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Due to the enormous complexity of proteomeswhich constitute the entirety of protein species
expressed by a certain cell or tissue, proteome-wide studies performed in discovery mode are
still limited in their ability to reproducibly identify and quantify all proteins present in
complex biological samples. Therefore, the targeted analysis of informative subsets of the
proteomehas been beneficial to generate reproducible data sets acrossmultiple samples. Here
we review the repertoire of antibody- and mass spectrometry (MS) -based analytical tools
which is currently available for the directed analysis of predefined sets of proteins. The topics
of emphasis for this review are Selected Reaction Monitoring (SRM) mass spectrometry,
emerging tools to control error rates in targeted proteomic experiments, and some
representative examples of applications. The ability to cost- and time-efficiently generate
specific and quantitative assays for large numbers of proteins and posttranslational
modifications has the potential to greatly expand the range of targeted proteomic coverage
in biological studies. This article is part of a Special Section entitled: Understanding genome
regulation and genetic diversity by mass spectrometry.
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1. The complexity of proteomes: the boundary
condition for proteomics

In the 1990's, the cellular proteome was defined as the
entirety of proteins expressed by a particular cell under
specific conditions [1]. Although this is a generally accepted
concept, there are still numerous knowledge gaps regarding
the actual composition of proteomes. The number of protein
species constituting a prokaryotic or eukaryotic proteome is
dependent on at least three different cellular mechanisms:
i) regulation of gene expression, ii) post-transcriptional
events, iii) post-translational modifications of proteins. De-
termining the composition of cellular proteomes requires a
comprehensive knowledge of those three mechanisms, with-
out which attempts to define any proteome a priori will fail.

The gene-centric view expresses the simplest layer of
proteomic complexity. It depends on experimental evidence
that a certain open reading frame (ORF) predicted from the
genome is indeed transcribed and translated into a protein.
However, accurate gene identification in eukaryotic genome
sequences is technically challenging, no single method has yet
been able to exhaustively achieve it, and the number and type of
genepredictionalgorithms is still evolving, as is theannotationof
the genomes [2–4]. For multicellular eukaryotic species, the
number of proteins constituting the proteome is larger than the
number of predicted ORFs because many multi-exon genes are
able to produce at least two differently splicedmRNA transcripts
by alternative splicing of pre-messenger RNA [5,6]. Exon rearran-
gement from primary transcripts [7] has the capacity to expand
the cellular protein productswith altered structure and biological
functions [8–10]. In humans, at least 50,000 splice variants have
been known to be transcribed, and this number is certain to grow
asmore advanced analytical methods become available. Further
layers of complexity consist of single nucleotide polymorphisms
(SNPs) that can lead to an amino acid mutation in the resulting
protein. SNPs are the most common type of genetic variation
among populations of individuals. Non-synonymous SNPs
(nsSNPs) in protein-coding regions can explain half of the
known genetic variations linked to human hereditary diseases
[11] and can also influence post-translational modifications of
proteins (PTMs) such as phosphorylation [12]. Large-scale
polymorphism surveys have been recently published for
Saccharomyces cerevisiae [13], Arabidopsis thaliana [14], and Mus
musculus [15]. Initial results of the 1000 Genomes Project, an
international project aiming to characterize human variation
(1000 Genomes Project Consortium, 2010 [16]) have identified 15
million SNPs, 55% of which are novel, over 1 million indels and
more than 20,000 structural variants.

An additional level of proteome complexity is provided by
the post-translational modification (PTM) of proteins. PTMs
are enzymatic processing events which can consist of either
the proteolytic cleavage of the target protein or the chemical
modification of a single or several amino acids. Frequently
studied examples of PTMs include phosphorylation, glycosyl-
ation, methylation, acetylation, ubiquitination and lipidation
[17]. Today we count at least 200 different types of PTMs, and
conservative estimates suggest that each protein can be
modified by about 10 different PTMs [18]. Only considering
phosphorylation, the most extensively studied PTM, as an
example, more than 500,000 sites are predicted to exist in the
human proteome [19].

While the proteome of a cell is complex, it is not static. The
cell changes the proteome in response to stimuli, including a
myriad of environmental factors, and therefore the expressed
cellular proteome is difficult to predict. Both the complexity and
transient nature of proteomes complicate their study. New
technological developments continue to incrementally increase
the fraction of a proteome that can be measured, but its
character of constant change precludes the definition of a fixed
endpoint of protein identification, implying that at present all
proteomic studies must be considered incomplete [20]. It is
therefore an important intermediate goal to at least strive for the
conclusive and reproducible detection and quantification of
predetermined sets of proteins or subproteomes, the selection of
which is driven by biological and clinical questions.

Over the last two decades, the genomes of several eukaryotic
organisms, including Homo sapiens, have been sequenced. From
these sequences, the protein coding genes that are potentially
transcribed and translated can be computationally predicted.
The early gene prediction algorithms predicted 25,000–30,000
protein-coding genes in the human genome [21]. This number is
significantly lower than the one estimated not long before the
end of the genome sequencing project (80,000–140,000 genes)
[22]. Furthermore, the initial estimate derived from the human
genome sequence has been further revised downward. Current
estimates assume that thehumangenomecontains about 21,000
annotated protein-coding genes (Ensemble rel.64 [16]), the
genome of the nematode Caenorhabditis elegans contains about
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23,500 (Wormbase WS228 release [23]) and that of Drosophila
melanogaster about 14,000 (BDGP rel. 5.25 [24]). These numbers are
in the same range as for the human species. Therefore, it is
apparent that the number of genes or the size of the genome
cannot be used as parameters to judge the complexity of an
organism [25]. Rather, the biological complexity seems tomainly
depend on different mechanisms, including those that govern
gene regulation and gene expression within species [26,27] and
on the combinatorial association of individual proteins into
functional protein complexes ormodules [28]. A single gene can
lead to a large number of different protein products, and this
multiplicity is an additional mechanism to increase the pool of
proteins generated by a genome. This is true both at the level of a
population due to the prevalence of single nucleotide polymor-
phism (SNPs) and at the level of each individual member of a
population, due to alternative transcript splicing and differential
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While the analysis of the proteome in its full complexity
remainsa daunting analytical challenge, there isnowayaround
proteome studieswithin the framework of basic and applied life
science research. This is mainly because of the biological and
therapeutic importance of proteins, their organization into
functional modules, pathways and networks that catalyze
biochemical reactions and regulate essentially all biological
processes and the fact that neither the presence or the
abundance or activity of a protein can be predicted from
genomic information. Therefore, the availability of tools for
the accurate and comprehensive detection and quantification
of cellular proteomes or defined subfractions thereof, is an
essential target for life science research [31,32].
2. Methods used in proteome research

2.1. Introduction to proteome analysis strategies

The importance of proteome analysis in the life sciences
accelerated the development of different analytical tech-
niques for the detection and quantification of proteins.
These analytical tools can be distinguished as i) methods for
proteome discovery and ii) methods for the reproducible
detection and quantification of subproteomes.

Affinity-based approaches and mass spectrometry-based
techniques represent the preferred methods currently used
for proteome investigations (Fig. 1). Traditionally, detection
and quantification of proteins has been performed using
antibody-based techniques such as Western blotting (WB),
immunofluorescence (IF) or immunohistochemistry (IHC).
The high specificity of antibodies and the sensitivity of the
measurement methods enable the detection of low abundant
protein species in complex backgrounds. With the advent of
proteomics, the measurement of proteins by affinity-based
methods has been scaled up. Using any one of several
antibody array-based techniques, thousands of proteins can
be detected and quantified with high reproducibility. Projects
such as the Human Protein Atlas aim at creating a collection
of antibodies against all human proteins [33]. Today the
Human Protein Atlas database contains antibodies for the
protein products of more than 11,000 genes and for a fraction
of them also data regarding the localization of the antigen in
cells or tissues [34]. At present, also new affinity based binding
reagents based on proteins, peptides and nucleic acids are
being developed that expand the range of available affinity
reagents and their use [35]. However, despite the enormous
success achieved with affinity reagent based-methods over
the years, the definitive validation of these reagents and their
routine implementation in specific assays usually requires
months or in same cases, specifically in clinical research, even
years [35–38]. Indeed, measurement of kinetic parameters
such as association and dissociation rates, epitope specificity,
selectivity and cross reactivity are essential to define the
quality of the reagents, and so far there is no method with an
appropriate throughput to measure any of those on a whole
proteome scale [37].

