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Abstract—This paper presents a novel action matching
method based on a hierarchical codebook of local spatio-
temporal video volumes (STVs). Given a single example of an
activity as a query video, the proposed method finds similar
videos to the query in a video dataset. It is based on the
bag of video words (BOV) representation and does not re-
quire prior knowledge about actions, background subtraction,
motion estimation or tracking. It is also robust to spatial
and temporal scale changes, as well as some deformations.
The hierarchical algorithm yields a compact subset of salient
codewords of STVs for the query video, and then the likelihood
of similarity between the query video and all STVs in the target
video is measured using a probabilistic inference mechanism.
This hierarchy is achieved by initially constructing a codebook
of STVs, while considering the uncertainty in the codebook
construction, which is always ignored in current versions of
the BOV approach. At the second level of the hierarchy, a
large contextual region containing many STVs (Ensemble of
STVs) is considered in order to construct a probabilistic model
of STVs and their spatio-temporal compositions. At the third
level of the hierarchy a codebook is formed for the ensembles of
STVs based on their contextual similarities. The latter are the
proposed labels (codewords) for the actions being exhibited
in the video. Finally, at the highest level of the hierarchy,
the salient labels for the actions are selected by analyzing
the high level codewords assigned to each image pixel as a
function of time. The algorithm was applied to three available
video datasets for action recognition with different complexities
(KTH, Weizmann, and MSR II) and the results were superior
to other approaches, especially in the cases of a single training
example and cross-dataset action recognition.

Keywords-action recognition; bag of video words; hierarchi-
cal codebook.

I. INTRODUCTION

Given the tremendous number of potential practical video

applications, there is a great demand for automated systems

that analyze and understand the contents of these videos.

Obviously, recognizing and localizing human actions in a

video are of primary importance to such a system. To date,

in the computer vision community, “action” has largely been

taken to be a human motion performed by a single person,

lasting for just a few video frames, taking up to a few

seconds, and containing one or more events. Walking, jog-

ging, jumping, running, hand waving, picking up something

from the ground, and swimming are some examples of such

human actions [1]. In this paper, our main goal is to address

the problem of action recognition in real environments

using a hierarchical probabilistic video-to-video matching

framework. To achieve this, we have developed a fast data-

driven approach which finds similar videos to a single

labeled “query” video in a “target” set. Assuming that the

query contains an action of interest, e.g., walking, we find

all videos in the target set that that are similar to the query,

i.e., those that contain the same activity. This video-to-video

comparison also makes it possible to label activities, the so-

called action classification problem. Our approach does not

require long video training sequences, object segmentation,

tracking or background subtraction. The method can be

considered as an extension to the original Bag of Video
Words (BOV) approach for action recognition. An overview

of the algorithm is presented in Figure1.

Although the initial spatio-temporal volumetric represen-

tation of human activity eliminates some pre-processing

steps, such as background subtraction and tracking, it does

share some of the common drawbacks with methods that

do require these. For example, in general BOV-based ap-

proaches for activity recognition involve salient point detec-

tion and are also unable to handle scale variations (spatial,

temporal, or spatio-temporal) since they are too local, in

the sense that they consider just a few neighbouring video

volumes. To overcome these issues, we have developed

a multi-scale, hierarchical codebook of BOVs for densely
sampled videos, which incorporates spatio-temporal com-
positions and their uncertainties. This permits the use of

statistical inference to recognize the activities. We also note

that, in order to measure similarity between a query and a

target dataset, it is necessary to use information regarding the

informative STVs in the video, i.e., the salient foreground

objects. To select these space-time regions, we use the

information obtained from our hierarchical BOV method,

which can be considered as being a context-based spatio-

temporal segmentation method.

In this paper we present a hierarchical probabilistic code-

book method for action recognition in videos, which is based

on STV construction. The method uses both local and global

compositional information regarding the volumes, which are

obtained by dense sampling at various scales. Similar to

other volumetric methods, we do not require background
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Figure 1: Overview. The goal is to find similar videos in the target set to the query video. The latter is densely sampled at

different spatio-temporal scales, after which a four level hierarchical probabilistic codebook is formed using video volumes.

