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ABSTRACT
A 100-million-atom biomolecular simulation with NAMD is one
of the three benchmarks for the NSF-funded sustainable petascale
machine. Simulating this large molecular system on a petascale
machine presents great challenges, including handling I/O, large
memory footprint and getting good strong-scaling results. In this
paper, we present parallel I/O techniques to enable the simula-
tion. A new SMP model is designed to efficiently utilize ubiquitous
wide multicore clusters by extending the CHARM++ asynchronous
message-driven runtime. We exploit node-aware techniques to op-
timize both the application and the underlying SMP runtime. Hi-
erarchical load balancing is further exploited to scale NAMD to
the full Jaguar PF Cray XT5 (224,076 cores) at Oak Ridge Na-
tional Laboratory, both with and without PME full electrostatics,
achieving 93% parallel efficiency (vs 6720 cores) at 9 ms per step
for a simple cutoff calculation. Excellent scaling is also obtained
on 65,536 cores of the Intrepid Blue Gene/P at Argonne National
Laboratory.

1. INTRODUCTION
Biomolecular simulations are highly challenging to efficiently

scale to a large number of processors. To be sure, they exhibit
an abundant degree of parallelism. However, the challenge arises
from the size of each time step and the number of time steps
needed for interesting simulations. Due to the atomic-level time
and length scales being modeled (e.g. the vibration frequency of
bonds), each time step can only be of the order of 1 fsec. At the
same time, the biological phenomena of interest to require sim-
ulations of microsecond or longer duration. Thus, a meaningful
simulation needs to carry out billions of individual time steps. This
means that each individual timestep must be carried out in millisec-
onds: at 10 ms per step, and even using a 2 fsec per time step, we
would need two months to complete a microsecond simulation. It
is highly challenging to get individual time steps confined to that
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small a time interval, considering the variety of computations that
must happen during this time and the communication dependencies
between them. Issues related to load imbalances, critical paths,
communication-computation overlap, progress issues for the un-
derlying communication engine (i.e. MPI runtime) etc. create ob-
stacles to obtaining high-performance.

In this context, the new generations of machines with hundreds
of thousands of processors pose new challenges. With these ma-
chines, the goal of simulating molecular systems with tens of
millions of atoms while still maintaining execution time-per-step
within tens of milliseconds appears to be within reach. In fact, the
National Science Foundation posed such an ambitious goal in the
requirements for the track one machine: namely, to simulate a 100
million atom system with a time-per-step of the order of 10 ms.
This paper focuses on this challenge, and the solution techniques
being developed to overcome it.

As machines become more powerful, the size of biomolecular
system that can be studied through all-atom simulation has in-
creased exponentially. In 2006, NSF introduced a 100-million-
atom biomolecular simulation as one of the three benchmarks for
the NSF-funded sustainable petascale machine. Such specific-
application petascale benchmarks in the HPC acceptance process
are a welcome addition for the community, because they apply real-
istic performance constraints on both harware and software beyond
those in LinPACK and artificial microbenchmarks.

A relatively new issue that biomolecular simulation programs are
now required to tackle is that presented by multicore nodes. Typ-
ical machines today have between 12 and 48 cores per node. His-
torically, efficiently exploiting shared memory within a node has
proved difficult, and many applications continued using separate
processes on each core. However, the benefits to be reaped in ex-
ploiting shared memory remain compelling; and in any case for a
large molecular system such as the one targeted in this paper, it is
necessary to exploit it in order to fit within the available memory.

Introducing support for unusually large systems into a long-lived
application presented several challenges, including the traditional
problem of achieving good strong-scaling results, as well as new
ones in I/O due to the problem size. Through the application of
a variety of techniques to both the application, NAMD, and the
underlying runtime system, CHARM++, we reduced per-core and
per-node memory footprint and resolved a number of performance
bottlenecks to achieve strong scaling for a 100-million-atom system
to the full Jaguar PF machine.

Contributions. We present both enabling and scaling techniques
that are required to simulate a 100M-atom system on machines of
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Figure 1: The size of biomolecular systems that can be studied using all-atom molecular dynamics simulations has steadily increased
from that of Lysozyme (40,000 atoms) in the 1990s to the F1F0-ATP Synthase and STMV Virus capsid at the turn of the century, and
now 100-million atoms as in the spherical chromatophore model shown above. Atom counts include aqueous solvent, not shown.

up to 224,076 cores. Our key contributions are:
• We present enabling techniques based on parallel I/O to dra-

matically reduce memory footprint and speed up NAMD ini-
tialization phases. After memory optimizations, the 100M-
atom system can run on Intepid (Blue Gene/P), which has
only 0.5GB of memory per core.

• The CHARM++ asynchronous message-driven runtime is ex-
tended with a new SMP mode, which is designed to effi-
ciently utilize the ubiquitous wide multicore environments.

• We present a series of node-aware optimizations enabled
by the SMP mode of runtime to improve the scalability of
NAMD. These techniques include node-aware communica-
tion optimizations, and further optimized hierachical load
balancing strategy that scales to 224,076 cores.

• We scale the 100-million-atom simulation up to the full
Jaguar PF system (224,076 cores) at Oak Ridge National
Laboratory with impressive benchmark of 9.00 ms/timestep
for cutoff run w/o barrier, 16.84 ms/timestep with cutoff run
w/ barrier, and 26.26 ms/timestep with PME run. A parallel
efficiency of 93% based on 6720-core run is achieved for cut-
off run w/o barrier on the full Jaguar PF system, along with
an excellent speedup up to 65,536 cores on Intrepid Bleue-
Gene/P machine at Argonne National Laboratory.

The remainder of the paper is organized as follows: Section 2
describes the background of NAMD and the CHARM++ runtime
system. Section 3 explores the parallel I/O techniques to overcome
the memory challenges during NAMD start-up. The design and
node-aware optimizations of the SMP mode of CHARM++ runtime
for multicore clusters are presented in Section 4. Performance re-
sults of strong scaling of a 100-million-atom simulation are pro-
vided in Section 5, as well as weak scaling results on both Jaguar

and Intrepid. Other scalable MD codes are discussed in Section 6.
Finally, Section 7 concludes the paper with some future plans.

