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Abstract—Orthogonal frequency-division multiplexing
(OFDM) converts a frequency-selective fading channel into
parallel flat-fading subchannels, thereby simplifying channel
equalization and symbol decoding. However, OFDM’s perfor-
mance suffers from the loss of multipath diversity, and the
inability to guarantee symbol detectability when channel nulls
occur. In this paper, we introduce a linear constellation precoded
OFDM for wireless transmissions over frequency-selective fading
channels. Exploiting the correlation structure of subchannels and
choosing system parameters properly, we first perform an optimal
subcarrier grouping to divide the set of subchannels into subsets.
Within each subset, a linear constellation-specific precoder is
then designed to maximize both diversity and coding gains. While
greatly reducing the decoding complexity and simplifying the pre-
coder design, subcarrier grouping enables the maximum possible
diversity and coding gains. In addition to reduced complexity,
the proposed system guarantees symbol detectability regardless
of channel nulls, and does not reduce transmission rate. Analytic
evaluation and corroborating simulations reveal its performance
merits.

Index Terms—Diversity methods, linear constellation precoding,
orthogonal frequency-division multiplexing (OFDM).

I. INTRODUCTION

RECENTLY, orthogonal frequency-division multiplexing
(OFDM) has gained much attention as an effective

multicarrier technique for wireless transmissions over fre-
quency-selective fading channels. OFDM transforms a
frequency-selective fading channel into parallel flat-fading
subchannels, thereby significantly reducing the receiver com-
plexity both in the equalization and the symbol decoding
stages. However, the price paid for OFDM’s simplicity is the
loss of multipath diversity due to the fact that each symbol
is transmitted over a single flat subchannel that may undergo
fading, and the inability to guarantee symbol detectability
when channel nulls occur on those subchannels. As a result,
the performance of OFDM degrades if no additional counter-
measures are taken. OFDM transmissions suffer also from high
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peak-to-average ratio (PAR), which reduces the efficiency of
high-power amplification.

Unlike OFDM, coded OFDM (C-OFDM) [21] is fading
resilient, and has been adopted by many standards [2]. Typical
choices for error-control codes include convolutional codes
(see, e.g., [11]), and trellis-coded modulation (TCM) (see, e.g.,
[9]). TCM together with interleaving enables a better tradeoff
between performance and bandwidth efficiency, while enjoying
low-complexity Viterbi decoding. However, standard design
paradigms for TCM make it difficult to design systems which
achieve diversity gain equal to the code length.

This motivates the novel linear constellation precoded OFDM
(LCP-OFDM) we develop in this paper for multicarrier trans-
missions over frequency-selective fading channels. Exploiting
the correlation structure of the OFDM subchannels, we first per-
form what we term optimal subcarrier grouping that splits the
set of correlated subchannels into subsets of less correlated sub-
channels. While greatly simplifying the decoder and the pre-
coder design, subcarrier grouping turns out to be optimal in
the sense of preserving maximum possible diversity and large
coding gains. Within each subset of subcarriers, a linear con-
stellation precoder (LCP) that is, in general, complex and could
possibly be nonunitary is then designed to maximize both di-
versity and coding gains. The idea of using linear precoding to
improve performance over fading channels is related to that of
[1], [10] and [12], where areal orthogonalprecoder is applied
to maximize the channel cutoff rate [12], or maximize the min-
imum product distance [1], [10]. In addition to improved per-
formance, LCP-OFDM does not reduce the transmission rate
of uncoded OFDM, and guarantees symbol detectability (see
also [16] and [17]). At the same time, its decoding complexity
is approximately exponential in the channel order (or approxi-
mately polynomial if sphere decoding (SD) [15] is applied) that
is often a relatively small number in practice. These merits of
LCP-OFDM are confirmed by both analytical evaluation and ex-
tensive computer simulations. Interestingly, when each subset of
subchannels has size equal to a power of two, our LCP-OFDM
coincides with the coded modulation in [7]. Different from our
goal of maximizing diversity and coding gains, the design objec-
tive in [7] is PAR reduction as well as performance enhancement
through the design of nonstandard multidimensional signal sets.

The paper is organized as follows. In Section II, we describe
the system model and state our problem. In Section III, we de-
rive the performance of LCP-OFDM, in terms of maximum
diversity and coding gains. To simplify the decoding, an op-
timal subcarrier grouping scheme is developed in Section IV.
Section V deals with the design of LCPs, and Section VI com-
pares LCP-OFDM with several competing alternatives. Several
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Fig. 1. LCP-OFDM and its equivalent block system.

practical issues are considered in Section VII. Simulations are
carried out in Section VIII, while Section IX concludes this
paper.

