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Abstract—The use of mobile devices as data service providers
is on the rise. Mobile devices feature a large set of distinct
characteristics that qualify them to be the most convenient
computing platform for online services, both as consumers and
providers. Mobile devices can take advantage of their mobil-
ity to provide location-based services and their association to
a specific user to customize service offerings to fit personal
preferences and current conditions. However, the increasing
resource demands of mobile services and the inherent constraints
of mobile devices limit the quality and type of functionality
that can be offered, preventing mobile devices from exploiting
their full potential as reliable data providers. Cloud computing
offers mobile devices the opportunity to run resource-intensive
tasks through computation offloading. The offloading decision is
a tradeoff between data transfer and latency improvement to
the benefit of alleviating the burden on mobile resource while
improving the overall performance of service provisioning. This
paper presents a framework for cloud-assisted mobile service
provisioning, aimed at offering an augmented environment to
resource-constrained mobile providers in order to deliver reliable
services. The framework supports dynamic offloading based on
the resource status at the mobile side and current network
condition as well as user-defined energy constraints. It also
enables the mobile provider to delegate the cloud to forward
the service response directly to the user, given that no further
processing is required by the provider. Performance evaluation
shows up to 6x latency improvement for computational-intensive
services that do not require large data transfer.

Index Terms—Web service provisioning, mobile services, mo-
bile computing, computation offloading

I. INTRODUCTION

The role of mobile devices as data providers is strongly sup-

ported by the continuous increase in their capabilities and re-

cent availability of high speed wireless network technologies.

The range of services that involve mobile devices providing

data are on the rise, ranging from entertainment services, such

as online social gaming and networking, to crowdsourcing,

such as collaborative participatory sensing as well as services

that can be offered on the fly, such as video streaming of

a current event. However, the rich functionalities that such

applications offer increasingly demand resources beyond the

capabilities of inherently resource-constrained devices. Such

lack of resource matching places limitations on the type of

functionality and services that can be offered, restraining users

from taking full advantage of their mobility passion. Cloud

computing, therefore, offers the possibility to unleash the full

potential of mobile devices to provide reliable data services.
The elastic resource provisioning of cloud computing

promises to bridge the gap between the limited resources of

mobile devices and the growing resource demands of mobile

services through offloading resource-intensive tasks. However,

offloading such tasks does not always guarantee performance

improvements. For example, offloading might entail large data

transfer between the cloud and the mobile device, which

compromises the potential performance benefits and incurs

higher latency. In some other cases the mobile device may

not afford the energy requirements for such data transfer.

In fact, the user might prefer to lower the bar of latency

constraints to favor energy savings that might be needed for

critical applications. Thus, the decision on when to offload the

execution of Web resources to the cloud becomes a critical

issue to the overall performance of mobile Web services.

This research presents a distributed mobile Web service

provisioning framework that reduces the burden on mobile

resources through the offloading of resource-intensive pro-

cesses. The framework takes advantage of cloud computing

to bridge the gap between the limited resources of mobile

environments and the growing resource demands of mobile

service provisioning. An offloading decision model is pro-

posed to determine whether or not remote execution of a

resource request brings performance improvements. Based on

this model the mobile service execution environment selects

the best execution plan to resolve a service request according

to the context of the requested Web resource and current

network conditions.

The remainder of this paper is organized as follows. Section

II outlines related work. Section III gives a brief distinction

between Web services and mobile applications from the of-

floading perspective. Section IV presents the proposed cloud-

assisted mobile service architecture. Implementation details

and experimental validations are given in Section V and

Section VI, respectively. Section VII presents the performance

evaluation and offers a comprehensive discussion. Section VIII

concludes the paper and draws future directions.

