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Summary. Kernel methods have proven effective in the analysis of images of the
Earth acquired by airborne and satellite sensors. Kernel methods provide a consis-
tent and well-founded theoretical framework for developing nonlinear techniques and
have useful properties when dealing with low number of (potentially high dimen-
sional) training samples, the presence of heterogenous multimodalities, and different
noise sources in the data. These properties are particularly appropriate for remote
sensing data analysis. In fact, kernel methods have improved results of parametric
linear methods and neural networks in applications such as natural resource control,
detection and monitoring of anthropic infrastructures, agriculture inventorying, dis-
aster prevention and damage assessment, anomaly and target detection, biophysical
parameter estimation, band selection, and feature extraction.

This chapter provides a survey of applications and recent theoretical develop-
ments of kernel methods in the context of remote sensing data analysis. The specific
methods developed in the fields of supervised classification, semisupervised classifica-
tion, target detection, model inversion, and nonlinear feature extraction are revised
both theoretically and through experimental (illustrative) examples. The emergent
fields of transfer, active, and structured learning, along with efficient parallel imple-
mentations of kernel machines, are also revised.

1.1 Introduction

Remotely sensed images allow Earth Observation with unprecedented accu-
racy. New satellite sensors acquire images with high spectral and spatial res-
olution, and the revisiting time is constantly reduced. Processing data is be-
coming more complex in such situations and many problems can be tackled
with recent machine learning tools. One of the most critical applications is
that of image classification, but also model inversion and feature extraction
are relevant in the field. This chapter will focus on these important problems
that are subsequently outlined.
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1.1.1 Classification with Kernels

The characteristics of the acquired images allow the characterization, identi-
fication, and classification of the land-covers [1]. However, traditional classi-
fiers such as Gaussian maximum likelihood or artificial neural networks are
affected by the high input sample dimension, tend to overfit data in the pres-
ence of noise, or perform poorly when a low number of training samples are
available [2, 3]. In the last few years, the use of support vector machines
(SVMs) [4, 5] for remote sensing image classification has been paid attention
basically because the method integrates in the same classification procedure
(i) a feature extraction step, as samples are mapped to a higher dimensional
space where a simpler (linear) classification is performed, becoming nonlinear
in the input space; (ii) a regularization procedure by which model’s complexity
is efficiently controlled; and (iii) the minimization of an upper bound of the
generalization error, thus following the Structural Risk Minimization (SRM)
principle. These theoretical properties, which will be reviewed in the next
section, make the SVM in particular, and kernel methods in general, very
attractive in the context of remote sensing image classification [6].

Another different concern is that a complete and representative training
set is essential for a successful classification. In particular, it is noteworthy that
few attention has been paid to the case of having an incomplete knowledge
of the classes present in the investigated scene. This may be critical since, in
many applications, acquiring ground truth information for all classes is very
difficult, especially when complex and heterogeneous geographical areas are
analyzed. In this chapter, we revise the one-class SVM for remotely-sensed
image classification with incomplete training data. This method is a recent
kernel-based development that only considers samples belonging to the class
of interest in order to learn the underlying data class distribution. The method
was originally introduced for anomaly detection [7], then analyzed for dealing
with incomplete and unreliable training data [8], and recently reformulated
for change detection [9].

Remote sensing image classification is hampered by both the number and
quality of labeled training samples. In order to alleviate this problem, SVMs
(or any other kernel-based classifier) should exploit the information contained
in the abundant unlabeled samples along with the low number of labeled sam-
ples thus working under the semisupervised learning (SSL) paradigm [10]. In
this chapter, we review the SSL literature and provide some experimental evi-
dence of the use of semisupervised approaches for classification in challenging
remote sensing problems.

1.1.2 Model Inversion with Kernels

Remote sensing very often deals with inverting a forward model. To this aim,
one has to produce an accurate and robust model able to predict physical,
chemical, geological or atmospheric parameters from spectra, such as surface
temperature, water vapour, ozone, etc. This has been an active research field in
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remote sensing for years, and kernel methods offer promising non-parametric
semi-empirical solutions. Kernel developments have been published in the last
years: support vector regression (SVR) methods have been used for parameter
estimation [11, 12, 13, 14], and a fully-constrained kernel least squares (FC-
KLS) for abundance estimation [15]. Also, under a Bayesian perspective, other
forms of kernel regression have been applied, such as the relevance vector
machine (RVM) [16] or the Gaussian Process (GP) regression [17, 18].

1.1.3 Feature Extraction with Kernels

Recently, some attention has been paid to develop kernel-based feature ex-
traction methods for remote sensing data processing. The main interest is to
extract a reduced number of (nonlinear) features with high expressive power
for either classification or regression. Particular applications to remote sens-
ing are the Kernel Principal Component Analysis (KPCA) [5] and the Kernel
Partial Least Squares (KPLS) [19].

The rest of this chapter is outlined as follows. Section 2 presents a brief in-
troduction to kernel methods, fixes notation, and reviews the basic properties.
Section 3 is devoted to review the classification setting, under the paradigms
of supervised, semisupervised, and one-class classification. Section 4 presents
the advances in kernel methods for regression and model inversion. Section 5
reviews the field of nonlinear feature extraction with kernels. Section 6 reviews
the recent developments and foresees the future trends in kernel machines for
remote sensing data analysis. Section 7 concludes the chapter with some final
remarks.

1.2 Introduction to Kernel Methods

This section includes a brief introduction to kernel methods. After setting the
scenario and fixing the most common notation, we give the main properties
of kernel methods. We also pay attention to kernel methods development
by means of particular properties drawn from linear algebra and functional
analysis [20, 21].

1.2.1 Measuring Similarity with Kernels

Kernel methods rely on the notion of similarity between examples. Let us
define a set of empirical data (x1, y1), . . . , (xn, yn) ∈ X ×Y, where xi are the
inputs taken from X and yi ∈ Y are called the outputs. Learning means using
these data pairs to predict well on test examples x ∈ X . To develop machines
that generalize well, kernel methods try to exploit the structure of the data
and thus define a similarity between pairs of samples.

Since X may not have a proper notion of similarity, examples are mapped
to a (dot product) space H, using a mapping φ : X → H,x 7→ φ(x). The
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similarity between the elements inH can now be measured using its associated
dot product 〈·, ·〉H. Here, we define a function that computes that similarity,
K : X ×X → R, such that (x,x′) 7→ K(x,x′). This function, called kernel, is
required to satisfy:

K(x,x′) = 〈φ(x), φ(x′)〉H. (1.1)

The mapping φ is its feature map, and the space H its feature space.

1.2.2 Positive Definite Kernels

The class of kernels that can be written in the form of (1.1) coincides with
the class of positive definite kernels.

Definition 1. A function K : X ×X → R is a positive definite kernel if and
only if there exists a Hilbert space H and a feature map φ : X → H such that

for all x,x′ ∈ X we have K(x,x′) = 〈φ(x), φ(x′)〉H.

In practice, a real symmetric n×n matrix K, whose entries are K(xi,xj) or
simply Kij , is called positive definite if for all c1, . . . , cn ∈ R,

∑n

i,j=1 cicjKij ≥
0. Note that a positive definite kernel is equivalent to a positive definite Gram
matrix in the feature space.

Therefore, algorithms operating on the data only in terms of dot prod-
ucts can be used with any positive definite kernel by simply replacing
〈φ(x), φ(x′)〉H with kernel evaluations K(x,x′), a technique also known as
the kernel trick [5]. Another direct consequence is that, for a positive definite
kernel, one does not need to know the explicit form of the feature map since
it is implicitly defined through the kernel.

1.2.3 Basic Operations with Kernels

We now review some basic properties with kernels. Note that, although the
space H can be very high-dimensional, some basic operations can still be
performed:

Translation. A translation in feature space can be written as the modified
feature map φ̃(x) = φ(x) + Γ with Γ ∈ H. Then, the translated dot

product for 〈φ̃(x), φ̃(x′)〉H can be computed if we restrict Γ to lie in the
span of the functions {φ(x1), . . . , φ(xn)} ∈ H.