2. BACKGROUND
In this section, we briefly describe the biomolecular simutation

program NAMD and its parallelization techniques using the under-
lying runtime CHARM++.

2.1 Biomolecular Simulation
NAMD [17] is one of a class of programs that perform classical,

all-atom simulations of biopolymers in explicit solvent. For such
simulations, initial coordinates of proteins are determined through
X-ray crystallography or other experimental techniques, combined
with lipids or nucleic acids, and solvated in water molecules and
ions to fill a periodic simulation cell. Interactions between atoms
in the simulation are parameterized based on the species of each
atom and its chemical role (i.e., its covalent bonding pattern). Co-
valent bonds are represented by harmonic distance, angle, and pla-
narity restraints and sinusoidal dihedral terms. Pairs of atoms that
are not bonded to each other or to a common atom interact via
a nonbonded potential that is a combination of a Lennard-Jones
6-12 potential and electrostatic interactions between fixed partial
charges assigned to each atom to reflect its relative electronegativ-
ity. The Lennard-Jones nonbonded term is smoothly truncated at
a cutoff distance, typically 12 Å, while the electrostatic potential
is divided into short-range interactions with the same cutoff dis-
tance and long-range interactions extended to all periodic images
via the FFT-based particle-mesh Ewald method (PME). The nega-
tive gradient of the complete potential defines forces on all atoms
that are integrated by the explicit, reversible, and symplectic Verlet
algorithm to simulate the dynamic evolution of the system with a
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timestep of 1 fs. The communication-intensive PME method cal-
culates only small and slowly varying forces, and may thereforce
be evaluated only every forth step by using a multiple-timestep in-
tegrator. Modifications to the integrator allow simulation in NVE,
NVT, or NPT ensembles, with pressure control requiring a periodic
global barrier to modify the volume of the periodic cell.

As illustrated in Figure 1, biomolecular simulations have grown
larger over time. Each increase in simulation size capability has
permitted new discoveries unanticipated by smaller scale simula-
tions. The extension of simulation size to hundreds of millions of
atoms will permit all-atom simulations of extensive biomolecular
complexes in key cellular systems, and even atomic models of en-
tire organelles of a cell.

The 100-million-atom benchmark in this paper was assem-
bled by replicating a million-atom satellite tobacco mosaic virus
(STMV) simulation on a 5x5x4 grid. This provides a realistic input
set for scaling NAMD to petascale systems without waiting for our
biophysics collaborators to assemble a complex non-reptitive sys-
tem of equivalent size, such as the chromatophore. This approach
also simplifies correctness testing and the construction of smaller
systems for weak-scaling studies. In this paper, three configura-
tions are studied: simulation with PME full electrostatics, cutoff-
only simulation with global barrier for each step, and cutoff-only
simulation without global barrier. Both common and configuration-
specific performance issues are investigated.

2.2 NAMD Parallelization with Charm++
CHARM++ [13] is a parallel programming system based on a

message-driven migratable-objects programming model. In this
model, the programmer decomposes his application into fine-grain
objects that perform the computation and communicate through
asynchronous method invocation by sending each other messages.
Over the years, it has been successfully used to develop sev-
eral highly scalable parallel applications, such as NAMD [2],
ChaNGa [11], and OpenAtom [4]. Furthermore, CHARM++ is a
highly portable parallel runtime system available on the vast ma-
jority of existing parallel platforms.

2.2.1 CHARM++ on Multicore Clusters
The CHARM++ runtime system provides several mechanisms

for exploiting shared memory in the context of multicore machines
[16]. Each platform specific implementation of CHARM++ can be
built with an “smp” extension that allows the process space to be
redefined from one flow of control per process to multiple flows
per process, called “worker threads”. The notional “rank” space is
partitioned across all worker threads as it would have been across
individual processes in the non-smp case. Worker threads, typi-
cally implemented via pthreads, share their parent process’s address
space, but contain their own event scheduler and appear semanti-
cally as independent ranks with a persistent mapping of chares to
ranks (unless those chares are explicitely migrated). These threads
are then typically affinitized to one thread per core and persist for
the life of the application.

This model differs from hybrid programming models, such as
MPI with OpenMP [20], in that it does not require a hybrid pro-
gramming approach. The CHARM++ message driven object ap-
proach works for SMP and non-SMP versions without any SMP
specific programmatic changes. Shared memory benefits such as
reductions to overall memory footprint, reduced memory band-
width consumption, faster application launch, and improved the
efficiency of communication, can now be realized by CHARM++
applications, with no shared memory specific application code, on
petascale machines as shown in Section 4.1.

In previous work [16], we have extensively studied multi-
threading performance issues and techniques focusing on optimiz-
ing intra-node communication in CHARM++ applications running
on single multicore desktops. This paper extends our optimization
techniques including improving performance of inter-node commu-
nication for multicore clusters. We target such a multi-threaded
runtime to petascale class machines and use real world application
NAMD to demonstrate the optimization techniques we explored.

2.2.2 NAMD Parallel Decomposition
NAMD uses a hybrid parallel decomposition in which atomic co-

ordinates and velocities are stored and propagated by static spatial
domain objects called “patches” while the calculation of interac-
tions between atoms is decomposed into independently migratable
“compute objects”. The patches are cubes (or similar shapes that
fill the periodic cell) of dimension equal to the cutoff distance plus
a sufficient margin that atoms in non-neighboring cubes will not
move closer than the nonbonded cutoff distance during a migra-
tion cycle of typically 20 timesteps. Patches are represented on
other processors by “proxies” through which compute objects ac-
cess atomic coordinates and store forces. Atomic coordinates and
forces are communicated only between a patch and its proxies. A
compute object is generated for every pair of neighboring patches,
as well as for bonded terms on each processor with patches.

