively nFC5) at a given node is the same as nFC2 (respectively
nFC4) bound. (With an AC3-like algorithm [11], nFC3 and nFC5 have a greater upper
bound.)

4.3. LimitednFC

There is a gap in complexity between the number of checks performed at a node by
nFC0, and the number of checks performed by nFC2, nFC3, nFC4, or nFC5. Indeed, for a
given constraint ch, it depends on m for the former, and on mrh−1 for the others. We can
imagine cases in which the arity of ch is so large that the effort needed by nFC2, nFC3,
nFC4, or nFC5, to make ch arc consistent has a dramatic effect on their efficiency. The
following definition proposes a class of algorithms with bounded effort at each node of the
search tree.

Let k be a positive integer. k-nFCi (i : {2, . . . ,5}) is the search algorithm which
performs the same type of processing as nFCi at each node, but only on the constraints
processed by nFCi that involve at most k future variables.

The number of checks performed by k-nFCi at a given node of the search tree is in
O(eik · k · mk), where eik is the maximum number of constraints with at most than k

uninstantiated variables, and processed by nFCi , at a given node.

Proposition 5. At any nodeθ , we haveΦ(k-nFCi, θ) ⊆ Φ(nFCi, θ) (i : {2, . . . ,5}).

Proof. The relation is a direct consequence of the fact that at each node, k-nFCi propagates
a subset of the constraints propagated by nFCi (by definition). ✷
Corollary 3. Given a constraint network with a fixed variable and value ordering, we have,
nodes(nFCi)⊆ nodes(k-nFCi).

Depending on the value of k, k-nFCi can degenerate to already known algorithms:

Proposition 6. For anyi in {2, . . . ,5} the following relations hold:
• 0-nFCi is equal toBT,
• 1-nFCi is equal tonFC0,
• (a − 1)-nFCi is equal tonFCi if a is the maximum arity over all problem constraints.

214 C. Bessière et al. / Artificial Intelligence 141 (2002) 205–224

This proposition points out why the classical Van Hentenryck’s nFC, namely nFC0, is
frequently subject to thrashing. It is the version that waits the most in the instantiation
process before applying arc consistency on a given constraint. It applies it so late that it
cannot detect early incompatibilities between the instantiation and the constraint (when
only a part of the variables of the constraint are instantiated).

4.4. FC+ andnFC1

The hidden variable representation is a general method for converting a non-binary
constraint network into an equivalent binary one [4,15]. In this representation, the problem
has two sets of variables: the set of the ordinaryvariables, those of the original non-binary
problem, with their original domain of values, plus a set of hiddenvariables, or h-variables.
There is a h-variable hc for each constraint c of the original network, with rel(c) as initial
domain (i.e., the tuples allowed by c become the values in D0(hc)). A h-variable hc is
involved in a binary constraint with each of the ordinary variables x in var(c). Such a
constraint allows the set of pairs {(v, t) | v ∈ D0(x), t ∈D0(hc), t[x] = v}.

FC+ is an algorithm designed to run on the hidden representation [1]. It operates
like bFC except that when the domain of a h-variable is pruned, FC+ removes from
adjacent ordinary variables those values whose support has been lost. Besides, FC+ never
instantiates h-variables. When all its neighboring (ordinary) variables are instantiated, the
domain of a h-variable is already reduced to one value. Its assignment is, in a way, implicit.
Therefore, there is a direct correspondence between the search space of FC+ and any nFC.
The following proposition relates FC+ to the nFC algorithms.

Proposition 7. Given a constraint network CN with a fixed variable and value ordering,
we have nodes(FC+) = nodes(nFC1) if FC+ runs on the hidden representation of CN.

Proof. Given that FC+ assigns the same variables as nFC1, it is enough to prove that
for any ordinary future variable xj , a value b ∈ D(xj) is pruned by FC+ iff it is pruned
by nFC1.

Let xj ∈ F , such that b has been pruned from D(xj) by nFC1. From the algorithmic
description of nFC1, this means that there exists a constraint c with xj ∈ var(c) whose
projection on (P ∩ var(c))∪ {xj } does not support b. That is,

b /∈ IP ✶ (
rel(c)

[(
P ∩ var(c)

) ∪ {xj }
])[xj]

= (
IP ✶ rel(c)

)[(
P ∩ var(c)

) ∪ {xj }
][xj]

= (
IP ✶ rel(c)

)[xj] = D(hc)[xj],
if hc is the variable representing c in the hidden representation. Therefore, b has no support
in D(hc), and FC+ also prunes b.

