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Abstract—Motion compensation is one of the most compute-
intensive parts in H.264/AVC video decoding. It exposes massive
parallelism which can reap the benefit from Graphics Processing
Units (GPUs). Control and memory divergence, however, may
lead to performance penalties on GPUs. In this paper, we
propose two GPU motion compensation kernels, implemented
with OpenCL, that mitigate the divergence effect. In addition,
the motion compensation kernels have been integrated into
a complete and optimized H.264/AVC decoder that supports
H.264/AVC high profile. We evaluated our kernels on GPUs with
different architectures from AMD, Intel, and Nvidia. Compared
to the fastest CPU used in this paper, our kernel achieves 2.0
speedup on a discrete Nvidia GPU at kernel level. However,
when the overheads of memory copy and OpenCL runtime are
included, no speedup is gained at application level.

Index Terms—Motion compensation, GPU, H.264/AVC,
OpenCL.

I. INTRODUCTION

Currently H.264/AVC is one of the most widely used video
codecs in the world [1]. It achieves significant improvements
in coding performance compared to previous video codecs
at the cost of higher computational complexity. In addition,
the pursuit for higher resolution content leads to more com-
putational demand. Single-threaded performance, however, is
no longer increasing at the same rate and now performance
scalability is determined by the ability of applications to
exploit thread-level parallelism on parallel architectures.

Among different parallel processors, Graphic Processor
Units (GPUs) have emerged for general-purpose computing
in recent years. The general purpose programming models
such as CUDA [2] and OpenCL [3] further their popularity.
GPUs consist of multiple SIMD (Single Instruction Multiple
Data) engines that execute instructions in lock step. Applica-
tions with massive and regular parallelism can be executed
efficiently on GPUs. This motivates the use of GPUs for
accelerating video codecs.

The motion compensation stage in H.264/AVC takes a
significant proportion of decoding time [4]. The computational
complexity of motion compensation comes from the interpola-
tion filters that generate fractional samples. The interpolation
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is independent for each sample inside each frame, which fits
the GPU architecture well. In CPU optimized H.264/AVC
decoders, however, the kernels are executed on a macroblock-
by-macroblock basis in order to exploit data locality. GPUs,
nevertheless, are not appropriate for this fine-grain compu-
tation approach because of memory copy and kernel launch
overhead. As a consequence, an adaptation of CPU optimized
implementation is required to offload motion compensation
onto GPUs efficiently.

Although, motion compensation is parallel at the frame
level, the performance on the GPU may suffer significantly
when the threads operating in lock-step behave differently
due to control or memory divergence. Divergence might
appear due to the presence of multiple interpolation modes
per macroblock partition and their respective memory access
patterns. In order to mitigate the divergence effect we propose
different strategies for implementing the data loading and
computing phases of motion compensation.

The evaluation of the proposed motion compensation ker-
nels has been conducted on three different GPU architectures
in order to test and demonstrate the performance portability
of the OpenCL implementations.

Although the proposed GPU implementation obtains
speedup compared to an optimized CPU implementation at
the kernel level, when considering the overhead of memory
transfers and OpenCL runtime no performance benefits are
obtained. This paper provides a quantitative analysis of the
different sources of overhead (GPU architecture, memory, and
runtime system) and their impact in the complete application
performance. GPU video decoding can be effective only if
those bottlenecks are removed.

In summary, the main contributions of this work are:

• We propose novel motion compensation methods for
GPUs that mitigates the memory and control divergence
effects.

• We compare and analyze the performance of the pro-
posed algorithms on different GPU architectures.

• We integrate the GPU motion compensation kernel into
an optimized H.264/AVC decoder and make a complete
comparison against conventional CPU decoder.

The remainder of this paper is organized as follows. Sec-
tion II describes the related work. Section III introduces the
motion compensation in H.264/AVC. The proposed motion
compensation kernel for GPUs is presented in Section IV.
The experimental setup is presented in Section V and the
experimental results are presented in Section VI. Finally, the
conclusion is drawn in Section VII.
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II. RELATED WORK

Video decoding can be offloaded to GPUs using either
the dedicated hardware accelerators or the programmable
cores. Although custom hardware accelerators are more en-
ergy efficient they lack flexibility since the function is hard-
wired for specific codecs. In addition, they require the use of
proprietary APIs that leads to poor portability. To overcome
these drawbacks, we choose a more flexible software-based
solution with the portable OpenCL programming model.