Similar video volumes are grouped at the first level of the hierarchy. At the second level, spatio-temporal compositions of

the volumes are considered in larger contextual regions to form another codebook. Finally, using temporal correspondences

of codewords, the most informative ones are selected for the purpose of classification and used to measure similarity to the

target videos.

subtraction, motion estimation, or complex models of body

configurations and kinematics. Moreover, the method toler-

ates variations in appearance, scale, rotation, and movement.

As shown in Figure1, the proposed algorithm consists of

two main parts, the hierarchical codebook construction of

salient STVs and the inference mechanism for the similar-

ity measurement between salient STVs of the query and

target videos. The hierarchical codebook construction has

four levels: coding the video to construct STVs and low

level probabilistic codebook formation while considering

the uncertainties in the STVs; constructing ensembles of

video volumes containing a large number of STVs and

probabilistic models of their spatio-temporal compositions;

high level codebook construction of the ensembles; and

finally, analyzing codewords as a function of time in order to

construct a codebook of salient regions. The inference mech-

anism is based on the hierarchical codewords constructed for

each query video, and finds the most similar compositions

of STVs in the target videos in order match the query

and target videos. There are two main differences between

our proposed hierarchical approach and previously reported

ones. First, the latter are unable to handle uncertainty in

the codeword assignments [2], [3]. Second the selection of

informative regions is always carried out at the lowest level

of the hierarchy.

The main contributions of this paper are as follows:

• We deal with unconstrained videos by incorporating

uncertainties during the first level of codeword assign-

ment, which makes the final labelling decision more

reliable.

• We introduce a hierarchical codebook structure for

action detection and labelling. This is achieved by

constructing a probabilistic model of STVs to capture

their spatio-temporal configurations.

• We select the salient STVs in the video by analyzing

high level codewords that are assigned to each pixel

as a function of time. This method is different from

conventional background subtraction and salient point

detection methods since we use information obtained

from a high-level codebook of the video volumes.

In order to evaluate the capability of our approach for

action matching and classification we have conducted ex-

periments using three datasets: KTH [4], Weizmann [5]

and MSR II [6]1. Three types of experiments were per-

formed: action matching and retrieval, single dataset video

classification, and cross-dataset action recognition. The rest

of this paper is organized as follows: section II reviews

recent work on action recognition. Section III describes the

proposed approach for action recognition and the steps of

the algorithm. Section IV discusses the experimental results

and finally, section V concludes the paper.

II. RELATED WORK

Many studies have focused on the action recognition prob-

lem, using different approaches such as human body models,

tracking-based methods, and local descriptor methods [1].

Typically, they depend on such image pre-processing as

segmentation, object tracking, and background subtraction

[7]. Recently, local STVs have been used in the context of

BOV models and have shown promising results for action

recognition [2], [3], [7]–[13]. In these approaches, video

volumes are extracted and quantized in order to form a visual

vocabulary. In general, the potential real-time performance

of these approaches is related to the number of video volume

samples and their associated features [10]. Usually, these

features are gradients (spatial, temporal, or spatio-temporal),

body landmarks, or color information. The video volumes

are constructed either by extracting a limited set of interest
points or oppositely, by densely sampling the video. In the

1http://research.microsoft.com/en-us/um/people/zliu/ActionRecoRsrc/
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former, due to the sparse nature of the space-time interest

points, the method becomes computationally efficient and

hence is popular in the action recognition literature [4], [13]–

[15]. On the other hand, the selection of appropriate interest

points that are guaranteed to contain a salient and discrim-

inative motion pattern in their local context is a difficult

challenge [16]. In addition, it has been shown recently that

densely sampling the video always achieves better results

than a sparse set of interest points [17]. Notwithstanding

the particular sampling strategy employed, the advantage

of using volumetric representations of videos is that it

permits the localization and classification of actions using

data-driven nonparametric approaches instead of requiring

the training of sophisticated parametric models. On the

other hand, Boiman et al. [18] have shown that a rather

simple nearest-neighbour image classifier in the space of

the local image descriptors is equally as efficient as more

sophisticated classifiers. Thus the particular classification

method chosen is not the major issue, and the main challenge

is using the appropriate features for action representation.