Notation: Column vectors (matrices) are denoted by
boldface lower (upper) case letters. Superscriptsand
stand for transpose and complex conjugate, respectively;

denotes a diagonal matrix with
diagonal entries ; is a diagonal matrix with

on its diagonal; and stands for the identity matrix.

II. SYSTEM MODEL

We consider OFDM transmissions over frequency-selective
fading channels. As depicted in Fig. 1, our LCP-OFDM con-
sists of the serial concatenation of an LCP block followed by
an (uncoded) OFDM modulator. The LCP is described by the

matrix with entries over thecomplexfield, that sat-
isfies the transmit-power constraint , with
denoting matrix trace. The design ofwill be detailed in Sec-
tion V. At the transmitter, information symbols belonging
to the finite alphabet1 (constellation set) are parsed into

blocks that are
sequentially processed by the LCP. Note thatis square, and
therefore, it does not reduce the transmission rate. After linear
constellation precoding, the precoded block

is treated as an OFDM
symbol, and is transmitted using uncoded OFDM. Notice that

is generally a complex sequence no longer adhering to
but to a larger size set . The LCP will be designed in

Section V to maximize both diversity and coding gains.
A linear algebra approach to modeling uncoded OFDM has

been introduced in [16], and we adopt it here as well; see also
the dotted box in Fig. 1. The underlying frequency-selective
channel is modeled as anth-order finite-impulse response
(FIR) filter, denoted as , with
standing for theth channel tap. A cyclic prefix (CP) of length

is inserted per transmitted OFDM block, and is
removed from the corresponding received block to eliminate
the interblock interference (IBI) induced by the FIR channel.
As a result, the FIR channel vector is represented in our
model (see Fig. 1) by the circulant matrix with

th entry ).
Let be the fast Fourier transform (FFT) matrix

with . Thanks
to the circular structure of , performing inverse fast Fourier
transform (IFFT) at the transmitter (post multiplication of

by ), and FFT at the receiver (premultiplication of
by ), OFDM yields a diagonal equivalent channel matrix

1In this paper,A is normalized to have unit average energy.

where
is nothing but the fre-

quency response of the underlying FIR channel evaluated at the
FFT grid (here ).

Denote by the
received block after FFT processing at the receiver,

and the
additive white Gaussian noise (AWGN) vector with correlation
matrix where is the noise power spectrum
density normalized by the average symbol energy. With these
notational for LCP-OFDM in matrix-vector form is (see Fig. 1)

(1)

or, equivalently

(2)

where the FFT-processed noise vector
remains white

with correlation matrix because the FFT matrix
is unitary. Accounting for the CP, LCP-OFDM exhibits

bandwidth efficiency , which is equal to that
of uncoded OFDM.

Given the received block , we wish to decode with
maximum (multipath) diversity, large coding gains, and with
low decoding complexity. These goals will be achieved by care-
fully designing the LCP matrix .

III. PERFORMANCEBOUNDS OFLCP-OFDM

In this section we will address two basic questions:
Q1) What is the maximum achievable diversity and coding
gains for LCP-OFDM?; and Q2) What decoding complexity is
required to achieve these gains?

We will first derive the maximum diversity and coding gains
for LCP-OFDM. Exact bit-error rate (BER) performance anal-
ysis would be desirable, but it is difficult, if not impossible. In-
stead, we resort to the pairwise error probability (PEP) analysis
that provides a good approximation for BER at high signal-to-
noise ratio (SNR), and has been extensively used in communica-
tions; see, e.g.,[5], [13], and [17]. Since PEP analysis is carried
out within one block, we drop the block indexin (1) for nota-
tional simplicity. We assume that:

A1) maximum-likelihood (ML) detection is performed
with perfect channel state information (CSI) available
at the receiver, but not at the transmitter; and

A2) the channel vector is zero-mean, complex Gaussian
with full rank correlation matrix .

Notice that A2) allows for correlated wireless channels with,
e.g., an exponential power delay profile, as long ashas full
rank.
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Recalling (1) and dropping the block index, we define the
pairwise error event with as the event that the
receiver decodes erroneously, when is actually transmitted,
and denote by the corresponding PEP. Similar to [5],
[13], and [17], the conditional PEP is well approximated by

(3)

where , , and
is the Euclidean distance betweenand . Define the error
vector , where and

. Exploiting the diagonal structure of , we obtain
, where , and

contains the channel response
values on the FFT grid.