Analogously, if b is pruned from D(xj) by FC+, this means that b has lost its support
in some hidden variable hc whose current domain is D(hc) = (IP ✶ rel(c)). Hence, the
projection of c on (P ∩var(c))∪{xj }, which is equal to (IP ✶ rel(c))[(P ∩var(c))∪{xj }],
does not support b. So, nFC1 also prunes b. ✷

C. Bessière et al. / Artificial Intelligence 141 (2002) 205–224 215

Fig. 2. The hierarchy of the algorithms with respect to the number of visited nodes. Two algorithms are connected
by an edge if the set of nodes visited by the lower is a subset of the set of nodes visited by the upper.

Inspired by the hierarchies of algorithms presented in [9], Fig. 2 presents the hierarchy
resulting from Corollary 2 and Proposition 7.

5. Experimental results

We have performed some experiments to preliminary assess the relative performance
of the proposed algorithms, and to confirm the expectations drawn from the complexity
analysis. In our experiments, we have used both random problems and problems from the
CSPLib (http://www.csplib.org). On the one hand, random problems permit to relate some
characteristics of the algorithms to some varying parameters, such as arity, connectivity or
tightness. They also allow to catch the threshold between satisfiability and inconsistency,
where hard problems occur. On the other hand, the Schur’s lemma (a combinatorial
mathematics problem), and the car sequencing problem (a scheduling problem), both from
the CSPLib, show the behaviour of the algorithms on more structured problems, with
specific constraint semantics.

5.1. Random problems

For random problems, we have extended the well known four-parameter binary model
[6,17] to fixed arity non-binary problems as follows. A fixed arity random problem is
defined by five parameters 〈a,n,m,p1,p2〉, where a is the arity of all the constraints in
the network, n is the number of variables, m is the cardinality of their domains, p1 is the
problem connectivity as the ratio between existing constraints and the number of possible
sets of a variables (the problem has exactly p1 · (

n
a

)
constraints), and p2 is the constraint

tightness as the proportion of forbidden value tuples between a constrained variables (the
number of forbidden value tuples is exactly p2 · ma). The constrained variables and their
nogoods are randomly selected following a uniform distribution. (We kept only connected
problems.) We present results on ternary and quaternary problems because 3-ary are the

216 C. Bessière et al. / Artificial Intelligence 141 (2002) 205–224

Table 1
Results on three classes of 3-ary random problems at the cross-over point. #ccks is in millions and cpu time in
seconds (mean of 50 instances per class)

(a) 〈a = 3, n = 10, m= 10, p1 = 0.83, p̂2 = 208/1000〉 (20/50 sat)

nFC0 nFC1 FC+ nFC2 nFC3 nFC4 nFC5

#nodes 6,303 6,303 6,303 5,763 5,353 3,547 2,911
#ccks 0.30M 0.84M 55.59M 0.72M 0.75M 0.83M 0.84M
cpu time 0.29 0.57 45.98 0.54 0.91 1.17 1.21

(b) 〈a = 3, n = 30, m = 6, p1 = 0.018, p̂2 = 109/216〉 (19/50 sat)

nFC0 nFC1 FC+ nFC2 nFC3 nFC4 nFC5

#nodes 61,650 43,455 43,455 31,826 30,003 8,505 6,447
#ccks 0.96M 1.67M 19.98M 1.52M 1.46M 0.82M 0.73M
cpu time 1.39 1.45 13.94 1.39 1.73 1.37 1.29

(c) 〈a = 3, n = 75, m= 5, p1 = 0.0018, p̂2 = 76/125〉 (7/50 sat)

nFC0 nFC1 FC+ nFC2 nFC3 nFC4 nFC5

#nodes 9,740,904 747,587 747,587 314,330 297,382 56,163 51,116
#ccks 102.69M 19.30M 140.45M 11.64M 11.07M 3.38M 3.16M
cpu time 222.70 23.73 106.44 13.41 15.91 6.99 6.59

simplest non-binary problems, but 4-ary are the simplest ones on which we have non-trivial
limited versions of the nFC algorithms.5

We performed experiments on the following classes of problems:

(a) 〈3,10,10,100/120 = 0.83,p2〉,
(b) 〈3,30,6,75/4060 = 0.018,p2〉,
(c) 〈3,75,5,120/67525 = 0.0018,p2〉,
(d) 〈4,14,8,100/1001 = 10−1,p2〉,
(e) 〈4,26,6,47/14950 = 10−2.5,p2〉,
(f) 〈4,63,4,59/595665 = 10−4,p2〉.