In classical BOV approaches, video volumes are grouped

based on their similarity, in order to reduce the vocab-

ulary size. Unfortunately, this destroys the compositional

information concerning the relationships between volumes

[13]. Thus, the likelihood of each video volume is calcu-

lated as its similarity to the other volumes in the dataset,

without considering the spatio-temporal properties of the

neighbouring contextual volumes. This makes the classical

BOV approach too dependent on very local data and un-

able to capture significant spatio-temporal relationships. In

addition, it has been shown that detecting actions using an

“order-less” BOV will not produce acceptable recognition

results [2], [8], [9], [16], [19]. To overcome this challenge,

contextual information must be included in the original BOV

framework. The solution presented by Boiman and Irani [8]

is to densely sample the video and store all video volumes,

along with their relative locations in space and time. Thus

the likelihood of a query is calculated in a larger space-time

contextual region. By also using densely sampled volumes,

it is possible to compute the optimal approximation to the

likelihood, which yields an accurate label for an action using

simple nearest neighbour classifiers [18]. However, the main

problem with this approach is that it requires excessive

computational time and a considerable amount of memory

to store all of the volumes as well as their spatio-temporal

relationships.

Several other methods have been proposed to incorporate

spatio-temporal structure in the context of BOV. One ap-

proach is to use a coarse grid and construct a histogram

to subdivide the space-time volumes [14]. Similarly, cor-

relograms were used in [11] to capture the spatio-temporal

co-occurrence patterns of the spatio-temporal volumes; how-

ever, only the relationship between the two nearest volumes

was considered. An alternative is to incorporate contextual

information by using a random tree structure [7] to partition

the input space and calculate the likelihood of each spatio-

temporal region in the video. Otherwise, a hierarchical

clustering structure seems to be an attractive way of incor-

porating the contextual structure of video volumes, as well

as preserving their compactness [2], [3]. Thus a modified

version of [8] was presented in [3]. It uses a hierarchical

approach, in which a two-level clustering method is em-

ployed. At the first level, all similar video volumes are

clustered. Then clustering is also performed on randomly

selected groups of STVs while considering the relationships

between the five nearest STVs in space and time. Another

hierarchical approach is presented in [2], which attempts

to capture the compositional information of a subset of the

most discriminative video volumes. In all of these proposed

solutions to date, although a higher level of quantization

in the action space produces a compact subset of video

volumes, it also significantly reduces the discriminative

power of the descriptors, an issue addressed in [18].

III. PROPOSED FRAMEWORK FOR ACTION RECOGNITION

Considering the structure presented in Figure1, our aim is

to find the similarity between the query and target videos.

Our work is based on the bag of space-time features ap-

proach in that a set of STVs is used for measuring similarity.

As illustrated in Figure1, the recognition algorithm consists

of two main steps: hierarchical codebook construction for

densely sampled videos, and an inference mechanism for

finding the appropriate action in the target videos. The

proposed hierarchical codebook structure has two important

characteristics: it codes the compositional information of the

video volumes and it selects the most informative regions

of the video. Moreover, the uncertainty in the process

of grouping similar video volumes is considered in the

hierarchical structure, an issue which is always ignored in

typical BOV approaches.

A. Multi-scale dense sampling and hierarchical codebook
construction

The essence of the method described in this paper is to

measure the similarity between STVs in a query video to

those in the target set videos. In this section, we first explain

the sampling strategy and then describe the construction

of the hierarchical codebook. The codebook is intended to

reduce the redundancy in the video volumes by retaining

the most informative ones, their associated compositional

information, and the uncertainties in codeword assignment.