2.2.3 Static and Dynamic Load Balancing
A challenging aspect of scaling biomolecular simulations to a

very large number of processors is that computation work due to
bonded and direct electrostatic force calculation, PME computa-
tion, and force integration, has to be distributed evenly across the
whole machine. Furthermore, as atoms move, load imbalance may
occur. To tackle this load balance problem, NAMD combines an
initial mapping scheme at start-up time with dynamic load balanc-
ing to adjust load imbalance during the simulation.

The static mapping of patches to processors in the case of more
patches than processors is based on ordering the patch grid by a
continuous space-filling curve that varies fastest in the Z dimen-
sion and slowest in the X dimension, snaking up and down, back
and forth, to fill the simulation volume from one end to another.
The patches thus ordered are assigned to processors in contigu-
ous groups so as to spread atoms evenly across the machine. The
space-filling curve is designed to optimize communication between
patches and the PME 3D FFT, statically decomposed either 1D via
slabs (for small simulations or processor counts) or 2D via pencils
(for large simulations on large processor counts). Block-wise map-
ping of processor indices to nodes ensures that only nearby patches
are mapped both within processors and within nodes. At larger pro-
cessor counts patches will be distributed across the machine with
at most one patch per processor, and eventually patches divided in
one, two, or three dimensions to increase parallelism.

Initial compute placement similarly optimizes communication,
with each patch having at most seven proxies on the processors
of its “downstream” neighbors. This pattern provides that every
pair of neighboring patches is represented on at least one proces-
sor, to which the corresponding compute may be assigned. Patch
and compute object assignments are replicated in per-process patch
map and compute map objects, both using storage proportional to
the size of the simulation for the sake of efficient access.

NAMD exploits a measurement-based load balancing method
supported in CHARM++ for balancing computation across proces-
sors. The NAMD load balancer attempts to create the smallest
number of additional proxies needed to achieve load balance. Tra-
ditionally, before the work in [22], NAMD uses strategies that col-
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lect all load statistics to a central location (typically processor 0),
where load balancing decisions are made. This scheme is not scal-
able, as runtime and memory usage increase with both processor
and patch count. In [22], we explored a hierarchical load balancing
scheme with a 1-million-atom STMV system on up to 16,384 cores
of Intrepid (Blue Gene/P). This paper extends the work to scale to
the full Jaguar PF machine, currently the fastest US supercomputer
and second in the world.

2.3 Targeted Petascale Machines
For this 100M-atom scaling study we selected two petascale ma-

chines. The first is Intrepid, a 557.1 TF/s, 40 rack IBM Blue Gene/P
at Argonne National Laboratory. The second is Jaguar PF (later
referred just as Jaguar), a 2.3 PF/s Cray XT5 at Oak Ridge Na-
tional Laboratory. Each node on Intrepid has 4 cores and only 2GB
of memory, with a total of 40,960 compute nodes/163840 cores.
In comparison, Jaguar contains 18,688 compute nodes, or 224,256
cores with each multicore compute node containing dual hex-core
AMD Opteron processors, and 16GB of memory. Both machines
have a relatively low memory ratio – 0.5GB per core on Intrepid
and 1.3GB per core on Jaguar. Of the two machines, Jaguar is
closer in size to Blue Waters, the ultimate target of our efforts.

3. APPLICATION MEMORY CHALLENGES
AND TECHNIQUES

Due to the number of atoms in this benchmark and its intended
scaling to hundreds of thousands of processors, memory consump-
tion becomes a critical issue. Initial experiments showed that on
machines such as BlueGene/P that have small memory per core,
NAMD failed to pass the initialization phases due to the large
memory footprint required to load the system and perform initial-
ization. In this section, we will focus on two major memory is-
sues from the aspect of application I/O, i.e., loading molecular data
at start-up and outputing atoms trajectory data to the file system.
Some other memory issues, which we overcome by utilizing the
underlying multi-threading runtime, will be covered later in Sec-
tion 4. Existing parallel I/O libraries such as HDF does not handle
NAMD file formats, therefore we chose to implement parallel I/O
natively in NAMD. One advantage is that we can then optimize for
writing trajectory data frame-by-frame, overlapping with a running
simulation.

3.1 Parallelizing Molecular Data Input
Traditionally, NAMD performed initialization by first loading

all molecular data and processing it on a single core before broad-
casting the data to other cores. Although adequate when the
molecule size is small, this approach does not scale due to the se-
quential bottleneck. For example, a test of the 100M-atom system
on a 4-socket Intel Xeon L7555@1.87GHz workstation with 64GB
physical memory, required 3301.91 seconds and 40.48GB of mem-
ory for initialization. Using the compression scheme we introduced
in [2], the initialization time drops to 125.47 seconds, but it still
required 12.82GB of memory. Since Jaguar has 16GB per node
shared by 12 cores and Intrepid has only 2GB per node shared by
4 cores, reducing the memory footprint of initialization is critical.

Therefore, it is clear that the initialization process needs to be
parallelized to distribute the memory usage and speed up the pro-
cess. We designed a parallelization scheme for NAMD on top of
the compression scheme described in [2], where the “signatures”
of atoms are extracted from input data to represent the common
characteristics that are shared by a set of atoms. In addition to the
“signature” file, a binary file that contains the information of each

atom is constructed from the original input file to be used for par-
allel input.

Given P input processors, a free parameter automatically tuned
to optimize footprint and performance, one of them will first read
the signature file and then broadcast this information to all input
processors. For this 100M-atom simulation, the signature file is
about 114KB, 5800 times smaller in size than the original input
file that was required to be loaded from one processor. Afterwards,
each of these P cores will load 1

P
of total atoms starting from inde-

pendent positions of the binary file. Finally, some atoms are shuf-
fled with neighbor input processors according to molecular group-
ing attributes for later spatial decomposition.

The parallelization of input has dramatically decreased startup
time and memory usage. In contrast to the original version of
NAMD, which takes nearly an hour to finish initialization and
more than 40GB of memory for this 100M-atom simulation, the
optimized version with 600 input processors on Jaguar completes
initialization in 12.37 seconds, with an average 0.19GB of mem-
ory consumption per input processor. Furthermore, compared to
the old compression scheme, this is a factor of 10 and 67 decrease
in initialization time and memory usage, respectively, thus making
it possible to run the 100 million atom simulation in NAMD on
currently available petascale machines.