Regarding connectivity, (a) and (d) are dense classes, while (b) and (e) are relatively
sparse, and (c) and (f) very sparse classes. The cross-over point, p̂2, where 50% of the
instances are satisfiable, appears in (a) and (d) at low tightness, in (b) and (d) at medium
tightness, and in (c) and (f) at high tightness. (b) and (e) classes were chosen to characterize
a situation where nFC0 and nFC2–nFC5 have very close performances.

We solved 50 instances for each set of parameters, using nFC0, nFC1, FC+, nFC2,
nFC3, nFC4, and nFC5,6 with the heuristic minimumdomainsize

degree for variable selection [3],
and lexicographic value selection. In this paper, we only report results for the values of the
tightness where the ratio of satisfiable instances is the closest to 50%. Table 1 contains
results on 3-ary problems (classes (a), (b), (c)), and Table 2 contains results on 4-ary
problems (classes (d), (e), (f)).

5 On 3-ary problems, 2-nFCi is equivalent to nFCi (see Proposition 6).
6 In nFC2 to nFC5, the algorithm used to apply one pass or “full” arc consistency on a set of constraints is

based on GAC2001, an optimal arc consistency algorithm [2].

C. Bessière et al. / Artificial Intelligence 141 (2002) 205–224 217

Table 2
Results on three classes of 4-ary random problems at the cross-over point. #ccks is in millions and cpu time in
seconds (mean of 50 instances per class)

(d) 〈a = 4, n = 14, m = 8, p1 = 10−1, p̂2 = 1060/4096〉 (18/50 sat)

nFC0 nFC1 FC+ nFC2 nFC3 nFC4 nFC5

#nodes 203,582 203,440 – 178,765 160,600 106,292 86,427
#ccks 7.55M 43.96M – 28.30M 29.41M 37.24M 38.06M
cpu time 15.32 90.25 > 1000 50.02 68.14 101.00 107.00

(e) 〈a = 4, n = 26, m= 6, p1 = 10−2.5, p̂2 = 815/1296〉 (18/50 sat)

nFC0 nFC1 FC+ nFC2 nFC3 nFC4 nFC5

#nodes 1,214,116 461,999 461,999 309,301 285,301 97,990 65,668
#ccks 14.92M 29.69M 418.67M 22.44M 21.74M 19.12M 17.53M
cpu time 33.38 57.19 277.84 30.32 34.97 36.34 34.41

(f) 〈a = 4, n = 63, m = 4, p1 = 10−4, p̂2 = 194/256〉 (20/50 sat)

nFC0 nFC1 FC+ nFC2 nFC3 nFC4 nFC5

#nodes – 189,647 189,647 112,900 109,859 23,396 17,767
#ccks – 7.25M 30.82M 5.80M 5.72M 2.88M 2.60M
cpu time > 1000 15.94 21.67 8.09 9.47 5.39 5.24

In both Tables 1 and 2, the lines “#nodes” show the mean number of visited nodes to
solve each problem class. With no surprise, it is in agreement with Corollary 2, which
establishes that nFC0 is the algorithm visiting the most nodes while nFC5 is the one that
visits the least nodes. Because of Proposition 7, nFC1 and FC+ visit the same nodes. The
new information is about the relation between nFC3 and nFC4, algorithms unordered by
Corollary 2. On the six problem classes, nFC4 visits less nodes than nFC3, which means
that nFC4 performs more pruning than nFC3.

The lines “#ccks” and “cpu time” show the average computational effort7 (as mean
number of constraint checks and mean CPU time) required. We observe that, for problems
with loose constraints (cross-over point at low tightness—classes (a) and (d)) the winner is
nFC0, the algorithm that performs the simplest look ahead. For these classes of problems,
sophisticated forms of look ahead do not pay-off: the proposed algorithms nFC1 to nFC5
are 1.9 to 7 times slower than nFC0. And the difference is greater on 4-ary problems
where the useless look ahead is even more expensive than on 3-ary problems. FC+ on
the hidden representation is orders of magnitude slower. For problems with the cross-over
point at medium tightness—classes (b) and (e)—no single algorithm clearly outperforms
the others. nFC0, nFC2, nFC3, nFC4, and nFC5 are very close.8 nFC1, close to the others
on the 3-ary class (b), is twice slower on the 4-ary class (e). The bad behaviour of FC+
is confirmed. For problems with the cross-over point located at high tightness—classes (c)
and (f)—the proposed algorithms nFC1 to nFC5 clearly outperform nFC0. Even FC+
performs much better than nFC0. The winner is nFC5, the algorithm which performs the