Mass spectrometry-based proteomics has emerged as an
alternative approach to affinity reagent-based methods for
the detection and quantification of the components of a
proteome [39]. Similar to the situation for proteomics based
on affinity reagents, several mass spectrometry-based strat-
egies have been developed, each one with its particular
performance profile [40]. Today, the two major approaches
used for proteome investigation are referred to as shotgun (or
discovery) and targeted mass spectrometry, respectively [40].
The two methods are identical in the sample preparation
steps upstream of injecting the samples into the mass
spectrometer. First, the proteins, either in a gel or in solution,
are digested with one or more proteases, and the resulting
peptides are separated by liquid chromatography. The pep-
tides eluting from the column are usually ionized by electro-
spray ionization (ESI) and injected into the mass spectrometer
[41,42]. Less frequently, the peptides are spotted on the
sample plate of a Matrix-Assisted Laser Desorption Ionization
mass spectrometer (MALDI-MS), a method that is not further
discussed here [43]. The resulting precursor ions are guided
trough the mass spectrometer by electric or magnetic fields
before they are detected. Despite those similarities in sample
preparation, the two ESI-MS-based proteomic strategies differ
in the manner in which the mass spectrometer operates. In a
shotgun experiment, the mass-to-charge ratio of peptide ions
is intermittently recorded during the course of the experiment
to generate a mass spectrum often referred to as a survey
scan. After each survey scan, shotgun instruments select and
isolate peptide ions using a simple abundance-guided heuris-
tic and subject them to fragmentation. This approach is
known as product ion scanning and requires the employment
of fast scanning analyzers, often ion traps, to rapidly complete
each cycle and to aim for a comprehensive fragmentation of
all peptides ions obtained by an enzymatic digest of cellular
proteomes [40]. This measurement scheme is called data-
dependent acquisition (DDA) because peptide fragmentation
is guided by the abundance of detectable precursor ions. The
recorded fragment ion spectra and the corresponding precur-
sor masses are then used by protein database search
algorithms to infer the sequence of the peptides and the
identity of the protein from which they are derived (Fig. 2).
Shotgun mass spectrometry is also typically referred to as a
discovery method. This is because the selection of the
fragmented peptide ions does not involve any prior knowl-
edge about the composition of the sample.

Shotgun mass spectrometry is mostly used for discovery
and large scale mapping of cellular proteomes and has been
employed for proteome analysis of both prokaryotic and
eukaryotic cells, and tissues [18,40]. Today modern mass
spectrometers optimized experimental protocols and mature
software tools for error-rate controlled data analysis enable
the identification of large fractions of proteomes. However,
the stochastic sampling of this technique affects the repro-
ducible detection of proteins between different experiments.

In contrast, targeted mass spectrometry identifies only
predefined set of peptides. At present, the most widely used
targeted mass spectrometry technique is Selected Reaction
Monitoring (SRM) [44]. It uses the capability of triple quadru-
pole mass spectrometers to act as ion filters. In an SRM
experiment, a specific precursor ion is preselected in the first
(Q1) analyzer, fragmented by collision-activated dissociation
(CAD) in the second quadrupole (Q2) and one or several of its
fragments are specifically measured by the second mass
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analyzer (Q3) as a function of time. Detection of peptide/
fragment ion pairs over time produces chromatographic
peaks indicative of the presence of a specific peptide. As the
fragment ions of the targeted precursors are monitored
constantly during the course of the experiments, the method
is not data-dependent. It has an improved limit of detection
and extended dynamic range of analysis compared to
discovery methods, in part because the targeted precursor
ion does not have to be explicitly detected above the noise.
However, the technique focuses on the detection of a
predefined set of peptide candidates for which the charge
states, chromatographic retention time and the relative
product ion intensities need to be known prior to the
measurement [40,44]. SRM has the ability to systematically
detect predefined sets of proteins in complex samples with
high reproducibility [20,40]. It is therefore frequently used in
systems biology and biomedical applications where the same
set of proteins has to be reproducibly measured in multiple
samples. In addition to DDA and SRM, there are several data-
independent acquisition (DIA) schemes, analytical strategies
that can broaden the scope of proteomic experiments as well.
These techniques are conceptually similar to precursor ion
scanning and fragment the entire population of present
precursor ions either completely without selection or by
cycling through the whole precursor m/z range in discrete
increments [45–48]. Because the link between precursor m/z
and fragment ion spectrum is lost in these acquisition
schemes, algorithms for peptide identification have to rely
on the chromatographic co-elution of signals stemming from
the same peptide. Alternatively, as exemplified by the
recently introduced SWATH-MS technique, fragment ion
maps generated by DIA methods can be searched by in silico
targeted data analysis strategies [46]. We will not discuss
these strategies further here and instead focus on SRM as a
targeted proteomic method.

2.2. Discovery proteomics — shotgun MS as a tool for
proteome discovery

In the early nineties, the introduction of shotgun mass
spectrometers in proteomic research and the rapid develop-
ment of quantitative approaches sparked enthusiasm in the
scientific community. The prospects were exciting: rapid
experiments, systems-wide analysis of proteins and PTMs,
accurate quantification in different cellular states. For a
significant period of time, shotgun proteomic studies aimed
to increase throughput and a cataloging phase soon began
that focused on identifying the largest possible number of
proteins and PTMs in microorganisms, cell lines and tissues.
Soon after their publication, the first high-throughput studies
attracted the critical attention of the scientific community
with respect to the confidence of the identifications of both
peptides and proteins. Different statistical methods were
developed to evaluate the false discovery rate (FDR) of mass
spectrometry-based proteomic measurements. Several groups
used a reverse database search strategy to derive a global
statisticmeasurement of the quality of peptide assignments for
a given dataset [49,50]. In this case, the MS/MS spectra are
searched against a composite database composed of the correct
protein sequences together with the reversed sequences, which
do not correspond to naturally occurring proteins and therefore
cannot be present in the sample. The assumptionsonwhich the
false discovery rates are estimated are: a) thematch of a MS/MS
spectrum to a reverse peptide is by definition incorrect, and
b) the frequency of incorrect assignments for a certain dataset is
the same for both the direct or reversed protein sequences in
the database [51]. Other methods to estimate the rate of false
peptide and protein identifications in proteomic experiments
such as the one implemented in the PeptideProphet software
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use statistical models to assign a probability of correctness for
each peptide identification [52]. In most proteomic strategies,
researchers are interested in the identificationof proteins in their
samples rather than just the MS-based peptide identifications.
To infer protein identities, the individual identified peptides
have to be grouped according to their corresponding protein
and a new FDR has to be computed at the protein level [53–55].
Today, proteome analysis tools for mass spectrometry-based
approaches have reached a high level of maturity, and the
continuing advances in the field are constantly improving the
quality of the published data [56].