In order to link with , we define
with . By the defi-

nition of , is related to via

(4)

where is the truncated
FFT (Vandermonde) matrix.

Because is positive definite Hermitian symmetric [c.f.
A2)], we can decompose as , where the

matrix is the square root of
with full rank. Defining the prewhitened channel vector

, it then follows from A2) that
are independent identically distributed (i.i.d.),

zero-mean, complex Gaussian with unit variance. Taking into
account (4), we can rewrite as

(5)

where the matrices and
. As in [5], [13], and [17], we are interested in

the average PEP over all possible random channel realizations.
By averaging the PEP in (3) with respect to the random variables

, we obtain the average PEP [5], [13], [17]

(6)

where , are nonzero eigenvalues of ,
and is the rank of . Assuming high SNR, it follows
from (6) that

(7)

where and are
the pairwise diversity and coding gains, respectively, that de-
pend on both and . It is clear from (7) that and
affect the PEP bound in (7) in different ways: determines
how fast the average PEP decreases as the SNR increases, while

controls how this PEP shifts relative to the benchmark
error-rate curve of .

As mentioned earlier, both and depend on , or
equivalently, on the choice ofand . Because ’s are drawn
from the finite constellation set , the set of all possible, de-
noted by , is also finite. Accounting for all possible pairwise
errors, as in [17], we define herein the diversity and coding gains
for LCP-OFDM, respectively, as

and (8)

Because the performance of LCP-OFDM depends on both
and , it is important to maximize both and . Before spe-
cializing to particular designs, we next derive the maximum

and achievable by LCP.
We have seen that depends on . By checking the

dimensionality of , it is clear that the maximum (and thus,
optimum) diversity gain

(9)

is achieved if and only if , the matrix has full
rank. Because the FIR channelhas taps, it is intuitively
reasonable to expect that the diversity gain is no more than.
It is understood that with proper coding, can be also
achieved by C-OFDM.

Suppose that has full rank, i.e., . By the
definition of in (8), we obtain

(10)

which implies that is a function of the minimum determinant

(11)

Let us define the LCP matrix
where is the th row (colunm) of , and

then write . By the
definition of and , we find (12) as shown at the bottom
of the page, where stands for other terms that are irrelevant
at this point. Recalling that , we

...
...

.. .
...

(12)
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have , and therefore, .
Because is positive definite, we can upper bound by2

(13)

where denotes the minimum Euclidean distance among
constellation points in . It follows from (8), (10), and (13)
that the maximum coding gain is

(14)

Note that the derivations of and do not restrict
except for requiring . Thus, it is reason-

able to treat and as performance bounds of
LCP-OFDM.

In deriving performance bounds, we have assumed ML de-
coding. For a general precoder, LCP-OFDM transmits each
information symbol over subcarriers [c.f. (2)]. In other words,
each received data symbol contains contributions from
information symbols. Thus, ML decoding has to involve an ex-
haustive search among possible ’s where is the
cardinality of . In practical OFDM systems, is typically
large (e.g., in HiperLan II [2]), and thus, ML decoding
becomes computationally prohibitive. We next discuss how to
reduce the decoding complexity by performing what we term
subcarrier grouping.

IV. OPTIMAL SUBCARRIER GROUPING

In general, LCP-OFDM has high decoding complexity
because every information symbol is transmitted over all
subcarriers. Our approach to reducing the decoding complexity
is to divide the set of all subcarriers into nonintersecting subsets
of subcarriers, and transmit every information symbol over
subcarriers within only one of these subsets. We will term these
subsets as subcarrier groups, and the resulting LCP-OFDM as
grouped LCP-OFDM (GLCP-OFDM). Subcarrier grouping
was originally suggested in [16] for multiuser interference
elimination, and in [7] for PAR reduction. Here, the objective
is different: we wish to reduce complexity while preserving
performance. It will be shown that with considerably reduced
complexity, the performance bounds in (9) and (14) still hold
true for GLCP-OFDM if subcarrier grouping is properly
designed. In addition to decoding simplicity, careful subcarrier
grouping also brings about the simplicity of the LCP design,
as we will detail in Section V.

A. Subcarrier Grouping

Let us rewrite (1) element-wise as

(15)

which confirms that OFDM converts an FIR channel into a set of
flat subchannels with gains . Referring to

2Here, we used the inequalitydet(A) � a , wherea is the ith
diagonal entry of theN �N positive definite matrixA.

as the channel gain on theth subcarrier, we introduce the set
to index the collection of subcar-

riers. Choosing , subcarrier grouping can be repre-
sented by partitioning into nonintersecting subsets

each with cardinality , i.e.