7 This effort includes the preprocessing phase for nFC1 and the conversion into the hidden representation for
FC+.

8 As already mentioned, we chose to report these classes because of this particularity.

218 C. Bessière et al. / Artificial Intelligence 141 (2002) 205–224

Table 3
Results of the 2-nFCi limited versions on the two extreme classes of 4-ary random problems at the cross-over
point. #ccks is in millions and cpu time in seconds (mean of 50 instances per class)

(a) 〈a = 4, n = 14, m = 8, p1 = 10−1, p̂2 = 1060/4096〉 (18/50 sat)

2-nFC2 L/P 2-nFC3 L/P 2-nFC4 L/P 2-nFC5 L/P

#nodes 179,485 1.00 163,410 1.02 109,298 1.03 88,264 1.02
#ccks 22.46M 0.79 22.67M 0.77 22.84M 0.61 22.27M 0.59
cpu time 38.61 0.77 52.52 0.77 61.25 0.61 61.54 0.58

(c) 〈a = 4, n = 63, m = 4, p1 = 10−4, p̂2 = 194/256〉 (20/50 sat)

2-nFC2 L/P 2-nFC3 L/P 2-nFC4 L/P 2-nFC5 L/P

#nodes 172,825 1.53 171,316 1.56 137,919 5.89 136,648 7.69
#ccks 4.49M 0.77 4.46M 0.78 3.81M 1.32 3.78M 1.46
cpu time 7.78 0.96 9.26 0.98 8.49 1.58 8.83 1.69

greatest effort per node, and causes the highest filtering. It is orders of magnitude faster
than nFC0.

On these six classes, it seems that nFC2 is the more stable algorithm. If we average 3-ary
and 4-ary classes, it is second (behind nFC0) on loose constraints, third (behind nFC4 and
nFC5) on tight constraints, and the winner on medium constraints. nFC1, which is among
the best choices on 3-ary constraints is not as good on the 4-ary problems. The main reason
is probably that projecting a 3-ary constraint on all the subsets of variables creates only
three binary constraints while projecting a 4-ary constraint creates four 3-ary constraints
and six binary ones. Even if it is a way to avoid the complexity of arc consistency, which
is growing with the arity on stronger versions (nFC2 to nFC5—see Section 4.2), these
projections will become loose when the projected constraint is not very tight, generating
almost no pruning. Consequently, the behaviour of nFC1 is expected to decay with growing
arity. Considering FC+, it has the worst performance for loose and medium constraints,
and it is the second worst (after nFC0) for tight constraints. Any of the proposed algorithms
outperforms FC+ in the six problem classes.9

We can also point out some other noteworthy phenomena that are not visible in the
tables reported here. First, on the problem classes presented there, nFC0 is the only
algorithm that encountered exceptionally hard problems, located in the satisfiable region
of the 〈3,75,5,0.0018,p2〉 and 〈4,63,4,10−4,p2〉 classes. Second, when the heuristic
minimum domain sizefor variable selection is used instead of minimumdomain size

degree , nFC0
becomes more frequently subject to thrashing, even on problem sizes remaining very easy
for the algorithms nFC1 to nFC5.

5.1.1. Limited versions ofnFC2–nFC5
Table 3 presents the results for the limited versions of the nFC2–nFC5 algorithms on

the 4-ary classes. On 4-ary constraints, the only non-trivial limited version is with k = 2.
We present only the two extreme cases (loose and tight constraints). Column L/P gives

9 These results do not contradict some already published works showing a good behaviour of FC+ on cross-
word puzzles. On cross-words, indeed, constraints are very tight, and they are given in extension.