2.3. Present status of proteome maps

The advent of proteomics created the basis for studying the
systems-wide effects of cellular perturbations such as kinase
inhibition or drug treatment in cellular systems [32]. The
enormous technological advances of discovery proteomics
over the last decade enabled the detection of a large fraction
of all the predicted proteins for different organisms, tissues or
cells, even though such measurements represent a significant
investment of time,money and require special instrumentation
and computational infrastructure. Despite significant proteome
identification success, comprehensive detection of all the
proteins in an organism remains a challenge, first for inability
to a priori know or predict the proteome of any cell [20], and
second, for technical limitations. It is expected that tryptic
digestion of a proteome can produce up to 1 million different
peptide species and sample complexity may be further artifi-
cially increased by the sample preparation protocols used prior
to mass spectrometry analysis. It has been demonstrated that
the actual number of peptides generated by tryptic digestion of
a protein sample exceeds the predicted number of fully tryptic
peptides by at least a factor of 10, mostly because of partially
tryptic peptides and missed cleavages [57]. The limited scan
speed of shotgun mass spectrometers prevents the sequential
fragmentation of the very large number of different peptides
typically obtained by the digestion of entire cellular proteomes.
This makes shotgun analyses incomplete as they typically
cover only a part of the proteomewith a bias towards abundant
peptides. To counteract this problem, scientists usually perform
extensive fractionation of proteomes to reduce sample com-
plexity. LC-MS/MS analysis of each fraction then cumulatively
achieves a more comprehensive detection of proteins that may
still not be sufficient to cover the whole proteome [18]. While
this strategy has proven very successful for increasing prote-
ome coverage, it also raises specific issues of error propagation.
We have recently shown that the combination of many LC-MS/
MS-derived datasets of peptide identifications bears the danger
of inflating the number of identified proteins unless special
precautions are being taken to control the FDR of protein
identification [53,54].

In Table 1 we list several organisms for which proteomes
were investigated in depth. The table reports proteome
coverage as the fraction of the identified proteins over the
predicted ORFs. While proteome exploration in unicellular
organisms almost reached saturation, the exhaustive prote-
ome mapping in multicellular organisms in which different
cell types express partially overlapping segment of the
proteome is more challenging. In two recent publications,
the proteome of two different mammalian cell lines was
extensively investigated by shotgun mass spectrometry
[58,59]. The two studies employed different protein extraction
protocols, protein fractionation methods and data analysis
tools [54,60,61] and both reached almost identical proteome
coverage. About 10,000 proteins were identified in two
different human cell lines with a similar false discovery rate
(FDR), suggesting that the two studies independently reached
the maximum number of detectable proteins with currently
available technologies. The limitation of current technologies
for proteome investigation appear even more dramatic when
we consider the number of splice variants and SNPs that could
be detected at the mRNA but not the protein level. The
difficulties of detecting SNPs and protein isoforms are due to
several factors. First, such protein species could be only
expressed in certain tissues at certain stages of development
or under specific cellular conditions, some of themmay not be
transcribed or have a shorter half-life. Second, they could be
only expressed in low quantities, and the detection of proteins
at low levels remains a challenge [20,62]. Third, the identifi-
cation of SNPs and protein isoforms by database search
algorithms suffers still of higher occurrence of false-positive
hits, which is especially problematic due to search space
inflation when large protein databases derived from multi-
frame translations of nucleic acid sequences are used.

Different groups have developed approaches for the
detection of protein sequence polymorphisms in shotgun
datasets. The strategies applied, include both the addition of
known SNPs to the sequence database used for protein
database searching [63,64] and more recently, filtering of
high-quality spectra with iterative searching of unassigned
spectra [65]. Bunger et al. [66] used a novel peptide prediction
algorithm and a decoy database based on random peptide
substitutions to find protein-coding non-synonymous SNPs.
The authors identified a total of 629 nsSNPs from shotgun
data of highly fractionated samples of human breast cancer
cell lines. Recently, two research groups detected alternative
protein isoforms for 53 genes in mouse [67] and for 150 genes
in human samples [68], again by searching large shotgun
datasets. Similar approaches have been used to identify splice
isoforms in Arabidopsis [69] D. melanogaster [70] and Aspergillus
flavus [71]. Recently Ning and Nesvizhskii [72] examined the
feasibility of using MS data for the identification of novel
alternatively spliced forms by searching MS/MS spectra, using
publicly available mouse tissue proteomic and RNA-Seq
datasets. The authors demonstrated a correlation between
the likelihood of identifying a peptide from MS/MS data and
the number of reads in RNA-Seq data for the same gene.
However, the number of novel peptides that were actually
identified from MS/MS spectra was substantially lower than
the number expected based on in silico prediction. Similar
approaches towards enhanced proteome coverage include
parallel RNA expression profiling [73,74] and the use of RNA-
Seq-derived customized databases for protein identification
to better approximate the proteome space actually present in
the samples under investigation [75]. The use of such sample-
specific databases can improve the proteome coverage by
enabling the identification of protein splice variants that may
not be covered by the context-independent protein sequence
databases which are derived from genome sequencing



Table 1 – Distribution of proteome coverage and predictions for several organisms.
Annotated protein coding genes for Homo sapiens, Mus musculus, Drosophila melanogaster and Arabidopsis thaliana include sequences whith at least one mach in sequence repositories external to
Ensembl. Protein coverage is calculated as the percentage of proteins identified in proteomics experiments over annotated protein coding genes. Annotated protein transcripts include all experimentally
derived protein-coding and splice-variants. Prediction of the protein coding genes was performed using the following algorithms: Glimmer [137] for Mycoplasma pneumoniae, Thermoplasma acidophilum,
Staphylococcus aureus and Leptospira interrogans serovar Copenhageni; Genescan [99] for Drosophila melanogaster, Mus musculus and Homo sapiens, FGENESH [137] for Arabidopsis thaliana and finally GeneFinder
(P. Green, unpubl.) for Pristionchus pacificus and Caenorhabditis elegans. Non-synonymous protein coding single nucleotide polymorphisms were derived from Ensembl Variation datasets. When several
cellular strains were available all were considered. Abbreviations used : CMR, Comprehensive Microbial Resource, SGD, Saccharomyces Genome Database.

Organism Proteins
identified

Annotated protein
coding genes

Proteome
coverage

Annotated protein
transcripts

Predicted protein
coding genes

nsSNPs
(source database)

Genomic
annotations source

Bacteria and archaea
Mycoplasma pneumoniae M129 620

Ref. [138]
688 90% – 779

(GLIMMER)
– CMR

Ref. [139]
Thermoplasma acidophilum 1025

Ref. [140]
1478 69% – 1630

(GLIMMER)
–

Staphylococcus aureus COL 1703
Ref. [141]

2681 63% – 2716
(GLIMMER)

–

Leptospira interrogans serovar
Copenhageni

2221
Ref. [141]

3660 61% – 4475
(GLIMMER)

–

Eukaryotes
Saccharomyces cerevisiae 4399

Ref. [142]
6696 66% 7130 7940

(GLIMMER)
64124
(SGRP)

SGD
rel. 64.10
Ref. [143]

Drosophila melanogaster 9263
Ref. [113]

13781 67% 23017 19437
(GENSCAN)

459982
(BDGP 5)

Ensembl
rel. BDGP 5.25
Ref. [16]

Pristionchus pacificus 4029
Ref. [144]

5211 77% 5211 24217
(GeneFinder)

– Wormbase
rel. W228 [23]

Caenorhabditis elegans 6779
Ref. [113]

23358 29% 29872 25391
(GeneFinder)

35483
(WS220)

Wormbase
rel. W220 [23]

Arabidopsis thaliana 13029
Ref. [145]

27299 48% 34183 23868
(FGENESH)

896537
(TAIR10)

Ensembl
rel. 64.10
Ref. [16]

Mus musculus 7686
Ref. [113]

22234 35% 44337 46375
(GENSCAN)

29373
(dbSNP128)

Ensembl
rel. 64.37
Ref. [16]

Homo sapiens 12141
Ref. [113]

20996 58% 72065 47019
(GENSCAN)

271732
(dbSNP135)

Ensembl
rel. 64.3
Ref. [16]
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projects. In several cases, large MS datasets were also
instrumental in improving genome annotation, specifically
the definition of ORFs by confirming annotated protein-
coding genes, correcting protein-coding gene annotations
and identifying novel protein-coding genes [76–84]. Overall,
while the existence of many differently spliced mRNA
transcripts is supported by several pieces of evidence such
as cDNA, EST sequence and by microarray data [85], the proof
of their translation in proteins by mass spectrometry has
generally remained difficult [10,69–72]. We think that the
analysis of splice variants andmutations affecting amino acid
sequences on the protein level is important, and that is not
sufficient to rely solely on genomic and transcriptomic data.
Only the protein analysis reveals whether the predicted
mutant proteins and isoforms are indeed present at detect-
able levels, and also allows quantitative comparisons of
expression levels of these variants which may have very
diverse biological functions.

