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Maximum Multipath Diversity and Coding Gains
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Abstract—Orthogonal ~ frequency-division ~ multiplexing peak-to-average ratio (PAR), which reduces the efficiency of
(OFDM) converts a frequency-selective fading channel into hjgh-power amplification.
parallel flat-fading subchannels, thereby simplifying channel Unlike OFDM, coded OFDM (C-OFDM) [21] is fading
equalization and symbol decoding. However, OFDM’s perfor- L ' .
mqance suffers fron% the loss of gmultipath diversity, anpd the reS|!|ent, and has been adopted by many standards [2]. Typical
inability to guarantee symbol detectability when channel nulls choices for error-control codes include convolutional codes
occur. In this paper, we introduce a linear constellation precoded (see, e.g., [11]), and trellis-coded modulation (TCM) (see, e.g.,
OFDM for wireless transmissions over frequency-selective fading [9]). TCM together with interleaving enables a better tradeoff
channels. Exploiting the correlation structure of subchannels and between performance and bandwidth efficiency, while enjoying

choosing system parameters properly, we first perform an optimal . . . .
subcarrier grouping to divide the set of subchannels into subsets. low-complexity Viterbi decoding. However, standard design

Within each subset, a linear constellation-specific precoder is Paradigms for TCM make it difficult to design systems which

then designed to maximize both diversity and coding gains. While achieve diversity gain equal to the code length.

greatly reducing the decoding complexity and simplifying the pre-  This motivates the novel linear constellation precoded OFDM

gpder_ijeagg, su(l:j;_camer_groulpmgdg_r;ablets thedmax(ljmum p|C)ss_,$le (LCP-OFDM) we develop in this paper for multicarrier trans-
iversity and coding gains. In addition to reduced complexity, .. . ) ) i

the proposed system guarantees symbol detectability regardiessM!SSIONS OVer frequency-selective fading channels. Ex_plomng

of channel nulls, and does not reduce transmission rate. Analytic the correlation structure of the OFDM subchannels, we first per-

evaluation and corroborating simulations reveal its performance form what we term optimal subcarrier grouping that splits the

merits. set of correlated subchannels into subsets of less correlated sub-
Index Terms—Diversity methods, linear constellation precoding, channels. While greatly simplifying the decoder and the pre-
orthogonal frequency-division multiplexing (OFDM). coder design, subcarrier grouping turns out to be optimal in

the sense of preserving maximum possible diversity and large
coding gains. Within each subset of subcarriers, a linear con-
stellation precoder (LCP) that is, in general, complex and could
R ECENTLY, orthogonal frequency-division multiplexingpossibly be nonunitary is then designed to maximize both di-
(OFDM) has gained much attention as an effectivgersity and coding gains. The idea of using linear precoding to
multicarrier technique for wireless transmissions over frémprove performance over fading channels is related to that of
guency-selective fading channels. OFDM transforms [&], [10] and [12], where aeal orthogonalprecoder is applied
frequency-selective fading channel into parallel flat-fadingy maximize the channel cutoff rate [12], or maximize the min-
subchannels, thereby significantly reducing the receiver coimum product distance [1], [10]. In addition to improved per-
plexity both in the equalization and the symbol decodingrmance, LCP-OFDM does not reduce the transmission rate
stages. However, the price paid for OFDM'’s simplicity is thef uncoded OFDM, and guarantees symbol detectability (see
loss of multipath diversity due to the fact that each symbalso [16] and [17]). At the same time, its decoding complexity
is transmitted over a single flat subchannel that may undergoapproximately exponential in the channel order (or approxi-
fading, and the inability to guarantee symbol detectabilityately polynomial if sphere decoding (SD) [15] is applied) that
when channel nulls occur on those subchannels. As a resigitoften a relatively small number in practice. These merits of
the performance of OFDM degrades if no additional counterCP-OFDM are confirmed by both analytical evaluation and ex-
measures are taken. OFDM transmissions suffer also from highsive computer simulations. Interestingly, when each subset of
subchannels has size equal to a power of two, our LCP-OFDM
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Fig. 1. LCP-OFDM and its equivalent block system.

practical issues are considered in Section VII. Simulations diey := dlag(H(O) ..... JH(P — 1)) = FpHFY where
carried out in Section VIII, while Section IX concludes thisH (p) := Zz:o h(l) exp(—j2xlp/P) is nothing but the fre-
paper. quency response of the underlying FIR channel evaluated at the
Notation: Column vectors (matrices) are denoted b¥FT grid (herej := /—1).
boldface lower (upper) case letters. Superscriptsand " Denote byy(n) = [y(nP),...,y(nP + P — 1)]T the
stand for transpose and complex conjugate, respectively;x 1 received block after FFT processing at the receiver,
diag(ds,...,dp) denotes aP x P diagonal matrix with and w(n) = [w(nP),...,w(nP + P — 1)]7 the P x 1
diagonal entried,, ..., dp; diag(d) is a diagonal matrix with additive white Gaussian noise (AWGN) vector with correlation
d on its diagonal; andlp stands for the® x P identity matrix. matrix R,, = NoIp where N, is the noise power spectrum
density normalized by the average symbol energy. With these
II. SYSTEM MODEL notational for LCP-OFDM in matrix-vector form is (see Fig. 1)