Centering. The previous translation allows us to center data {xi}ni=1 ∈ X
in the feature space. The mean of the data in H is φµ = 1

n

∑n

i=1 φ(xi)
which is a linear combination of the span of functions and thus fulfills the
requirement for Γ . One can center data in H by computing K ← HKH
where entries of H are Hij = δij −

1
n

and the Kronecker symbol δi,j = 1
if i = j and zero otherwise.

Subspace Projections. Given two points Ψ and Γ in the feature space, the

projection of Ψ onto the subspace spanned by Γ is Ψ ′ = 〈Γ,Ψ〉H
‖Γ‖2

H

Γ . There-

fore one can compute the projection Ψ ′ expressed solely in terms of kernel
evaluations.
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Computing Distances. The kernel corresponds to a dot product in a Hilbert
Space H, and thus one can compute distances between mapped samples
entirely in terms of kernel evaluations:

d(x,x′) = ‖φ(x) − φ(x′)‖H =
√

K(x,x) + K(x′,x′)− 2K(x,x′)

Normalization. Exploiting the previous property, one can also normalize data
in feature spaces:

K(x,x′)←

〈

φ(x)

‖φ(x)‖
,

φ(x′)

‖φ(x′)‖

〉

=
K(x,x′)

√

K(x,x)K(x′,x′)

1.2.4 Standard Kernels

The bottleneck for any kernel method is the definition of a kernel mapping
function φ that accurately reflects the similarity among samples. However,
not all kernel similarity functions are permitted. In fact, valid kernels are only
those fulfilling Mercer’s Theorem (roughly speaking, being positive definite
similarity matrices) and the most common ones are the linear K(x, z) = 〈x, z〉,
the polynomial K(x, z) = (〈x, z〉+1)d, d ∈ Z

+, and the Radial Basis Function
(RBF), K(x, z) = exp

(

−‖x− z‖2/2σ2
)

, σ ∈ R
+. Note that, by Taylor series

expansion, the RBF kernel is a polynomial kernel with infinite degree. Thus
the corresponding Hilbert space is infinite dimensional, which corresponds to
a mapping into the space of smooth functions C∞. The RBF kernel is also of
practical convinience –stability and only one parameter to be tuned–, and it
is the preferred kernel measure in standard applications.

1.2.5 Kernel Development

Taking advantage of some algebra and functional analysis properties [20, 21],
one can derive very useful properties of kernels. Be K1 and K2 two positive
definite kernels on X ×X , A a symmetric positive semidefinite matrix, d(·, ·)
a metric fulfilling distance properties, f any function, and µ > 0. Then, the
following kernels are valid [5]:

K(x,x′) = K1(x,x′) + K2(x,x′) (1.2)

K(x,x′) = µK1(x,x′) (1.3)

K(x,x′) = K1(x,x′) ·K2(x,x′) (1.4)

K(x,x′) = x⊤Ax′ (1.5)

K(x,x′) = exp(−d(x,x′)) (1.6)

K(x,x′) = K(f(x), f(x′)) (1.7)

These basic properties give rise to the construction of refined similarity mea-
sures better fitted to the data characteristics. In remote sensing, one can sum
dedicated kernels to spectral, contextual or even temporal information of pix-
els through (1.2). A scaling factor to each kernel can also be added (Eq. 1.3).
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Also, the (more appropriate) spectral angle distance between pixels is a valid
kernel by (1.6). Recent advances for kernel development are:

Convex combinations. By exploiting (1.2) and (1.3), one can build kernels by
linear combinations of kernels working on feature subsets:

K(x,x′) =
M
∑

m=1

dmKm(x,x′)

This field of research is known as multiple kernel learning (MKL) and
different algorithms exist to optimize the weights and kernel parameters
jointly. Note that this kernel offers some insight in the problem, since
relevant features receive higher values of dm, and the corresponding kernel
parameters θm yield information about pairwise similarity scales.

Deforming kernels. The field of semisupervised kernel learning deals with
techniques to modify the values of the training kernel including the infor-
mation from the whole data distribution: K is either deformed through a
graph distance matrix built with both labeled and unlabeled samples, or
by means of kernels built from clustering solutions.

Generative kernels. Exploiting Eq. (1.7), one can construct kernels from prob-
ability distributions by defining K(x,x′) = K(p,p′), where p, p′ are de-
fined on the space X . This kind of kernels is known as probability product

kernels between distributions and is defined as:

K(p,p′) = 〈p,p′〉 =

∫

X

p(x)p′(x)dx.

Joint input-output mappings. Typically, kernels are built on the input sam-
ples. Lately the framework of structured output learning deals with the
definition of joint input-output kernels, K((x, y), (x′, y′)).

1.3 Kernel methods in remote sensing data classification

Classification maps are the main product of remote sensing data analysis and,
in the last years, kernel methods have demonstrated very good performance.
The most successful kernel method are the support vector machines as exten-
sively reported in [6]. SVMs have been applied to both multispectral [22, 23]
and hyperspectral [6, 24, 9] data in a wide range of domains, including object
recognition [25], land cover and multi-temporal classification [26, 27, 9], and
urban monitoring [28].

1.3.1 Support Vector Machine (SVM)

The Support Vector Machine (SVM) is defined as follows. Notationally, given
a labeled training data set {xi, yi}ni=1, where xi ∈ R

N and yi ∈ {−1, +1},
and given a nonlinear mapping φ(·), the SVM method solves:
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Fig. 1.1. Illustration of kernel classifiers. (a) SVM: Linear decision hyperplanes in a
nonlinearly transformed, feature space, where slack variables ξi are included to deal
with errors. (b) SVDD: The hypersphere containing the target data is described by
center a and radius R. Samples in the boundary and outside the ball are unbounded
and bounded support vectors, respectively. (c) OC-SVM: another way of solving
the data description problem, where all samples from the target class are mapped
with maximum distance to the origin. (d) KFD: Kernel Fisher’s Discriminant sep-
arates the classes by projecting them onto a hyperplane where the difference of the
projected means (µ1, µ2) is large, and the variance around means σ1 and σ2 is small.

min
w,ξi,b

{

1

2
‖w‖2 + C

n
∑

i=1

ξi

}

(1.8)

constrained to:

yi(〈φ(xi),w〉+ b) ≥ 1− ξi ∀i = 1, . . . , n (1.9)

ξi ≥ 0 ∀i = 1, . . . , n (1.10)

where w and b define a linear classifier in the feature space, and ξi are positive
slack variables enabling to deal with permitted errors (Fig. 1.1a). Appropriate
choice of nonlinear mapping φ guarantees that the transformed samples are
more likely to be linearly separable in the (higher dimension) feature space.
The regularization parameter C controls the generalization capability of the
classifier, and it must be selected by the user. Primal problem (1.8) is solved
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using its dual problem counterpart [5], and the decision function for any test
vector x∗ is finally given by

f(x∗) = sgn

(

n
∑

i=1

yiαiK(xi,x∗) + b

)

(1.11)

where αi are Lagrange multipliers corresponding to constraints in (1.9), being
the support vectors (SVs) those training samples xi with non-zero Lagrange
multipliers αi 6= 0; K(xi,x∗) is an element of a kernel matrix K defined as
in equation (1.1); and the bias term b is calculated by using the unbounded

Lagrange multipliers as b = 1/k
∑k

i=1(yi−〈φ(xi),w〉), where k is the number
of unbounded Lagrange multipliers (0 6 αi < C) and w =

∑n

i=1 yiαiφ(xi) [5].