(16)

where denotes the empty set.
To link with the operation of subcarrier grouping, we

further define for the th group the subcarrier selector matrix
, where is a permutation

matrix built from the rows of . Because each
subcarrier is uniquely associated with one , subcarriers
in are thus associated with symbols
that can be collected into a block

. Letting
, it follows from (1) that

(17)

where
and . As mentioned

earlier, we will reduce decoding complexity by transmitting
each information symbol over only one of the subcar-
rier groups. Mathematically, we divide into blocks

, , and link with
as follows:

(18)

where the complex matrix constitutes the so-termed
GLCP that will be designed in Section V. Clearly,
is transmitted over subcarriers in only. In order to control the
transmit power, we again impose the constraint .
Combining (18) with (17), GLCP-OFDM is modeled as

(19)

To link GLCP-OFDM to LCP-OFDM modeled in (2), we stack
the equations in (18) to obtain

...
...

Notice that in (2) can be expressed as

(20)

Clearly, designing GLCP-OFDM is equivalent to designing
LCP-OFDM with the particular precoder specified in (20).

B. Designing Optimal Subcarrier Groups

By analyzing the diversity and coding gains of
GLCP-OFDM, we design here optimal subcarrier grouping
with the goal of reducing decoding complexity as much as
possible, while preserving the maximum diversity and coding
gains that we derived in Section III.
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Fig. 2. Optimal subcarrier grouping (M = 3, L + 1 = 4).

Let us drop the block index in (17) and (19), and define

(21)

Mimicking the steps used to derive (7), the diversity gain of
GLCP-OFDM can be expressed as

(22)

By checking the dimensionality of , it is clear that the max-
imum diversity gain is , which is achieved if and
only if has full rank, i.e., . In order to en-
sure , one necessary condition is .
As assumed in Al), we will recover from by ML
decoding, whose complexity is exponential in. To minimize
decoding complexity while preserving maximum diversity gain,
it is practically preferable to choose . Observe that

is a Vandermonde matrix, and thus, will have full
rank if and only if has full rank. Ensuring that has
full rank for all possible distinct and depends on the de-
sign of that will be addressed in Section V.

Suppose that has full rank and is chosen.
Proceeding along the lines used to arrive at (10), we find that
the coding gain of GLCP-OFDM is given by

(23)

whose value depends on

and

In order to maximize , both and need to be maxi-
mized. How to maximize depends on the design of that
will be addressed in Section V. Note also that channel corre-
lation will not affect this design, as long as has full rank.
Here, we will address the maximization of by judiciously
designing .

Let us consider a particular subcarrier grouping

(24)

For this grouping, we find that
, and thus, . On the other hand, for arbitrary

subcarrier grouping, it follows that .
Since has full rank, is positive definite. Thus, the
maximum for arbitrary subcarrier grouping will be .
From this, we deduce that the subcarrier grouping specified in
(24) is optimal in terms of maximizing , and will, thus,
be adopted henceforth. The optimal subcarrier grouping is
illustrated in Fig. 2.

On the other hand, mimicking the derivation of (13), it can be
readily proved that

(25)

Therefore, the maximum coding gain of GLCP-OFDM is
, which is identical to the maximum

coding gain offered by LCP-OFDM.
Thus far, we have shown that GLCP-OFDM with optimal

subcarrier grouping offers the potential to achieve the same
maximum multipath diversity and coding gains as those of
LCP-OFDM, while reducing the decoding complexity con-
siderably if a small is chosen. However, it is important to
point out at the outset that subcarrier grouping preserves only
maximum diversity and coding gains, and does not necessarily
preserve the BER performance. The reason is twofold: 1) the
PEP is only a good approximation of the BER performance
at high SNR; and 2) in addition to diversity and coding gains,
other factors such as the kissing number also affect the BER
performance [1]. Having designed our optimal subcarrier
grouping, we proceed to design in (18) to optimize our
system.

V. GLCP DESIGN

Subcarrier grouping reduces the design of LCP-OFDM
to that of GLCP-OFDM. Consequently, the performance of
LCP-OFDM is now up to the optimal design of the GLCP
matrix . As mentioned in Section IV, the design criteria for

can be summarized as follows.