We consider OFDM transmissions over frequency-selective y(n) = Dgs(n) + w(n) Q)
fading channels. As depicted in Fig. 1, our LCP-OFDM con,
sists of the serial concatenation of an LCP block followed by
an (uncoded) OFDM modulator. The LCP is described by the y(n) = Dy ®s(n) + w(n) 2
P x P matrix @ with entries over theomplexfield, that sat-
isfies the transmit-power constraint ®®") = P, with tr(-)
denoting matrix trace. The design ®fwill be detailed in Sec-
tion V. At the transmitter, information symboign) belonging
to the finite alphabet (constellation set)4, are parsed into
P x 1 blockss(n) := [s(nP),...,s(nP + P —1)]T that are
sequentially processed by the LCP. Note tails square, and
therefore, it does not reduce the transmission rate. After |In§%
constellation precoding, the >< 1 precoded bloclks(n) =
[5(nP),...,5(nP+P—1)]T = ®s(n) is treated as an OFDM
symbol, and is transmitted using uncoded OFDM. Notice that
5(n) is generally a complex sequence no longer adhering to m
A, but to a larger size setl;. The LCP will be designed in
Section V to maximize both diversity and coding gains. In this section we will address two basic questions:

A linear algebra approach to modeling uncoded OFDM h&31l) What is the maximum achievable diversity and coding
been introduced in [16], and we adopt it here as well; see aigains for LCP-OFDM?; and Q2) What decoding complexity is
the dotted box in Fig. 1. The underlying frequency-selectivéquired to achieve these gains?
channel is modeled as ahth-order finite-impulse response We will first derive the maximum diversity and coding gains
(FIR) filter, denoted ash := [h(0),...,h(L)]T, with h(7) for LCP-OFDM. Exact bit-error rate (BER) performance anal-
standing for thdth channel tap. A cyclic prefix (CP) of lengthysis would be desirable, but it is difficult, if not impossible. In-
L., > L is inserted per transmited OFDM block, and istead, we resort to the pairwise error probability (PEP) analysis
removed from the corresponding received block to eliminatgat provides a good approximation for BER at high signal-to-
the interblock interference (IBI) induced by the FIR channehoise ratio (SNR), and has been extensively used in communica-
As a result, the FIR channel vectdr is represented in our tions; see, e.g.,[5], [13], and [17]. Since PEP analysis is carried
model (see Fig. 1) by thé x P circulant matrixH with out within one block, we drop the block indexin (1) for nota-

r, equivalently

where theP x 1 FFT- processed noise vectw(n) :=
[w(nP),..., w(nP + P — 1)]T = Fpw(n) remains white
with correlatlon matrixR.,, = NoIp because the FFT matrix
Fp is unitary. Accounting for the CP, LCP-OFDM exhibits
bandwidth efficiency) := P/(P + Lcp), which is equal to that

of uncoded OFDM.

Given the received block(n), we wish to decode(n) with
aximum (multipath) diversity, large coding gains, and with
low decoding complexity. These goals will be achieved by care-
fully designing the LCP matrixp.

. PERFORMANCEBOUNDS OFLCP-OFDM

(p,q)th entry[H], , = h((p — ¢) mod P). tional simplicity. We assume that:

Let Fp be theP x P fast Fourier transform (FFT) matrix A1) maximum-likelihood (ML) detection is performed
with [F],, = (1/VP)exp(—j2x(p — 1)(¢ — 1)/P). Thanks with perfect channel state information (CSI) available
to the circular structure oH, performing inverse fast Fourier at the receiver, but not at the transmitter; and
transform (IFFT) at the transmitter (post multiplication of A2) the channel vectdn is zero-mean, complex Gaussian
H by F%), and FFT at the receiver (premultiplication BF with full rank correlation matrixR,, := E(hh’").

by Fp), OFDM yields a diagonal equivalent channel matrixiotice that A2) allows for correlated wireless channels with,
e.g., an exponential power delay profile, as lon@ashas full
1In this paper,A4, is normalized to have unit average energy. rank.
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Recalling (1) and dropping the block index we define the whereG, , := R(C.) andG. . := ([[XS) ™" \)/E(C) are
pairwise error evenfs — s’} with s # s’ as the event that the the pairwise diversity and coding gains, respectively, that de-
receiver decodes erroneously, whea is actually transmitted, pend on bothe and ®. It is clear from (7) thaG. ; andG. .
and denote by’(s — &) the corresponding PEP. Similar to [5],affect the PEP bound in (7) in different ways. ; determines
[13], and [17], the conditional PEP is well approximated by how fast the average PEP decreases as the SNR increases, while

2(y',y) G.,. controls how this PEP shifts relative to the benchmark
W] (3) error-rate curve of1/4Ny) =%,

P(s — 8 | h) <exp {—
As mentioned earlier, botty, ; and G, . depend ore, or

wherey’ := Dps',y := Dys, andd(y’,y) = [[y’ — ¥l equivalently, on the choice sfands’. Because(n)’s are drawn
is the Euclidean distance betweghandy. Define the error from the finite constellation sed,, the set of all possible, de-
vectore := s’ — 5 = ®(s’ — s), wheres’ := ®s’ and noted byA?, is also finite. Accounting for all possible pairwise

s := ®s. Exploiting the diagonal structure @, we obtain  errors, as in [17], we define herein the diversity and coding gains
d*(y',y) = ||Due||* = |D.h|*>, whereD, := diag(e), and for LCP-OFDM, respectively, as
h := [H(0),...,H(P — 1)]* contains the channel response

values on the FFT grid. Ga:=minGeq and Ge:= min Ge.. (8)
In order to link h with h, we define v(p) :=
[L,wP,...,wPl)T with w = exp(—j2r/P). By the defi- Becaus_e_the performance qf ITCP—OFDM depends on 6gth
nition of H(p), h is related tch via andd.., itis important to maximize bot&y; andG... Before spe-
N cializing to particular® designs, we next derive the maximum
h=Vph (4) G, andG. achievable by LCP.