Regarding the software-based motion compensation imple-
mentation on GPUs, Shen et al. [5] adopted a divide-and-
conquer method in which blocks with the same interpolation
mode are batched and executed with mode specific kernel for
motion compensation of Microsoft proprietary codec WMV-
8. Pieter et al. [6] employed a similar idea to offload the
motion compensation in H.264/AVC onto GPUs using CUDA.
However, this strategy requires extra mode-location mapping
buffers to indicate the positions of the blocks with the same
interpolation mode. As the position of the block is indicated
at 4×4 block level, the size of these buffers in total will go
up to 1/16 of the entire frame. Transferring these buffers from
CPU to GPU will increase the memory copy overhead. Fur-
thermore, multiple kernel launches are required per frame for
the interpolation of one direction. For bi-directional predicted
B frames, because the prediction modes of the two directions
are not necessary the same, another round of kernel launches
is required and the predicted result of one direction has to be
stored in off-chip memory. This increases the kernel launch
overhead to a great extent and introduces long latency memory
access when merging the prediction results of B frames.

Comparatively, in our proposed solution, first, no extra
mapping buffers are required, which reduce the memory copy
between CPU and GPU. Second, only one kernel launch is
required to process the entire frame, which minimizes the
kernel launch overhead. Third, for B frames, we process bi-
directional prediction in one complete kernel and store the
intermediate results in on-chip local memory, which greatly
reduces the cost for results merging. Finally, our motion
compensation kernel has been integrated in a complete and
optimized H.264/AVC decoder and evaluated in multiple GPU
architectures.

III. MOTION COMPENSATION IN H.264/AVC

Motion compensation is a block-based inter-prediction tech-
nique that predicts samples in current frame from previously
decoded reference pictures. A tree structured partition scheme
is adopted in H.264/AVC, varying from 16×16 down to 4×4
blocks. Each macroblock can have one of the following 4
partitions: 16×16, 16×8, 8×16, and 8×8. If 8×8 partition is
chosen, it can have smaller partitions, namely, 8×4, 4×8, and
4×4 [1].

The samples within a partition are predicted from an area
in a reference picture. The reference pictures are organized
as reference picture lists and can be specified by a reference
index. The location of the reference area is indicated by a mo-
tion vector. The resolution of luma motion vectors is quarter
pel. Therefore, the luma motion vector may point to integer,
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Fig. 1: FIR filter for half pel and dependencies for quarter pel

half-pel, and quarter-pel positions. For integer position, the
predicted partition is a copy of the referenced partition. For
half-pel positions, the predicted pels are interpolated using a
six-tap Finite Impulse Response (FIR) filter based on integer
pels, either horizontally or vertically, as shown in Figure 1a
and 1b, respectively. For the horizontal-vertical half pel as
shown in 1c, the FIR filter needs to be applied twice. For
quarter-pel positions, a bi-linear filter is applied based on pels
at integer- and half-pel positions. The dependencies of quarter-
pel to integer- and half-pel are shown in Figure 1d. In total,
there are 16 different interpolation modes as indicated by the
dashed rectangle.

For the chroma components eight-sample resolution vectors
are used. Interpolated samples are generated using linear
interpolation, which is much less computational intensive than
the luma interpolation [1].

IV. OFFLOAD MOTION COMPENSATION ONTO GPUS

This section starts with the code adaptation for the CPU-
GPU integrated decoder. Afterwards, the motion compensa-
tion kernel’s thread mapping and kernel design are presented.