C1) Maximum Diversity Gain Criterion.Design a
matrix with such that

where denotes the th row of ; and and are
two vectors with elements drawn from .
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TABLE I
DESIGN EXAMPLES OF� FORK = 2; 3; . . . ; 8

C2) Maximum Coding Gain Criterion.Design a
matrix with to maximize

Note that when C2) is satisfied, C1) will be automatically
satisfied.

Based on a design criterion similar to C2), a number of
approaches have been proposed to design LCPs in the literature
[1], [4], [6], [19], [20]. Among them, we are particularly
interested in theunifiedalgebraic construction method LCP-A
[20, Sect. III-B] that was proposed in the context of mul-
tiple-antenna systems. Our design of optimalwill follow the
steps in [20] with appropriate modifications. For brevity, we
just state the basic results pertaining to our context (readers
are referred to [20] for detailed derivations and other algebraic
construction methods).

A. Algebraic GLCP Construction

LCP-A constructs the GLCP matrix that applies to any ,
and quadrature amplitude modulation (QAM), pulse-amplitude
modulation (PAM), binary phase-shift keying (BPSK), and qua-
ternary phase-shift keying (QPSK) constellations. Earlier con-
structions [1], [6] follow as special cases of LCP-A, when
is a power of two. The matrix in LCP-A can, in general, be
written as a Vandermonde matrix

...
...

...
(26)

where is a normalization factor chosen to impose the power
constraint , and the selection of parameters

depends on , as follows.

R1) If is an Euler number, i.e.,
with denoting the number of positive

integers that are less than and relatively prime to
, then are roots of the equation
, where is defined as

, with and
.

R2) If is a power of two, i.e.,
with denoting the set of positive integers,
are chosen to be roots of . In this case,

is a unitary matrix and can be compactly expressed
as

(27)

which turns out to coincide with those proposed in [1],
[6], and [7].

R3) If , then are chosen as
roots of .

For the reader’s convenience, Table I lists the designs for
. It is important to point out that the designed is

not unitary when is not a power of two, i.e., when .
In general, the constellation precoding should not be interpreted
as a constellation rotation.

The designed GLCP matrices in (26) satisfy C1) and C2).
Regarding their performance, the following theorem is estab-
lished [20].

Theorem 1: Consider a QAM (or PAM, or BPSK, or QPSK)
constellation with minimum distance among signal points

. For the GLCP in (26), the achieved is given by

where
if
otherwise.

According to (25) andTheorem 1, we infer the following.

1) For , GLCP-OFDM achieves maximum possible
diversity and coding gains offered by LCP-OFDM.

2) For , GLCP-OFDM achieves maximum possible
diversity gain but cannot achieve maximum possible
coding gain. However, since ,
GLCP-OFDM can achieve at least 70% of the maximum
possible coding gain . Whether there exists
achieving for with is still an
open question. Therefore, one should not conclude that
subcarrier grouping induces a loss in the coding gain
even when .

So far, we have discussed the construction of GLCP matrices
that guarantees maximum possible diversity and coding gains

when . In practice, however, the channel
order is a parameter determined by the underlying physical
channel, and therefore, is not always satisfied. In
other words, if one chooses for minimum decoding
complexity, a maximum 30% loss in the coding gain is possible.
Alternatively, one could choose the smallest such that
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, and then, construct our GLCP matrix ac-
cording to (26). We have verified numerically that the so-chosen
GLCP does achieve maximum coding gain, although we have
not been able to provide a general proof that certainly consti-
tutes an interesting future research topic. However, as implied
by Theorem 1, the improvement is marginal (at most, 30% gain
in the coding gain), and it is achieved at the expense of higher
decoding complexity. In a nutshell, the choice ofdepends on
the tradeoff between performance and complexity.

B. Symbol Detectability

Maximum diversity and coding gains are important when
focusing on average performance of random fading channels.
In practice, especially when fading channels do not change
very rapidly, worst-case performance is of primary concern. In
such cases, ensuring symbol detectability becomes extremely
important. Symbol detectability means that information sym-
bols can be detected correctly in the noise-free case, regardless
of the underlying fading channel realization. We next discuss
how our design is capable of ensuring that this property holds
(see also [17]).

Due to subcarrier grouping, the equivalent channel vector
is linked to via

. Because has full column rank under (24), it follows
that , so that after excluding the
trivial case . On the other hand, the design critenon C1)
ensures that it holds that

. Recalling (15), we then have
in the absence of noise, regardless of. This implies that

we can always recover from , uniquely. Regarding the re-
lation between maximum diversity and symbol detectability, it
is important to remark that maximum diversity implies symbol
detectability, but the converse is not always true. Maximum di-
versity is an ensemble property pertaining to random fading
channels, while symbol detectability is a deterministic property
applicable to every channel realization.