II. RELATED WORK

Over the past few years, significant study has been done

on the resource constraints of mobile devices as computing

platforms. Computation offloading is one of the issues that

has been extensively studied to enable such devices to run

applications and services that require resources beyond what

mobile devices can afford [1]. The offloading approach of-

fers mobile devices the flexibility to customize the service

interactions and optimize the resource consumption. However,
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most of these efforts focus on the partitioning of mobile

applications rather than Web service execution. For example,

Giurgiu et al. [2] present a middleware that can distribute

mobile applications between the mobile device and a remote

server machine, aiming at improving the overall latency and

reducing the amount of data transfer. The middleware gener-

ates a resource consumption graph and splits the application’s

modules to optimize a variety of objective functions. Similarly,

CloneCloud [3] offers a runtime partitioning approach for

mobile applications based on a combination of static analysis

and dynamic profiling techniques. CloneCloud works at the

application-level VM and supports up to the thread granularity.

The objective is to speed up the application execution and to

reduce energy consumption at the mobile side. In CloneCloud,

a device clone operates on the cloud and communicates with

the mobile device.

Sharing the same concern but from a different perspective,

MAUI [4] enables energy-aware offloading of mobile code

to a resource-rich computing infrastructure. MAUI aims to

alleviate the burden on the limited energy resources of mobile

devices while fulfilling the increasing energy demands of

mobile applications and services. MAUI provides a disconnec-

tivity mechanism that enables interrupted processes to resume

execution on the mobile device. However, MAUI requires

source code annotation by developers to mark which code

can be executed remotely and which cannot. MAUI uses such

annotations to decide at runtime on the proper partitioning

scheme.

Few research efforts have been dedicated to investigate the

same issues from the perspective of Web service provisioning.

Weerasinghe et al. [5] studied reliable mobile Web service

provisioning with respect to availability and scalability. The

authors propose a proxy-based middleware to bootstrap the

performance of mobile Web services. The proxy acts as a fixed

representative to mobile services. This middleware supports

service migration where mobile providers may choose to

switch to an alternate server due to close proximity or better

connectivity. Hassan et al. [6] present a distributed mobile

service provisioning framework that partitions the execution of

resource-intensive Web services between the mobile provider

and a backend server. The framework offers a distributed

execution engine where tasks that require real time access to

local resources are executed on the mobile devices, while the

remaining processing is offloaded to a remote server. Their

partition technique relies solely on the available resources.

If the available resources satisfy the Web services execution

requirements, the execution is performed entirely on the mo-

bile side. In contrast, our framework selects the best execution

plan with the minimum response time and energy efficiency,

while satisfying the resource constraints with respect to both

execution requirements and user preferences.

III. MOBILE SERVICES VS. APPLICATIONS: A

PARTITIONING PERSPECTIVE

Partitioning mobile applications between the mobile device

and cloud computing saves scarce mobile resources, while
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Fig. 1: An abstract view of cloud-assisted mobile Web service

architecture.

leveraging the performance of mobile applications [2]–[4].

Several research efforts have contributed mechanisms and

algorithms on how to optimally split an application to achieve

a specific objective, such as saving energy or bandwidth, or to

execute within a particular time. In contrast, Web services are

self-contained and self-described to support interoperability

between heterogeneous platforms with standard interfaces.

Web service internal operations (in SOAP these are called

methods while in RESTful Web services, they are called

resources) are typically loosely-coupled, which means they

are, in most cases, independent of each other. Bonds between

these operations are weak, if they exist at all. Hence, a user

request may invoke a particular method that independently

performs the required functionality. In such a case, partitioning

the execution of a single service operation is unlikely to bring

performance benefits. This results in executing independent

service operations entirely on a single side. Therefore, our

proposed framework pays little attention to partitioning of

single operation execution. However, in cases where the execu-

tion encompasses multiple functionality, the framework offers

offloading of functionality that does not require access to local

resources.