1.3.2 ν-Support Vector Machine (ν-SVM)

One interesting variation of the SVM is the ν-SVM introduced by Schölkopf
et al [29]. In the SVM formulation, the soft margin is controlled by parameter
C, which may take any positive value. This makes difficult to adjust it when
training the classifier. The idea of the ν-SVM is forcing the soft margin to lie
in the range [0, 1]. This is carried out redefining the problem as

min
w,ξi,b,ρ

{

1

2
‖w‖2 + νρ +

1

n

n
∑

i=1

ξi

}

(1.12)

subject to:

yi(〈φ(xi),w〉+ b) ≥ ρ− ξi ∀i = 1, . . . , n (1.13)

ρ ≥ 0, ξi ≥ 0 ∀i = 1, . . . , n (1.14)

In this new formulation, parameter C has been removed and a new variable
ρ with coefficient ν has been introduced. This new variable ρ adds another
degree of freedom to the margin, the size of the margin increasing linearly with
ρ. The old parameter C controlled the trade off between the training error
and the generalization error. In the ν-SVM formulation, this is done adjusting
ν in the range [0, 1], which acts as an upper bound on the fraction of margin
errors, and it is also a lower bound on the fraction of support vectors.

1.3.3 Support Vector Data Description (SVDD)

A different problem statement for classification is given by the Support Vector
Domain Description (SVDD) [30]. The SVDD is a method to solve one-class
problems, where one tries to describe one class of objects, distinguishing them
from all other possible objects.

The problem is defined as follows. Let {xi}ni=1 be a dataset belonging to a
given class of interest. The purpose is to find a minimum volume hypersphere
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in a high dimensional feature space H, with radius R > 0 and center a ∈ H,
which contains most of these data objects (Fig. 1.1b). Since the training set
may contain outliers, a set of slack variables ξi ≥ 0 is introduced, and the
problem becomes

min
R,a

{

R2 + C

n
∑

i=1

ξi

}

(1.15)

constrained to

‖φ(xi)− a‖2 ≤ R2 + ξi ∀i = 1, . . . , n (1.16)

ξi ≥ 0 ∀i = 1, . . . , n (1.17)

where parameter C controls the trade-off between the volume of the hyper-
sphere and the permitted errors. Parameter ν, defined as ν = 1/nC, can be
used as a rejection fraction parameter to be tuned as noted in [31].

The dual functional is a quadratic programming problem that yields a set
of Lagrange multipliers (αi) corresponding to constraints in (1.16). When the
free parameter C is adjusted properly, most of the αi are zero, giving a sparse
solution. The Lagrange multipliers are also used to calculate the distance from
a test point to the center R(x∗):

R(x∗) = K(x∗,x∗)− 2

n
∑

i=1

K(xi,x∗) +

n
∑

i,j=1

K(xi,xj) (1.18)

which is compared with ratio R. Unbounded support vectors are those samples
xi satisfying 0 6 αi < C, while bounded SVs are samples whose associated
αi = C, which are considered outliers.

1.3.4 One-class Support Vector Machine (OC-SVM)

In the OC-SVM, instead of defining a hypersphere containing all examples,
a hyperplane that separates the data objects from the origin with maximum
margin is defined (Fig. 1.1c). It can be shown that when working with nor-
malized data and the RBF Gaussian kernel, both methods yield the same
solutions [31].

In the OC-SVM, we want to find a hyperplane w which separates samples
xi from the origin with margin ρ. The problem thus becomes

min
w,ρ,ξ

{

1

2
‖w‖2 − ρ +

1

νn

n
∑

i=1

ξi

}

(1.19)

constrained to

〈φ(xi),w〉 ≥ ρ− ξi ∀i = 1, . . . , n (1.20)

ξi ≥ 0 ∀i = 1, . . . , n (1.21)

The problem is solved through its Langrangian dual introducing a set of La-
grange multipliers αi. The margin ρ can be computed as ρ = 〈w, φ(xi)〉 =
∑

j αjK(xi,xj).
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1.3.5 Kernel Fisher’s Discriminant (KFD)

Assume that, n1 out of n training samples belong to class −1 and n2 to class
+1. Let µ be the mean of the whole set, and µ− and µ+ the means for classes
−1 and +1, respectively. Analogously, let Σ be the covariance matrix of the
whole set, and Σ− and Σ+ the covariance matrices for the two classes.

The Linear Fisher’s Discriminant (LFD) seeks for projections that maxi-
mize the interclass variance and minimize the intraclass variance [32, 33]. By
defining the between class scatter matrix SB = (µ−−µ+)(µ−−µ+)⊤ and the
within class scatter matrix SW = Σ− +Σ+, the problem reduces to maximize

J(w) =
w⊤SBw

w⊤SW w
(1.22)

The Kernel Fisher’s Discriminant (KFD) is obtained by defining the LFD
in a high dimensional feature space H. Now, the problem reduces to maximize:

J(w) =
w⊤Sφ

Bw

w⊤Sφ
W w

(1.23)

where now w, Sφ
B and Sφ

W are defined in H, Sφ
B = (µφ

− − µ
φ
+)(µφ

− − µ
φ
+)⊤,

and Sφ
W = Σφ

− + Σφ
+.

We need to express (1.23) in terms of dot-products only. According to the
reproducing kernel theorem [5], any solution w ∈ H can be represented as
a linear combination of training samples in H. Therefore w =

∑n

i=1 αiφ(xi)
and then

w⊤µ
φ
i =

1

ni

n
∑

j=1

ni
∑

k=1

αjK(xj ,x
i
k) = α⊤Mi (1.24)

where xi
k represents samples xk of class i, and (Mi)j = 1

ni

∑ni

k=1 K(xj ,x
i
k).

Taking the definition of Sφ
B and (1.24), the numerator of (1.23) can be rewrit-

ten as w⊤Sφ
Bw = α⊤Mα, and the denominator as w⊤Sφ

W w = α⊤Nα, where

M = (M− −M+)(M− −M+)⊤ (1.25)

N =
∑

j={−1,+1} Kj(I− 1nj
)K⊤

j (1.26)

Kj is a n× nj matrix with (Kj)nm = K(xn,xj
m) (the kernel matrix for class

j), I is the identity and 1nj
a matrix with all entries set to 1/nj. Finally,

Fisher’s linear discriminant in H is solved by maximizing

J(α) =
α⊤Mα

α⊤Nα
, (1.27)

which is solved as in the linear case. The projection of a new sample x onto
w can be computed through the kernel function:

w⊤φ(x) =

n
∑

i=1

αiK(xi,x) (1.28)
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Table 1.1. Mean and standard deviation of estimated kappa statistic (κ), precision,
recall, F -Measure and rate of support vectors for the 10 realizations. Best results
are boldfaced.

Method κ Precicision Recall F-Measure % SVs
ν-SVC lin 0.81 ± 0.06 0.83 ± 0.07 0.90 ± 0.07 0.86 ± 0.04 33 ± 0.13
ν-SVC RBF 0.80 ± 0.07 0.86 ± 0.08 0.85 ± 0.10 0.85 ± 0.05 36 ± 0.24
LFD 0.72 ± 0.06 0.76 ± 0.08 0.84 ± 0.05 0.79 ± 0.04 -
KFD 0.82 ± 0.03 0.87 ± 0.04 0.86 ± 0.05 0.86 ± 0.02 -
OC-SVM lin 0.70 ± 0.06 0.78 ± 0.11 0.79 ± 0.13 0.77 ± 0.05 15 ± 0.05
OC-SVM RBF 0.68 ± 0.16 0.93 ± 0.06 0.64 ± 0.21 0.74 ± 0.15 37 ± 0.12

1.3.6 Experimental Results for Supervised Classification

Here we compare the performance of ν-SVM, OC-SVM, LFD and KFD meth-
ods in a remote sensing multisource image classication problem: the identi-
fication of classes ‘urban’ and ‘non-urban’. For the ν-SVM, LFD and KFD
the problem is binary. For OC-SVM, we take the class ‘urban’ as the target
class. The images used are from ERS2 SAR and Landsat TM sensors acquired
in 1999 over the area of Naples, Italy [34]. The dataset have seven Landsat
bands, two SAR backscattering intensities (0–35 days), and the SAR interfer-
ometric coherence. Since these features come from different sensors, the first
step was to perform a specific processing and conditioning of optical and SAR
data, and to co-register all images. Then, all features were stacked at a pixel
level. A small area of the image of 400× 400 pixels was selected.