3.2 Parallelizing Trajectory Data Output
Trajectory and restart output is necessary for production

biomolecular simulations. Performance and memory footprint is-
sues are analogous to those faced at input, but maintaining fast
timestep execution under tens of milliseconds poses an additional
challenge for frequent trajectory output. For the 100M-atom sys-
tem, the 4.8GB data per output step must not delay the simulation
itself. To overcome those issues, we parallelized the output process
so that each output core, a quantity usually smaller than the total
number of cores, is only responsible for the trajectory output of a
subset of atoms, together with the design of overlapping file output
on one core with useful computation on other cores. The latter is
naturally enabled by the asynchronous message-driven CHARM++
runtime.

For backward compatibility with our visualizer component
VMD [10] , we initially chose to output the data into a single
file in the old file format. To avoid the contention on file I/O
accesses by simultaneous writers, we implemented a token-based
output scheme in which only the processor that has the token could
write to the file system. However, with experiments on Intrepid
and Jaguar, we found that the performance of writing into a sin-
gle file is not acceptable. Some experiments were conducted with
2.8M-atom Ribosome simulation to illustrate the issue we identi-
fied. Figure 2 shows excerpts from tracing results of output proces-
sors for parallelizing output on 32 nodes of Jaguar with one output
processor on each node, where the orange bar represents the op-
eration of file I/O. First, (a) and (b) clearly show the unacceptable
performance of writing into a single file. In (a), the output clearly
overlaps the useful computation (in blue color), but spans across
multiple timesteps. In (b), the simultaneous output, though into dif-
ferent non-overlapped portion of the file, showed a severe stretch on
file I/O. In this case, the simultaneous output took even more time
(2.94 sec vs. 1.79 sec) than that in the case shown in figure2(a).
This left us a surprising and counter-intuitive impression of the un-
derlying parallel file system in that users were supposed to obtain
a linear speedup over the single writing token scheme. Based on
document1, we believe such behavior is caused by contention on

1http://www.nics.tennessee.edu/io-tips
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Figure 2: Output strategy timelines on Jaguar: (a) One output processor writes at a time (1 token), (b) All write simultaneously (32
tokens), (c) All write simultaneously but to multiple independent files.

updating the meta-data on that file system.
As a result, we resort to outputting data into multiple indepen-

dent files, and then post-processing them into a single file in the
original format. Figure 2(c), at the same scale with figure 2(a) and
(b), clearly shows the huge benefit of this approach, reducing the
output time by orders of magnitude to 0.048 sec. One will notice
that the single output by one core in the multi-file-output scheme
even takes less time than that of the 1-token based scheme. This is
because the the output data layout is the same with layout of these
data in memory in the multi-file-output scheme.

Future optimizations are possible for both input and output in
NAMD to achieve even better performance. However, the current
implementations are good enough to minimally impact the over-
all actual simulation performance and are fully portable across all
platforms of interest.

4. NODE-AWARE OPTIMIZATIONS FOR
MULTICORE CLUSTERS

When we started our effort to scale NAMD with the 100M-atom
system to these two petascale machines, we encountered several
issues using the production version of NAMD that runs one process
per core (i.e. non-SMP mode).

Even with the parallel I/O techniques described in Section 3,
NAMD ran out of memory when simulating the 100M-atom sys-
tem on Intrepid. On Jaguar, the initial performance is shown in
Table 1. Both PME and cut-off simulations do not scale well.

Nodes 140 560 2240 4480 8960 17920
Cores 1680 6720 26880 53760 107520 215040
PME 1295.5 351.2 111.2 60.3 39.6 45.5
Cutoff 1097.3 329.5 133.3 68.7 49.1 38.3

Table 1: Initial benchmark time with PME and w/o PME on
Jaguar running with non-SMP runtime

Performance analysis showed that the major challenges prevent-
ing NAMD from scaling on these two machines were memory
footprint, system noise, communication bottleneck, and load im-
balance. Our contribution in this paper is that by exploiting op-
timization techniques for multicore architectures in both the run-
time and the application, we optimized the memory footprint and
scaled NAMD with the 100M-atom system to massively parallel
machines such as Jaguar. Note that the techniques we apply here
are general, and they can be applied to other petascale applications
as well.

4.1 A Multi-threaded MPI-based Runtime
In order to exploit the multi-threaded SMP model in CHARM++

on Jaguar, we designed and implemented an SMP runtime mode
on top of MPI, the de facto standard of communication interfaces
for high-performance computers. In this particular case, the run-
time is built on the default MPI library on Jaguar implemented
by Cray and POSIX threads. In SMP mode, the processor cores
within a host operating system image are mapped either to worker
threads (CHARM++ “processors” running as a single thread within
a CHARM++ “node” process) or to a single communication thread
per process. Threads within the same node process communicate
via their shared address space while inter-node communication is
handled by the communication threads.

Although each thread can independently call MPI functions to
send and receive messages, this scheme is not chosen due to the
way MPI supports threads. The MPI standard defines four levels
of increasing thread support as MPI_THREAD_SINGLE, ...FUN-
NELED, ...SERIALIZED, and ...MULTIPLE. Many MPI imple-
mentations, including the default one we used on Jaguar, however,
do not support multiple threads calling MPI concurrently. Even
though some MPI implementations support the highest level of
multi-threading, we observed that they do not deliver good perfor-
mance due to implementations that have to ensure thread-safe for
lower-level communication libraries. Furthermore, assuming the
lowest level of MPI thread support ensures that our SMP model
runs on top of most MPI implementations.

Therefore, we chose to shift all MPI functions to the commu-
nication thread. When a worker thread sends a network message,
it enqueues the message to the communication thread’s outgoing
message queue; when an incoming network message arrives, com-
munication thread receives the message and puts it into the corre-
sponding worker thread’s incoming message queue.