The same limitations that exist for the detection of SNPs
and splice variants also challenge the comprehensive charac-
terization of PTMs on a proteome-wide level. PTMs are often
substoichiometric and therefore challenging to detect. Mass
spectrometry-based analysis of PTMs requires several steps to
be successful: first, the enrichment of the modified subpro-
teome consisting of the peptides carrying the specific modi-
fication of interest; second, the detection and identification of
the modified peptides in proteolytic digests; and third, the
unambiguous identification of the modified residue(s) within
the peptide/protein sequence. Advances in both, instrumen-
tation and enrichment protocols, resulted in the identification
of thousands of PTMs such as phosphorylation, acetylation
and methylation sites in different organism and tissues.
Today, enormous amounts of data are collected and repre-
sented in high quality publicly available databases such as
PhosphositePlus [86], Phosida [87] Phosphopep [88] or Uniprot
[89]. The PhosphositePlus database, for example, integrates
both low- and high-throughput data sources into a single
comprehensive resource. Today it contains more than
1,000,000 phosphorylation sites identified in different organ-
isms. The enormous amount of accumulated data stimulated
the development of several PTM predictor tools [90]. To name
a few, Scansite [91] predicts phosphorylation sites by search-
ing amino acid patterns corresponding to kinase consensus
motives in the protein databases, Phosida [87] offers predictor
tools for both phosphorylation and lysine acetylation, and
UbPred [92] is instead used to identify ubiquitination sites on
proteins. The overarching problem in PTM site predictions
from protein sequence is a high FDR that prevents us from
making accurate predictions on the extent of PTMs in a cell.
However, such predictors have proven to be useful tools for
the identification of the precise PTMs site when independent
experimental evidence is available.

The complexity of proteomes arising from cellular mecha-
nisms of protein expression and modification pose challenges
for the comprehensive detection of cellular proteomes. Very
often improvements in instrument performances, sample
preparation protocols and data analysis workflows enabled
the detection of increasing numbers of proteins. In this context,
approaches for the fast and targeted detection of newly
discovered proteins are becoming more and more important
as these will offer new tools to biologists for their functional
characterization in biological processes.

2.4. How to expand the proteomemaps by targeted analysis

Most large-scale proteomic studies have operated in a
continuous discovery mode, whereby overlapping segments
identified in proteome fractions have provided a bird eye's
view of the proteome expressed by different cells and
organisms. A different or complementary approach to in-
crease the detectable fraction of a proteome is to specifically
target protein species expected to be expressed by cell or
organisms. The cellular proteome could thus be “extrapolat-
ed” either by prediction of the expressed genes or by
experimental determination of gene expression, e.g. by deep
sequencing of mRNA transcripts. Gene finding is relatively
straightforward in prokaryotes because their gene structure is
simple, genomes are compact and void of introns, and
regulatory regions are well defined. Even for these simple
organisms though, shadow open reading frames (ORFs) exist
that can overlap with annotated genes in another reading
frame and thus escape detection. Gene prediction is more
challenging in eukaryotes because their gene structures are
more complex, mainly because of the presence of introns and
exons. Probabilistic algorithms such as GENESCAN [93],
GlimmerHMM [94], GeneMark [95] partition sequence seg-
ments into introns, exons and intergenic regions. Although
these methods can quite successfully predict protein coding
regions and individual exons, accurate prediction of the genes
structure still is a remaining challenge. Next generation
sequencing technology now provides efficient tools for
comprehensive exome, transcriptome and genome analyses
of uni- and multicellular organisms. RNA-Seq analysis and
the mapping of short sequence fragments onto the reference
genome identify introns, exons and their boundaries in a DNA
gene sequence, identify SNPs and recently it provided
evidence of novel RNA editing mechanisms [96].

While prediction of genes and splice variants and innova-
tive sequencing technologies are now able to reveal the
sequences of the different proteins potentially expressed in
a cell, the real challenge is now to use proteomics to prove the
value of these predictions at the protein level. Targeted
methods based on either affinity reagents or mass spectro-
metric measurements can be used for the detection of
predicted proteins or protein isoforms. This experimental
set-up differs from untargeted approaches for proteome
discovery since it is driven by the hypothesis that predicted
populations of proteins are expressed in defined cellular
conditions, even if they were never detected before probably
due to the sensitivity limits of protein detection approaches
used.

The important parameters which impact the success and
dissemination of targeted detection of proteins on the
proteome scale, are sensitivity, specificity, and throughput.
Furthermore, the time needed for reagent generation, and the
ease of use of the instrumentation, the costs involved, and the
required infrastructure are critical parameters to consider.

Methods for protein localization analysis in a cell or in a
tissue currently depend on the use of affinity-based reagents.
However, we believe that targeted approaches based on mass
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spectrometry have adequate performance and multiplexing
capability to allow the detection and quantification of a large
number of proteins in crude cell or tissue extracts. Such
approaches are therefore becoming valuable tools that can be
used to expand the borders of the observable proteome space.

For example, protein forms still escaping detection can be
in silico digested with one or more proteases and the peptides
with favorable MS detection properties can be predicted [97].
Such peptides can then be chemically sensitized and used to
efficiently develop assays required for their detection and
quantification in digested proteomes (Section 3.2).
3. Reproducible quantification of predefined
subset of the proteome

Studying the dynamics of protein expression, protein complex
assembly and PTMs in cells in different states is important for
the understanding of biological processes. Quantitative pro-
teomic measurements performed with targeted methods
critically depend on the ability to quantify the specific protein
sets relevant for a defined biological process [98]. Examples for
such functionally defined proteome subsets are signal trans-
duction pathways, organellar proteomes, protein complexes
and enzymes involved in common or interconnected meta-
bolic pathways. The two main strategies to quantify prede-
fined protein sets in biological samples are, as discussed
above, based on affinity reagents and on targeted mass
spectrometry (Fig. 1). The development of affinity reagents
other than antibodies has been recently reviewed elsewhere
[35,37,99]. We will focus our discussion of affinity-based
measurements on those which employ antibodies. Both
affinity- and MS-based approaches have their advantages
and drawbacks and differ in the type of information they can
yield, as will be discussed below.