We used 10 randomly selected samples of each class to train the classifiers
(only 10 ‘urban’ samples for the one-class experiment). Except the LFD, the
other classifiers have free parameters that must be tuned in the training pro-
cess. To do this, the training set was split following a v-fold strategy1. For all
methods, we used the RBF kernel where σ was tuned in the range [10−3, 103]
in logarithmic increments of 10. The ν-SVM and OC-SVM have and additional
parameter to tune: ν was varied in the range [0.1, 0.5] in increments of 0.1.
Experiments were repeated 10 times with different random realizations of the
training sets. Averaged results are shown using four different error measures
obtained from the confusion matrices: the estimated kappa statistic (κ) [35];
the precision (P ), defined as the ratio between the number of true positives
and the sum of true positives and false positives; the recall (R), defined as
the ratio between the number of true positives and the sum of true positives
and false negatives. The last one is the F -Measure (or unbiased F -Score),
computed as F = 2 P ·R

P+R
, which combines both measures. Table 1.1 shows

the mean results and the percentage of support vectors for the 10 different
training sets.

1 In v-fold, the training set is divided in v subsets, then during v times v−1 subsets
are used for training, and the remaining subset is used for validation. At the end,
the parameters that have worked the best in the v subsets are selected.
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Linear vs. nonlinear. From Table 1.1, several conclusions can be obtained
concerning the suitable kernel. In the case of ν-SVM, linear kernel yields
slightly favourable results but differences to the RBF kernel are not statisti-
cally significant. On the contrary, for the case of Fisher’s discriminants, KFD
is better than the linear kernel LFD. Particularly interesting is the case of the
OC-SVM. Here, using the RBF Gaussian kernel has the problem of adjusting
the width σ using only samples from the target class. The problem is quite
difficult because, as reliable measures like the estimated kappa statistic or
the F -Measure cannot be computed using only samples of the target class, σ
should be adjusted by measuring only the true positive ratio and controlling
model’s complexity through the rate of support vectors. In those cases where
a proper value for σ cannot be found, the linear kernel may perform better,
as it has no free parameter to adjust.
ν-SVM vs. OC-SVM. In terms of the estimated kappa statistic, the ν-SVM
classifier generally works better than the OC-SVM in this example. This result
is not surprising since this experiment is essentially a binary problem and the
ν-SVM has, in the training phase, information about both classes, whereas the
OC-SVM is trained using only information of the class ‘urban’. Comparing
the results in terms of precision, the ν-SVM performs better than OC-SVM
using the linear kernel, but worse when OC-SVM uses the RBF kernel. On
the other hand, the ν-SVM obtains better results in terms of recall, meaning
that it has less false negatives for the target class. Evaluating the performance
with the F -Measure, which takes into account both precision and recall, the
ν-SVM obtains better overall results. Finally, results clearly show that sparser
classifiers are obtained when using the OC-SVM with the linear kernel.
Support Vector vs. Fisher’s Discriminant. Algorithms based on support
vectors using the RBF kernel have a similar (but slightly lower) performance
than the KFD algorithm. This better performance may be due to the low
number of training samples used (being non-sparse, KFD has a full –dense–
representation of the training data) and the squared loss function used is
better suited to the assumed (Gaussian) noise in the data.

1.3.7 Semisupervised Image Classification

Remote sensing image classification is a challenging task because only a small
number of labeled pixels is typically available, and thus classifiers tend to
overfit the data [2]. In this context, semisupervised learning (SSL) naturally
appears as a promising tool for combining labeled and unlabeled information
thus increasing the accuracy and robustness of class predictions [10, 36]. The
key issue in SSL is the general assumption of consistency, which means that: 1)
nearby points are likely to have the same label; and 2) points on the same data
structure (cluster or manifold) are likely to have the same label. This argument
is often called the cluster assumption [37, 38]. Traditional SSL methods are
based on generative models, which estimate the conditional density and have
been extensively applied in remote sensing image classification [39]. Recently,
more attention has been paid to discriminative approaches, such as: 1) the
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Fig. 1.2. Left: classifier obtained using labeled data (red and blue denote different
classes). Right: classifier obtained using labeled data plus unlabeled data distribution
(black dots denote unlabeled data).

Transductive SVM (TSVM) [4, 40], which maximizes the margin for labeled
and unlabeled samples simultaneously; 2) Graph-based methods, in which
each pixel spreads its label information to its neighbors until a global steady
state is achieved on the whole image [41, 42]; and 3) the Laplacian SVM
(LapSVM) [43,44], which deforms the kernel matrix of a standard SVM with
the relations found by building the graph Laplacian. Also, the design of cluster
and bagged kernels [37] have been successfully presented in remote sensing
[45, 46], whose essential idea is to modify the eigenspectrum of the kernel
matrix that in turn implies an alteration of the distance metric. Figure 1.2
illustrates a typical semisupervised learning situation where distribution of
unlabeled samples helps to improve the generalization of the classifier.

Manifold-based Regularization Framework

Regularization helps to produce smooth decision functions that avoid overfit-
ting to the training data. Since the work of Tikhonov [47], many regularized
algorithms have been proposed to control the capacity of the classifier [48,5].
Regularization has been applied to both linear and nonlinear algorithms in the
context of remote sensing image classification, and becomes strictly necessary
when few labeled samples are available compared to the high dimensionality
of the problem. In the last decade, the most paradigmatic case of regularized
nonlinear algorithm is the support vector machine: in this case, maximiz-
ing the margin is equivalent to applying a kind of regularization to model
weights [5, 6]. These regularization methods are especially appropriate when
a low number of samples is available, but are not concerned about the geome-
try of the marginal data distribution. This has been recently treated within a
more general regularization framework that includes Tikhonov’s as a special
case.



14 Luis Gómez-Chova et al.

Semisupervised Regularization Framework

The classical regularization framework has been recently extended to the use
of unlabeled samples [43] as follows. Notationally, we are given a set of l
labeled samples, {xi}li=1 with corresponding class labels yi, and a set of u

unlabeled samples {xi}
l+u
i=l+1. Let us now assume a general-purpose decision

function f . The regularized functional to minimize is:

L =
1

l

l
∑

i=1

V (xi, yi, f) + γL‖f‖
2
H + γM‖f‖

2
M, (1.29)

where V represents a generic cost function of the committed errors on the
labeled samples, γL controls the complexity of f in the associated Hilbert
space H, and γM controls its complexity in the intrinsic geometry of the
data distribution. For example, if the probability distribution is supported
on a low-dimensional manifold, ‖f‖2M penalizes f along that manifold M.
Note that this semisupervised learning framework allows us to develop many
different algorithms just by playing around with the loss function, V , and the
regularizers, ‖f‖2H and ‖f‖2M.

Laplacian Support Vector Machine (LapSVM)

Here, we briefly review the Laplacian SVM as an instantiation of the previous
framework. More details can be found in [43], and its application to remote
sensing data classification in [44].

The LapSVM uses the same hinge loss function as the traditional SVM:

V (xi, yi, f) = max(0, 1− yif(xi)), (1.30)

where f represents the decision function implemented by the selected classifier
and the predicted labels are y∗ = sgn (f(x∗)). Hereafter, unlabeled or test
samples are highlighted with ∗.

The decision function used by the LapSVM is f(x∗) = 〈w, φ(x∗)〉 + b,
where φ(·) is a nonlinear mapping to a higher dimensional Hilbert space H,
and w and b define a linear decision function in that space. The decision

function is given by f(x∗) =
∑l+u

i=1 αiK(xi,x∗) + b. The regularization term
‖f‖2H can be fully expressed in terms of the corresponding kernel matrix and
the expansion coefficients α:

‖f‖2H = ‖w‖2 = (Φα)⊤(Φα) = α⊤Kα. (1.31)

Essentially, for manifold regularization, the LapSVM relies on the Lapla-
cian eigenmaps (LE), which tries to map nearby inputs (pixels) to nearby
outputs (corresponding class labels), thus preserving the neighborhood rela-
tions between samples2. Therefore, the geometry of the data is modeled with a

2 In our case, nearby points are those pixels spectrally similar and thus the assump-
tion is applied to the (high) dimensional space of image pixels.