A. A Hybrid CPU-GPU Decoder

Our baseline is an optimized CPU decoder [7] with entropy
decoding and reconstruction decoupled on frame level. After
entropy decoding, all the decoding kernels for reconstruction
are applied in a single decoding loop on macroblock-by-
macroblock basis. This approach results in high performance
on CPUs due to the exploitation of data locality. GPUs,
however, requires more data to benefit from its throughput
oriented design. Therefore, motion compensation has been
redesigned to be applied on frame level and the modified
decoder consists of two parts, the motion compensation kernel
processed on the GPU at frame level and the remaining kernels
processed on the CPU at macroblock level.



1051-8215 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCSVT.2014.2344512, IEEE Transactions on Circuits and Systems for Video Technology

3

Frame→NDRange MB width

MB height

0 1 2 3 . . . . . . . . . . .15

thread.x

0

1

2

3

thread.y

MB→workgroup

Fig. 2: Motion compensation thread mapping to the output
frame and macroblock (MB) with NDRange and workgroup
configurations

B. OpenCL Thread Mapping

OpenCL uses a hierarchical data-parallel programming
model. At the top level, the global thread index space, termed
as NDRange, is divided into workgroups. Each workgroup is
further divided into workitems. Each workitem is an instance
of a kernel execution, i.e a thread [3].

For motion compensation, a hierarchically mapping is
adopted in which the entire frame is mapped to the NDRange,
and each macroblock is mapped to each workgroup, as shown
in Figure 2. A thread per column mapping is adopted in which
each column of 4 samples in the output block are computed
by one thread. Every 4 threads process an output block of
4×4 samples. Under this solution, a macroblock of 16×16
samples are processed by 64 threads, using a configuration
of 16 thread in the horizontal direction and 4 threads in the
vertical direction, as shown in Figure 2.

This mapping of 4 threads per 4×4 block is a tradeoff
between parallelism and load balancing. On the one hand, a
thread-per-sample mapping exposes the maximum parallelism.
Because of the 6-tap filter, however, for an output block of
4×4 samples the input reference block can be up to 9×9
samples. This difference in input and output block size poses
a challenge for a balanced thread mapping on GPUs. On the
other hand, a thread-per-block mapping, in which one thread
processes one block of 4×4 samples, can solve this load
imbalance, but this not only leads to more divergence, but
also exhibits less parallelism which is not optimal for GPUs.
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Fig. 3: High level overview of motion compensation workflow
for single-stage and multi-stage kernels on GPUs

C. Motion Compensation Kernel Design

The motion compensation kernel consists of three phases:
loading the reference data from memory, performing the
appropriate interpolation filter(s), and storing the interpolated
data back to memory. A straightforward approach (named
as “baseline”) to implement this kernel consists of having a
separated control path for each of the 16 luma interpolation
modes. In this implementation the load, interpolation and store
phases can have control divergence when partitions within a
macroblock smaller than 16×16 have different interpolation
modes. Control divergence results in serialized execution in
the GPU reducing the performance significantly.

As way to overcome the control divergence for the load
phase consists of creating a “shared load” phase in which
all the workgroup threads cooperate to load the data for
all the partitions inside a macroblock. In order to perform
the shared loading the kernel loads the reference samples
from global memory to local memory first, and then applies
the computation using a single-stage per interpolation mode,
as in the baseline case. We refer to this approach as the
single-stage mode. Although control divergence is reduced,
memory divergence might appear. If the motion vectors of the
macroblock partitions point to different reference areas, and
the hardware cannot coalesce the memory accesses, memory
diverge appears and causes stalls in the GPU cores reducing
the performance.

In the shared load phase the input reference block can be
up to 9×9 samples for each 4×4 output block. Horizontally,
because 9 samples can’t be evenly divided into 4 threads,
we load 16 samples in total for better alignment of 32-bit
memory access. Vertically, the horizontal process is repeated
row-by-row. After the load phase a synchronization operation
is required because the thread mappings of the load phase and
the compute phase are different.

The single-stage approach reduces the control divergence
of the load phase but can have control divergence in the
computation phase for small macroblock partitions, if those
have different interpolation modes. A way to mitigate this
control divergence consists of reducing the number of control
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paths used for the interpolation modes. Because some modes
share the same computation it is possible to decompose each
mode into finer stages and exploit the shared ones to reduce
the number of control paths. We refer to this as the multi-
stage mode. In this mode control divergence is minimized at
the cost of adding some overhead, because, in some cases, the
multi-stage performs more operations than necessary.