C. Bessière et al. / Artificial Intelligence 141 (2002) 205–224 219

the ratio limited version/plain version. According to Corollary 3, the number of nodes
visited by any 2-nFCi is always greater than in the plain version nFCi . Not surprisingly,
the difference is greater on tight constraints. This means that more propagations are missed
by the limited version on tight constraints. Regarding the computational effort (number
of constraint checks and cpu time), it is significantly less for limited versions on loose
constraints since the number of nodes are close to plain versions and the number of possible
constraint checks on a constraint is bounded above by m2 instead of m3 for plain versions.
For tight constraints, things are less straightforward. In 2-nFC4 (respectively 2-nFC5), the
great increase in number of nodes was too high to be outweighed by the constraint checks
saved at each node. Hence, nFC4 (respectively nFC5) o utperforms 2-nFC4 (respectively
2-nFC5) both in constraint checks and cpu time. For 2-nFC2 and 2-nFC3, however, the
increase in number of nodes was small compared to plain versions. Thus, the constraint
checks saved at each node permit to outperform slightly the plain versions in cpu time.

5.2. Schur’s lemma

We also performed experiments on several combinatorial mathematics problems of the
CSPLib. In this section, we present results we obtained on the Schur’s lemma, and on a
modified version of this problem. The Schur’s lemma consists in putting n balls labelled
from 1 to n into 3 boxes, such that three balls labelled x, y , and z are not put in the same box
if x+y = z. We encoded this problem as a CSP in which balls are variables, boxes are their
values, and a constraint notequal(x, y, z) is put on a triple of balls x, y, z when x + y = z.
This constraint forbids them to take all the same value/box. As in random problems, we
used GAC2001 to apply arc consistency [2]. The greatest number of balls that can be put
in 3 boxes is 23. The only non-trivial instance is the proof of optimality, i.e., proving that
the problem with 24 balls and 3 boxes does not have solution. Results for this problem
are reported at the top of Table 4. Because the constraint notequalis very loose, we have
a pattern which is close to what we obtained on classes (a) and (d) of random problems:
weaker look ahead produces better performance.

To see what happens when tightness increases, we changed slightly the definition of
the problem, replacing the notequalconstraint by a alldiff when three balls labelled

Table 4
Results on the Schur’s lemma and its modified version. #ccks is in millions and cpu time in seconds

Schur’s lemma (x + y = z → notequal(x, y, z), 24 balls, 3 boxes)

nFC0 nFC1 FC+ nFC2 nFC3 nFC4 nFC5

#nodes 9,840 9,840 9,840 9,816 9,816 4,860 4,404
#ccks 0.19M 0.53M 2.77M 0.30M 0.30M 0.35M 0.33M
cpu time 0.33 0.90 1.87 0.54 0.69 0.99 0.95

Modified Schur (x + y = z → alldiff (x, y, z), 12 balls, 9 boxes)

nFC0 nFC1 FC+ nFC2 nFC3 nFC4 nFC5

#nodes 1,546,362 986,409 986,409 986,409 986,409 623,529 623,529
#ccks 24.33M 15.53M 293.08M 8.41M 8.41M 12.41M 12.41M
cpu time 36.31 25.78 215.68 17.47 21.78 32.69 39.14

220 C. Bessière et al. / Artificial Intelligence 141 (2002) 205–224

x, y, z, verify x + y = z. Alldiff is loose, but not as loose as the notequal. With this
new specification, the problem with 3 boxes becomes trivial (4 is the optimal number
of balls). We increased the number of boxes until non-trivial cases occur. The optimal
number of balls for 9 boxes is 11. In Table 4 (bottom), we report the proof of optimality,
i.e., proving that the problem with 12 balls and 9 boxes does not have solution. The effect of
having constraints slightly tighter than in the previous case appears clearly. The look ahead
performed by nFC0 is too weak. The one performed by nFC4/nFC5 is still too much. The
good compromise in this case is nFC1/nFC2/nFC3, which visit the same nodes. nFC2 is
the winner in cpu time since it has the simplest behaviour among these three algorithms.
We can expect that on problems with even tighter constraints, nFC4/nFC5 would have
been the winners.

We have to bear in mind that all these results were obtained while the constraints
notequaland alldiff were made arc consistent with a generic algorithm, although there
exist specific algorithms using their semantics. As we will see in the Subsection 5.3, the
use of specific algorithms to make arc consistent the constraints with a specific semantics
can affect the results.