VI. COMPARISONWITH EXISTING ALTERNATIVES

LCP-OFDM has been designed to achieve maximum diver-
sity and high coding gains with guaranteed symbol detectability,
and relatively low decoding complexity. In this section, we fur-
ther justify our design by comparing it with existing alternatives.

A. Comparison With [16] and [17]

Linearly precoded OFDM (LP-OFDM) was originally
proposed to maximize diversity gain and guarantee symbol
detectability. Different from LCP-OFDM, symbol detectability
in LP-OFDM does not depend on the underlying signal
constellation, which may become useful when LP-OFDM is
combined with channel coding. However, to ensure maximum
diversity gain, LP-OFDM3 sacrifices a bandwidth efficiency
loss as compared to LCP-OFDM, and it relies on ML decoding
whose complexity is exponential in the number of subcarriers

3This paper focuses onmulticarrier transmissions, and our discussion here
excludes the zero-padded (ZP) case in [17], which is basically a single-car-
rier transmission scheme. Low-complexity Viterbi decoding can be applied to
ZP-only block transmissions to ensure maximum multipath diversity and coding
gains [17], [18].

(or it is polynomial in the number of subcarriers if sphere
decoding is applied). Because the number of subcarriers is
larger than the channel order, LP-OFDM comes with high
decoding complexity, unless one resorts to suboptimal linear
[zero-forcing or minimum mean-square error (MMSE)] or
nonlinear decision-feedback equalizers.

B. Comparison With [7]

Targeting PAR reduction and performance enhancement,
multidimensional signal sets were designed in [7] based on
nonconvex optimization implemented by nonlinear search. In
the framework of GLCP-OFDM, [7] corresponds to choosing

, , and designing

(28)

where the parameters are obtained via computer
search so that is maximized. As expected, the optimum

coincides with (26). As is only a subset of ,
GLCP-OFDM subsumes [7] as a special case. This also implies
as a by-product that GLCP-OFDM also reduces PAR when

. On the other hand, because [7] requires , a
smaller is possibly chosen by our design in certain cases.
Hence, our design may yield lower decoding complexity than
[7]. Moreover, our GLCP is constructed via closed-form alge-
braic methods, which are certainly simpler to design than the
computer search, especially when a large signal constellation
is used.

C. Comparison With [12]

After optimal subcarrier grouping, our LCP-OFDM design
amounts to designing for each GLCP-OFDM. At first glance,
the GLCP-OFDM model (19) appears identical to [12, eq. (2)],
where the diversity transform (DRT) matrix plays a role sim-
ilar to . However, in [12, eq. (2)] is real and orthonormal,
whereas our is, in general, complex and may be nonunitary.

But the distinction between our approach and [12] goes well
beyond the complex versus real precoder used. In LCP-OFDM,

is constructed to optimize diversity and coding gains, where
the DRT matrix in [12] is constructed to maximize the channel
cutoff rate. Different from PEP, the cutoff rate provides a lower
bound on the Shannon channel capacity and also specifies an
upper bound on the error probability of an optimal decoder at a
fixed transmission rate [10, eq. (6)]. In addition to optimizing
the DRT, [12] also considered a suboptimal linear diversity
transform (LDRT) along with an MMSE detector having low
complexity in the order of . On the other hand, the expected
complexity of sphere decoding that LCP-OFDM relies on is in
the order of , where [8]. Therefore, for moderate
values of , the decoding complexity of GLCP-OFDM is
comparable to LDRT. Targeting optimal performance, we will
not optimize GLCP for linear detection. In our simulations,
however, we will test how GLCP-OFDM performs when both
optimal DRT and LDRT are used as GLCP.

VII. D ESIGN CONSIDERATIONS

So far, we have designed LCP-OFDM to enable maximum
multipath diversity and coding gains with guaranteed symbol
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Fig. 3. (a) LCP-OFDM with uncoded OFDM. (b) LCP-OFDM for PAR reduction.

detectability and low decoding complexity. In this section, we
consider several issues affecting the system performance and
implementation of GLCP-OFDM.