3.1. Protein detection approaches employing antibodies

Antibody-based techniques are among the most widely used
tools for targeted protein detection. Their enormous success
in biological and biomedical studies is mainly derived from
the often exquisite sensitivity towards their targets and their
simplicity of use. Antibodies are specialized proteins of the
vertebrate immune system that evolved to recognize foreign
molecules. Antibodies recognize defined regions, termed
epitopes, of a molecule termed antigen. Protein epitopes
usually cover 8–11 amino acids and the number of instances
where these sequences occur in the proteome define the
upper limit of the specificity of an antibody. The capability of
antibodies to specifically recognize proteins and other bio-
molecules has been exploited by biologists for protein
analysis in a variety of contexts such as the detection of
proteins immobilized on a support, usually a membrane
(Western Blot, ELISA), in the context of preserved cellular
structure (e.g. immunofluorescence, flow cytometry), or even
in dissected or sectioned tissues where multiple cell types are
concomitantly present (e.g. immunohistochemistry). Anti-
bodies are usually generated by the immunization of animals
with proteins or peptides (Fig. 3). Immunization of animals
with modified (e.g. phosphorylated, acetylated etc.) peptides
can yield modification-specific antibodies which allow detec-
tion of the target protein only if it is subjected to the
respective post-translational modification in the context of a
peptide sequence. Probably the most widely used reagents of
this type are phospho-specific antibodies. These have been
instrumental in monitoring the activity of phosphorylation-
based signaling pathways. Du et al. have demonstrated the
successful application of antibody-based reagents to the
simultaneous profiling of tyrosine kinase activity in different
cancer cells [100]. They designed an immuno-sandwich assay
in which specific antibodies against 62 of the 90 human
tyrosine kinases are used to isolate these from cell lysates of
130 human cancer cell lines, and a fluorescently labeled
phosphotyrosine antibody subsequently detects tyrosine
phosphorylation levels of the kinases, an event which usually
correlates with their activation. To extend antibody-based
protein measurements to an ideally whole-proteome level,
efforts are ongoing to build a centralized antibody database
with tested performance of the individual affinity reagents.
The Human ProteinAtlas project, initiated in 2005, aims at
systematically investigating the human proteome using
affinity-purified antibodies [34]. Today about 14,500 anti-
bodies targeting epitopes on more than 11,000 human genes
are deposited in the ProteinAtlas database. Technological
advances enabled the immobilization of thousands of anti-
bodies on miniaturized arrays often referred to as antibodies
chips (in the mm2 to cm2 range) which facilitate the
generation of protein expression profiles of defined sets of
proteins in unfractionated samples such as plasma, cell
extracts or tissues. Recently, the Uhlen group performed a
comparative study of both the transcriptomes and the
proteomes of three different human cell lines of functionally
different origins [74]. Using array technology, the authors
profiled about 4000 proteins by immunofluorescence, quanti-
fied more than 5000 proteins by shotgun mass spectrometry
and more than 14,000 transcripts by RNA sequencing in the
three cell lines. The authors found that the majority of the
proteins are expressed in all three cell lines, displaying a good
correlation with transcript levels, but only 30% of the
quantified proteins showed high expression level differences
between the individual cell lines. This suggests that the
amount of expressed proteins or different regulatory mecha-
nisms, which influence protein levels, define cellular function
rather than differentially expressed genes. However, it is
important to mention that the proteins that are still escaping
detection by these methods may play an important role in
defining cellular functions, and therefore expansion of the
experimentally observable proteome to these unexplored
regions is an important goal in the efforts to shed light on
the molecular mechanisms underlying biological processes.

A hybrid method which combines antibody-based protein
or PTM detection with a mass spectrometric readout to
enhance the multiplexing capability of flow cytometry anal-
ysis is called mass cytometry. This experimental approach is
explained in Box 1, and is a promising way to screen large
numbers of samples for the abundance of sets of proteins or
protein modifications for which good antibodies are available.
Another analytical method which combines antibody-based
analyte enrichment with mass spectrometry is called Stable
Isotope Standards and Capture by Anti-Peptide Antibodies
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Fig. 3 – Targeted detection of proteins using antibodies.
Detection experiments employing antibodies are consist two
phases: reagent generation and antibody-based detection of
proteins (A-B). Monoclonal antibody generation requires the
immunization of host animals such as mice or rabbits by
antigen injection. The spleen cells of the animals are isolated
and fused with immortalized cells. The generated
hybridoma cell lines can be cultured and they represent an
permanent resource for antibody production (A). The
antibodies are then purified and the detection performances
are tested for specific applications. Immunofluorescence and
flow cytometry experiments are performed with intact cells
and thus allow protein detection in single cells. Similar to
mass spectrometry approaches, analyses like western
blotting, ELISA and protein array experiments require the
extraction of proteins from larger populations of cells,
therefore signals detected for proteins are averaged over the
entire cellular population (B).
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(SISCAPA) [101]. In contrast to mass cytometry, it does not
perform single cell measurements but is rather a specialized
quantitative peptide-immunoaffinity purification strategy, in
which selected peptides derived from proteins of interest are
physically enriched on an affinity column containing rabbit
polyclonal antibodies raised against those peptides. For
quantification purposes, stable isotope-labeled versions of
the peptides peptides of interest are spiked into the samples
prior to analysis and are therefore co-purified on the affinity
column, which is coupled on-line to an analytical LC-MS/MS
setup for peptide quantification by SRM. Themethod has been
used primarily in the context of protein biomarker studies to
quantify peptides from proteins present in blood plasma or
other body fluids in very low concentrations.

3.1.1. Error estimation for antibody-based assays
Although technological advances have reduced the time
required for the generation of antibodies on a large scale,
accurate evaluation of their performance for proteome
detection still represent a challenge [35–38]. The validation
of an antibody's performance usually consists of controlling
its specificity and sensitivity. In small scale experiments,
these parameters are usually assessed using dilution series of
both positive and negative controls that in the case of
Western Blot analysis for example, can be cell extracts in
which the specific protein targets are present or absent,
respectively. Already in this simple case, such controls,
especially for antibodies targeting post-translationally modi-
fied residues on proteins, are often not available. This
complicates the required thorough evaluation of antibody
quality. With the development of initiatives for large-scale
antibody production, it became possible to test the perfor-
mance of thousands of affinity reagents resulting in a
systematic estimation of antibody performance. In recent
work from the Uhlen group [102], the authors reported that
from a collection of 11,000 antibodies, only 531 detected a
single protein band in western blots of human plasma,
suggesting that antibody monospecificity represents the
exception rather than the rule. Although the introduction of
antibodies in life science research is anterior to the one of
mass spectrometry, the development of strategies for the
evaluation of false positive detection remains a serious
problem. This is mainly due to the impossibility both to
predict and measure antibody specificity on a whole prote-
ome level. Until this issue is addressed and solved, the risk of
off-target reactivity compromising measurements performed
with affinity reagents such as antibodies cannot be excluded.

3.2. Targeted mass spectrometry

There are two different approaches to direct mass spectro-
metric measurements towards specific peptides of interest.
The first one relies on mass inclusion lists and uses the same
instrumentation as in discovery-mode experimentation [103].
The second one relies on SRM [44] and is the subject of this
review. Targeted proteomics by SRM has matured to a degree
that it is now a viable alternative to antibody-based detection
of target proteins. SRM experiments focus on the detection of
a predefined set of peptide candidates and are typically
characterized by two phases: the first one consists of the



Box 1
Mass cytometry — a hybrid approach utilizing elemental detection by mass spectrometry for antibody-based protein analysis in
single cells.