1 A Review of Kernel Methods in Remote Sensing Data Analysis 15

graph in which nodes represent both labeled and unlabeled samples connected
by weights Wij [10]. Regularizing the graph follows from the smoothness (or
manifold) assumption and intuitively is equivalent to penalize “rapid changes”
of the classification function evaluated between close samples in the graph:

‖f‖2M =
1

(l + u)2

l+u
∑

i,j=1

Wij(f(xi)− f(xj))
2 =

f⊤Lf

(l + u)2
, (1.32)

where L = D−W is the graph Laplacian, whose entries are sample and graph-

dependent; D is the diagonal degree matrix of W given by Dii =
∑l+u

j=1 Wij

and Dij = 0 for i 6= j; the normalizing coefficient 1
(l+u)2 is the natural

scale factor for the empirical estimate of the Laplace operator [43]; and
f = [f(x1), . . . , f(xl+u)]⊤ = Kα, where we deliberately dropped the bias
term b.

Transductive SVM (TSVM)

The TSVM, originally proposed in [4] and further extended to deal with the
peculiarities of remote sensing data in [40], aims at choosing a decision bound-
ary that maximizes the margin on both labeled and unlabeled data. The
TSVM optimizes a loss function similar to (1.29), but γM‖f‖2M is replaced
by a term related to the distance of unlabeled samples to the margin. The
TSVM functional to be minimized is:

L =
1

l

l
∑

i=1

V (xi, yi, f) + γL‖f‖
2
H + λ

l+u
∑

j=l+1

L∗(f(x∗
j )), (1.33)

where l and u are the number of labeled and unlabeled examples, λ is a free
parameter that controls the relevance of unlabeled samples, and L∗ is the
symmetric hinge loss function:

L∗(f(x∗)) = max(0, 1− |f(x∗)|). (1.34)

The optimization of L∗ can be seen as “self-learning”, i.e., we use the predic-
tion for x∗ for training the mapping for that same example. Minimizing (1.34)
pushes away unlabeled samples from the margin, either negative or positive,
thus minimizes the absolute value.

1.3.8 Experimental Results for Semisupervised Classification

This section presents the experimental results of semisupervised methods in
the same urban monitoring application presented in the previous section [34].
However, different sets of labeled and unlabeled training samples were used in
order to test the performance of the SSL methods. Training and validation sets
consisting of l = 400 labeled samples (200 samples per class) were generated,
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Fig. 1.3. Results for the urban classification. Overall Accuracy OA[%] (left) and
Kappa statistic κ (middle) over the validation set as a function of the rate of la-
beled training samples used to build models. Kappa statistic surface (right) over the
validation set for the best RBF-LapSVM classifier as a function of the rate of both
labeled and unlabeled training samples.

and u = 400 unlabeled (randomly selected) samples from the analyzed images
were added to the training set for the LapSVM and TSVM. We focus on the
ill-posed scenario and vary the rate of both labeled and unlabeled samples
independently, i.e. {2, 5, 10, 20, 50, 100}% of the labeled/unlabeled samples of
the training set were used to train the models in each experiment. In order to
avoid skewed conclusions, we run all experiments for a number of realizations
where the used training samples were randomly selected.

Both linear and RBF kernels were used in the SVM, LapSVM, and TSVM.
The graph Laplacian, L, consisted of l + u nodes connected using k nearest
neighbors, and computed the edge weights Wij using the Euclidean distance
among samples. Free parameters γL and γM were varied in steps of one decade
in the range [10−4, 104], the number of neighbors k used to compute the graph
Laplacian was varied from 3 to 9, and the Gaussian width was tuned in the
range σ = {10−3, . . . , 10} for the RBF kernel. The selection of the best subset
of free parameters was done by cross-validation.

Fig. 1.3 shows the validation results for the analyzed SVM-based classifiers.
Several conclusions can be obtained. First, LapSVM classifiers produce better
classification results than SVM in all cases (note that SVM is a particular case
of the LapSVM for γM = 0) for both the linear and the RBF kernels. LapSVM
also produces better classification results than TSVM when the number of
labeled samples is increased. Differences among methods are numerically very
similar when a low number of labeled samples is available. The κ surface
for the LapSVM highlights the importance of the labeled information in this
problem.

1.4 Kernel methods in biophysical parameter estimation

Robust, fast and accurate regression tools are a critical demand in remote
sensing. The estimation of physical parameters, y, from raw measurements,
x, is of special relevance in order to better understand the environment dy-
namics at local and global scales [49]. The inversion of analytical models
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introduces a higher level of complexity, induces an important computational
burden, and sensitivity to noise becomes an important issue. In the recent
years, nevertheless, the use of empirical models adjusted to learn the rela-
tionship between the acquired spectra and actual ground measurements has
become very attractive. Parametric models have some important drawbacks,
which typically lead to poor prediction results on unseen (test) data. As a
consequence, non-parametric and potentially nonlinear regression techniques
have been effectively introduced [50]. Different models and architectures of
neural networks have been considered for the estimation of biophysical pa-
rameters [50,51,52]. However, despite their potential effectiveness, neural net-
works present some important drawbacks: (i) design and training often results
in a complex, time-consuming task; (ii) following the minimization of the em-
pirical risk (i.e. the error in the training data set), rather than the structural
risk (an upper bound of the generalization error), can lead to overfit the train-
ing data; and (iii) performance can be degraded when working with low-sized
data sets. A promising alternative to neural networks is the use of kernel meth-
ods analyzed in this section, such as support vector regression (SVR) [11,53],
relevance vector machines (RVM) [16], and Gaussian Processes (GP) [17].

1.4.1 Support Vector Regression (SVR)

The support vector regression (SVR) is the SVM implementation for regres-
sion and function approximation [5, 54], which has yielded good results in
modeling some biophysical parameters and in alleviating the aforementioned
problems of neural networks [55, 56, 11].

The standard SVR formulation uses Vapnik’s ε-insensitive cost function,
in which errors ei up to ε are not penalized, and all further deviations will
incur in a linear penalization. Briefly, SVR estimates weights w by minimizing
the following regularized functional:

1

2
‖w‖2 + C

∑

i

(ξi + ξ∗i ) (1.35)

with respect to w and {ξ
(∗)
i }

n
i=1, constrained to:

yi −w⊤φ(xi)− b ≤ ε + ξi ∀i = 1, . . . , n (1.36)

w⊤φ(xi) + b− yi ≤ ε + ξ∗i ∀i = 1, . . . , n (1.37)

ξi, ξ
∗
i ≥ 0 ∀i = 1, . . . , n (1.38)

where ξ
(∗)
i are positive slack variables to deal with training samples with a

prediction error larger than ε (ε > 0), and C is the penalization parameter
applied to these ones. Note that C trade-offs the minimization of errors and
the regularization term, thus controling the generalization capabilities. The
usual procedure for solving SVRs introduces the linear restrictions (1.36)-
(1.38) into (1.35) using Lagrange multipliers αi, computes the Karush-Kuhn-
Tucker conditions, and solves the dual problem using QP procedures [57],
which yields the final solution:
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ŷi =
n
∑

j=1

(αj − α∗
j )K(xi,xj) + b. (1.39)

Again, non-zero multipliers are called SVs. Sparsity in the SVR is a direct
consequence of the loss function; as the value of ε increases, the number of
support vectors is reduced.