Figure 3 shows the high level overview of workflow for
single- and multi-stage kernels. These two approaches only
differ in the implementation of the computation phase. When
the computation phase is finished, the interpolated samples
are first stored to an output buffer for weighted prediction. If
the mapped block is enabled for bi-directional prediction, the
load and compute phases are repeated for the other direction,
otherwise, the weighted prediction is applied to obtain the
result samples. Finally, the result samples are stored back to
global memory.

Figure 4 shows the complete 5 stages of multi-stage kernel
for one output 4×4 block. For every stage, 4 threads process
one row of consecutive 4 samples and repeats row by row
to produce a block of samples. The Copy stage copies the
original integer samples (from column 0 to 3) to another buffer
Buf F. Afterwards, according to the mode, stages of Filter
H, V, HV perform the interpolation for horizontal, vertical
and horizontal-vertical half pels, respectively. The results are
stored accordingly to Buf H, Buf V, and Buf HV. The dashed
lines of these stages indicate that they are optional. The
predicted values in one (for half and integer pel) or two buffers
(for quarter pel) of Buf F, Buf H, Buf V, and Buf HV are
then applied by the bi-linear filter to obtain the quarter pel
in stage Quarter. Table I summarizes the stages required for

TABLE I: Stage taken by each mode

Mode Stage
xy Copy Filter H Filter V Filter HV Quarter
00 X X
10 X X X
20 X X X
30 X X X
01 X X X
11 X X X X
21 X X X X
31 X X X X
02 X X X
12 X X X X X
22 X X X X
32 X X X X X
03 X X X
13 X X X X
23 X X X X
33 X X X X

each mode, where the “X” represents a stage hit.
For the store phase, we found that in some architectures

32-bit memory accesses to global memory are much faster
than 8-bit ones [8]. Therefore, all kernel implementations has
a unified store phase. We change the thread mapping to store 4
consecutive samples to global memory, thus a synchronization
is applied before the store phase.

V. EXPERIMENTAL SETUP

We carry out our experiments on three different platforms.
The GPUs, as well as their system configuration are listed in
Table II. The PE/CU indicates the processing element number
per compute unit. The Quadro 3000M is a traditional discrete
GPU which is connected via PCI Express, while the HD4000
and HD7500G are integrated on the same die as the CPU.
The CPUs with integrated GPUs had the their Turbo Boost
(TB) frequencies enabled during the evaluation as they could
not be easily disabled. The OpenCL decoder source code is
available at [9].

For the evaluation we selected four (1920×)1080p
videos (blue sky, park joy, pedestrian area and riverbed)
from Xiph.org [10] and two (3840×)2160p videos
(Lupo candlelight and rain fruits) from EBU UHD-1
Public Test Set [11]. All videos are encoded using x264 [12]
with the “Constant RateFactor” (referred to as CRF) encoding
mode. To cover a wide range of bitrates, these videos are
encoded using 9 CRF values ranging from 12 to 52. All
partition sizes are enabled, as well as the weighted prediction
and intra-prediction in P and B frames. The number of
reference pictures is set up to 16. Figure 5 shows the bitrates
of all the encoded sequences.

VI. EXPERIMENTAL RESULTS

In this section, the divergence cost is investigated first, then
proposed kernel performance on GPUs is evaluated. Finally,
the performance of hybrid CPU-GPU decoder is presented.