Protein analysis on a single cell level can be performed by flow cytometry, a technique which employs fluorescently
labeled antibodies and is therefore difficult to multiplex beyond 8 to 10 spectral channels. In contrast, mass spectrometry-
based protein detection can be easily multiplexed, but requires larger amounts of material i.e. large numbers of cells to
measure the average protein concentration. Because most of the current biochemical knowledge is based on averaged
measurements from pools of cells from cell culture or tissues, many new questions that were out of reach before could be
addressed with a technology that is capable of performing high throughput and multiplexed protein measurements in
single cells. Examples include the immuno-phenotyping of distinct cell subsets from the immune system, and the
simultaneous monitoring of signal transduction pathways in cell populations subjected to a defined perturbation or
stimulus. An emerging technology which features these qualities is mass cytometry, a hybrid technique which combines
multiplexed antibody-based protein detection with a quantitative mass spectrometry readout. The experimental setup is
according to the principle of flow cytometry and therefore allows the analysis of single cells in high throughput. In
conventional flow cytometry analyses, cells are labeled with fluorescent antibodies or dyes, and therefore the number of
available channels that can be detected simultaneously is limited by the rather broad excitation and emission spectra and
resulting spectral overlap of the fluorophores used. The consequence is that parallel measurement of more than 10
parameters is not readily achievable by fluorescence-based flow cytometry. Newly developed fluorophores called quantum
dots have narrower emission bands and improve multiplexing capacity, but the conceptual limitation remains the same.
Mass cytometry overcomes this problem by using mass spectrometry instead of fluorescence readout, thereby providing a
much higher resolution and multiplexing capacity. Antibodies against the proteins or protein forms (e.g. bearing a specific
posttranslational modification) of interest are taggedwith different transition element isotopes, which do not occur in living
systems at detectable levels. After binding of the antibody conjugates to the cells and introduction of the cell suspension
into the instrument, droplets containing single labeled cells are sprayed into inductively coupled argon plasma, which
atomizes and ionizes the cellular constituents. A time-of-flight (TOF) analyzer subsequently acquires mass spectra
containing quantitative information about the reporter isotopes present in each cell. Parallel measurement of 34 parameters
in single cells has been reported, and interrogation of up to 100 parameters per cell is expected to be achievable [136].
Because the targeted protein analysis is based on antibodies in this method, in contrast to the pure mass spectrometry
approaches, the choice of proteins of interest and the specificity of detection is fundamentally limited by the availability,
specificity and binding properties of the respective antibodies, which can vary considerably.
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development of assays, the second one entails the employ-
ment of the assays for the peptide quantification in samples
of interest (Fig. 4).

3.2.1. SRM assay development
The knowledge ofmass spectrometry coordinates of the peptides
of interest is fundamental to their reliable detection in the
digested proteomes by SRM. As for the generation of antibodies,
the first stepof assaydevelopment consists of the selection of the
target proteins. The a priori selection of these can include sets of
protein species related to the same functional networks such as
signal transduction pathways, interacting proteins that consti-
tute functional complexes, enzymes involved in metabolic
pathways or belonging to the same functional class such as
kinases or phosphates, or e.g. groups of proteins encoded by the
same genomic region as may be the case in studies focusing on
certain genetically transmitted diseases. For each selected
protein, typically 2–5 peptides are chosen and chemically
synthesized. Mallick et al. observed that few peptides for each
protein are repetitively and consistently identified in large
shotgun approaches. The authors defined physiochemical prop-
erties for more than 16,000 peptides identified in a large-scale
investigation of the yeast proteome and used these to generate
computational tools for the prediction of peptides with favorable
mass spectrometry detection properties [97]. The synthesis of
those peptides should be preferred over the others belonging to
the same protein.

The introduction of innovative chemical synthesis strate-
gies such as ON-Spot synthesis lead to a significant reduction
of costs and increase in scale with a reasonable financial
investment (about 10 EUR per peptide) [104,105]. These
peptides are the basis for the development of SRM assays.
For this assay development, pools of about 100 synthetic
peptides are separated by reverse phase chromatography,
directly ionized by ESI and typically analyzed on a hybrid
QTRAP mass spectrometer in SRM-triggered MS2 mode
[40,106], where the fragment ion spectra for the different
peptides are acquired. Automatic database search tools
identical to the ones used to analyze shotgun data confirm
the presence of the synthetic peptides in the samples and
identify fragment ion spectra representing the targeted
peptides [107] (Fig. 4A). The acquired spectra are then used
as a reference for the generation of the assays from which
several pieces of information are extracted including the m/z
of the precursor and its fragments, the preferred ionization
charge state, the relative intensity of the fragment ion signals
and the chromatographic retention time. This combined
information is commonly referred to as a peptide SRM assay.
SRM assays for each peptide can be further improved to
increase the detection sensitivity by optimizing ionization
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Fig. 4 – SRMmass spectrometry approach for targeted peptide
identification. Similar to antibody-based approaches SRM
experiments are divided in two phases: SRM assays
development andemployment (A-B). SRMassay development:
pools of synthetic peptides are analyzed by LC-MS/MS on a
triple quadruple mass spectrometer. Fragment ion spectra are
searched using same panel of tools available for shotgun
MS-based peptide identification. Several pieces of information
are extracted for the generationof the SRMassay: the preferred
precursor charge, the relative intensities of the fragment ions
and the retention time of the peptide. The entirety of this
information is often referred as the SRM assay for the specific
peptide. Assays for about 100 peptides can be developed in a
single 60min mass spectrometry analysis (A). SRM assay
employment: the developed SRM assays are deposited in
databases fromwhich they can be downloaded and used for
targeted detection of peptide by SRM. The proteins extracted
fromcells are digested into peptides and those are analyzed by
LC-SRM-MS. Differently from the shotgun approach, the
detection of the peptide does not require any database search
tool at this stage, and is only based on the identification of a
series of coeluting peaks (B).
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parameters such as the declustering potential (DP) or cone
voltage (CV) and/or fragmentation parameters such as the
collision energy (CE) [106,108,109]. Furthermore, accurate ex-
traction of peptide elution times is necessary for their consec-
utive scheduleddetectionbySRM [110]. The elution timeof each
peptide should be related to standard retention timepeptides to
facilitate the exchange of detection methods between different
mass spectrometry platforms. So far, proteome-scale SRM
assay libraries have been developed for the complete Saccharo-
myces cerevisiae [111],Musmusculus and Homo sapiens proteomes.
These libraries are deposited in the publicly accessible SRMA-
tlas website [112] and are continuously expanded to reach full
proteome coverage. These public repositories are of great value
for the scientific community and are part of a number of
free computational tools which allow the generation or retriev-
al of suitable SRM assays from either own experimental
measurements or data present in large databases such as
PeptideAtlas or the Global Proteome Machine [114].

3.2.2. Use of SRM assays
Once SRM assays have been developed, they can be readily
used for peptide detection in complex proteomes similar to
the use of antibodies for protein detection. The SRM assays
generated for the peptides of interest represent the set of
information necessary to train the mass spectrometer for the
specific detection of a peptide in protease digested samples.
Each peptide is detected as a series of co-eluting fragment ion
signal traces (transition traces) (Fig. 4B). Each transition
represents a pair of mass-charge ratios both of the precursor
and one of its fragments. To reach the specificity to
conclusively detect a targeted peptide in a complex back-
ground, several transitions (usually 3–5) need to be measured
for each peptide. The SRM cycle time is the sum of the
individual time windows the instrument spends to monitor
each transition, and this is often referred to as the dwell time
of the transition. The lower the number of transitions per
experiment, the higher is the sensitivity for each specific
signal. This is because the instrument dedicatesmore time for
the detection of each individual transition. On the other hand,
having a too long cycle time will diminish the number of data
points measured for each peptide during its chromatographic
elution, and this can compromise both the detection and the
accurate quantification of peptides. The choice of an optimal
cycle time for the experiment and a sufficient dwell time for
the detection of each transition mainly depends on the
performance of the liquid chromatography and the mass
spectrometric detectability of each peptide. For example,
assuming that a peptide elutes with a peak width of 30 s, the
cycle time of the instrument should not be higher than 2.5 s in
order to have at least 12 measured points over the entire
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elution of the peak. The prediction of the optimal dwell time
for the detection of each transition is more difficult, as this
mainly depends on the abundance and detectability of the
specific peptide present in the sample under investigation. In
scheduled SRM measurements, the transitions for the detec-
tion of a particular peptide are only acquired around the time
of the expected elution of the peptide. The dwell time for each
transition depends on the number of transitions targeted in a
specific time window and therefore changes over the gradi-
ent. The detection of relatively abundant peptides normally
can be achieved by setting a dwell time of 10 ms, while for less
abundant species this could be increased up to 20–30 times.
Based on the sensitivity one wants to reach in the SRM
experiment, the number of transitions that can be monitored
per analysis can range from 300 tomore than 1000 transitions.