1.4.2 Relevance Vector Machines (RVM)

Despite the good performance offered by the SVR, it has some deficiencies: (i)
by assuming an explicit loss function (usually, the ε-insensitive loss function)
one assumes a fixed distribution of the residuals, (ii) the free parameters
must be tuned usually through cross-validation methods, which result in time
consuming tasks, (iii) the nonlinear function used in SVR must fulfil Mercer’s
Theorem [58] to be valid, and (iv) sparsity is not always achieved and a high
number of support vectors is thus obtained.

Some of these problems of SVRs are efficiently alleviated by the Relevance
Vector Machine (RVM), which was originally introduced by Tipping in [59].
The RVM constitutes a Bayesian approximation to solve extended linear (in
the parameters) models, i.e. nonlinear models. Therefore, the RVM follows
a different inference principle from the one followed in SVR. In this case, a
particular probability model for the support vectors is assumed and can be
constrained to be sparse. In addition, it has been claimed that RVMs can pro-
duce probabilistic outputs (which theoretically permits to capture uncertainty
in the predictions), RVMs are less sensitive to hyper-parameters setting than
SVR, and the kernel function must not necessarily fulfil Mercer’s conditions.

Once the kernel has been defined, and a particular Gaussian likelihood as-
sumed for the target vector y = [y1, . . . , yn]⊤ given the weights w, a maximum
likelihood approach could be used for estimating model weights. However, a
certain risk of overfitting arises and a priori models of weight distribution are
commonly used in the Bayesian framework [60]. In the RVM learning scheme,
rather than attempting to make sample-based (or point) predictions, a Gaus-
sian prior distribution of zero mean and variance σ2

wj
≡ α−1

j is defined over
each weight:

p(w|α) =

n
∏

j=1

N (wj |0, α−1
j ) =

n
∏

j=1

√

αj

2π
exp

(

−
1

2
αjw

2
j

)

, (1.40)

where the key to obtain sparsity is the use of n independent hyperparameters
α = (αo, α1, . . . , αn)⊤, one per weight (or basis function), which moderate the
strength of the prior. After defining the prior over the weights, we must define
the hyperpriors over α and the other model parameter, the noise variance σ2

n.
These quantities were originally proposed to be Gamma distributions [59].

Now, with the prior (1.40) and the likelihood distribution, the posterior
distribution over the weights is Gaussian and can be computed using Bayes’
rule:
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p(w|y, α, σ2
n) =

p(y|w, σ2
n)p(w|α)

p(y|α, σ2
n)

∼ N (w|µ, Σ) (1.41)

where the covariance and the mean are respectively given by Σ = (σ−2
n Φ⊤Φ+

A)−1 and µ = σ−2
n ΣΦ⊤y, with A = diag(α). Hence, the Gaussian likelihood

distribution over the training targets can be “marginalized” by integrating
out the weights to obtain the marginal likelihood for the hyperparameters:

p(y|α, σ2
n) =

∫

p(y|w, σ2
n)p(w|α)dw ∼ N (0,C) (1.42)

where the covariance is given by C = σ2
nI + ΦA−1Φ⊤. For computational

efficiency, the logarithm of the evidence is maximized:

L(α) = log p(y|α, σ2
n) = −

1

2

(

n log 2π + log |C|+ y⊤C−1y
)

, (1.43)

which is commonly done using the standard type-II maximum likelihood pro-

cedure. However, [59] did not suggest direct minimization of the negative
log evidence for training the RVM, but rather the use of an approximate
Expectation-Maximization (EM) procedure [61].

In the RVM learning scheme, the estimated value of model weights is given
by the mean of the posterior distribution (1.41), which is also the maximum a

posteriori (MAP) estimate of the weights. The MAP estimate of the weights
depends on the value of hyperparameters α and the noise σ2

n. The estimate
of these two variables (α̂ and σ̂2

n) is obtained by maximizing the marginal
likelihood (1.42). The uncertainty about the optimal value of the weights
reflected by the posterior distribution (1.41) is used to express uncertainty
about the predictions made by the model as follows. Given a new input x∗,
the probability distribution of the corresponding output y∗ is given by the
(Gaussian) predictive distribution:

p(y∗|x∗, α̂, σ̂2
n) =

∫

p(y∗|x∗,w, σ̂2
n)p(w|y, α̂, σ̂2

n)dw ∼ N (y∗, σ
2
∗) (1.44)

where the mean and the variance (uncertainty) of the prediction are y∗ =
(Φ)i,: µ and σ2

∗ = σ̂2
n + (Φ)i,: Σ (Φ)⊤i,:.

In the iterative maximization of L(α), many of the hyperparameters αj

tend to infinity, yielding a posterior distribution (1.41) of the corresponding
weight wj that tends to be a delta function centered around zero. The cor-
responding weight is thus deleted from the model, as well as its associated
basis function, φj(x). In the RVM framework, each basis function φj(x) is
associated to a training sample xj so that φj(x) = K(xj ,x). The model is
built on the few training examples whose associated hyperparameters do not
go to infinity during the training process, leading to a sparse solution. These
examples are called the Relevance Vectors (RVs), resembling the SVs in the
SVM framework.
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1.4.3 Gaussian Processes (GP)

An important concern about the suitability of RVM Bayesian algorithms in
biophysical parameter estimation was raised: oversparseness was easily ob-
tained due to the use of an improper prior, which led to inaccurate predic-
tions and poor predictive variance estimations outside the support. Recently,
the introduction of Gaussian Processes (GPs) has alleviated the aforemen-
tioned problem at the cost of providing non-sparse models [62]. GPs are also
a Bayesian approach to non-parametric kernel learning. Very good numeri-
cal performance and stability has been reported in remote sensing parameter
retrieval [63, 17].

Gaussian processes for regression define a distribution over functions f :
X → R fully described by a mean m : X → R and a covariance (kernel)
function K : X ×X → R such that m(x) = E[f(x)] and K(x,x′) = E[(f(x)−
m(x))⊤(f(x′) −m(x′))]. Hereafter we set m to be the zero function for the
sake of simplicity. Now, given a finite labeled samples dataset {x1, . . .xn}
we first compute its covariance matrix K in the same way as done for the
Gram matrix in SVM. The covariance matrix defines a distribution over the
vector of output values fx = (f(x1), . . . , f(xn))⊤, such that fx ∼ N (0;K),
which is a multivariate Gaussian distribution. Therefore the specification of
the covariance function implies the form of the distribution over the functions.
The role of the covariance for GPs is the same as the role of kernels in SVM,
both specify the notion of similarity in the space of functions.

For training purposes, we assume that the observed variable is formed
by noisy observations of the true underlying function y = f(x) + ǫ. More-
over we assume the noise to be additive independently and identically Gaus-
sian distributed with zero mean and variance σ2

n. Let us define the stacked
output values y = (y1, . . . , yn)⊤, the covariance terms of the test point
Ki = (K(xi,x1), . . . , K(xi,xn))⊤, and Kii = K(xi,xi). From the previous
model assumption, the output values are distributed according to:

(

y
f(xi)

)

∼ N

(

0,

(

K + σ2
nI Ki

K⊤
i Kii

))

(1.45)

For prediction purposes, the GP is obtained by computing the conditional
distribution f(xi)|y, {x1, . . . ,xn};xi, which can be shown to be a Gaussian
distribution with predictive mean K⊤

i (K + σ2
nI)−1y and predictive variance

Kii−K⊤
i (K+σ2

nI)−1Ki. Therefore, two hyperparameters must be optimized:
the kernel K and the noise variance σ2

n.
Note that the GP mean predictor yields exactly the same solution that the

obtained in the context of kernel ridge regression (i.e. unconstrained kernel
regression with squared loss function and Tikhonov’s regularization). Even
more important is the fact that not only a mean prediction is obtained for each
sample but a full distribution over the output values including an uncertainty
of the prediction.