In practice, each worker thread and communication thread
should be mapped to one physical core of a node to avoid interfer-
ence with each other. Therefore, one core on the node is dedicated
to the communication thread. The loss of one core for computation
may degrade performance such that SMP mode may underperform
non-SMP mode, expressed as:

P ∗ Enonsmp(P ) > (P − 1) ∗ Esmp(P − 1)

where P is the total number of cores per node, Enonsmp(P ) is the
parallel efficiency2 in non-SMP mode, and Esmp(P − 1) is the
parallel efficiency in SMP mode. Even in the best scenario when

2Parallel efficiency is E(P ) = T1
P∗Tp
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the parallel efficiency in SMP mode is 1, as long as the parallel
efficiency in non-SMP mode satisfies:

Enonsmp(P ) >
P − 1

P

the non-SMP mode has better performance than the SMP mode.
Take Jaguar where there are 12 cores per node as an example, if the
parallel efficiency of non-SMP mode is greater than 11/12, then
the non-SMP mode always performs better than the SMP mode.
However, the work associated with communication must be borne
in either case.

If the parallel efficiency in non-SMP mode drops faster, and the
ratio against the parallel efficiency in SMP mode turns below the
above threshold, the SMP mode starts to perform better. Such
scenario could happen when the application’s communication-to-
computation ratio increases. In non-SMP mode, worker threads
have to pay the overhead of communication themselves, while in
SMP mode the communication threads offload the communication
from worker threads. However, when the communication thread
can not keep up with the network communication that is requested
by all the worker threads it serves, it becomes a performance de-
grading bottleneck. One possible solution is to reduce the ratio of
worker threads to communication threads. For example, in the case
of Jaguar, instead of having one communication thread serving 11
worker threads, we can reduce the load of a communication thread
by having one communication thread serving 5 worker threads in
one process with two processes per node.

When designing this multi-threading SMP mode, we also con-
sidered processor affinity, i.e., the way threads are mapped to cores
because it has been demonstrated to have a great impact on appli-
cation’s performance for multicore [16, 1, 18]. Taking account of
the study [3] that shows system noise degrades NAMD’s perfor-
mance when using all 12 cores on each node on Jaguar, we bind
the communication thread to core number 0, the most noisy core
on the node where OS daemons are running, so that worker threads
can execute without OS jitter. The worker threads are then pinned
to remaining physical cores on the node respectively without dif-
ferentiation. Such affinity setting assumes the application has a
favorable computation to communication ratio, which is true for
NAMD under most conditions.

Although this SMP mode is based on MPI, it can also apply to
other low-level communication libraries such as LAPI, DCMF (for
Blue Gene/P) and their descendants.

4.2 Adaptive Overlap of Communication and
Computation

As analyzed before, in SMP mode, the communication thread
may become overloaded to degrade the overall performance of
NAMD. The over-decomposition and asynchronous communica-
tion in CHARM++ help to alleviate this potential problem. First
of all, when one object is idle waiting for message arrival on a
processor, another object on the same processor could exploit this
idle time by doing useful work. Furthermore, asynchronous com-
munication, such as asynchronous broadcast and reductions imple-
mented on top of MPI, allows adaptive overlap of communication
with computation. Therefore, the occasional delay in message de-
livery by the communication thread can be effectively hidden by
the worker threads doing their useful work.

For example, Figure 3(a) shows a timeline view of the simulation
of the 100M-atom system on 45,056 cores of Jaguar obtained by
the performance analysis tool Projections [14]. In the figure, each
line represents the activity of one processor over the time. Differ-
ent work is shown in different colors. The red (dark) corresponds

(a) Timeline of cutoff simulation without pressure control barrier

(b) Timeline of cutoff simulation with pressure control barrier

Figure 3: Impact of barriers on 45056 cores of Jaguar

to the force integration, while the dominant blue-colored regions
represent non-bonded computation. White-colored regions are idle
time caused by the delay in the arrival of messages. Nevertheless,
one can notice that neighboring timesteps, separated by dark red,
”bleed” into each other as a result of no global barrier after each
timestep, nicely demonstrating the overlap of communication and
computation. So even if the communication is overloaded in this
case delaying the message deliver, the overall impact on perfor-
mance remains small.

However, if a global barrier enforces, delayed messages caused
by overloaded communication threads could no longer be hidden
by the computation as clearly seen in figure 3(b). As a result, the
performance becomes worse.

4.3 Benefits due to Multi-threading Runtime
With multi-threading in the runtime, in addition to the faster

intra-node message (as no copy is involved either on sender or re-
ceiver side), the following extra benefits are observed and demon-
strated by NAMD with this 100M-atom simulation on Jaguar.

Faster start-up: One nice side effect of using SMP mode is that
it significantly reduces the job launching time because only one
MPI rank (i.e., one instance of MPI communication library) is cre-
ated for the entire node and multiple threads are spawned for each
physical cores on the node. In contrast, in non-SMP mode, one
MPI rank is created for each physical core. In the case of running
on Jaguar, this means a 12X reduction in the number of total MPI
processes launched as each node has 12 physical cores. Such reduc-
tion causes more significant launching time decrease when NAMD
scales to 224,076 cores. In SMP mode, mpirun only takes about 1
minute to launch the job, while in non-SMP node, it takes about 6
minutes.

Further reduction in memory: That worker threads, i.e., “pro-
cessors” in the common concept, on the same node shares the same
virtual memory address space permits them to share read-only data
structures. The memory footprint of the application will be reduced
further by utilizing this runtime feature of CHARM++. Ignoring the
feature will not break correct CHARM++ programs, but potential
benefits related to memory effects such as better cache performance
will be lost. In NAMD, optimizations are made to share the read-
only information, such as the molecule object that contains static
physical attributes of atoms, map objects that track the distribution
of patch and compute objects. Table 2 shows the comparison of av-

6



#Nodes 140 560 2240 4480 8960 17920
#Cores 1680 6720 26880 53760 107520 215040
non-SMP (MB) 838.09 698.33 798.14 987.37 1331.84 1760.86
SMP (MB) 280.57 141.83 122.41 126.03 131.84 157.76
Reduced factor 2.99 4.92 6.52 7.83 10.10 11.16

Table 2: Comparison of average memory footprint between
SMP and non-SMP during simulation (12 cores per node)

erage memory usage per core when running NAMD in non-SMP
and SMP modes, demonstrating the effectiveness of reducing the
memory consumption using SMP mode.