whereVp := [v(0),...,v(P—1)]" isthePx (L+1) truncated V€ have seen thati; depends onC.. By checking the

FFT (Vandermonde) rﬁatrix. dimensionality ofC., it is clear that the maximum (and thus,

BecauseR,, is positive definite Hermitian symmetric [c.f. OPtimum) diversity gain
A2)], we can decompos®, as R’i = BB’!, where the Gamax = L+ 1 (9)
(L+1) x (L +1) matrix B := Rh/ is the square root of _ _ _ ) » _
R,, with full rank. Defining the prewhitened channel vectofS achieved if and only it's 7 s’ € A, the matrixC. has full
h := [1(0),...,h(L)]” = B~'h, it then follows from A2) that rank. Because the FIR chaniehasL + 1 taps, it is intuitively
{h(l)}}-, are independent identically distributed (i.i.d.)réasonabletoexpectthatthe diversity gainis no morethah
zero-mean, complex Gaussian with unit variance. Taking infois understood that with proper codinGis,max can be also

account (4), we can rewrii#(y’,y) as achieved by C-OFDM.
5 - 2 L Suppose tha€. has full rank, i.e.R(C.) = L + 1. By the
d*(y',y) = |Dch[|* =h™Ah =h"C.h ®)  definition of G, in (8), we obtain

where thg L+1) x (L+1) matricesA, := VED*D,.Vp and G. = min [det(C, )]

C. :=B"A_B. Asin [5], [13], and [17], we are interested in Ve7£0
the average PEP over all possible random channel realizations.  _ 1« iz . min [det(VEDD. VAT (10
By averaging the PEP in (3) with respect to the random variables [det(Rx)] 12;%[ et(VPDD:Vr)] (10)
h(l), we obtain the average PEP [5], [13], [17] which implies that.. is a function of the minimum determinant
R(C.)-1 -1
A — i HH
PE—3)< [] (1 N _z) ©) Biep = it det (VEDI'D.Vp). (11)
P 4Ny
_ Let us define the LCP matrbd@ := [¢;,....¢p]" :=

where);, 1 =0,..., R(C.)—1 are nonzero eigenvalues Gt by, ... p] where¢f(¢p) is the pth row (colunm) of®, and

andR(C.) is the rank ofC.. Assuming high SNR, it follows

; — YiaolhLl (o Ti.1 _
from (6) that then writeD, = diag[¢; (s’ — s),...,¢p(s’ — s)]. By the

definition of Vp andD., we find (12) as shown at the bottom

Paoi<(c 1\ Gee of the page, wher®T stands for other terms that are irrelevant
(5 —8)< AN, ™) atthis point. Recalling thatr(®"®) = tr(®®") = P, we
_ ., ) }
¢, (s —s') oT oT
p=1
o1 > |67 - o1
S—S
A, = p=1 b (12)
: : C, i : ,
oT oT e Y e, (s =)
L p=1 J
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have 25:1 ||¢}Sp||2 = P, and thereforeminy, ||<}Sp||2 < 1. as the channel gain on tih subcarrier, we introduce the set

BecauseA. is positive definite, we can upper boubid, by? Z := {0,1,...,P — 1} to index the collection of? subcar-
L1 riers. Choosing? = M K, subcarrier grouping can be repre-

" 2 sented by partitioning into M nonintersecting subsefs, :=
< mi ey ; R "

Biep < Vo0 21 $p(s =) {pm.1,---Pm,x } €ach with cardinalitys, i.e.

p:
< min ||, [PV AZEFD LiuLU---UIy=1

Vp /

< A2LAD) (13) Lo N Ly = 0, Vm #m (16)

- . . where() denotes the empty set.

WhereAm_in den_otes_the minimum Euclidean distance among To link Z,, with the operation of subcarrier grouping, we
tcr(])rlsttr(]ellatlon_ points Iré‘_ls- I f(_)llqws from (8), (10), and (13) further define for thenth group the subcarrier selector matrix
atthe maximum coding gain 1s ®,, := Ip(Z,,:), wherelp(Z,,,:) is aK x P permutation

Gemax = [det(Ry)]Y/EFVAZ (14) matrix built from the{p,,, . + 1}, rows ofIp. Because each
o _subcarrier is uniquely associated with offe), K subcarriers
Note that the derivations @ ; max and G max do not restrict 7Z,,, are thus associated witki symbols{3(nP + pm i) }5_;

@ except for requiringtr(®*®) = P. Thus, it is reason- yhai can be collected into & x 1 block Sm(n) = [s(nP +
able to treatGy max and G. max as performance bounds of

pm,i)7 te §(TLP + pm,K)]T = ‘Ilmé(n) Letting Ym<n) =

LCP'OF_D_M' ¥ v(n), it follows from (1) that
In deriving performance bounds, we have assumed ML de-

coding. For a general precod®, LCP-OFDM transmits each Ym(n) = Dy gSm(n) + Wi (n), m € [1, M] 17)
information symbol oveP subcarriers [c.f. (2)]. In other words,
each received data symhgln) contains contributions fro®  Where Do,y = diag[H (pm1),- -, H(pm k)] =
information symbols. Thus, ML decoding has to involve an e>21’m.DH‘I’$n and w,(n) = W®,w(n). As mentioned
haustive search amorig.,|? possibles(n)’'s where|A, | is the €arlier, we will reduce decoding complexity by transmitting
cardinality of A,. In practical OFDM systemsP is typically €ach information symbol over only one of the subcar-
large (e.g.” = 64 in HiperLan 11 [2]), and thus, ML decoding 'i€r groups. Mathematically, we divide(n) into M blocks
becomes computationally prohibitive. We next discuss how to(7) = ¥ms(n), m € [1, M], and links,(n) with s, (n)
reduce the decoding complexity by performing what we ter@s follows:

subcarrier grouping.