5.3. Car sequencing

To illustrate the behaviour of the nFCs on a real problem, we choose the car sequencing
problem, a scheduling problem from the CSPLib. In this problem, a number of cars are to
be produced. They are not identical because different options can be required as variants on
the basic model. The problem consists in scheduling the cars on a assembly line so that the
options can be installed in different stations along the line. A station is designed to handle
at most a certain proportion of the cars passing along the assembly line. For instance, if
a particular station, installing option k, can only cope with at most one third of the cars
passing along the line (i.e., capacity 1/3), the sequence of cars must be built so that at most
1 car in any 3 consecutive cars requires that option. In the data files tested, it is assumed
that there are five options with capacities 1/2,2/3,1/3,2/5, and 1/5 respectively.

We encoded this problem as a CSP in which slots in the sequence are variables, cars
to be built are their values. For each option k installed in a station of capacity pk/qk , a
constraint c of arity qk allowing only pk cars with option k among the variables in var(c)
is posted on any qk consecutive slots. A clique of inequalities ensures that a car is not
assigned twice. Finally, we added a redundant global constraint ensuring that there remain
enough free slots uninstantiated to assign the remaining cars with a given option. (For
instance, if at a given node there only remain the 17 last slots uninstantiated, and if 5 of the
remaining cars need the option installed in the station of capacity 1/5, we know that we
cannot reach a solution from this node—only 4 such cars can be placed.) Since we wanted
to see the behaviour of the nFCs on “close to reality” conditions, we developed specific
algorithms for the different kinds of constraints needed in our simple encoding. The binary
inequalities are propagated (i.e., made arc consistent) with the technique described in [13].
The constraint “at most p among q consecutive cars” is propagated with an algorithm
pruning the domains of the involved variables in one turn, avoiding the search for support
in the Cartesian product of the domains. The redundant global constraint is also propagated

C. Bessière et al. / Artificial Intelligence 141 (2002) 205–224 221

Table 5
Results on the car sequencing problem. #ccks is in millions and cpu time in seconds

Number of cars: 43 (satisfiable)

nFC0 nFC1 FC+ nFC2 nFC3 nFC4 nFC5

#nodes – 4,256,089 – 4,256,089 4,097,904 4,256,089 4,097,904
#ccks – 28.54M – 30.64M 32.99M 30.64M 32.99M
cpu time >1 h 77.02 – 67.97 92.92 100.37 101.84

Number of cars: 38 (inconsistent)

nFC0 nFC1 FC+ nFC2 nFC3 nFC4 nFC5

#nodes – 6,595,664 – 6,595,664 6,484,440 6,595,664 6,484,440
#ccks – 34.50M – 39.28M 42.69M 39.28M 42.69M
cpu time >1 h 112.70 – 107.33 141.79 150.64 152.84

by a specific algorithm. Finally, following Smith’s recommendation [18], we used the
lexicographic variable ordering in all the algorithms.

The data files reported in the CSPLib only contain very difficult instances. Those for
which a solution/inconsistency is known have been solved with sophisticated algorithms
tuned to deal with the features of these problems (global sequencing constraints [14],
symmetries, etc.). Hence, we decreased the sizes of these problems to obtain smaller
running times.

Results for two instances are reported in Table 5. (All instances tested gave similar
results.) The lines “#ccks” count the number of times a call to the propagation algorithm
of a constraint is performed. (The classical notion of “constraint check” no longer exists
in specific algorithms.) We observe that propagating a constraint as soon as one of its
variables is instantiated greatly pays off since nFC0 is much slower than the others. It
finished its search in less than 1 hour only on instances on which the other algorithms
needed less than 1 second. (Limited versions 2-nFC2 to 2-nFC5 were almost as bad as
nFC0 in cpu time.) As opposed to nFC0, performance of nFC1 to nFC5 is in the same
order of magnitude, nFC2 being the winner, followed by nFC1. This can be explained in
part by the fact that all the non-binary constraints10 involve consecutive variables. Together
with the lexicographic variable ordering, this implies that Cn

p,f and Cn
c,f always contain

the same non-binary constraints. (The only binary constraints are those of the clique of
inequalities on which all nFCs collapse—see Section 3.) As a result, nFC2 (respectively
nFC3) and nFC4 (respectively nFC5) explore the same search tree. The cpu time difference
between nFC2 and nFC4, or between nFC3 and nFC5, is due to the data structures handled
by nFC4 and nFC5. A last thing to notice is that “full” arc consistency on Cn

c,f (nFC3)
or Cn

p,f (nFC5) does not pay off w.r.t. one pass arc consistency of nFC2 and nFC4.
Regarding nFC1, despite the big number of constraints generated, it remains competitive.
This is a very particular case where all the projections are constraints with the same
semantics as the projected one, so that the specific propagation algorithm can be used.
FC+ could not be run because of the huge space needed for the domains of the hidden
variables.