A. Effects of Channel Overestimation

Our design of GLCP-OFDM is based on the assumption that
the underlying channel is FIR of known fixed order , which
is rather idealistic for typical wireless applications. Without
feedback from the receiver, the exact is unknown at the
transmitter. Moreover, may change with time, depending on
the location of the mobile communicators. The more realistic
scenario is that one knows an upper boundand a lower
bound of the channel order, i.e., . In order to
achieve maximum diversity gain of order , it is clear
from our discussion in Section IV that we should choose
for GLCP-OFDM based on instead of . Interestingly,
our simulations will verify that this design (based on)
is still capable of achieving the coding gain in (14), which
indicates that our LCP-OFDM in Sections IV and V is quite
robust against channel overestimation. Note that the optimal
subcarrier grouping is crucial to ensuring this robustness. Nev-
ertheless, channel overestimation still induces higher decoding
complexity than what is necessary.

B. Implementation Variants

In addition to low decoding complexity, the subcarrier
grouping also brings flexibility into the system implementation,
as we describe next.

Let denote the operation of inserting the
CP in OFDM, where is formed by the last rows of the

identity matrix [16]. In GLCP-OFDM, the transmitted
baseband signal, denoted as , is given by either

(29)

or

(30)

where is a truncated IFFT matrix.
Although (29) and (30) are mathematically equivalent, they lead
to different implementations, as illustrated in Fig. 3(a) and (b).

The first implementation in Fig. 3(a) can be thought of as
a direct enhancement to the conventional OFDM. Because the
conventional OFDM transmitter is kept intact, this implemen-
tation requires little extra hardware investment. However, by
keeping the conventional OFDM transmitter, the first imple-
mentation also inherits the drawbacks associated with conven-
tional OFDM. One drawback is the large PAR associated with
the linear combinations of symbols at the IFFT output. In
order to reduce PAR, one can choose , , and de-
sign according to (27), as suggested in [7].

The second implementation in Fig. 3(b) is in the spirit of the
clustered OFDM system proposed in [3]. By checking the di-
mensionality of , the outputs of are linear combina-
tions of only symbols. Thus, the PAR is reduced considerably
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Fig. 4. LCP-OFDM versus ZP-only.

in the second implementation. This translates into cheap power
amplifiers and performance improvement, as discussed in [3].
Furthermore, if we consider each branch in Fig. 3(b) as a user,
the second implementation can be viewed as an LCP variant of
the generalized multicarrier (GMC) code-division multiple-ac-
cess (CDMA) scheme in [16] for multiuser systems, with the
unique capability of supporting multiuser interference-resilient
transmissions through frequency-selective (uplink or downlink)
channels. In addition, by using different constellation sets for
each of the branches in Fig. 3(b), our second implementation
supports multirate services. However, the second implementa-
tion may require additional signal isolators to isolate the col-
lector terminal of power amplifiers from the summed signals.
The cost of those signal isolators is an issue one should take
into account in the second implementation.

VIII. SIMULATIONS

In addition to theoretical analysis, we carry out simulations to
investigate the performance of LCP-OFDM by choosing BER
as our figure of merit. We employ QPSK modulation, and use
the sphere decoding (SD) algorithm for near-ML decoding [15].
Unless specified otherwise, the fading channels are generated
according to the assumption A2) with ,
and they are assumed known to the receiver.

Example 1 (Performance Comparison With LP-OFDM and
ZP-only): The pros and cons of C-OFDM versus LP-OFDM
and ZP-only have been detailed in [17], where it is shown
that at high code rates, both LP-OFDM and ZP-only have
the potential to outperform C-OFDM in BER performance.
Therefore, we only compare GLCP-OFDM with LP-OFDM
and ZP-only. We choose and test two cases for

and . The results in Fig. 4 show that ZP-only
outperforms GLCP-OFDM marginally in both cases. It was
proved in [18] that ZP-only achieves the same diversity and
coding gains as LCP-OFDM. As mentioned before, the same
amount of diversity and coding gains do not necessarily imply
the same BER performance. The BER performance difference
between ZP-only and LCP-OFDM is caused by other factors,

Fig. 5. LCP-OFDM versus LP-OFDM (cosine precoders).

such as the kissing number. Using parameters and
, we further compare LCP-OFDM to LP-OFDM with the

cosine precoders of [17] that result in a multicarrier scheme.
As shown in Fig. 5, it is seen that LP-OFDM still outperforms
LCP-OFDM slightly. However, in addition to higher decoding
complexity, LP-OFDM has a lower transmission rate than
LCP-OFDM. For fairness, we concatenate LCP-OFDM with a
(15,13) Reed–Solomon coder (with block interleaving), so that
both LCP-OFDM and LP-OFDM have the same transmission
rate. Fig. 5 shows that coded LCP-OFDM outperforms uncoded
LP-OFDM.