A. Effectiveness of Divergence Mitigation

To evaluate the effectiveness of divergence mitigation
techniques of the proposed kernels we conduct a series of
experiments using a real video with synthetic interpolation



1051-8215 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCSVT.2014.2344512, IEEE Transactions on Circuits and Systems for Video Technology

5

500

600

12 17 22 27 32 37 42 47 520
30
60
90

120
150
180

CRF

B
itr

at
e[

M
bp

s]

1080p: bluesky
1080p: parkjoy
1080p: pedestrian
1080p: riverbed
2160p: lupocandle
2160p: rainfruits

Wg

Fig. 5: Bitrate across CRFs for 1080p and 2160p videos

TABLE II: Multiple system configurations

GPU Quadro 3000M HD4000 HD7500G
Vendor Nvidia Intel AMD
Compute Unit 5 16 4
PE/CU 48 8 64
Freq(MHz) 900 350(1050 TB) 327(424 TB)
Mem BW(GB/s) 80 25.6 21.3
Integrated GPUs? No Yes Yes
CPU i7-2760QM i5-3317U A6-4455M
Vendor Intel Intel AMD
Cores 4 2 2
Freq(GHz) 2.4(TB off) 1.7(2.6 TB) 2.1(2.6 TB)
Mem BW(GB/s) 25.6 25.6 21.3
OS ubuntu 12.10 windows 7 windows 7

modes. As base we use the pedestrian 1080p sequence with
only 16x16 partitions. We arbitrarily modify the fractional
and integer parts of the motion vector to artificially create
8×8 and 4×4 partitions. The performance of the proposed
kernels on three GPUs across different branch configurations
are presented in Figure 6. The notation of “F” and “I” indicate
the modification to the integer and fraction part of the motion
vector, respectively. In “I+F” both the integer and fractional
parts are different.

The execution time of the baseline kernel increases with
the amount of divergence on the Nvidia and AMD GPUs.
The single-stage mitigates the control divergence for the load
phase. An execution time reduction can be seen in both
4×4 and 8×8 configurations. The multi-stage decreases the
execution time for the 4×4 configurations only. At 8×8F,
the divergence mitigation benefit is counter balanced by the
additional local memory data copies performed in the multi-
stage approach.

For Intel GPU, the multi-stage approach has no advantage
over single-stage with branch divergence configuration. This is
attributed to the divergence optimization called “Basic Cycle
Compression” for the Intel GPU [13]. Within this approach,
if 4 contiguous workitems are not divergent within a warp
(either 16 or 8 workitems), the inactivated cycles caused by the
divergence within the warp can be compressed. This capability
results from the difference between the warp size and the
SIMD width of compute unit (4 workitems). The compute unit
executes a maximum of 4 cycles for one warp. If inactivated
cycles caused by the divergence are detected, they can be
skipped by the compute unit. For the baseline kernel, the size
of warp reported from the profiler is 8 workitems instead of
16, such as that in single stage and multi-stage. This increases
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Fig. 6: Branch and memory divergence analysis for baseline,
single stage, and multi-stage kernel using 1080p pedestrian
video encoded with 16x16 partition only

the overhead of task-switching and may be one of the reason
for its low performance.

B. Performance Using Real Videos

Figure 7 shows the results of kernel execution on GPUs
and CPUs across all CRFs for two resolutions. The execution
time includes both luma and chroma part. The chroma part
takes up 36%, 29%, and 49% of the kernel execution time
on GPUs from Nvidia, AMD and Intel, respectively. Because
the chroma motion compensation is identical in both single-
and multi-stage approaches, the execution time differences are
only caused by the luma motion compensation.

Comparing the 1080p and 2160p results shows in general
a similar behaviour for all configurations, only the execution
time is 4 times higher for 2160p compared to 1080p due to
4× the number of pixels. With higher CRF, the execution
time decreases because at lower bitrates more macroblocks
are encoded into 16x16 blocks, which results a higher SIMD
utilization. The performance change is more intensive with
bitrate for the CPU compared to the GPU, as for smaller
block sizes the CPU implementation processes them one-by-
one sequentially with more call and loop overhead and a lower
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Fig. 7: Motion compensation time cost per frame across CRFs for 1080p and 2160p videos

SIMD vector utilization. The GPU execution time is more
stable because the entire macroblock is executed in parallel
independent of the block partitioning.

The speedups of the single stage over the multi-stage
approach are presented in Table III for the evaluated CRF
values. The single-stage kernel outperforms multi-stage in all
cases because in real videos most of the macroblocks are
16×16 for 1080p and 2160p resolutions, as indicated by the
average block size in samples in Table III. The maximum
average block size is 256 samples in which all macroblock
have a single 16×16 partition. For the speedup results only
the luma execution time is considered, because the chroma
execution time is identical.