IV. CLOUD-ASSISTED MOBILE SERVICE ARCHITECTURE

This paper presents a cloud-assisted framework for provi-

sioning Web services from resource-constrained devices. The

proposed cloud-assisted mobile service architecture involves

four key entities: a user, a mobile device, a cloud, and a data

provider, as shown in Figure 1. The user represents the service

consumer. The mobile device represents a mobile service

provider and acts as the integration point where service execu-

tion plans are generated and decisions regarding offloading are

made. The cloud is the supporting computing infrastructure

that the mobile provider uses to offload resource-intensive
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Fig. 2: An abstract view of cloud-assisted mobile Web service

architecture.

tasks. Web service operations might involve third-party data

processing during the execution of the service functionality,

such as weather information or navigation databases. In such

cases, data could be fetched from a data storage provider.

In this architecture, the user sends the service request to

the mobile provider. The mobile provider decides on the

best execution plan and whether offloading is beneficial. The

cloud offers elastic resource provisioning on demand to mobile

providers. The mobile provider may collect the execution

results from the cloud and generate a proper response for the

user. It is also possible that the provider may delegate the

cloud to forward the response directly to the user, given that

no further processing is required at the mobile side.

The proposed framework encompasses the following major

components: Request/Response Handler, Context Manager,

Profiler, Execution Planner, Service Execution Engine, and

Offloading Decision Module. Figure 2 depicts an abstract view

of the overall framework architecture. The functionality of

each component is discussed in the following with the major

focus being the offloading decision module.

A. Request/Response Handler

Internet users can request access to Web services or Web

contents. A Web service request could be SOAP/XML for

SOAP-based Web services [7] or an HTTP request for REST-

based Web services [7]. By design, RESTful requests point

directly to specific operations that carry out the required

functionality whereas SOAP requests imply functionally based

on associated parameters by which the service execution

engine internally maps the request to the appropriate method.

The Request/Response Handler plays the role of a multiplexer,

distinguishing between SOAP requests and RESTful requests

as well as differentiating between Web service and content

access requests. The handler forwards the latter directly to

the Web server whereas the former is sent to the service

Execution Engine for processing. SOAP/XML service requests

are handled by SOAP Manager before they are sent to the Web

server, whereas HTTP requests for Web services are analyzed

directly by a servlet that selects the appropriate Web service

operation to respond to these requests based on the class and

method annotations.

B. Profiler

This component is responsible for analyzing the charac-

teristics of various Web service operations, deployed on the

mobile device, in the form of a resource consumption profile

that includes the required CPU cycles, memory size, data

exchange, potential data transfer, and interactions with local

resources. A Web service may include multiple operations.

Each operation can be invoked separately, possibly many

times, and perform its functionality independently. The profiler

treats each operation as a stand alone function. The profiler

runs Web service operations offline to measure the required

resources in terms of CPU cycles, memory, data transfer, and

access to local physical resources. We instrument these oper-

ations to identify dependency and inter-relations between one

another. The profiler then generates a resource consumption

profile for each Web service with a separate section for each

operation as shown in Listing 1. More details about different

types of profilers and profiling strategies can be found in [3, 4].

The planner module uses the information in the consump-

tion profile to generate possible execution plans. The offload-

ing decision module uses the execution plans along with the

context information collected by the context manager to select

the best execution strategy for a specific Web service operation

(method) request.

C. Context Manager

The context manager gathers information about the link

quality between different entities and available bandwidth.

It also monitors resource availability on the mobile provider

side, including CPU utilization, available memory, remaining

battery life, and running applications. The context information

and Web service consumption profiles are used by the offload-

ing decision model to calculate the optimal execution plan that

fits the device constraints and user preferences.