The hierarchical codebook structure consists of four layers,

which are defined in 3D space-time, and referred to as Cl1

to Cl4 , as illustrated in Figure2. The first layer contains

the STVs obtained from the original video. A codebook is

formed at this level to cluster similar densely sampled STVs,

called Cl1 . At the second level, a large spatio-temporal

region is considered around every video volume. We refer
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Figure 2: Overview of the four level hierarchical codebook.

The first level codebook, Cl1 , is constructed to code similar

spatio-temporal video volumes obtained from the original

video, while considering the uncertainty in codeword as-

signment. At the second level a larger STV region around

each pixel, containing many STVs, is considered to capture

the spatio-temporal arrangement of the volumes, called the

ensemble of volumes. At the third level similar ensembles

are grouped based on the similarity between arrangements of

their video volumes and a new codebook is formed, referred

to as Cl3 . At the fourth level, the codewords obtained from

the third level are analyzed as a time series in order to

eliminate the non-informative ones.

to this as the ensemble of STVs, Es,t, at a point (s, t) in

the video. These ensembles are then grouped based on their

similarity and an additional codebook, Cl3 , is formed. At

the fourth level, the codewords obtained from the third level

are analyzed as a function of time in order to remove non-

informative codewords.

1) Video volume construction: Similar to all BOV ap-

proaches, 3D STVs in a video are constructed at the lowest

level of the hierarchy. Although there are many methods

for sampling the video and for volume construction, we use

dense sampling as it has been shown to be superior to the

others [8], [17]. Video volumes are constructed assuming

a small volume (e.g., 5 × 5 × 3, in which 5 × 5 is the

size of the spatial (image) window and 3 is the depth of

the video volume in time) around each pixel in the video.

This is performed at several spatial and temporal scales of

a Gaussian space-time video pyramid of the original image

and produces a large number of STVs for each pixel in

the video. These are then characterized by a histogram of

oriented gradients (HOG) constructed using the quantized

gradients of all pixels in each video volume vi [20]. It

should be noted that other more complex descriptors, such

as the ones in [12] or the three-dimensional Scale Invariant

Feature Transform (SIFT) [21], might further enhance the

performance, as the descriptor used here is not invariant with

respect to the textures of moving objects. After video volume

construction, the STVs are grouped to reduce redundancy

and the non-informative volumes are removed.

2) Hierarchical codebook structure: As shown in

Figure2, hierarchical codebook construction involves four

levels. The main difference between our proposed approach

and previously reported hierarchical methods is that the

latter are unable to handle uncertainty in the codeword

assignments [2], [3]. Moreover, the selection of informative

regions is carried out at the highest level of the hierarchy,

while it is always performed at the lowest level in classical

BOV methods. This resolves the main drawback of such

approaches, which is the assumption that the informative

regions are spatio-temporally independent, as is the case in

interest point selection and pixel-based background subtrac-

tion algorithms [22].

Level #1: Codebook of spatio-temporal video volumes.

In section III-A1 we described a set of STVs at various

spatial and temporal scales using dense sampling. As the

number of these volumes is extremely large (for example,

about 106 in a one minute video) it is advantageous to

group similar STVs to reduce the dimensions of the search

space. This is commonly performed in all BOV approaches

[12], [19]. Here, similar video volumes are also grouped

by constructing a codebook. The first observed STV in

the video is selected as the first codeword. After that, by

measuring the similarity between each observed volume and

the codewords already existing in the codebook, either the

codewords are updated or a new one is created. Updating is

based on the similarity between the newly observed volume

and the already existing codewords using weights wi,j ,

see Figure3. Here the Euclidean distance is employed for

measuring similarity between volumes and codewords. Thus,

the normalized weight of assigning codeword cl1j to the video

volume vi is given by:

wi,j =
1∑

j

1

distance
(
vi,c

l1
j

) ×
1

distance
(
vi, c

l1
j

) (1)