Example 2 (Performance Comparison With [10]):We re-
place GLCP in LCP-OFDM by either optimal DRT or LDRT.
The resulting systems are termed as DRT-OFDM and LDRT-
OFDM, respectively. The optimal DRT matrix in [12,
Table I] is used in DRT-OFDM, while a normalized 4 4
Hadamard matrix is used as LDRT. Two tests are carried out.
The first test compares DRT-OFDM against LCP-OFDM, when
both schemes use the SD algorithm. The second test compares
LDRT-OFDM against LCP-OFDM, both with linear MMSE de-
coding. In all tests, we choose parameters and ,
and use BPSK modulation. The results in Fig. 6 illustrate that
LCP-OFDM outperforms its DRT counterparts by more than
1 dB at BER in both tests.

Example 3 (Improvements With Optimal Subcarrier
Grouping): To appreciate the importance of optimal subcarrier
grouping, we choose parameters and , and
compare the optimal subcarrier grouping with a suboptimal
grouping specified by

It is observed in Fig. 7 that our optimal subcarrier grouping
improves performance considerably. If we compute the coding
gain under , as compared to that under , subop-
timal subcarrier grouping will induce about 30-dB loss in the
coding gain at high SNR.

Example 4 (Effects of Channel Overestimation):To inves-
tigate the robustness of LCP-OFDM against channel overesti-
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Fig. 6. LCP-OFDM versus (L)DRT-OFDM [10].

Fig. 7. Optimal versus suboptimal subcarrier grouping.

mation, we choose parameters , , and .
We design two LCP-OFDM systems for bothand . Specif-
ically, we choose , for , while and are
used for . Interestingly, the comparison in Fig. 8 shows that
the LCP-OFDM designed for outperforms that designed for

, although both systems have the same multipath diversity and
coding gains. Again, we believe that the kissing number causes
the difference.

Example 5 (Effects of Channel Correlation):We choose the
following channel correlation matrix:

...
...

...

Selecting parameters and , we compare
LCP-OFDM with i.i.d. channels (when ) to that with

Fig. 8. Effects of channel overestimation.

Fig. 9. Effects of channel correlation.

correlated channels (when or ). It is seen from
Fig. 9 that the channel correlation degrades BER performance
noticeably. To improve performance with correlated channels,
one could use a feedback channel to retrieve the information
about channel correlation from the receiver, and adjust the
precoder accordingly. Since channel correlations may change
slowly, this information need not be updated frequently. Thus,
not much loss in bandwidth efficiency will occur with feedback.

Example 6 (Performance for HiperLan II Channels):Se-
lecting parameters and , we implement an
LCP-OFDM for realistic channels taken from the
HiperLan II Channel Model A in [2]. The complexity of SD is
polynomial in . In order to further reduce de-
coding complexity, we also implement another LCP-OFDM by
splitting each group of subcarriers into two subgroups
of four subcarriers, where a 4 4 LCP is then designed. We
compare these two implementations, and observe in Fig. 10 that
the reduced complexity comes at the price of reduced but still
acceptable performance. Our approach in this example provides
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Fig. 10. Full- versus reduced-complexity LCP-OFDM.

Fig. 11. Effects of imperfect channel estimates.

a way to trade off performance with complexity, which is useful
in practice when long channels are encountered.

Example 7 (Effects of Imperfect Channel Estimates):Our
previous simulations assume perfect CSI at the receiver. To in-
vestigate the effects of imperfect CSI, we simulate the BER of
LCP-OFDM when channels are estimated using the standard
least square channel estimator reported in [14]. We select pa-
rameters and . The BER of LCP-OFDM with
estimated channels is shown against that with perfect CSI in
Fig. 11, where we observe that imperfect channel estimates en-
tail about 1-dB loss at BER . A similar result is also
observed for uncoded OFDM in Fig. 11.

IX. CONCLUSION

We proposed a novel OFDM scheme for multicarrier trans-
missions over frequency-selective channels using LCP. Relying
on subcarrier grouping, we first converted the LCP-OFDM
system into a set of GLCP-OFDM subsystems, and then

designed LCPs for each subsystem. While greatly reducing the
system complexity, we proved that subcarrier grouping does
not decrease the maximum possible diversity and coding gains.
The proposed system was shown capable of achieving the
maximum multipath diversity, large coding gains, and guaran-
teeing symbol detectability with low decoding complexity. In
addition, the proposed system offers considerable flexibility as
confirmed by simulations.

The proposed system works with a single transmit an-
tenna. Extension to multiple transmit antennas equipped with
space–time codes is currently under investigation.
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