D. Execution Planner

The execution planner determines the various possible

execution plans for each Web operation based on

available information about each operation and the

behavior profile generated from the profiler. Each

operation can be executed in a variety of different ways.
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Listing 1: A snippet of a resource consumption profile

<?xml v e r s i o n =”1.0” e n c o d i n g=”UTF−8”?>
<r d f :RDF
xmlns : r d f =” h t t p : / / www. w3 . o rg /1999/02/22− r d f−syn t ax−ns # ”
xmlns : env=” h t t p : / / www. example . sample / p r o f i l e # ”>

<r d f : D e s c r i p t i o n
r d f : a b o u t =” h t t p : / / s e r v i c e−r o o t / s e r v i c e−name? wsdl ”>
<env : se rv iceName>name</ env : se rv iceName>

</ r d f : D e s c r i p t i o n>

<r d f : o p e r a t i o n
r d f : a b o u t =” h t t p : / / www. example . sample / p r o f i l e ”>
<env : u r i>h t t p : / / s e r v i c e−r o o r / B lu r</ env : u r i>
<env : cpu>16</ env : cpu>
<env : memory>1 6 . 2</ env : memory>
<env : l e n e r g y>1 . 9 2</ env : e n e r g y>
<env : dependancy>None</ env : dependancy>

</ r d f : r e s o u r c e>

<r d f : o p e r a t i o n
r d f : a b o u t =” h t t p : / / www. example . sample / p r o f i l e ”>
<env : u r i>h t t p : / / s e r v i c e−r o o r / Blend</ env : u r i>
<env : cpu>106</ env : cpu>
<env : memory>1 9 . 1</ env : memory>
<env : e n e r g y>2 . 6 3</ env : e n e r g y>
<env : dependancy>None</ env : dependancy>

</ r d f : r e s o u r c e>
.
.
.
</ r d f : RDF>

Possible execution plans are generated based on the sources

of involved data objects, interactions between such data and

other local resources, and the execution environment. Options

include local execution, remote execution or combinations

of the two. Service developers may specify that particular

operations are to be strictly executed on mobile devices due

to security reasons or privacy concerns such as the case when

a provider wishes to ensure full privacy of its customers’

information. Although current service description standards

do not support such a feature, a recent initiative has been

proposed [6] on how to include such requirements in the

service description. Execution plans are generated offline to

reduce the resource contention overhead at runtime.

The planner starts with the possibility of performing the

execution locally on the mobile device, where the device

acquires all the required data for processing and sends back a

response to the user. If there are no specific requirements for

local resource access, the planner generates a plan consisting

entirely of remote processing. When the remote processing

option is considered, the planner checks the possibility whether

the response can be sent to the user from the remote location

directly. The framework supports this feature, given that no

processing is required at the mobile side. This reduces the

communication and the consumption of mobile resources and

improves the overall response time. If the provider does not

want to share the customer’s information, the possibility that

the cloud forwards the response to users is no longer valid,

regardless of potential performance benefits. If the required

operation encompasses independent functions that can be per-

formed separately, further plans of partitioning are considered.

Several partitioning strategies are discussed in [2]–[4].

A plan evaluation is performed at runtime once an invoca-

tion request is received at the mobile provider’s side. Since the

churn of Web services is low, these evaluations are stored for

a short time tp in case the mobile provider receives multiple

requests for the same operations within a short interval.

It’s uncommon that network conditions ( bandwidth BW in

particular) fluctuate too much between high and low values

within a short period of time to make such evaluations invalid.

The framework allows service providers to specify the tp based

on preferences and empirical experience. Execution plans may

involve local, remote, or hybrid execution through partitioning.

E. Service Execution Engine

Our architecture adopts the concept of distributed service

execution, where services could be executed on either the

mobile device, the cloud or both. The service execution

engine resides on the mobile device with a supporting remote

execution module at the cloud side. The control of the service

execution remains at the mobile device. The execution engine

at the mobile provider may delegate the execution of a service

partially or entirely on the cloud based on the recommendation

of the offloading decision module. Based on such a recommen-

dation, the execution of a service might involve data transfer

between the two parts of the execution engine.

F. Offloading Decision Module

The offloading decision model provides the service execu-

tion engine with the best option to resolve a Web service

request based on the possible execution plans of the target

operation and runtime context information.

The framework handles mobile Web services at the granular-

ity of individual Web service operations, which are considered

as the basic unit of computation that a service request may

target. Assume that an operation requires c computing instruc-

tions, m memory space, and amount of energy e to execute.