Sm(n) = Osp(n), m € [1,M] (18)

?

IV. OPTIMAL SUBCARRIER GROUPING where theK x K complex matrix® constitutes the so-termed

In general, LCP-OFDM has high decoding complexit?LCPthﬁt will be designed_ in Section V. Cleatdyn P+ py, 1)
because every information symbol is transmitted overFall IS trans.mltted oversubgarrlersigl only. In ordgrto control the
subcarriers. Our approach to reducing the decoding complexfgnsmit power, we again impose the congtrﬁuf@”@) =K.
is to divide the set of all subcarriers into nonintersecting subs&8MmPining (18) with (17), GLCP-OFDM is modeled as
of subcarriers, and transmit every information symbol over m(n) = Dy 1 Osm(n) + Wo(n), me[l,M]. (19)
subcarriers within only one of these subsets. We will term these ’
subsets as subcarrier groups, and the resulting LCP-OFDMTaslink GLCP-OFDM to LCP-OFDM modeled in (2), we stack
grouped LCP-OFDM (GLCP-OFDM). Subcarrier groupinghe equations in (18) to obtain
was originally suggested in [16] for multiuser interference

elimination, and in [7] for PAR reduction. Here, the objective ‘Ifl : ®TI’1
is different: we wish to reduce complexity while preserving : s(n) = : s(n).
performance. It will be shown that with considerably reduced W Ow,,

complexity, the performance bounds in (9) and (14) still hoIRI

true for GLCP-OFDM if subcarrier grouping is properly ofice thatd in (2) can be expressed as

designed. In addition to decoding simplicity, careful subcarrier M
grouping also brings about the simplicity of the LCP design, ¢ = Z ¥ 0T, (20)
as we will detail in Section V. m=1

Clearly, designing GLCP-OFDM is equivalent to designing

A. Subcarrier Grouping LCP-OFDM with the particular precoddr specified in (20).

Let us rewrite (1) element-wise as
y(nP+p)=H(p)s(nP+p)+w(nP+p), p € [0,P—1] (15) _ o . .
By analyzing the diversity and coding gains of

. . P—1 . X ' . K :
P flat subchannels with gaingH (p)},—, . Referring toH (p)  with the goal of reducing decoding complexity as much as
2Here, we used the inequalitiet(A) < [[Y, a.., wherea,, is theith pogsible, while pr_eser_ving thg maximum diversity and coding
diagonal entry of théV x N positive definite matrixA.. gains that we derived in Section Ill.

B. Designing Optimal Subcarrier Groups
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group 1 group 2 group 3

=77

— subcarriers

Fig. 2. Optimal subcarrier grouping{ = 3, L + 1 = 4).

Let us drop the block index in (17) and (19), and define  For this grouping, we find thalU,, = Vygdiag(l,...,
- wEm=1)) ‘and thus¢,. = KX. On the other hand, for arbitrary
U =[V(pm,1): - v(pmx)] K x(L+1) subcarrier grouping, it follows that(U%U,,) = (L + 1)2.
en =0(s, —s,) Kxl1 SinceU,, has full rank,U%U,, is positive definite. Thus, the
D,, . :=diag(e,) K x K maximumé,. for arbitrary subcarrier grouping will bg K%,

Ao =UXDY D, U, (L+1)x(L+1). (21) From this, we d_educe that the s_ub_carrier grouping_ specified in
’ ’ ’ (24) is optimal in terms of maximizing+,, ., and will, thus,
Mimicking the steps used to derive (7), the diversity gain dfe adopted henceforth. The optimal subcarrier grouping is

GLCP-OFDM can be expressed as illustrated in Fig. 2.
] On the other hand, mimicking the derivation of (13), it can be
G, = verlo R(Ame)- (22)  readily proved that

By checking the dimensionality &%, ., itis clear that the max- 2 1K
imum diversity gain i$74 max = L+ 1, whichis achieved if and &iep < [%} . (25)
onlyif A,, . hasfullrank,i.e.R(A,,.) = L+1.Inordertoen-

sureR(Amp,) = L +1, one necessary conditiont6 > L+ 1. therefore, the maximum coding gain of GLCP-OFDM is
As assumed in Al), we will recove,, (n) fromy,,(n) by ML [det(R,)]/E+DA2 . which is identical to the maximum

min?

decoding, whose complexity is exponentialin To minimize coding gain offered by LCP-OFDM.
_dt-_zcoding_complexitywhile preserving maximum diversity gain, ty,s far, we have shown that GLCP-OFDM with optimal
itis practically preferable to choodé = L + 1. Observe that g hcarrier grouping offers the potential to achieve the same
U,, is a Vandermonde matrix, and thus,, . will have full 5 yimum multipath diversity and coding gains as those of
rank if and only ifD,, . has full rank. Ensuring thdd,, . has | cp.oFpM, while reducing the decoding complexity con-
full rank for all possible distincs,,, ands/,, depends on the de- gigeraply if a smallk is chosen. However, it is important to
sign of ® that will be addressed in Section V. point out at the outset that subcarrier grouping preserves only
Suppose thah.,, . has full rank and’ = L + 1 is chosen. mayimum diversity and coding gains, and does not necessarily
Proceeding along the lines used to arrive at (10), we find thifaserve the BER performance. The reason is twofold: 1) the
the coding gain of GLCP-OFDM is given by PEP is only a good approximation of the BER performance
Gy e at high SNR; and 2) in addition to diversity and coding gains,

' other factors such as the kissing number also affect the BER
performance [1]. Having designed our optimal subcarrier
grouping, we proceed to desig® in (18) to optimize our
(23) system.