10 Namely, the capacity constraints, and the redundant global constraint.

222 C. Bessière et al. / Artificial Intelligence 141 (2002) 205–224

Finally, in order to more deeply assess the effect of using specific algorithms to
propagate the constraints, we solved a (satisfiable) car sequencing problem with 16 cars
where we replaced the specific propagation algorithms by the generic GAC2001. nFC0
becomes the winner in 18.09 sec., whilst nFC2 and nFC5 need 51.60 sec. and 68.89 sec.
respectively.11 This is consistent with the results obtained on random problems. In our
encoding, indeed, some arities are large, and the tightest constraint (the 5-ary capacity
constraint “1/5”) is relatively loose: its tightness is never greater than 0.4 on satisfiable
instances.

5.4. Discussion

In this section, we briefly synthesize the lessons that can be drawn from the experiments
we performed. First, we have to keep in mind that stronger look ahead pays off only when
it is outweighed by domain pruning, i.e., by a reduction in the number of nodes. The first
consequence of this evidence is straightforward on random problems, for which we saw
that problems with loose constraints were better solved by nFC0, while on problems with
tight constraints, nFC5 was the winner. On medium tightnesses, all the nFCs exhibited a
similar performance. On the Schur’s lemma and its modified version, we found the same
behaviour: nFC0 wins on the very loose Schur’s lemma while the best performance shifts
to nFC2 with the slightly tighter modified version.

In addition to the tightness of the constraints, the arity is another parameter that affects
performance. Indeed, as pointed out in Section 4.2, the cost of applying arc consistency on
a constraint grows with the arity. This is illustrated by classes (b) and (e) in the random
experiments. These classes represent the case where nFC0 and the other nFCs have the
closest performance at the threshold. For 3-ary problems it is for p̂2 = 109/216 ≈ 0.5
while for 4-ary problems it is for p̂2 = 815/1296 ≈ 0.63. We can expect that the greater
the arity will be, the greater the tightness will have to be to find problems where nFC0 is
the worst choice.

While the picture seems to be clear when arc consistency is enforced by a generic
algorithm, this is much less definite on problems where specific propagation algorithms
are used. Indeed, if we look at the results on the car sequencing problem, we did not
expect such a big advantage for nFC1–nFC5 compared to nFC0. This problem has loose
constraints with large arities, which seemed to be more in favour of nFC0. The key point
is that we implemented specific algorithms for which the cost of propagation is much
lower than for a generic algorithm. Thus, algorithms with stronger look ahead benefit from
more domain reductions at reduced cost. Therefore, on problems with constraints for which
specific propagation algorithms are available, it is not sufficient to know the arity and the
tightness of the constraints to predict the right level of look ahead. It is indeed related to the
trade-off between benefit and cost of constraint propagation, which completely depends on
the given constraint and its propagation algorithm.

Concerning specific constraint propagation algorithms, we can notice that nFC1 has
no chance to be competitive if the semantics of the constraint is lost on its projections,

11 Using the specific propagation algorithms, this instance is solved in 0.00 sec. by nFC1–nFC5, and in 0.03
by nFC0.

C. Bessière et al. / Artificial Intelligence 141 (2002) 205–224 223

preventing the use of the specific algorithm. The capacity constraint p/q of the car
sequencing was a favorable case since its projection on q − k variables preserves the
semantics: it is the capacity constraint p/(q − k). (When p � q − k, the constraint is still a
capacity constraint, but equal to the universal constraint.) On the contrary, a constraint such
as x+y + z = t , which has a simple propagation algorithm based on arithmetic properties,
loses its semantics when projected on subsets of the variables.

Finally, can we decide between the one pass behaviour of nFC2–nFC4 and the “full”
arc consistency behaviour of nFC3–nFC5? The answer is not obvious. Though nFC3 is
slower than its one pass equivalent—nFC2—on all our experiments, nFC4 and nFC5 are
much harder to separate.