Even for videos at CRF 12 in 1080p the average block
size is 166.4 samples, which indicate that the block sizes
are still fairly large. Because the multi-stage approach only
performs better with 4x4 partitions and the maximum ratio of
4x4 block is only 8.93% found in any video, the single stage
approach performs better for all tested videos. The multi-stage
approach does have a lower worst-case complexity, and might
be favored for its more consistent performance with outlier
videos.

When comparing different GPUs the performance of mo-

TABLE III: Speedup of single stage over multi-stage kernel
across CRFs for 1080p and 2160p videos

CRF 1080p 2160p 1080p 2160p
Nvidia AMD Intel Nvidia AMD Intel AVG block size

12 1.21 1.06 1.27 1.22 1.08 1.35 166.4 190.0
17 1.23 1.09 1.28 1.27 1.13 1.28 191.6 233.2
22 1.25 1.11 1.28 1.29 1.15 1.37 213.3 249.0
27 1.26 1.12 1.29 1.29 1.15 1.36 226.3 253.2
32 1.27 1.13 1.33 1.29 1.15 1.35 238.4 254.6
37 1.27 1.14 1.27 1.30 1.15 1.35 247.9 255.1
42 1.28 1.15 1.35 1.30 1.14 1.34 252.1 255.5
47 1.29 1.16 1.33 1.30 1.14 1.33 254.3 255.9
52 1.29 1.15 1.34 1.30 1.14 1.32 254.2 255.8

TABLE IV: Percentage of mode 00 across CRFs for 1080p
and 2160p videos

CRF 12 17 22 27 32 37 42 47 52
1080p 11.5 17.3 21.2 24.8 30.9 40.5 51.0 60.4 72.5
2160p 33.9 53.8 61.7 68.5 77.6 72.9 86.4 75.9 90.9

tion compensation varies significantly. When considering the
kernel only execution time the discrete Quadro GPU is the
fastest platform, which is expected because of the higher
computational capabilities. The single stage kernel achieves
2.34 ms per frame on average for 1080p, which is also 2.0×
faster compared to the i5-3317U and i7-2760QM CPUs.
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The execution time of the complete GPU motion com-
pensation is significantly higher because it also includes the
OpenCL buffer copy and command overhead. The OpenCL
runtime overheads take 37% to 57% of motion compensation
time on Quadro and HD7500G. On the HD4000 the overhead
percentage is much lower, because the kernel execution time
is much higher. Even for this platform the overheads are
equivalent to the complete motion compensation time using
the CPU solution. For the integrated GPUs the memory copy
overhead is already optimized using zero copy [8]. For discrete
GPUs, the memory copy overhead can only be reduced using
asynchronous execution, which as we will show in the next
section has moderate performance impact. Unless the OpenCL
runtime overheads are significantly reduced GPUs cannot be
efficiently used for video decoding applications in general.

Not only OpenCL runtime overheads need to improve for
making a GPU offloaded video decoding solution feasible,
though. For all 3 GPUs also the motion compensation kernel
cannot efficiently use the available hardware resources. This
is most prominent in the Intel HD4000 GPU as the execution
time is 3 times higher than the comparable AMD 7500G
GPU. We found that the main bottleneck is the local memory
is very slow when using 8-bit operations. We tested the
bandwidth of local memory using the sample benchmark
“LDSBandwidth” [14]. With 32-bit memory access per thread,
the read and write bandwidth of local memory is 86.3GB/s
and 66.6GB/s, respectively. If we use 8-bit memory access,
such as used in our kernel, only 7.9GB/s and 8.0GB/s are
achieved for read and write, respectively. The performance on
the HD4000 is further reduced due its lower performance for
integer codes. In the HD4000, each compute unit has two 4-
wide vector ALUs (Arithmetic Logic Units) and the second
ALU is available only for floating point operands [15]. For
the AMD HD7500G GPU the processing element is a four-
way VLIW (Very Long Instruction Word) processor [8]. To
attain high performance, instruction level parallelism (ILP) is
required within each workitem so that the compiler can pack
independent instructions to fill the VLIW slots. The proposed
kernels process four samples per thread hence the compiler
can unroll all loop statement to exploit ILP. Despite this a
packing efficiency of only 50% for both single and multi-stage
implementation is reported indicating that on average only two
of the four VLIW slots are used. The packing efficiency is
hindered by the condition statements for mode detection.