K

= [det(R)]* [det(UTU,,)]* | min [det (D” D,
Ve, 70 ’

whose value depends on
V. GLCP DeSIGN
— H

§ac 1= det (UmUm) Subcarrier grouping reduces the design of LCP-OFDM
and to that of GLCP-OFDM. Consequently, the performance of

fiep := min_det (D} D, ). LCP-OFDM is now up to the optimal design of the GLCP

Vem#0 ’ matrix ®. As mentioned in Section IV, the design criteria for

In order to maximize&7,, ., both&,. andé., need to be maxi- ® can be summarized as follows.
mized. How to maximiz€)., depends on the design @ that ~ C1) Maximum Diversity Gain CriteriorDesign ak x K

will be addressed in Section V. Note also that channel corre- matrix ® with tr(@@H) = K such thavk € [1, K]
lation will not affect this design, as long &;, has full rank.

Her_e, we will address the maximization & by judiciously ’05(5 — )| £0, Ws#£s €Uk
designingZ,y,.

Let us consider a particular subcarrier grouping T
wheref,, denotes théth row of ®; ands ands’ are

Tmopt = {m—-1,M+m—1,...,(K-1)M+m—1}. (24) two K x 1 vectors with elements drawn from,.
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TABLE |
DESIGN EXAMPLES OF ® FORK = 2,3,...,8
K a as asg ay ag g ay ag
2| eiE eI
3 V29 | {2679 | Ve
4 e I% eI e I% e I'F
5| ¥2c9% | 2ei% | 2K | e IH | {2 H
6 e_joi e—jéT" e—jﬁTﬂ e“jg'il e“jl_gl e‘jnT"
7 | Ve it | V2% | V2eIH | V25 | e | V2e i | 2 i
8 e Ifs e I% e I%8 e~i%e eI e~i5E e I | eI N
C2) Maximum Coding Gain CriterionDesign aK x K O is a unitary matrix and can be compactly expressed
matrix ® with tr(@®") = K to maximize as
@ =Frdiag(l,ay,...,al 1) (27)

K
EICp = Hlin, H ’05(5 - Sl) :
Vs Lo which turns out to coincide with those proposed in [1],
[6], and [7].
R3) If K ¢ K := K1 UKy, then{a,}X_, are chosen as

Based on a design criterion similar to C2), a number of roots c,)fo N (1_+ V=1 =0. . .
approaches have been proposed to design LCPs in the literaftfethe reader’s convenience, Table | lists the designfer
[1], [4], [6], [19], [20]. Among them, we are particularly 2,37....,8. Itis important to point out tha_t the design@lis
interested in theinified algebraic construction method LCP-ANCt unitary whenk' is not a power of two, i.e., wheR ¢ K.
[20, Sect. III-B] that was proposed in the context of mulln general, the constellation precoding should not be interpreted

tiple-antenna systems. Our design of opti®awill follow the ~ &S @ constellation rotation. _
steps in [20] with appropriate modifications. For brevity, we 1N€ designed GLCP matric€3 in (26) satisfy C1) and C2).

just state the basic results pertaining to our context (read&g9arding their performance, the following theorem is estab-

are referred to [20] for detailed derivations and other aIgebrdiEhed [20]. .
construction methods). Theorem 1: Consider a QAM (or PAM, or BPSK, or QPSK)

constellationA, with minimum distance among signal points

Note that when C2) is satisfied, C1) will be automatically
satisfied.

A. Algebraic GLCP Construction Amin. For the GLCP® in (26), the achieved,;, is given by
LCP-A constructs the GLCP matrf® that applies to any, AZ. 1K
and quadrature amplitude modulation (QAM), pulse-amplitude §iep = [ é“zm}
modulation (PAM), binary phase-shift keying (BPSK), and QU are
ternary phase-shift keying (QPSK) constellations. Earlier con- K. if K €Ky UK,
structions [1], [6] follow as special cases of LCP-A, wh&n B2 = { 1’1 . otherwise.
is a power of two. The matri® in LCP-A can, in general, be 2K —1
written as a Vandermonde matrix According to (25) and’heorem 1we infer the following.
1oag o af? 1) ForK € K, GLCP-OFDM achieves maximum possible
1 ay .- oE-1 diversity and coding gains offered by LCP-OFDM.
1 2 2 . . .
®=_ (26) 2) ForK ¢ K, GLCP-OFDM achieves maximum possible
B : : : diversity gain but cannot achieve maximum possible
1 N = coding gain. However, sinc@'/% — 1) > (In2)/K,
K K GLCP-OFDM can achieve at least 70% of the maximum

wheref is a normalization factor chosen to impose the power possible coding gairG. max. Whether there exist®
constrainttr(@@”) = K, and the selection of parameters achievingG. max for P = MK with K ¢ K is still an

{a }E_| depends ori(, as follows. open question. Therefore, one should not conclude that
R1) If KisanEulernumber,i.ek € K; := {¢(P): P # subcarrier grouping induces a loss in the coding gain
0 (mod 4)} with ¢(P) denoting the number of positive even whenk' ¢ K.
integers that are less thdh and relatively prime to  So far, we have discussed the construction of GLCP matrices
P, then{a; }&£ | are roots of the equationp(z) = @ that guarantees maximum possible diversity and coding gains