Another parameter used after codebook construction is the

number of times that a codeword has been observed. During

the training period, the codebook is pruned to eliminate

those codewords that are either infrequent or very similar

to the existing ones. Ultimately, this generates ml1 different

codewords that are taken as the labels for the video vol-

umes: Cl1 =
{
cl11 , c

l1
2 , ..., c

l1
ml1

}
. After the initial codebook

formation, each 3D volume, vi, is assigned to a codeword,

cl1j , with a degree of similarity, wi,j (Figure3). It should

be noted that the number of codewords, ml1 , is much less

than the number of volumes, n, (for a one minute video,

n = 106, ml1 = 100). Moreover, codebook construction

can be performed using other clustering methods, such as
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Figure 3: The process of codeword assignment to each

spatio-temporal video volume. Each codeword is assigned

to a volume with a degree of similarity, wi,j .

k-means or mutual information-based clustering [19].

Level #2: Ensemble of spatio-temporal video words. This

level in the hierarchy corresponds to the spatio-temporal

configuration of video volumes. As mentioned earlier, in

order to make the correct decision regarding the query video,

it is necessary to analyze the spatio-temporal arrangement

of the volumes in a large region [8]. The main drawback

of many BOV approaches is that they do not consider the

spatio-temporal composition (context) of the volumes. Thus,

instead of a single video volume, we consider a large region

R around each pixel, containing many video volumes, which

capture the spatio-temporal context. Such a set is called an

ensemble of volumes around the particular pixel in the video.

Around each point s in the video at time t, the ensemble of

volumes (Es,t) is defined as:

Es,t =
{
v
Es,t

i

}I

i=1
� {vi : vi ∈ Rs,t}Ii=1 (2)

where vj is a spatio-temporal volume, Rs,t is a region with

pre-defined spatial and temporal radii centered at point (s, t)
in the video (e.g., 40 × 40 × 30), and I indicates the total

number of volumes in the ensemble. To determine the spatio-

temporal compositions of video volumes, we use the relative
spatio-temporal coordinates of the volume in each ensemble,

defined as:

x
v
Es,t
i

=
(
Cvi

− CEs,t

)
(3)

where x
v
Es,t
i

is the relative position of the ith video volume,

vi (in space and time), inside the ensemble of volumes, Es,t,

for a given point (s, t) in the video. Cvi is the central point of

the spatio-temporal volume i in absolute coordinates of 3D

space. During codeword assignment at level #1, each volume

vi inside each ensemble Es,t was assigned to a codeword

cl1
w

Es,t
i,j

with a weight of w
Es,t

i,j . Therefore, the ensemble is

characterized by a set of volume position vectors, codewords

and their related weights as follows:

Es,t =

{
x
v
Es,t
i

, cl1
w

Es,t
i,1

, ..., cl1
w

Es,t
i,ml1

}I

i=1

(4)

A common approach for calculating similarity between

ensembles of volumes is to use the star graph model of [3],

[8]. This model uses the joint probability between query

and dataset ensembles by decoupling the similarity of the

topology of the ensembles from the similarity between the

actual video volumes [3]. To avoid such a decomposition, we

estimate the pdf of the volume compositions in an ensemble.

Thus, the probability of a particular arrangement of volumes

v inside the ensemble of Es,t is given by:

∀cl1i ∈
{
Cl1

}
(first level codebook)

P
Es,t

(v) = P
(
xv, c

l1
1 , c

l1
2 , ..., c

l1
ml1

)

=

ml1∑
i=1

P
(
xv|v = cl1i

)
P

(
v = cl1i

) (5)

The first term in the summation in (5), P
(
xv|v = cl1i

)
,

expresses the topology of the ensembles, and the second

term, P
(
v = cl1i

)
, expresses the similarity of their descrip-

tor values, that is, the weights for the codeword assignment

at the first level. We would like to represent each ensemble

of volumes by its pdf, P
Es,t

(v). Therefore, given the set

of volume positions and their assigned codewords, the

probability density function (pdf ) of each ensemble can be

formed using either a parametric model or non-parametric

estimation. Here, we approximate the pdf s describing each

ensemble using histograms.