The speed of the mobile device is M (instructions/second),

and S is the speed of a cloud host server. The execution of a

Web service operation may involve communications between

some or all of the entities shown in Figure 2, where B is the

link bandwidth and din and dout are the data size exchanged

between two entities, respectively. The mobile system con-

sumes power (in watts), pc for computing, pi while idle, and

pt for transmitting data (sending or receiving). Although, in

practice, sending data entails more energy consumption than

receiving, for the purpose of this analysis, our model considers

them identical.

The overall response is calculated by the generic formula

shown in Eq. (1) as follows:

RT =
Cm

M
+

Cc

S
+

n∑
j=1

dinj
+ doutj
Bj

+ tα (1)

The equation encompasses three main terms. The first and

second terms represent the execution time on mobile device

and the cloud, respectively, where Cm is the execution cycles

carried out by mobile device, n is number of links in a plan,

Cc is the execution cycles carried by cloud, and C = Cm+Cc.

The third term indicates the data transmission time between

the various involving entities and tα represents any extra time
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required to build stubs or proxies in order to handle remote

execution. The maximum possible links between all entities

is n = 5, however, n varies according the active links in

a particular execution plan. For example, if only the mobile

provider and a user are solely communicating throughout the

course of the Web service execution, then n = 1, indicating

the link between the user and mobile device, Cm = C, and

Cc = 0 indicates that no execution occurs on the cloud. The

cloud server speed S can be expressed as a multiple of M
where S = f ×M . Eq. (1) can then be rewritten as follows.

RT =
1

M
×
(
Cm +

Cc

f

)
+

n∑
j=1

dinj + doutj
Bj

+ tα (2)

Similarly, the generic formula that calculates the energy

consumption at the mobile provider’s side is calculated by

Eq. (3).

E =
Cm

M
× pc +

Cc

f ×M
× pi +

n∑
j=1

dinj
+ doutj
Bj

× pt (3)

The decision on whether to execute the Web service opera-

tions locally must ensure that available resources of the mobile

device satisfy the following constraints:

1. m < mavail −mcr

2. e < eavail − ecr
where mavail indicates the available memory on the mobile

device, eavail indicates the remaining battery level, and both

mcr and ecr are user-defined parameters based on preferences

and context. Such user-defined preferences are set to accom-

modate any special requirements, such as securing sufficient

resources to maintain proper functionality of critical appli-

cations. The framework enables users to dynamically change

these parameters according to their context.

V. IMPLEMENTATION DETAILS

We implemented our validation prototype in Python. Python

comes with a lightweight embedded HTTP server that is

suitable for resource-constrained hosts, as well as many

libraries that facilitate Web service developments and de-

ployments. We have developed a RESTful Web service that

exposes multiple functionality as Web service methods, each

operation is represented with a unique URI in the form of

http://base-address[host]/service-root/method-name. This Web

service provides some image processing functionality ranging

from low to high computational-intensity with various data

transfer requirements , specifically Blur, Blend, Steganogra-
phy, and Tag. The Blur operation blurs all identifiable objects

in a certain image. The Blend operation blends two images

gradually from left to right so that the left edge is purely

from the first image and the right edge is purely from the

second image. The Steganography operation implements a

steganographic method to hide a text message inside an image.

The Tag operation labels identifiable objects that appear in an

image taken by the device embedded camera. This image is

then flagged with the current location and the Tag operation

matches objects appear in the image, such as governmental

TABLE I: Summary of the experimental data placement.

Data Size Location
Message to hide 150 KB Mobile Device
Image 1 1.79 MB Mobile Device
Image 2 1.84 MB Cloud
Tagging Database 17 MB Storage Provider

TABLE II: Possible execution plans for the offered Web

service operations.