According to table 2, we first observe that the memory usage
of each mode will first decrease then increase with the increase of
nodes. This trend is caused by a mix of three factors: a) whole
input data distributed on every core is reduced with the increase
in the number of cores used; b) the memory usage of some data
structures, such as the map objects, grows linearly with the increase
of cores; c) runtime, including the MPI library, also requires more
memory when scaling up.

Directly related with memory footprint reduction, we also ob-
served much better cache performance. For example, using the
PAPI [6] counters available on Jaguar, we witnessed a significant
decrease in L1 data cache misses in SMP mode over non-SMP
mode for each timestep as 63.91% and 78.18% on 4480-node and
8960-node run respectively. In addition, a slight 1.36% decrease in
L2 cache misses is observed for the 4480-node run, and a decent
18.73% reduction for the 8960-node run.

4.4 Communication Optimization
Multicore clusters present hierarchical communication structure

that includes both the intra-node communication, and inter-node
communication, which is much more expensive. In both NAMD
and its underlying runtime CHARM++ under SMP mode, taking
advantage of the node level communication, we could effectively
optimize communication by reducing the number of network mes-
sages (i.e. messages among different physical nodes).

4.4.1 Node-aware Communication
Node-aware multicast/broadcast in CHARM++: In the SMP

mode of runtime, sending a multicast message to a subset of cores
on the same node can be optimized by sending only one message
to the communication thread, and letting the communication thread
forward the message to the destination cores. Compared with the
non-SMP case, this may reduce the network messages if the subset
of destination cores is large.

As an example, a node-aware broadcast can greatly improve
the NAMD start-up process. In a NAMD run on 17,920 nodes
(215,040 cores) of Jaguar, the start-up phases involve a series of
broadcast operations ranging from 4KB to 65KB. In non-SMP
mode without node-awareness, it takes an average of 76.3 ms to
finish, while in SMP mode it only takes an average of 20.2 ms,
which is a speedup of 2.78.

Application-guided node-aware multicast spanning tree con-
struction: NAMD multicasts atom data from each patch to all
computes requiring that data at the begining of every timestep.
NAMD takes advantage of the node-aware multicast operation (via
spanning tree) supported by the runtime as mentioned above. How-
ever, given the fine-grained nature of NAMD (few ms per step), a
second-order effect obstructs performance: a naive spanning tree
construction may create an unbalanced spanning tree that overloads
the intermediate spanning tree nodes which perform extra work of
forwarding multicast messages down the tree. In NAMD we solve

this issue by incorporating application level knowledge to build a
balanced node-aware spanning tree that places heavily loaded pro-
cessors in the leaves of the tree. The metrics we use to measure
the load of each node is the number of patches and proxies on that
physical node as it reflects the load of the communication thread
doing the multicast. Based on this application-level knowledge, we
sort the nodes that participate the multicast based on the total mes-
sages each transmits, and then construct the spanning tree based on
this sorted node list.

4.4.2 Controlling Burst of Messages
Bursts of messages may occur at the beginning of each timestep

of NAMD. On Jaguar, the flooding of network messages may lead
to prolonged MPI_Iprobe calls as long as 12ms which causes shift
of barrier as shown in Figure 3(b).

We modified the network progress engine in the communication
thread to handle the burst of messages. In the network progress
engine, the communication thread alternates among three types of
tasks: (1) sending all the outgoing messages in the queue; (2) call-
ing MPI_Test() on all the messages that have been sent and releas-
ing the messages which are done; and (3) probing and receiving
incoming messages until there are no more messages to receive. In
the presence of message bursts, the communication thread can eas-
ily be delayed in one of these three tasks, and cause performance
problems. To prevent the communication thread from stalling, we
applied a cap on each of these tasks to control how many of each
operation the communication thread can perform at a time. During
the process of sending messages, if the communication thread has
detected that it has sent out too many messages, or there are too
many sent messages that have not been released by MPI library,
then it will stop sending more messages and change to do other two
tasks to avoid flooding the network. Similarly, when receiving mes-
sages from network, the communication thread will stop receiving
more if it detects that there are too many outgoing messages in the
queue.

We tested the new scheme in the case of the 100M-atom sim-
ulation. On large runs, where bursts become a problem, for ex-
ample, on 4480 nodes (53,760 cores), we observed a performance
improvement by 12.3% after applying this scheme.

4.5 Hierachical Load Balancing
In previous work [22], we have explored the hierarchical load

balancing scheme with a 1 million STMV atom system on up to
16,384 cores of Intrepid. In this paper, we extend that work to sup-
port 100-million-atom systems and further optimized the hierarchi-
cal load balancing scheme for the full Jaguar machine (224,076
cores).

In the NAMD hierarchical load balancing scheme, every 512
cores form a load balancing group. Inside each group, centralized
load balancing algorithms optimized for multicore are applied. One
observation is that for the 100M atom system, the average load of
each group is similar as shown in the bottom curve of Figure 4,
therefore, we can disable the cross group load balancing to simplify
and accelerate the load balancing process.