3.2.3. Protein and peptide quantification by SRM
SRM-based quantification is supported by a range of quanti-
fication techniques for both relative and absolute quantifica-
tion. Although label-free approaches have recently been
developed [115], more often quantification experiments use
stable isotope labeling-based methods where a labeled
reference peptide is always present in the sample and
represents the standard for the quantification of the peptide
[116,117]. Stable isotope labeling can be performed either in
vivo or by chemicalmeans. Very frequently heavy peptides are
used as a reference for absolute peptide and protein quanti-
fication, but the very high costs of such peptides prevent their
routine use for large-scale analyses. Several computational
tools including SkyLine [118] and TIQAM [119] assist users via
a visualization interface during all stages of SRM-based
proteomic workflows, including target selection, transition
optimization and data evaluation for quantification experi-
ments. However, most of the mentioned tools do not support
statistical analysis of the identified and quantified proteins.
SRMstats is, to the best of our knowledge, the only software
package available for significance analysis of large quantita-
tive SRM experiments [120]. It is applicable both to label-based
and label-free strategies and supports a variety of experimen-
tal set-ups ranging from two-condition treatments to more
complex time course experiments in which many technical
and biological experimental replicates are acquired.

3.2.4. Error estimation for SRM measurements
For both SRM assay development and use, an accurate
evaluation of error rates in the peptide identification is
required. During assay development, fragment ion spectra
obtained for each of the synthetic peptides analyzed on triple
quadruple instruments are searched and the FDR is estimated
using the same strategies and tools as for shotgun mass
spectrometry approaches [51]. However, peptide identifica-
tions are more straightforward in this case compared to pure
discovery experiments for two reasons. First, false assign-
ments are easily identified since the sequences of the
peptides present in the samples are known and second,
because the fragmentation of relatively high abundant
peptides generally produces higher quality fragmentation
spectra, which simplifies peptide identifications [106]. At this
stage, tools like AuDIT [121] can filter out interfering transi-
tions, or the SRM collider tool [122,123] can identify redundant
transitions for a given peptide considering the specific
proteome background under investigation. Estimation of the
FDR for the use in SRM assays is critical for the objective
analysis of large SRM datasets. SRM transition signals
corresponding to the targeted peptide detected as a series of
co-eluting peaks are combined into peak groups. Error
analysis involves the identification of the correct peak group
(the one that truly represents the targeted peptide) among the
(potentially many) false peak groups that represent other
analytes present in the sample.

Recently, Reiter and colleagues described an automated
system called mProphet [124] that computes error rates in
peptide identification experiments performed with SRM.
Similarly to some decoy strategies frequently used for the
analysis of shotgun datasets [55], mProphet aims at discrim-
inating false positive peptide detections from the true positive
identifications to calculate the error rate associated with the
SRM experiment performed. To achieve this, false positive
SRM traces are generated by measuring unspecific transitions
called “decoy transitions”. These should not lead to the
detection of any real peptides in the samples under investi-
gation, and therefore reflect the level of unspecific back-
ground which has to be taken into account for an estimation
of the FDR. In contrast to target-decoy strategies in the
analysis of shotgun measurements where the false positive
identifications are generated during the database search after
the measurement, in SRM these control signals are recorded
during data acquisition in the mass spectrometer and
therefore need to be pre-computed prior to data acquisition.

Based also on the presence of the decoy transitions in the
dataset, mProphet aims at maximizing the specificity and
sensitivity of analysis by combining relevant features of SRM
data, such as the chromatographic co-elution of transitions
belonging to the same peptide, and the conservation of ion
fragment intensity in cases where spectral libraries are
available. Often several transitions are acquired for the same
peptide and each peak group detected in the SRM analysis is
scored.

The presence of the “decoy peak groups” allows for an
estimation of the error rate in a SRM datasets and this could be
expressed as the fraction of false positive peptide detections
over the true positive identifications for a specific score cut-off
value.
4. Applications of SRM in biological research

Tools for the accurate quantification of protein networks are
essential for the understanding of cellular function, and the
reproducible measurement of protein sets in clinical samples
is a key task in translational research. Antibody-based
methods are characterized by an exquisite reproducibility to
monitor protein abundances or the occurrence of specific
PTMs in complex samples over the course of several points in
time, in pharmacological dosage series, or in different
biological or clinical samples. For the reasons discussed
above, SRM-based targeted proteomics is a particularly
valuable technique for the study of cellular protein network
dynamics where a defined number of proteins or PTMs can be
monitored in many different cellular conditions.
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4.1. SRM in proteomic studies focusing on protein levels

Enzymatic digestion of the cellular proteome produces
millions of peptides both due to the intrinsic complexity of
the proteomes and modification introduced by sample
preparation protocols. However, only a fraction of the
peptides are both indicative of the presence of specific
proteins and have a good chance to be detected and
identified inmass spectrometry experiments. Such peptides
are normally referred to as proteotypic peptides (PTPs) [97].
Indeed, targeted mass spectrometry approaches able to
detect specific PTPs have two advantages: they maximize
the chances for peptide detection in a complex background
and speed up analysis time by eliminating the problem of
redundant peptide sampling. Recently, Picotti et al. demon-
strated the great potential and the exquisite sensitivity of
SRM for peptide detection [125]. By targeting PTPs, the
authors were able to detect and quantify proteins over 4–5
orders of magnitude in a total yeast cell extract, resulting in
the detection of proteins expressed as low as 50 copies per
cell. The authors targeted 45 proteins by SRM that were
never identified before bymass spectrometry, and they were
able to unambiguously detect 37 of these, opening up a
previously inaccessible abundance range. This work dem-
onstrates that targeted analysis can assist classical ap-
proaches in the ambitious effort of covering parts of
proteomes that are still escaping detection. Using these
new protein assays, the abundance profile of a network of 45
enzymes involved in central carbohydrate metabolism was
quantified over the course of a metabolic adaptation called
the diauxic shift. The speed of the SRM analysis enabled the
quantification of the central metabolism network in a single
run, therefore the protein abundance profiles could be
acquired in triplicate biological samples over 10 points in
time. In a different context, the reproducibility of SRM
measurements was recently exploited by the Pawson group
for the characterization of protein network dynamics of the
GRB2 complex [126]. The authors used a combination of
affinity purification and SRM tomonitor abundance changes
of 90 proteins in a time course experiment after EGF
stimulation. The entire network of proteins was successive-
ly quantified after stimulation of cells with six different
growth factors. The speed of this approach enabled the
measurement of protein fluctuations over several points in
time in response to different growth factors, providing novel
insights into dynamic signaling processes. Targeted mass
spectrometry analysis also proved to be a useful tool to
experimentally validate software predictions of biological
events. Jovanovic and colleagues applied targeted protein
quantification by SRM to validate computationally predicted
miRNA targets in C. elegans [127]. The authors reproducibly
quantified protein abundances for 161 proteins in biological
replicates between a wild-type and a let-7 mutant C.elegans
strains. From the predicted protein targets, only 29 were
significantly regulated by the absence of let-7 miRNA. The
authors conducted further genetic experiments confirming
that the list of 29 regulated proteins was enriched in let-7
miRNA targets, confirming that SRM is a valuable tool to
experimentally investigate software prediction in a targeted
manner.
4.2. SRM in proteomic studies focusing on the detection of
protein isoforms and alternative splice variants

The utility of targeted mass spectrometry became apparent
while probing the presence of protein isoforms or a SNPs in
specific samples.