Plan Exec. Location Exec. Sequence
P1 M U → M → U
P2 C U → M → C → M → U
P3 C U → M → C → U
P4 M U → M → D → M → U
P5 M&C U → M → C → D → C → M → U
P6 M&C U → M → C → D → C → U

buildings, tourist attractions, public services, business facili-

ties, etc., with stored objects and tags them. This operation

is known as augmented reality and is a resource-intensive

process.

The Web service is deployed on a Samsung I9100 Galaxy

II (Dual-core 1.2 GHz Cortex-A9, 1 GB RAM) with a rooted

Android 4.0.4 platform, connected to a WiFi network and is

3G-enabled. According to these specifications, M = 2400
MHz, pc = 0.9, pi = 0.3, and pt = 1.3 all in Watts per

second. The cloud side is represented by an Amazon EC2

virtual machine of the type ’m1.large’ with an EC2 pre-

configured image (AMI) of ’Ubuntu Server 12.04 LTS, 64 bit’.
We placed one image and the message-to-hide on the mobile

device. Another image is placed on the cloud. The tagging

information database is hosted on a third-party data storage

provider. This data placement allows us to test a variety of

execution plans of various service requests. Table I illustrates

the experimental setup, indicating where resources are located.

We perform the experiments over a variety of wireless links

with various levels of link quality between the mobile device,

the client, data storage provider and the cloud.

According to this setup and based on data placements, pos-

sible execution plans for the Web service operations are shown

in Table II, where U represents the user, M denotes Mobile,

C denotes the cloud, and D indicates the data provider. For

example, P1 executes the required operation locally on the

mobile resources, while P2 and P3 offload the execution to

the cloud. However, in P3 the mobile provider delegates the

cloud to dispatch the response to the user directly, whenever

applicable. Not all plans are applicable for all operations,

for example, P4 and P5 are applicable only for the Tag
operation, where a third party data provider is involved in the

processing. The arrows show the data transfer direction. In

these experiments, we assume that communications between

different parties is carried out in an asynchronous mode [8] to

overcome and possibility of wireless link failures.

In our prototype, the profiler component uses several python

libraries to analyze the behaviour of Web service operations

131313



TABLE III: Resource consumptions of the various exposed

operations.

Operation CPU Time(m/c) Mem. Usage (MB)
Blur 85/16 16.262
Blend 106/24 19.141
Steganography 146/40 12.363
Tag 4867/1236 54.253

and to generate a behaviour and resource consumption profile

for each operation. Guppy-PE [9] is a python library and pro-

gramming environment that provides memory sizing, profiling

and analysis. It also includes a heap analysis toolset for mem-

ory related debugging. Guppy-PE provides the inter-function

relations and shows the count of function calls. We also found

that the Memory Profiler [10] python library is efficient in

the line-by-line analysis of memory consumption. Memory

Profiler exposes a number of APIs, such as memory usage,

that can be used by a third-party code to monitor the memory

consumption. The cProfile [11] module is a built-in function

that provides deterministic profiling for the CPU consumption

of python programs, from which our profiler determines the

number of CPU cycles required for the execution of Web

service operations. Table III shows the resource consumption

of the various exposed operations by our Web service.

The Context Manager uses Iperf [12] to monitor the link

quality between different communicating entities. Iperf is a

tool that measures the bandwidth performance of network

links. Unfortunately, there is no accurate tool or commercial

instrument that can measure the power consumption per in-

struction or individual processes. To date, the Android plat-

form does not offer much with regard to energy consumption,

but internal battery monitoring on a time-based level [13].

There are some recent research efforts towards this direction

[14]–[16], but none of these efforts has offered a library

accessible in the public domain yet. For rough estimations

about power consumption per Android process, we use the

Android open source project, PowerProfile [17]. However,

the power consumption estimate in our prototype is based

solely on computations. The context manager monitors the

remaining battery power and keeps track of the consumption

profile of other running applications. At the time a service

request is received, the framework ensures that the energy

constraint would not be violated by executing the service

request whether locally or remotely on the cloud. However,

preferences are given to energy efficient execution plans.