6. Summary and conclusion

We presented several possible generalizations of the FC algorithm to non-binary
constraint networks. We studied their properties, and analyzed their complexities. We also
compared these non-binary algorithms to the binary FC+ algorithm, which runs on the
hidden conversion of non-binary networks. We provided empirical results on the relative
performances of these algorithms. Their performances greatly depend on the tightness and
arity of the constraints. This fits the already known trade-off between the benefits of early
pruning caused by constraint propagation, and the effort it requires. But the use of the
semantics of the constraints can also affect performance. When a specific algorithm is
used to deal with a specific constraint, the trade-off between benefit and cost of constraint
propagation has shown a slide to the advantage of versions with higher look ahead.12

An ultimate goal could be to exhibit a criterion under which to decide when a constraint
should be processed by the nFC0 principle, and when it should be propagated with a more
pruningful mechanism. Such a criterion might be learned on some instances of problems,
such as in [5], where variable ordering heuristics are learned by experience. The result
would be a mixed algorithm, taking the best of each technique.

References

[1] F. Bacchus, P. van Beek, On the conversion between non-binary and binary constraint satisfaction problems,
in: Proceedings AAAI-98, Madison, WI, 1998, pp. 311–318.

[2] C. Bessière, J.C. Régin, Refining the basic constraint propagation algorithm, in: Proceedings IJCAI-01,
Seattle, WA, 2001, pp. 309–315.

[3] C. Bessière, J.C. Régin, MAC and combined heuristics: Two reasons to forsake FC (and CBJ?) on hard
problems, in: Proceedings CP-96, Cambridge, MA, 1996, pp. 61–75.

[4] R. Dechter, On the expressiveness of networks with hidden variables, in: Proceedings AAAI-90, Boston,
MA, 1990, pp. 556–562.

[5] S.L. Epstein, E.G. Freuder, Collaborative learning for constraint solving, in: Proceedings CP-01, Paphos,
Cyprus, 2001, pp. 46–60.

12 Existing constraint solvers often perform some form of look ahead (arc consistency or weaker) on all the
constraints (i.e., a kind of MAC algorithm).

224 C. Bessière et al. / Artificial Intelligence 141 (2002) 205–224

[6] D. Frost, C. Bessière, R. Dechter, J.C. Régin, Random uniform csp generators, URL: http://www.ics.uci.
edu/~dfrost/csp/generator.html, 1996.

[7] S.W. Golomb, L.D. Baumert, Backtrack programming, J. ACM 12 (4) (1965) 516–524.
[8] R.M. Haralick, G.L. Elliott, Increasing tree search efficiency for constraint satisfaction problems, Artificial

Intelligence 14 (1980) 263–313.
[9] G. Kondrak, P. van Beek, A theoretical evaluation of selected backtracking algorithms, Artificial

Intelligence 89 (1997) 365–387.
[10] J. Larrosa, P. Meseguer, Adding constraint projections in n-ary csp, in: J.C. Régin, W. Nuijtens (Eds.),

Proceedings ECAI-98 Workshop on Non-Binary Constraints, Brighton, UK, 1998, pp. 41–48.
[11] A.K. Mackworth, On reading sketch maps, in: Proceedings IJCAI-77, Cambridge, MA, 1977, pp. 598–606.
[12] R. Mohr, G. Masini, Good old discrete relaxation, in: Proceedings ECAI-88, München, Germany, 1988,

pp. 651–656.
[13] R. Mohr, G. Masini, Running efficiently arc consistency, in: G. Ferrate, et al. (Eds.), Syntactic and Structural

Pattern Recognition, Springer, Berlin, 1988, pp. 217–231.
[14] J.C. Régin, J.F. Puget, A filtering algorithm for global sequencing constraints, in: Proceedings CP-97, Linz,

Austria, 1997, pp. 32–46.
[15] F. Rossi, C. Petrie, V. Dhar, On the equivalence of constraint satisfaction problems, in: Proceedings ECAI-

90, Stockholm, Sweden, 1990, pp. 550–556.
[16] D. Sabin, E.G. Freuder, Contradicting conventional wisdom in constraint satisfaction, in: Proceedings PPCP-

94, Seattle, WA, 1994.
[17] B. Smith, Phase transition and the mushy region in constraint satisfaction problems, in: Proceedings ECAI-

94, Amsterdam, The Netherlands, 1994, pp. 100–104.
[18] B. Smith, Succeed-first or fail-first: a case study in variable and value ordering, in: Proceedings ILOG Solver

and ILOG Scheduler International Users’ Conference, Paris, Prance, 1996.
[19] P. Van Hentenryck, Constraint Satisfaction in Logic Programming, MIT Press, Cambridge, MA, 1989.