Level #3: Codebook of ensemble of spatio-temporal video

words. At the third level of the hierarchy, similar ensem-

bles of volumes are grouped in order to construct another

codebook, that of ensembles of volumes. Using the pdf to

represent each ensemble of volumes makes it possible to use

divergence functions from statistics and information theory

as a similarity measure. Here we invoke the Kullback-Leibler

(KL) divergence to measure the similarity between two pdf s,

f and g [23]:

KL(f ||g) = −
∫

f (x) log

(
g (x)

f (x)

)
dx (6)

To make the measure symmetric, we take the symmetric KL

divergence:

d(f ||g) = KL(f ||g) +KL(g||f) (7)

Then the similarity between two ensembles of volumes,

Esi,ti and Esj ,tj , is defined as:

S
(
Esi,ti , Esj ,tj

)
= e−

d2

(
PEsi,ti

,PEsj,tj

)

2σ2 (8)

where PEsi,ti
and PEsj,tj

are the pdf s of the ensembles

Esi,ti and Esj ,tj obtained from the previous level, d is the

symmetric KL divergence between the two pdf s in (7), and

σ is the variance of the KL divergence over all of the ensem-

bles. The third level codebook, Cl3 =
{
cl31 , c

l3
2 , ..., c

l3
ml3

}
,

is formed using the similarity measurement in (8).

Level #4: Informative codeword selection. Given the code-

book Cl3 obtained at the third level, each pixel at (s, t) in
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the video is assigned to a codeword:

ps,t ← cl3i : cl3i ∈ Cl3 (9)

We remove non-informative codewords by analyzing each

pixel and its assigned codewords as a function of time. This

method was inspired by the pixel-based background model

presented in [22], where a time series of quantized color

features is created at each pixel from which a compact model

of the background is then determined. We adopt the same

temporal filtering process as in [22]. The main difference

is that we construct these codebooks using different obser-

vations for each pixel, which are the assigned codewords

obtained from Level #3. Thus, a particular pixel, s in a video

clip is represented as a sequence of codewords, obtained

from (9):

Ps = {ps,t : t ∈ T} (10)

where T is the temporal length of the video.

B. Inference mechanism for a query video (Action matching)

The overall goal of this paper is to find similar videos to

a query video in a target set and consequently label them

according to the labelled query video. Given the hierarchical

codebook for each query video containing a specific activity,

the similarity of each pixel in the query video to the target

videos is calculated using the ensemble of STVs surrounding

it. Finally, the most similar subset of target videos is taken as

being similar to the query. Figure4 summarizes the process

of determining the hierarchical codebooks and how the

inference about the query is obtained.

Hierarchical codebook construction for each query video
For each query video containing a particular action, ai

• Construct the hierarchical codebook model: Hai
= {Cl1

ai
, Cl2

ai
, Cl3

ai
, Cl4

ai
}

Matching target videos
For each target video, g,

• Densely sample the video at all scales and construct spatio-temporal volumes

For each subset of query videos, containing a particular action ai

• Assign each video volume in the target to Cl1
ai

• Construct an ensemble of volumes at each particular pixel, Eg
s,t

• Measure similarity of the ensembles to Cl4
ai

using (8):

sEg
s,t,ai

= Max
j

S
(
Eg

s,t, c
l4
j : c

l4
j ∈ Cl4

ai

)
• Calculate the likelihood of the target: sg,ai

=
∑
s,t

sEg
s,t,ai

Action determination:

• The ensemble Eg
s,t contains action ai∗ :

sEg
s,t,ai∗

≥ γ, i∗ = argMax
i

(
sEg

s,t,ai

)
Target classification:

• The target contains action ai∗ : i∗ = argMax
i

(
sg,ai

)

Figure 4: The complete algorithm for similarity measure-

ment between query and target videos.