Otherwise, the request is rejected.

VI. EXPERIMENTAL VALIDATION

In our experiments, processing is performed either on the

mobile device or in the cloud. Required data for processing

may be located at any of the three locations, mobile device,

cloud, and data storage provider. According to the required

process and where the data is located, our mathematical model

determines the best option to process the operation request

based on the current context information and device resource

TABLE IV: Actual response time in contrast with estimated

response time and energy consumption of the various Web

service operations.

Operation Exec.
Plan

Actual
Res. Time

Estimated

Res. time Energy
Blur P1 2205.39 2067.64 1.92

P2 2074.27 2000.78 2.46
P3 1131.78 1102.33 1.29

Blend P1 2775.38 2556.58 2.63
P2 1954.23 1737.74 2.16
P3 1011.74 946.29 1.13

Steganography P1 2276.73 2138.98 1.98
P2 2177.38 1983.50 2.42
P3 1234.87 1122.04 1.30

Tag P4 12778.92 11142.56 10.68
P5 2743.08 1964.33 2.06
P6 2076.07 1510.62 1.47

constraints. Options include moving required data to the device

or offloading the processing to the cloud with any required

data from the device, the data storage, or both. To validate

the model recommendation, we experimentally try all possible

execution plans for a specific operation request and measure

the end-to-end response time and energy consumption. The

end-to-end response time includes communication, processing,

and any overhead time to establish a network connection or

generate remote execution proxies. Our expectation is that

the experimental results should provide a strong backup of

the model recommended option. In the normal practice, the

mobile Web service execution environment uses the model to

decide on the appropriate execution plan of a particular service

request.

Table IV shows an example of the actual average response

time in contrast with the estimated response time and energy

consumption of the various Web service operations. The

recommended execution plan by our model for each operation

is underlined. Although there is a marginal difference between

the actual response time and the estimated values, the offload-

ing decision module is able to select the plan that the yields a

better response time while satisfying the resource constraints.

We attribute this difference to the overhead time of generating

proxies and stubs for remote execution as well as the delay

incurred by the internal process of Web servers. In addition,

the advanced CPU technologies such as SpeedStep, Hyper-

Threading, Pipelining, and Overclocking might also contribute

to the deviation of the imperial values from calculated values

with a certain offset. A system-specific calibration can capture

such an offset and add it to the equation to make calculations

accurate. However, estimates don’t have to be strictly accurate

since our model only needs to project relative differences

among plans in order to select the proper one.

VII. EXPERIMENTAL RESULTS & DISCUSSIONS

The performance of the framework varies significantly ac-

cording to the several parameters including the data location,

141414



0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

P1 P2 P3 P1 P2 P3 P1 P2 P3

WiFi (RTT=17) WiFi (RTT= 35) 3G (RTT=87)

Re
sp

on
se

 T
im

e 
(m

s)
 

Communications
Proccessing

Fig. 3: The mean response time of the Blur operation.
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Fig. 4: The mean response time of the Blend operation.
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Fig. 5: The mean response time of the Steganography operation.
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Fig. 6: The mean response time of the Tag operation.

the link quality between different communicating entities

and the selected execution plan. The context manager plays

an important role through real time monitoring of resource

consumption and network conditions on which the framework

dynamically bases the choice of the the optimal execution

plan. The experiments are performed under three different

network conditions and settings: 1) the mobile device provider

is connected through a fast WiFi link with an average Round

Trip Time (RTT )=17 ms while the client is wire connected, 2)

both the mobile provider and the client are connected through

a slow WiFi connectivity with an average RTT=35 ms, and 3)

both the provider and the client are connected over 3G with an

average RTT=280 ms. In all settings the data service provider

is linked to the cloud through a high speed interconnect with

available bandwidth = 250.7 MB/s.