0, whereyp(x) is defined aspp(z) = M,ep(r — whenK = (L + 1) € K. In practice, however, the channel
2 /Py ‘with P := {p : ged(p, P) = 1 andp € orderL is a parameter determined by the underlying physical
[1,P)}. channel, and thereforél. + 1) € K is not always satisfied. In
R2) If K is a power of two, i.e.K € Ky := {2P : p € N}  other words, if one choosds = L + 1 for minimum decoding
with N denoting the set of positive integeffsy, }X_,  complexity, a maximum 30% loss in the coding gain is possible.
are chosen to be roots of° — /=1 = 0. In this case, Alternatively, one could choose the smallést¢ K such that
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K > L+1, and then, construct odf x K GLCP matrix® ac- (or it is polynomial in the number of subcarriers if sphere
cording to (26). We have verified numerically that the so-chos@ecoding is applied). Because the number of subcarriers is
GLCP does achieve maximum coding gain, although we halegger than the channel order, LP-OFDM comes with high
not been able to provide a general proof that certainly constiecoding complexity, unless one resorts to suboptimal linear
tutes an interesting future research topic. However, as impliggro-forcing or minimum mean-square error (MMSE)] or
by Theorem 1the improvement is marginal (at most, 30% gainonlinear decision-feedback equalizers.

in the coding gain), and it is achieved at the expense of higher

decoding complexity. In a nutshell, the choicef6fdepends on B. Comparison With [7]

the tradeoff between performance and complexity. Targeting PAR reduction and performance enhancement,
. multidimensional signal sets were designed in [7] based on

B. Symbol Detectability nonconvex optimization implemented by nonlinear search. In

Maximum diversity and coding gains are important whethe framework of GLCP-OFDM, [7] corresponds to choosing

focusing on average performance of random fading channels.= 27, p € N, and designing

In practice, especially when fading channels do not change ) .

very rapidly, worst-case performance is of primary concern. In © = Frdiag(e!™,...,e/"x) (28)

such cases, ensuring symbol detectability becomes EXtre”\ﬁWere the parameterg,}X | are obtained via computer

important. Symbol detectability means that information sy earch so that,., is maximized. As expected, the optimum
bols can be detected correctly in the noise-free case, regard|gss jincides witF\ (26). ASK = 27 is only a subset ok

of the under!ying fading channel re_alization. We next discu CP-OFDM subsumes [7] as a special case. This also implies
how our design is capable of ensuring that this property hol g a by-product that GLCP-OFDM also reduces PAR when
(see also [17g)' _ _ h val h | K = 2P, On the other hand, because [7] requifés= 27, a

. Due to subcarrier grouping, the equivalent channe VeClhaller K is possibly chosen by our design in certain cases.

— T ic [i iah —
hy,, ];1_ [H (1), - 'H’Hf(pﬁ”irl)] IS ILnkeg toh wa_hfm”_ Hence, our design may yield lower decoding complexity than
Iém 3' Blecausdjm ashu column ran ur;t er (24|)’ét, 0 Or\]NS [7]. Moreover, our GLCP is constructed via closed-form alge-
that3 &’ € [1, k], so thatH (p.iv) # 0 after excluding the raic methods, which are certainly simpler to design than the

trivial caseh = 0. On t_he other ha~nd, the design c~r|tenon C omputer search, especially when a large signal constellation
ensuresthat's,, # s, itholds thats(nP + p,, x) # §'(nP + is used

Pm, k). Recalling (15), we then havg@nP +pp, 1) # v’ (nP+
Pm k) inthe absence of noise, regardleshoThis impliesthat ¢ comparison With [12]
we can always recover, fromy,,, uniquely. Regarding the re-

lation between maximum diversity and symbol detectability, it T .
is important to remark that maximum diversity implies symb mounts to designin for each GLCP-OFDM. Atfirst glance,

detectability, but the converse is not always true. Maximum he GLCP-OFDM model (19) appears identical to [12, eg. (2)],

versity is an ensemble property pertaining to random fadirigere the diversity transform (DRT) mati plays arole sim-

channels, while symbol detectability is a deterministic proper{ ro®. Howgvgr,A in[12, eq. (2)] is real and orthonormal,
applicable to every channel realization. hereas ou® is, in general, complex and may be nonunitary.

But the distinction between our approach and [12] goes well
beyond the complex versus real precoder used. In LCP-OFDM,
O is constructed to optimize diversity and coding gains, where

LCP-OFDM has been designed to achieve maximum divefre DRT matrix in [12] is constructed to maximize the channel
sity and high coding gains with guaranteed symbol detectabilityytoff rate. Different from PEP, the cutoff rate provides a lower
and relatively low decoding complexity. In this section, we furhound on the Shannon channel capacity and also specifies an
ther justify our design by comparing it with existing alternativesipper bound on the error probability of an optimal decoder at a

) ) fixed transmission rate [10, eq. (6)]. In addition to optimizing
A. Comparison With [16] and [17] the DRT, [12] also considered a suboptimal linear diversity

Linearly precoded OFDM (LP-OFDM) was originallytransform (LDRT) along with an MMSE detector having low
proposed to maximize diversity gain and guarantee symhmimplexity in the order of(2. On the other hand, the expected
detectability. Different from LCP-OFDM, symbol detectabilitycomplexity of sphere decoding that LCP-OFDM relies on is in
in LP-OFDM does not depend on the underlying signahe order ofK, where3 < o < 4 [8]. Therefore, for moderate
constellation, which may become useful when LP-OFDM ialues of K, the decoding complexity of GLCP-OFDM is
combined with channel coding. However, to ensure maximusomparable to LDRT. Targeting optimal performance, we will
diversity gain, LP-OFDM sacrifices a bandwidth efficiency not optimize GLCP for linear detection. In our simulations,
loss as compared to LCP-OFDM, and it relies on ML decodirfgowever, we will test how GLCP-OFDM performs when both
whose complexity is exponential in the number of subcarrieoptimal DRT and LDRT are used as GLCP.