IV. EXPERIMENTAL RESULTS

In order to measure the capabilities of the proposed

method for action recognition, the algorithm was tested on

three different datasets: KTH [4], Weizmann [5] and MSR

II [6]. The Weizmann and KTH datasets are the standard

benchmarks in the literature used for action recognition. The

Weizmann dataset consists of ten different actions performed

by nine actors, and the KTH action data set contains six

different actions, performed by twenty-five different persons

in four different scenarios (indoor, outdoor, outdoor at

different scales, outdoor with different clothes). The MSR

II consists of 54 video sequences, recorded in different

environments with cluttered backgrounds in crowded scenes,

and contains three types of actions similar to the KTH:

boxing, hand clapping, and hand waving. We evaluate our

approach for three different scenarios: action matching and

retrieval, single dataset video classification, and cross-dataset

action detection. Here, single dataset classification implies

that both target and query videos are selected from the same

dataset, while cross-dataset recognition assumes that the

query and target videos are selected from different datasets.

Video matching and classification are performed using

KTH and Weizmann datasets, which are single-person,

single-activity videos. Although they were collected in con-

trolled environments, we use them to compare with the

current state-of-the-art. For cross-dataset action recognition,

we use the KTH dataset as the query set, while the target

videos are selected from the more challenging MSR II

dataset. Our experiments demonstrate the effectiveness of

our hierarchical codebook method for action recognition in

various categories.

A. Action matching and retrieval

Since our proposed method is a video-to-video matching

framework, it is not necessary to have a training sequence.

This means that we can select one labelled query video for

each action, and find the most similar one to it to perform the

labelling. For the Weizmann dataset, we used one person for

each action as the query video and the rest (eight other per-

sons) as the target sets. This was done for all persons in the

dataset and the results were averaged. The confusion matrix

for the Weizmann dataset is shown in Figure5, achieving an

average recognition rate of 91.7% over all 10 actions. The

columns of the confusion matrix represent the instances to

be classified, while each row indicates the corresponding

classification results. We carried out the same experiment

on the KTH dataset. The confusion matrix is shown in

Figure5. The average recognition rate was 84.33% over all 6

actions. The results indicate that the method proposed in this

paper outperforms state-of-the-art approaches, even though

the former requires no background/foreground segmentation

and tracking. The average accuracy of the other methods is

presented in TableI. The overall results on the Weizmann

dataset are better than those on the KTH dataset. This is

predictable, since the Weizmann dataset contains videos with

more static backgrounds and more stable and discriminative

actions than the KTH dataset.
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(a) Weizmann dataset (b) KTH dataset

Figure 5: Confusion matrices for single video action match-

ing, a) Weizmann dataset, b) KTH dataset. A single video

is used as the query to which the other videos in the dataset

are matched.

Table I: Action recognition comparison with the state-of-

the-art using single video action matching

Method Dataset
KTH Weizmann

Our method 84.33 91.7
Thi et.al. [24] 77.17 88.6
Seo et.al. [12] 69 78

B. Single Dataset Action classification

In order to make an additional quantitative comparison of

our algorithm with the state-of-the-art, we have extended it

to the action classification problem. This refers to the more

classical situation in which we use a set of query videos
instead of just a single one, as discussed previously. We

have evaluated our algorithm’s ability to apply the correct

label to a given video sequence, when both the training2

and target datasets are obtained from the same dataset. We

tested the Weizmann and KTH datasets, and applied the

standard experimental procedures in the literature. For the

Weizmann dataset, the common approach for classification is

to use leave-one-out cross-validation, i.e., eight persons are

used for training and the videos of the remaining person are

matched to one of the ten possible action labels. Consistent

with other methods in the literature, we mixed up the four

scenarios for each action in the KTH dataset and followed

the standard experimental procedure for this dataset [6], in

which 16 persons are used for training and nine for testing,

done randomly 100 times. Then, we calculated the average

performance over these random splits. The confusion matrix

for the Weizmann dataset is reported in Figure6 and the

average recognition rate is 97% over all 10 actions in the

leave-one-out setting. As expected from earlier experiments

reported in the literature, our results indicate that the “skip”

and “jump” actions are easily confused, as they appear vi-

sually similar. On the KTH dataset, we achieved an average

recognition rate of 94.5% for the six actions, shown in the

confusion matrix in Figure6. As observed from Figure6,

the primary confusion occurs between jogging and running,

2Although our method does not require any specific training sequences,
we refer to the query video dataset as the training set for consistency with
the literature.