Figure 3 shows the mean response time of the Blur oper-

ation with the possible execution plans in the three different

settings. In this operation, the required data is located on the

mobile device, which in our case has a little lower processing

capability in contrast with the selected cloud server. This

relatively small difference in processing capability between

the mobile provider and the cloud does not give the cloud

an edge for non-computational intensive processes, especially

when communications take place over a low speed link. For

the Blur operation request, only plan P3 with the case of high

speed WiFi link (1st setup) brings performance improvements.

The difference between P3 and both P2 and P1 captures

the speedup opportunity that the cloud may offer due to

computational offloading. The experimental results reveal that

P3 always yields better results than P2, while P1 might be a

better choice when large data transfer is required, especially

over slow interconnects. The Steganography operation demon-

strates a similar behavior to the Blur request and is shown in

Figure 5. Since all the required data is available at the mobile

provider and the operation is not computationally intensive,

local execution proves to be more efficient except when data

transfer is very fast, where offloading with P3 results in a

faster response time and a lower energy consumption.

Figure 4 illustrates the results of executing a blend operation

request under the different settings. The execution of this

service operation entails the transfer of one image to the

other side, where processing occurs. In this case, offloading

the computation to the cloud and allowing the cloud to

dispatch the response to the user is always better. However,

offloading achieves more than 3x overall speedup with high

WiFi connectivity. We also observe that the P3 is the most

energy efficient execution plan for the mobile provider.

The image tagging operation entails a large amount of data

transfer from the data storage provider as well as the operation

itself is computational-intensive. Resolving such a service
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request on a resource-constrained mobile provider significantly

strains the limited resources and results in a high latency as

shown in Figure 6. Offloading such a request to the cloud

improves the overall response time with orders of magnitude.

For example, P6 achieves 6.1x, 5.5x and 4.6x speedup with

settings 1, 2 and 3, respectively. The significant improvement

can be attributed to the high speed interconnect between the

cloud and the third-party data provider. In practice, the third-

party data is most likely hosted on the cloud, which makes

offloading a more viable option. The tagging operation also

is an example of distributed execution, where part of the

operation is performed on the mobile side, which is relating the

image to a current user location, while the object recognition

and labeling are performed on the cloud side.

The results highlight two main observations. First, offload-

ing to the cloud does not always guarantee better performance,

especially when the process requires high data transfer over a

low speed link. Second, offloading yields better performance

when the cloud forwards the response to the user directly

and is responsible for collecting the necessary data from the

data cloud provider. The results also show that the option

with the least response time is not always the choice of our

model. For example, when the energy constraint that is set by

the user could be compromised, the response time becomes

of less concern. In fact, the user might resort to raising

the critical energy threshold to secure sufficient energy for

essential functionality or temporally important applications,

such as health care monitoring when the user is experiencing

critical health conditions, or if the user is running a mobile-

based navigation application while traveling. It is also worth

noticing that P2 results in significant energy consumption due

to high data transfer requirements back and forth to the cloud.

VIII. CONCLUSION

This paper presents a distributed mobile Web service provi-

sioning framework. The objective is to augment the capabil-

ities of mobile devices to become reliable service providers.

The framework relies on a distributed service execution engine

and a dynamic offloading technique. Tasks that need to access

local resources are executed on the mobile provider, while the

rest could be offloaded to the cloud execution engine, if no

constraints on remote execution exist. The framework includes

a profiler and an execution planner. The profiler characterizes

the offered Web service operations and generates resource

consumption profiles. The execution planner investigates all

possible execution plans based on locations of required data

and current context information. The service execution engine

evaluates these plans and selects the best resource-efficient

plan that, in addition to satisfying the resource constraints,

yields better performance and lower latency. We developed a

prototype to validate the essential functionality of the frame-

work and study the performance aspects. Experimental results

demonstrate that the proposed cloud-assisted service provi-

sioning framework offers significant latency improvements and

less energy consumption at the mobile provider’s side. We plan

to extend the framework functionality to support interrupted

service execution and enable the communication over a variety

of wireless network technologies.
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