Recently, the defense response in conifers was investigat-
ed by SRM [128]. It is mediated by a family of enzymes called
terpene synthases, which are implicated in the biosynthesis
of a number of different molecules called terpenoids used by
the plants to react against both physical and chemical attacks
of pathogens, insects or herbivores. Terpene synthases (TPS)
belong to a highly conserved family of plant enzymes and
their study is complicated for different reasons. First, the
biochemical function of individual TPS family members
cannot be predicted based on the amino acid sequence of
the protein, as few amino acid substitutions can lead to
changes in the structure of the specific terpene synthesized.
Second, the high sequence homology among members of this
protein family makes it difficult to use available antibodies as
they cross-react with the different isoforms of enzymes.
Third, the conifers express terpene synthase isoforms at
very low levels, therefore very sensitive detection assays
need to be developed. The authors used SRM to detect
proteotypic peptides specific for 19 isoforms. Five proteins
were both identified and quantified by SRM in digested
proteome samples. Changes in protein amount were moni-
tored over time in biological replicate measurements, starting
from the induction of the defense response in plants.

Recently, Coestenoble et al. employed SRM to measure the
abundances of more than 200 proteins implicated in the
amino acid and central carbon metabolism in S. cerevisiae,
including a family of isoenzymes with highly similar amino
acid sequences. The authors a priori selected peptides unique
to each protein isoform, and subsequently quantified these by
SRM in 5 different nutritional conditions to investigate how
this protein network responds to the availability of different
nutrients. Interestingly, the data support a functional diver-
gence for most of the isoenzyme families [129].

The Vogelstein lab used a targeted mass spectrometry
approach to identify and quantify missense mutations in the
small GTPase Ras. This kind of mutation is very frequent in
human cancers, but difficult to detect in proteins as they alter
their sequence by changing only one amino acid. Although it
is theoretically possible to detect these mutant proteins by
antibodies directed against mutant epitopes, this has been
very difficult to achieve in practice. The detection of splice
variants or SNPs by targeted analysis represents a relatively
new field in proteomics, and we expect that in the future an
increasing number of studies like the one just described will
populate the literature, since SRM approaches have adequate
specificity and sensitivity to facilitate SNP or splice variant
detection in complex protein samples.

4.3. SRM in proteomic studies focusing on post-translational
protein modifications

Differential quantification of protein PTMs in two or more
cellular states is not trivial. In contrast to the quantification of
protein levels, where multiple peptides are normally used to
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calculate the abundance, the quantification of PTMs is based
only on the detection of single modified peptides. For this
reason, their quantification is likely more error prone com-
pared to the quantification of proteins, and therefore the
acquisition of measurements from biological replicates is
even more critical. White and colleagues monitored the
tyrosine phosphorylation cascade downstream of the epider-
mal growth factor (EGF) receptor by SRM [130]. The authors
measured the phosphorylation of 222 tyrosine residues over
8 points in time after EGF stimulation. Using an elegant end
efficient hybrid approach, the authors first identified nodes in
the network by shotgun analysis and subsequently used SRM
to quantify phosphorylation dynamics with a reproducibility
of about 90% across four biological replicates [130]. Since then,
different posttranslational modifications were studied by SRM
such as oxidation of cysteines, glycosylation, acetylation,
methylation or ubiquitination. Furthermore, several groups
exploited the specificity of SRM to determine the stoichiom-
etry of post-translational modifications. This requires the
quantification of both the modified and corresponding non-
modified peptides. Jin and colleagues measured the phos-
phorylation stoichiometry on two different tyrosine residues
including phosphorylation of the activation loop of the Lyn
kinase [131]. Deregulation of this kinase has been reported to
correlate with B-cell related malignancies including multiple
myeloma. The sensitivity of SRM enables the quantification of
the phosphorylation sites both in cell lines and tumor
samples [131]. An interesting field to exploit both the
reproducibility and multiplexing capacity of SRM is the study
of histone modification crosstalk mechanisms. Darwanto et
al. quantified about 20 different histone modifications by
SRM, including acetylation, propionylation, methylation and
ubiquitination in four different cell lines and replicate
experiments. The analysis revealed that H2B ubiquitination
is inversely correlated with methylation of Histone H3. The
authors proposed the existences of a novel inhibitory loop
mechanism to describe the crosstalk between these two
modifications [132]. This work demonstrated the possibility
to systematically and reproducibly quantify different PTMs on
proteins by SRM, and we expect that in the future similar
approaches will be more frequently used for the systematic
characterization of signaling pathway crosstalk in the context
of biological processes.
5. Conclusion and perspectives

Due to the extraordinary technological advances of the last
10–20 years, we are now able to routinely use mass spectrom-
etry for the large-scale analysis of cellular proteomes. The
cataloging phase of both proteins and post-translational
modification is drawing to an end, with the rate of discovery
of new proteins and their modifications reaching a level of
saturation. A new and probably more exciting period for
proteomics is beginning in which scientists will increasingly
focus on the consistent and systematic measurement of
proteins in a variety of different cellular conditions. The SRM
approaches we described here are evolving into this new
scenario as complementary to the shotgun analyses in the
ambitious project to accurately measure proteomes with high
confidence. At this time, the number of peptides that can be
monitored by SRM is limited compared to current shotgun
techniques. However, SRM-based approaches offer the possi-
bility to perform experiments that would be otherwise
difficult to conduct mainly because methods with adequate
sensitivity and reproducibility have been lacking [98]. Further,
it can also be expected that technical developments such as
the targeted analysis of DIA datasets, exemplified by the
SWATH-MS technique [46] will greatly increase the number of
proteins targeted in a single measurement. One important
point that is critical for the development of SRM assays is the
synthesis of peptides. With technologies available today, the
amount of peptide synthesized per array element is still
orders of magnitude too large for the mass spectrometric
measurements. Typically 60 nmol of each peptide are pro-
duced by the SPOT synthesis [104,105] while e.g. SRM assay
development only requires less than 15 pmol per peptide,
about 4000 times less. Developments of innovative ap-
proaches which are able to drastically reduce the amount of
peptide synthesized could also significantly reduce the costs
of peptide synthesis. The lowered costs will facilitate the
creation of proteome-wide SRM assay collections for an
increasing number of organisms, and this aspect becomes
even more important when considering the synthesis of
modified peptides such as phosphopeptides. In addition to
the technical limitation that not all peptides, especially
modified ones, can be synthesized efficiently, the financial
investments required for their synthesis are still hindering
the conception of projects such as large-scale SRM assay
generation for the targetedmeasurements of the thousands of
phosphopeptides that have already been identified in shotgun
experiments and deposited in public databases. The same
holds true for the synthesis of heavy reference peptides used
for quantitative studies. Miniaturization of the synthesis
would enable large quantitative experiments, which would
facilitate the analysis of the proteome of cells that cannot
routinely be metabolically labeled, such as primary cells and
tissue samples. In addition to its apparent importance for SRM
workflows, the synthesis of proteotypic peptides and the
acquisition of their fragmentation spectra both with targeted
and data-dependent workflows also opens up new perspec-
tives for the refinement of database searching approaches
employed in the analysis of proteomic data. Information like
the chromatographic retention time of a peptide and the
relative intensity of its fragment ions could be integrated in
software tools to increase the accuracy of peptide identifica-
tions, and therefore reduce the risk of incorrect assignments.
Initiatives are in progress that aim at formulating the
retention time of peptides as a unitless value (independent
retention time, iRT) expressed as a function of the retention
time of standard peptides that are spiked into every sample
before analysis [133,134]. An iRT peptide kit has been
commercialized by the company Biognosys [135]. If generally
adopted, this strategy will have the immediate effect of
standardizing the peptide retention times in experiments
performed in different laboratories worldwide allowing a
publicly accessible database of measured retention times to
be created. The knowledge of the elution time of peptides is
beneficial both for targeted and shotgun approaches. Indeed it
is possible to tune the mass spectrometer to their detection
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only in the time window in which they are expected to elute,
increasing both the throughput and confidence of the
measurements.
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