The Nvidia Quadro GPU using the Fermi core architecture
seems to be the most suited architecture for motion compen-
sation. Using the Nvidia profiler, however, we measured that
around 57% of GPU issue cycles are utilized on average for
the motion compensation kernel. Idle instruction issue cycles
occur when their is not a free wavefront/warp available to
schedule from. This mainly occurs when insufficient wave-
front/warps are scheduled on a GPU compute unit, and also
is the case for the Quadro GPU with only half of the possible
warp slots filled on average. More warps cannot be kept in-
flight, because only a maximum of 8 workgroups can be
scheduled on a Fermi GPU and also the amount of local
memory is insufficient for having more than 8 workgroups

in-flight. This occupancy problems is also a concern for the
AMD and Intel GPUs, but due to their other architectural
limitations less noticeable in their overall performance.

C. Performance of hybrid CPU-GPU decoder

In order to evaluate the performance of the decoder with
motion compensation offloaded onto the GPU, four versions of
decoder are developed, all configured with SIMD acceleration
for CPU. The first one (CPU-BASE) is the baseline optimized
CPU decoder; the second one (CPU-MC) is the CPU decoder
with frame-level decoupling, which is used to estimate the
losses of data locality; the third one (GPU-MC-S) offloads
motion compensation onto GPU and executes the luma and
chroma kernel in synchronous mode; the last one (GPU-MC-
A) executes luma and chroma kernel in asynchronous mode
to overlap the kernel execution of luma and memory copy of
chroma. The GPU kernel with the faster single stage imple-
mentation is selected for this experiment. The breakdown of
the decoding time is presented in Figure 8. Others includes
H.264/AVC parsing and OpenCL environment building time
(GPU version only). Entropy refers to the entropy decoding
time. MC not only include kernel execution, but also the
offloading overhead (memory copy and OpenCL runtime), as
shown in decomposed MC-kernel and MC-overhead in version
GPU-MC-S. REC represents the time for reconstruction and
motion compensation time is excluded for decoders with
motion compensation decoupled.

Because of decreased data locality, the performance of
the decoder with motion compensation decoupled on CPU
is lower, with up to 9% for 2160p on i7-2760QM. In addition
to the reduced data locality when offloading the motion
compensation kernel, the overhead the OpenCL runtime is
the main source of inefficiency. Asynchronous execution is an
effective optimization for Quadro. It outperforms synchronous
execution by 4% and 8% at decoder level for 1080p and
2160p, respectively. Overall no significant speedup is achieved
and often a slowdown is observed on the overall application
performance when offloading the motion compensation to the
GPU.

VII. CONCLUSIONS

In this paper we evaluate the performance of offloading
the H.264/AVC motion compensation onto GPUs. We pre-
sented several kernel designs to reduce the control divergence
performance penalty. For real H.264/AVC videos, the kernel
with more limited divergence mitigation actually outperforms
the one with full divergence mitigation, because big blocks
dominate in high resolution video.

Due to both architectural and OpenCL runtime limitations,
however, the GPU solutions are still outperformed by the
single-threaded highly optimized CPU SIMD decoder. Control
divergence, in literature often described as the most limiting
factor of GPUs, is not one of the limitations but can be
mitigated with a proper motion compensation kernel design.
Other obstacles towards accelerating parallel kernels that do
not have highly computationally intensive floating calculations
on the GPU, however still remain. The high OpenCL overhead
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Fig. 8: Decoder time breakdown on three platforms

and low level GPU architectural limitations often are the
main performance bottlenecks. GPU architecture, runtime, and
programming models, however, are currently evolving fast and
are expected to become more general purpose and more suited
for video decoding applications.
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