The effectiveness of the hierarchical load balancing scheme can
be seen in Figure 4 for a 100M atom simulation of 53,760 cores of
Jaguar. The X-axis represents total of 105 load balancing groups.
The top curve is the maximum load of all the 512 cores in each cor-
responding load balancing group, and the bottom curve is the aver-
age load in each group, representing the best scenario if load bal-
ancing algorithm can achieve the load balance. The middle curve
which almost overlaps with the bottom curve is the estimated max-
imum load of each group after the algorithm makes load balancing
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Machine Nodes Cores Cutoff w/o barrier PME Cutoff w barrier
Before ldb After ldb Improve(%) Before ldb After ldb Improve(%) Before ldb After ldb Improve(%)

Jaguar

560 6720 312.50 281.59 9.9 357.01 345.84 3.1 312.50 294.19 5.9
8960 107520 24.20 18.62 23.1 39.19 36.49 6.9 31.85 28.74 9.8
18673 224076 10.74 9.00 16.2 27.9 26.28 5.8 18.53 16.84 9.1

Intrepid

1024 4096 2305.7 2054.5 10.9 2653.0 2354.6 11.2 2331.4 2077.8 10.9
4096 16384 636.6 530.7 16.6 729.3 606.1 16.9 643.6 536.6 16.7
16384 65536 211.5 138.7 34.4 244.5 162.6 33.5 213.5 140.1 34.4

Table 3: Benchmark time (ms/step) before and after load balancing for runs on Jaguar and Intrepid
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Figure 4: Load balancing effect on 53,760 cores of Jaguar

decisions. This shows that the load balancing algorithm is very
effective in reducing the maximum load to be close to the average.

Compared with the case of NAMD in non-SMP mode, using
SMP mode improves the load balancing quality. This is because
after communication threads offload all communication load from
worker threads, the load balancer can obtain more accurate in-
formation about the measurement of actual computation load on
worker threads. This potentially leads to better load balancing de-
cisions since the load balancer does not have to consider the com-
plicated scenarios when communication overhead is involved on
worker threads.

5. EXPERIMENT RESULTS
In this section, we present load balancing results, overall strong

scaling performance results of the 100M-atom simulation with
three different configurations (PME, cutoff with barrier,cutoff with-
out barrier) on Intrepid and Jaguar. We also provide the weak
scaling performance results of simulations of smaller atom systems
from multi-million to tens-of-million atoms.

5.1 Load Balancing Results
Table 3 shows the benchmark time for three types of 100-

million-atom simulation before and after load balancing on Jaguar
and Intrepid. One observation that is common for the three types of
simulation is that on smaller number of cores (560 nodes on Jaguar
and 1024 nodes on Intrepid ), load balancing helps performance
by less than 10%. This is because the static initial mapping already
does a good job balancing the load, as the load is well balanced (the
ratio of maximum load to average load is only slightly more than
1). On larger number of cores where computation becomes more
fine grain and initial mapping is not as effective, load balancing im-
proves performance by as much as 30% for cutoff without barrier
simulation on Jaguar and for all the three types of runs on Intrepid.
Among the three types of simulation, load balancing helps least in
simulations with PME on Jaguar. This is because NAMD suffers

(a) Jaguar non-SMP and SMP

Cores PME Cutoff w/ barrier Cutoff w/o barrier
non-SMP SMP non-SMP Smp non-SMP SMP

1680 1295.5 1344.0 1097.3 1118.5 * *
6720 351.15 345.84 329.51 294.19 319.53 281.59
53760 60.34 54.25 68.67 44.21 43.49 36.84
107520 39.58 36.49 49.10 28.74 25.07 18.62
224076 45.52 26.28 38.25 16.84 14.58 9.00

(b) Intrepid SMP
Nodes Cores Workers PME cutoff-barrier cutoff-nobarrier
512 2048 1536 4754.7 4158.4 4031.6
1024 4096 3072 2354.6 2077.8 2018.5
4096 16384 12288 606.1 536.6 517.4
16384 65536 49152 162.6 140.1 138.7

Table 4: Performance (ms/step) of 100-million-atom simulation

from system noise on Jaguar, and the barrier involved in PME cal-
culation makes it challenging to balance the load in the presence of
the OS jitter.

Comparing these two different supercomputers, we find that hi-
erarchical load balancing strategy performs better on Intrepid than
that on Jaguar. This is probably because micro-OS kernel of the
Blue Gene/P is less noisy [15]. Therefore, CHARM++ load bal-
ancer tends to make more accurate load balancing decisions.

5.2 Strong Scalability Results
With all the techniques and optimizations in our SMP model, we

have achieved excellent performance on Jaguar. Table 4 compares
the benchmark time for three types of simulation of with PME, cut-
off with barrier and cutoff without barrier in both non-SMP and
SMP models on Jaguar and SMP on Intrepid. Non-SMP performs
better than SMP on smaller number of cores (1680 cores) when the
application utilization is relatively high. One core out of 12 dedi-
cated as communication thread without doing real work does hurt
performance. However, after the number of cores exceeds a thresh-
old (6720 cores in our experiments), SMP performs better than non-
SMP in all three types of simulation. The performance improve-
ment of SMP over non-SMP on Jaguar rises in proportion to the
number of cores, which is clearly seen from the overall speedup in
Figure 5. Especially from 107,520 cores to 215,040 cores, speedup
in non-SMP run for PME drops while the scaling continues in SMP.
For the full Jaguar run of 224,076 cores, the speedup in SMP is al-
most twice that of non-SMP, which demonstrates the effectiveness
of the SMP model and the optimizations.

On Intrepid, the 100-million-atom simulation does not run with-
out SMP due to its memory limit of 2G bytes per node. Based
on 512 node performance, nearly perfect strong scalability results
are achieved with SMP mode shown in Figure 6. Detailed num-
bers are presented in Table 4 (b). One issue is that dedicating one
core to communication thread in SMP mode loses 25% of comput-
ing power. However, as discussed in Section 4.1, when the num-
ber of cores increases and the parallel efficiency decreases, SMP
mode may perform closer or better than the non-SMP. Note that
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(a) Jaguar PME (b) Jaguar cutoff w/ barrier (c) Jaguar cutoff w/o barrier

(d) Intrepid PME (e) Intrepid cutoff w/ barrier (f) Intrepid cutoff w/o barrier

Figure 7: Processor utilization on 4096 nodes (45056 worker cores) of Jaguar and 16384 nodes (49153 worker cores) of Intrepid
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all near future supercomputers have a much larger number of cores
per node, such as 32 cores on Power7-based supercomputers and 16
cores on Blue Gene/Q, each with an even higher number of hard-
ware threads. Therefore, dedicating one core to communication
thread is a viable choice.