After optimal subcarrier grouping, our LCP-OFDM design

VI. COMPARISONWITH EXISTING ALTERNATIVES

3This paper focuses omulticarrier transmissions, and our discussion here
excludes the zero-padded (ZP) case in [17], which is basically a single-car- VII. DESIGN CONSIDERATIONS
rier transmission scheme. Low-complexity Viterbi decoding can be applied to . .
ZP-only block transmissions to ensure maximum multipath diversity and coding S(_) far, W_e haYe des'gned LCPTOFDM to enable maximum
gains [17], [18]. multipath diversity and coding gains with guaranteed symbol
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Fig. 3. (a) LCP-OFDM with uncoded OFDM. (b) LCP-OFDM for PAR reduction.
detectability and low decoding complexity. In this section, we Let T, := [ICTPIIT,]T denote the operation of inserting the
consider several issues affecting the system performance @®lin OFDM, wherd.,, is formed by the lasL.,, rows of the
implementation of GLCP-OFDM. P x P identity matrixIp [16]. In GLCP-OFDM, the transmitted
baseband signal, denotedsg3:), is given by either
A. Effects of Channel Overestimation M
_ H T
Our design of GLCP-OFDM is based on the assumption that x(n) =T Fp Z T OTs(n) (29)
the underlying channél is FIR of known fixed order., which m=1

is rather idealistic for typical wireless applications. Without

feedback from the receiver, the exaktis unknown at the o

transmitter. Moreover, may change with time, depending on x(n) = Z T, FH Osp(n) (30)

the location of the mobile communicators. The more realistic P P

scenario is that one knows an upper boub_dand a lower - HeaT ,
bound L of the channel order, i.el, < L < L. In order to WhereFP,m =Fp¥,, Isalx (L+1).truncated. IFFT matrix.
achieve maximum diversity gain of orddr + 1, it is clear Althpugh (2'9) and (30) are mathgmaucally (_equwalent, they lead
from our discussion in Section IV that we should chodge © different implementations, as illustrated in Fig. 3(a) and (b).

for GLCP-OFDM based onl, instead of L. Interestingly, T_he first implementation in Fig. 3(_a) can be thought of as
our simulations will verify that this design (based dn) a direct enhancement to the conventional OFDM. Because the

is still capable of achieving the coding gain in (14), Whicﬁonventional OFDM transmitter is kept intact, this implemen-
indicates that our LCP-OFDM in Sections IV and V is quitéation requires little extra hardware investment. However, by
robust against channel overestimation. Note that the optini@€PINg thel co_nvhent_lonil %FDNg traknsm|tter_, th(ej flr_srt1 imple-
subcarrier grouping is crucial to ensuring this robustness. Néy€ntation also inherits the drawbacks assoclated with conven-

ertheless, channel overestimation still induces higher decodfifj'@! O©FDM. One drawback is the large PAR associated with
complexity than what is necessary. the linear combinations o symbols at the IFFT output. In

order to reduce PAR, one can chodse= 2?7, p € N, and de-
sigh ® according to (27), as suggested in [7].
The second implementation in Fig. 3(b) is in the spirit of the
In addition to low decoding complexity, the subcarrieclustered OFDM system proposed in [3]. By checking the di-
grouping also brings flexibility into the system implementatiormensionality off 7% | the outputs oF};{m are linear combina-
as we describe next. tions of only X symbols. Thus, the PAR is reduced considerably

m=1

B. Implementation Variants
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Fig. 4. LCP-OFDM versus ZP-only. Fig. 5. LCP-OFDM versus LP-OFDM (cosine precoders).

in the second implementation. This translates into cheap powéich as the kissing number. Using parameférs= 15 and
amplifiers and performance improvement, as discussed in [3]= 2, we further compare LCP-OFDM to LP-OFDM with the
Furthermore, if we consider each branch in Fig. 3(b) as a use®sine precoders of [17] that result in a multicarrier scheme.
the second implementation can be viewed as an LCP variantsf shown in Fig. 5, it is seen that LP-OFDM still outperforms
the generalized multicarrier (GMC) code-division multiple-ad-CP-OFDM slightly. However, in addition to higher decoding
cess (CDMA) scheme in [16] for multiuser systems, with theomplexity, LP-OFDM has a lower transmission rate than
unique capability of supporting multiuser interference-resiliebCP-OFDM. For fairness, we concatenate LCP-OFDM with a
transmissions through frequency-selective (uplink or downlink}5,13) Reed-Solomon coder (with block interleaving), so that
channels. In addition, by using different constellation sets footh LCP-OFDM and LP-OFDM have the same transmission
each of theV/ branches in Fig. 3(b), our second implementatiofate. Fig. 5 shows that coded LCP-OFDM outperforms uncoded
supports multirate services. However, the second implement&-OFDM.

tion may require additional signal isolators to isolate the col- Example 2 (Performance Comparison With [10NVe re-
lector terminal of power amplifiers from the summed signalplace GLCP in LCP-OFDM by either optimal DRT or LDRT.
The cost of those signal isolators is an issue one should takee resulting systems are termed as DRT-OFDM and LDRT-

into account in the second implementation. OFDM, respectively. The optimal DRT matri®P, 4 in [12,
Table 1] is used in DRT-OFDM, while a normalized ¥ 4
VIIl. SIMULATIONS Hadamard matrix is used as LDRT. Two tests are carried out.