(a) Weizmann dataset (b) KTH dataset

Figure 6: Confusion matrices for the action classification, a)

Weizmann dataset, b) KTH dataset.

Table II: Comparison of action recognition with the state-

of-the-art

Method Dataset
KTH Weizmann

Our method 94.5 98.5
Bregonzio et al. [9] 93.17 96.6
Yao et al. [7] 93.5 97.8
Thi et.al. [24] 94.67 98.9
Seo et.al. [12] 95.1 97.5
Wang et al. [14] 93.8 -
Liu et al. [19] 94.2 -
Tian et al. [25] 94.5 -

which is also problematical for the other approaches. Ob-

viously, this is due to the inherent similarity between the

two actions. The recognition rate was also compared to

other approaches (see TableII). Comparing our results with

those of the state-of-the-art, we observe that they are similar,

even though we do not require any background/foreground

segmentation and tracking.

C. Cross-dataset action matching and retrieval

Similar to other approaches for action recognition [25],

we use cross-dataset recognition to measure the robustness

and generalization capabilities of our algorithm. In this

paradigm, the query videos are selected from a specific

dataset (in our experiments the KTH dataset) and the targets

from another(MSR II), so that we compare similar actions

performed by different persons in different environments.

We selected three classes of actions from the KTH dataset as

the query videos: boxing, hand waving, and hand clapping,

including 25 persons performing each action. A hierarchical

codebook was formed for each action category and the

query was matched to the target videos. We varied the

detection threshold to obtain the precision/recall curves for

each action type, as shown in Figure7. This achieved an

overall recognition rate of 79.6%, which is better than the

state-of-the-art (see TableIII).

Table III: Comparison of action recognition with the state-

of-the-art

Method Accuracy (%)
Our method 79.6
Tian et al. [25] 78.8
Yuan et al. [15] 59.6
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Figure 7: The precision-recall curves for cross-dataset action

recognition using the hierarchical codebook structure.

V. CONCLUSION AND FUTURE WORK

We have presented a new hierarchical approach based

on spatio-temporal volumes for the challenging problem

of human action recognition in videos. Our approach is

an extension to the conventional BOV approaches since

we construct a hierarchical representation of informative

video volumes and their compositional relationships. The

hierarchical structure consists of four levels:

1) Coding a video using spatio-temporal volumes to

produce a low-level codebook.

2) Constructing an ensemble of video volumes and rep-

resenting their structure using probabilistic modeling

of the relative compositions of the spatio-temporal

volumes.

3) High level codebook construction of ensemble vol-

umes.

4) Analysis of the codewords as a function of time in

order to construct a codebook of salient regions.

Given a single query video (an example of a particular

activity), the method computes the similarity of each pixel

in each frame of the target videos to the query, and finds the

subset of target videos which are similar to that query. This

is accomplished by analyzing a relatively large contextual

region around the pixel, while considering the compositional

structure using a probabilistic framework. The algorithm

was tested on three popular benchmarks, KTH, Weizmann,

and MSR. We showed that the algorithm is effective and

robust, in both action-matching and cross-dataset recognition

tasks. Moreover, the results are highly competitive with

state-of-the-art methods. However, a major advantage of our

approach is that it does not require any feature analysis,

background/foreground segmentation and tracking, and is

susceptible to on-line real-time analysis. The proposed video

method can easily be extended to multi-action retrieval and

action localization by modifying the inference mechanism.
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