The optimization of GP hyperparameters can be done through standard
cross-validation tecniques. However, a good property of the GP framework is
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the possibility to optimize all involved hyperparameters, θ, iteratively through
gradient-descent. This is done by maximizing the negative log marginal like-
lihood, p(y|x, θ), and its partial derivatives w.r.t. the hyperparameters:3

∂ log p(y|x, θ)

∂θj

=
1

2
y⊤K−1 ∂K

∂θj

K−1y

−
1

2
Tr

{

K−1 ∂K

∂θj

}

=
1

2
Tr

{

(αα⊤ −K)−1 ∂K

∂θj

}

,

(1.46)

where α = K−1y, which is only computed once. This optimization is done by
a particular gradient-based optimization, resulting in a relatively fast method
that scales well for less than a few thousand training samples [62]. This tech-
nique not only avoids running heuristic cross-validation methods but also
optimizing very flexible kernel functions and estimating the noise variance
consistently.

1.4.4 Experimental Results

In this section, we evaluate the performance of SVR, RVM and GP in the
estimation of oceanic chlorophyll-a concentration from measured reflectances.
We compare the models in terms of accuracy, bias, and sparsity. We use the
SeaBAM dataset [64], which gathers 919 in-situ measurements of chlorophyll
concentration around the United States and Europe. The dataset contains in

situ pigments and remote sensing reflectance measurements at wavelengths
present in the SeaWiFS sensor.4

Developing a SVR requires selecting the following free parameters: σ
(varied between 0.1 and 30), C (varied logarithmically between 10−2 and
105), and ε (varied logarithmically between 10−6 and 10−1). For the case
of the RVM algorithm, the σ was logarithmically varied between 0.1 and
30. For the GP, we used a scaled anisotropic RBF kernel, K(x,x′) =

ν exp(−
∑D

d=1 0.5σ−2
d (x(d) − x(d)′)

2
) + σ2

nδxx′ , where ν is a kernel scaling fac-
tor accounting for signal variance, D is the data input dimension (d indicates
dimension), σd is a dedicated lengthscale for feature d, and σn is the mag-
nitude of the independent noise component. It is worth noting that in order
to obtain a good set of optimal parameters, a cross-validation methodology
must be followed. The available data were randomly split into two sets: 460
samples for cross-validation and the remaining 459 samples for testing perfor-
mance. Before training, data were centered and transformed logarithmically,
as in [65].

Table 1.2 presents results in the test set for SVR, RVM and GP mod-
els. For comparison purposes, we include results obtained with a feedforward
neural network trained with back-propagation (NN-BP), which is a standard

3 log p(y|x) ≡ log p(y|x, θ) = − 1

2
y⊤(K+σ2

nI)−1y− 1

2
log(det(K+σ2

n I))−n

2
log(2π).

4 More information about the data can be obtained from
http://seabass.gsfc.nasa.gov/seabam/seabam.html .

http://seabass.gsfc.nasa.gov/seabam/seabam.html
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Table 1.2. Mean error (ME), root mean-squared error (RMSE), mean absolute
error (MAE), and correlation coefficient between the actual and the estimated Chl-
a concentration (r) of models in the test set.

ME RMSE MAE r [%]SVs/RVs

Morel-1 †, -0.023 0.178 0.139 0.956 –
Ocean Chlorophyll 2, OC2 -0.031 0.169 0.133 0.960 –
NN-BP, 4 hidden nodes -0.046 0.143 0.111 0.971 –
ε-SVR in this paper -0.070 0.139 0.105 0.971 44.3%
RVM -0.009 0.146 0.107 0.970 4.9%
GP -0.009 0.103 0.107 0.961 –

approach in biophysical parameters retrieval. Also, we include results for the
model Morel-1, and the final SeaWiFS chlorophyll-a algorithm OC2 from [66].
We can observe that (i) SVR, RVM and GP show a better performance than
empirical Morel and OC2 models, and also better than artificial neural net-
works (NN-BP); (ii) the SVR and GP techniques are more accurate (RMSE,
MAE); (iii) RVM and GP are less biased (ME) than the rest of the models,
and in the case of the RVMs, drastically much more sparse (only 4.9% of
training samples were necessary to attain good generalization capabilities).
Comparing SVR and RVM, we can state that RVMs provide accurate esti-
mations (similar to SVR) with small number of relevant vectors. GP provides
more accurate results than SVR and RVM.

1.5 Kernel Methods for Feature extraction

The curse of dimensionality refers to the problems associated with multivariate
data analysis as the dimensionality increases. This problem is specially rele-
vant in remote sensing since, as long as new technologies improve, the number
of spectral bands is continuously increasing. There are two main implications
of the curse of dimensionality, which critically affect pattern recognition ap-
plications in remote sensing: there is an exponential growth in the number of
examples required to maintain a given sampling density (e.g. for a density of
n examples per bin with d dimensions, the total number of examples should
be nd); and there is an exponential growth in the complexity of the target
function (e.g. a density estimate or a classifier) with increasing dimensional-
ity. In these cases, feature extraction methods are used to create a subset of
new features by combinations of the existing features. Even though the use of
linear methods such as principal component analysis (PCA) or partial least
squares (PLS) is quite common, recent advances to cope with nonlinearities
in the data based on multivariate kernel machines have been presented [67].
In the rest of the section we will briefly review the linear and nonlinear kernel
versions of PCA and PLS.
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1.5.1 Mutivariate Analysis Methods (MVA)

The family of multivariate analysis (MVA) methods comprises several algo-
rithms for feature extraction that exploit correlations between data represen-
tation in input and output spaces, so that the extracted features can be used
to predict the output variables, and viceversa.

Notationally, a set of training pairs {xi,yi}ni=1, with xi ∈ R
N , yi ∈ R

M ,
where x are the observed explanatory variables in the input space (i.e. spectral
channels or bands) and y are the target variables in the output space (e.g. class
material or corresponding physical parameter), are given. This can be also
expressed using matrix notation, X = [x1, . . . ,xn]⊤ and Y = [y1, . . . ,yn]⊤,

where superscript ⊤ denotes matrix or vector transposition. X̃ and Ỹ denote
the centered versions of X and Y, respectively, while Cxx = 1

n
X̃⊤X̃ represents

the covariance matrix of the input data, and Cxy = 1
n
X̃⊤Ỹ the covariance

between the input and output data.
Feature extraction is typically used before the application of machine learn-

ing algorithms to discard irrelevant or noisy components, and to reduce the
dimensionality of the data, what helps also to prevent numerical problems
(e.g., when Cxx is rank deficient). Linear feature extraction can be carried
out by projecting the data into the subspaces characterized by projection ma-
trices U and V, of sizes N×np and M ×np, so that the np extracted features

of the original data are given by X̃′ = X̃U and Ỹ′ = ỸV.

Principal Component Analysis (PCA)

Principal component analysis [68], also known as the Hotelling transform or
the Karhunen-Loeve transform, projects linearly the input data onto the direc-
tions of largest input variance. To perform PCA, the covariance matrix is first
estimated Cxx = 1/n

∑n

i=1 x̃ix̃
⊤
i . Then, the eigenvalue problem Cxxui = λiui

is solved, which yields a set of sorted eigenvalues {λi}
np

i=1 (λi ≤ λi+1) and the
corresponding eigenvectors {ui}

np

i=1. Finally, new data are projected onto the

eigenvectors with largest eigenvalues X̃′ = X̃U.
This can also be expressed more compactly as:

PCA: U = argmax
U

Tr{U⊤CxxU}

subject to: U⊤U = I
(1.47)

where I is the identity matrix of size np × np. Using Lagrange multipliers, it
can be shown (see, e.g. [19]) that the solution to (1.47) is given by the singular
value decomposition (SVD) of Cxx.

The main limitation of PCA is that it does not consider class separability
since it does not take into account the target variables y of the input vectors.
PCA simply performs a coordinate rotation that aligns the transformed axes
with the directions of maximum variance of the original data distribution.
Thus, there is no guarantee that the directions of maximum variance will
contain good features for discrimination or regression.
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Partial Least Squares (PLS)

Partial least squares [69] assumes that the system of interest is driven by a
few latent variables (also called factors or components), which are linear com-
binations of observed explanatory variables (spectral bands). The underlying
idea of PLS is to exploit not only the variance of the inputs but also their
covariance with the target, which is presumably more important.