The first test compares DRT-OFDM against LCP-OFDM, when

In addition to theoretical analysis, we carry out simulations ¥%th schemes use the SD algorithm. The second test compares

investigate the performance of LCP-OFDM by choosing BERprT_0FDM against LCP-OFDM, both with linear MMSE de-
as our figure of merit. We employ QPSK modulation, and u%‘oding. In all tests, we choose parametBrs= 16 and L = 3,

the sphere decoding (SD) algorithm for near-ML decoding [18), ,se BPSK modulation. The results in Fig. 6 illustrate that

Unless specified otherwise, the fading channels are genergted_~rpy outperforms its DRT counterparts by more than

according to the assumption A2) wikk;, = (1/(L + )Xy, 1 dB at BER= 10~ in both tests.

and they are assumed known to the receiver. Example 3 (Improvements With Optimal Subcarrier
Example 1 (Performance Comparison With LP-OFDM an%rouping): To appreciate the importance of optimal subcarrier

ZP-only): The pros and cons of C-OFDM versus LP'OFDNbrouping, we choose parametePs = 64 and L = 3, and

and ZP-only have been detailed in [17], where it is ShowWgy,\hare the optimal subcarrier grouping with a suboptimal
that at high code rates, both LP-OFDM and ZP-only ha

_ . \§touping specified by
the potential to outperform C-OFDM in BER performance.
Therefore, we only compare GLCP-OFDM with LP-OFDM Tonoab = {(m =K +1,(m - 1)K +2,..., mK}.

and ZP-only. We choos# = 16 and test two cases for

L = 1 andL = 3. The results in Fig. 4 show that ZP-onlylt is observed in Fig. 7 that our optimal subcarrier grouping
outperforms GLCP-OFDM marginally in both cases. It wasnproves performance considerably. If we compute the coding
proved in [18] that ZP-only achieves the same diversity amgin underZ,, .., as compared to that undéy, .., subop-
coding gains as LCP-OFDM. As mentioned before, the sartimal subcarrier grouping will induce about 30-dB loss in the
amount of diversity and coding gains do not necessarily imp&pding gain at high SNR.

the same BER performance. The BER performance differenceExample 4 (Effects of Channel Overestimatiofip inves-
between ZP-only and LCP-OFDM is caused by other factotsgate the robustness of LCP-OFDM against channel overesti-
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Fig. 6. LCP-OFDM versus (L)DRT-OFDM [10]. Fig. 8. Effects of channel overestimation.
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Fig. 7. Optimal versus suboptimal subcarrier grouping. Fig. 9. Effects of channel correlation.

mation, we choose parametdis= 3, L = 1, andP = 12. correlated channels (when= 0.2 or p = 0.6). It is seen from

We design two LCP-OFDM systems for bafhand L. Specif- Fig. 9 that the channel correlation degrades BER performance
ically, we choosek = 4, ®, for L, while K = 2 and®, are nhoticeably. To improve performance with correlated channels,

used forL. Interestingly, the comparison in Fig. 8 shows tha@ne could use a feedback channel to retrieve the information
the LCP-OFDM designed fok outperforms that designed forabout channel correlation from the receiver, and adjust the
L, although both systems have the same multipath diversity api@coder accordingly. Since channel correlations may change
coding gains. Again, we believe that the kissing number caugg@wly, this information need not be updated frequently. Thus,

the difference. not much loss in bandwidth efficiency will occur with feedback.
Example 5 (Effects of Channel Correlation)Ve choose the ~ Example 6 (Performance for HiperLan Il Channels)Se-
following channel correlation matrix: lecting parameters” = 64 and M = 8, we implement an
LCP-OFDM for realistic channel§L = 7) taken from the
I p 0 -0 HiperLan 1l Channel Model A in [2]. The complexity of SD is
1 P p - 0 polynomial inK = L + 1 = 8. In order to further reduce de-
R,=— |0 1 0 coding complexity, we also implement another LCP-OFDM by

L+17. U splitting each group of{ = 8 subcarriers into two subgroups

0 oo p 1 of four subcarriers, where a®% 4 LCP is then designed. We
compare these two implementations, and observe in Fig. 10 that
Selecting parameter® = 16 and L = 3, we compare the reduced complexity comes at the price of reduced but still
LCP-OFDM with i.i.d. channels (whep = 0) to that with acceptable performance. Our approach in this example provides
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Fig. 10. Full- versus reduced-complexity LCP-OFDM.
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Fig. 11. Effects of imperfect channel estimates.

a way to trade off performance with complexity, which is useful[lz]

in practice when long channels are encountered.
Example 7 (Effects of Imperfect Channel EstimateQyur

IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 51, NO. 3, MARCH 2003

designed LCPs for each subsystem. While greatly reducing the
system complexity, we proved that subcarrier grouping does
not decrease the maximum possible diversity and coding gains.
The proposed system was shown capable of achieving the
maximum multipath diversity, large coding gains, and guaran-
teeing symbol detectability with low decoding complexity. In
addition, the proposed system offers considerable flexibility as
confirmed by simulations.

The proposed system works with a single transmit an-
tenna. Extension to multiple transmit antennas equipped with
space—time codes is currently under investigation.
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