To further understand the performance of the three types of sim-
ulation on these two machines, we examine the CPU utilization
of all cores. Figure 7 shows the time profile for simulation with
PME, with cutoff and with cutoff no barrier on 4096 nodes (45056
cores) of Jaguar and on 16384 nodes (49153 cores) of Intrepid.
Common observations for the two supercomputers are that simula-
tion with cutoff without barrier has the highest CPU utilization of
about 93%, because it benefits from the adaptive overlap of com-
munication and computation due to lack of barrier, while the CPU
utilization is decreased by the 3DFFT transpose operations in PME
simulations, and further degraded by the global barrier for pres-
sure control. Comparing performance on the two supercomputers,
higher CPU utilization is obtained on Intrepid than Jaguar for sim-
ilar number of cores. Other than the fact that Intrepid has slower
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Figure 6: Performance (steps per second) on Intrepid

CPUs , the faster communication and lower CHARM++ runtime
overhead [15] are important factors. Especially for the runs with
cutoff and global barrier after each step, the performance on Jaguar
suffers significantly. A detailed profiling for the CHARM++ MPI-
based runtime on Jaguar revealed that MPI_Iprobe takes 12ms on
some nodes, which significantly stretched the execution on these
nodes. This suggests future work to improve the scalability of PME
calculation, reduce the impact of system noise in the presence of
global barrier, and explore platform specific optimizations to work
around communication issues indicated by MPI_Iprobe.

5.3 Weak Scalability Results
Weak scalability, or how the computation time varies as a func-

tion of processor count for a fixed problem size per processor, was
measured to study performance of NAMD for a wide range of sim-
ulation sizes that grow proportionally to the number of processors.

Systems of 2, 6, 12, 24, 48 and 100 million atoms were simu-
lated using 341, 1024, 2048, 4096, 8192 and 16384 nodes, respec-
tively, possessing four cores per node. Results, shown in Figure 8,
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able memory per core in non-SMP case.

indicate that scaling up to 24M-atom systems on 4096 nodes main-
tains overall performance with only marginal increases of 2 mil-
liseconds(2%) in compute time per MD timestep. Scaling of 48-
million atoms to 8192 nodes leads to an approximate 7 millisecond
jump (5%) in SMP, which is better than a jump of 12 millisecond
(10%)in non-SMP cases. These benchmark time jumps per dou-
bling of processors is likely due to communication, such as that
involved in PME.

The 100-million-atom simulation only runs on 16384 nodes in
SMP mode, thanks to all the optimizations employed to reduce
memory footprint described in the paper. Note its performance is
only about 3% increase of benchmark time comparing with the 48-
million system on 8192 nodes, given that the 100M-atom system is
about 4% larger in size than the ideal weak-scaling system size as
96 million atoms on 16384 nodes.

Per-processor performance is well maintained under weak scal-
ing. The performance gap seen in Figure 8 between SMP and non-
SMP corresponds to the loss of 25% computation power as we ded-
icate one core out of 4 per node to communication in SMP.

6. RELATED WORK
Other scalable MD codes such as Blue Matter [8], Desmond [5],

Amber [7] and GROMACS [9] have not shown strong scaling
results for such a large molecule system as NAMD has done
in this paper. Work by Schulz R etc. [19] has shown how to
scale multimillion-atom systems on Jaguar and presented a 100M
peptide-water test system scaling up to 150K cores in a poster3.
While we share the similar viewpoint that PME is the potential bot-
tleneck on massively parallel supercomputers, our work actually
demonstrates an actual 100M-atom biomolecule simulation with
NAMD that scales upto 220K cores of full Jaguar machine with
and without PME.

Some MD codes such as Desmond uses pthreads to imple-
ment a capability for each process to distribute its work among
multiple threads in order to exploit multicore platforms. This
MPI+pthreads type of hybrid programming requires the application
developers to explicitly deal with multi-threading concurrency is-
sues of threads. In general, compared with the popular hybrid pro-
gramming approach including MPI+OpenMP [20, 12, 21] on SMP
clusters, our SMP model is supported under the message-driven
3http://cmb.ornl.gov/research/petascale-md/sc10_2.pdf

CHARM++ programming model. Application developers do not
have to write shared memory specific code, whereas the runtime
automatically optimizes message passing under the CHARM++ ab-
straction. Therefore, our approach is transparent to the application
developers.

7. CONCLUSION
Biophysical molecular dynamics simulations present a vibrant

research area capable of leveraging the opportunities presented by
ever more powerful parallel machines. Providing application sci-
entists with appropriate tools to explore larger biomolecular struc-
tures is a challenging task that we think is best met by an interdis-
plinary team willing and capable of examining the computational
challenges at multiple levels, including application specific algo-
rithms, communication runtime software, and hardware analysis.

In this paper, we demonstrated that a mature application can be
extended to support a two order of magnitude increase in problem
size. In the process of doing so, we showed that the application
performance can be improved by leveraging awareness of physical
locality within a node to reduce the memory footprint and to min-
imize intra-node communication. We also demonstrated the trade-
offs associated with different choices for the application of parallel
input and output techniques in the context of a mature application.

Using the SMP mode of CHARM++, we demonstrated that the
performance promise of shared memory multicore nodes can be
achieved by careful threading at the runtime level. In doing so we
demonstrated that this can be effectively utilized by a production
application to improve strong scaling without any programmatic
modifications. Combining the improvements in the runtime sys-
tem with those in the application presents a powerful synergistic
methodology for tuning applications to efficiently make use of the
entirety of two different modern petascale machines with 93% par-
allel efficiency for strong scaling of a 100 million atom benchmark.

We have demonstrated application improvements which open
up the possibility to apply all atom molecular dynamic techniques
to study the evolution of structures with hundreds of millions of
atoms. We anticipate that having applied these techniques to an
application familiar to many thousands of end user scientists will
facilitate deep and lasting insights. Though the resources to execute
those investigations are currently limited to a handful of machines,
the historical trends of high performance computing indicate that
the power that is rare today is fated to become relatively common
within a decade.
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