The goal of PLS is to find the directions of maximum covariance between
the projected input and output data:

PLS: U,V = argmax
U,V

Tr{U⊤CxyV}

subject to: U⊤U = V⊤V = I
(1.48)

The solution to this problem is given by the singular value decomposition of
Cxy.

1.5.2 Kernel Multivariate Analysis (KMVA)

All previous methods assume that there exists a linear relation between the
original data matrices, X̃ and Ỹ, and the extracted projections, X̃′ and Ỹ′,
respectively. However, in many situations this linearity assumption is not sat-
isfied, and nonlinear feature extraction is needed to obtain acceptable per-
formance. In this context, kernel methods are a promising approach, as they
constitute an excellent framework to formulate nonlinear versions from linear
algorithms [5, 19]. In this section, we describe the kernel PCA (KPCA) and
kernel PLS (KPLS) implementations.

Notationally, data matrices for performing the linear feature extraction
(PCA or PLS) in H are now given by Φ = [φ(x1), . . . , φ(xn)]⊤ and Y =
[y1, . . . ,yn]⊤. As before, the centered versions of these matrices are denoted

by Φ̃ and Ỹ.
Now, the projections of the input and output data will be given by

Φ̃
′
= Φ̃U and Ỹ′ = ỸV, respectively, where the projection matrix U is now

of size dim(H)×np. Note, that the input covariance matrix inH, which is usu-
ally needed by the different MVA methods, becomes of size dim(H)×dim(H)
and cannot be directly computed. However, making use of the represen-

ter’s theorem [19],we can introduce U = Φ̃
⊤
A into the formulation, where

A = [α1, . . . , αnp
] and αi is an n-length column vector containing the coef-

ficients for the ith projection vector, and the maximization problem can be
reformulated in terms of the kernel matrix.

Note that, in these kernel feature extraction methods, the projection ma-
trix U in H might not be explicitly calculated, but the projections of the
input data can be obtained. Therefore, the extracted features for a new input
pattern x∗ are given by:
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φ̃
′
(x∗) = φ̃(x∗)U = φ̃(x∗)Φ̃

⊤
A =







K̃(x1,x∗)
...

K̃(xn,x∗)






A (1.49)

which is expressed in terms of the inner products in the centered feature space
(see Section 1.2.3).

Kernel Principal Component Analysis (KPCA)

As in the linear case, the aim of KPCA is to find directions of maximum
variance of the input data in H, which can be obtained by replacing X̃ by Φ̃

in (1.47), i.e. by replacing Cxx by Φ̃
⊤

Φ̃:

KPCA: U = arg max
U

Tr{U⊤Φ̃
⊤

Φ̃U}

subject to: U⊤U = I

(1.50)

Making use of the representer’s theorem one can introduce U = Φ̃
⊤
A into

the previous formulation, and the maximization problem can be reformulated
as follows:

KPCA: A = arg max
A

Tr{A⊤K̃xK̃xU}

subject to: A⊤K̃xA = I
(1.51)

where we have defined the symmetric centered kernel matrix K̃x = Φ̃Φ̃
⊤

containing the inner products between any two points in the feature space.
The solution to the above problem can be obtained from the singular value

decomposition of K̃xK̃x represented by K̃xK̃xα = λK̃xα, which has the same
solution as K̃xα = λα.

Kernel Partial Least Squares (KPLS)

As in the linear case, the aim of KPLS is to find directions of maximum
covariance between the input data in H and Y, and can thus be expressed as:

KPLS: U,V = arg max
U,V

Tr{U⊤Φ̃
⊤
ỸV}

subject to: U⊤U = V⊤V = I

(1.52)

Again, making use of the representer’s theorem, one can introduce U = Φ̃
⊤
A

into the previous formulation, and the maximization problem can be reformu-
lated as follows:

KPLS: A,V = argmax
A,V

Tr{A⊤K̃xỸV}

subject to: A⊤K̃xA = V⊤V = I
(1.53)

The solution to the above problem can be obtained from the singular value
decomposition of K̃xỸ.
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PCA PLS KPCA KPLS

Fig. 1.4. First extracted component by linear (PCA, PLS) and nonlinear kernel
(KPCA, KPLS) methods.

1.5.3 Experimental Results

Figure 1.4 illustrates the performance of linear and kernel MVA feature ex-
traction methods in a 2D toy example. KPCA and KPLS used an RBF kernel
with the same sigma value fixed to the mean distance among all training sam-
ples. It can be observed that linear methods (PCA and PLS) cannot cope
with the non-linearly separable problem, while kernel methods accommodate
data relations in the kernel and define local boundaries. Performance of KPLS
results in more accurate boundaries and perfectly separates the two classes,
while KPCA fails as no class label information is used. Results in remote
sensing image classification are reported in [70, 67].

1.6 Future Trends in Remote Sensing Kernel Learning

Even though the chapter presented an updated literature review, new kernel-
based learning methodologies are being constantly explored. The special pe-
culiarities of the acquired images lead to develop new methods. And viceversa,
the new learning paradigms available offer new ways of looking at old, yet un-
solved, problems in remote sensing. In what follows, we review recent research
directions in the context of remote sensing kernel-based learning.

1.6.1 Multiple Kernel Learning

Composite kernels have been specifically designed and applied for the efficient
combination of multitemporal, multisensor and multisource information [9,71].
The previous approaches exploited some properties of kernel methods (such
as the direct sum of Hilbert spaces, see Section 1.2.3) to combine kernels ded-
icated to process different signal sources, e.g. the sum of a kernel on spectral
feature vectors can be summed up to a kernel defined over spatially-extracted
feature vectors. This approach yielded very good results but it was limited to
the combination of few kernels [26], as the optimization of kernel parameters
was an issue. Lately, the composite framework approach has been extended
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to the framework of multiple kernel learning (MKL) [72]. In MKL, the SVM
kernel function is defined as a weighted linear combination of kernels built us-
ing subsets of features. MKL works iteratively optimizing both the individual
weights and the kernel parameters [73]. So far, the only application in remote
sensing of strict MKL can be found in [74] and, taking advantage of a similar
idea, spectrally weighted kernels are proposed in [75]. Not only a certain gain
in accuracy is observed but also the final model yields some insight in the
problem. In [46], the relevant features of remote sensing images for automatic
classification are studied through this framework.

1.6.2 Domain Learning

A common problem in remote sensing is that of updating land-cover maps by
classifying temporal series of images when only training samples collected at
one time instant are available. This is known as transfer learning or domain
adaptation. This setting implies that unlabeled test examples and training
examples are drawn from different domains or distributions. The problem was
initially tackled with partially unsupervised classifiers, both under parametric
formalisms [76] and neural networks [77]. The approach was then successfully
extended to domain adaptation SVM (DASVM) [78].

A related problem is also that of classifying an image using labeled pix-
els from other scenes, which induces the sample selection bias problem, also
known as covariance shift. Here, unlabeled test data are drawn from the same
training domain, but the estimated distribution does not correctly model the
true underlying distribution since the number (or the quality) of available
training samples is not sufficient. These problems have been recently pre-
sented by defining mean map kernel machines that account for the dispersion
of data in feature spaces [45].

1.6.3 Structured Learning

Most of the techniques revised so far assume a simple set of outputs. However,
more complex output spaces can be imagined, e.g. predicting multiple labels
(land use and land cover simultaneously), multi-temporal image sequences, or
abundance fractions. Such complex output spaces are the topic of structured
learning, one of the most recent developments in machine learning. Only a
computer vision application [79] and the preliminary results in [80] have been
presented for image processing. Certainly this field of learning joint input-
output mappings will receive attention in the future.

1.6.4 Active Learning

When designing a supervised classifier, the performance of the model strongly
depends on the quality of the labeled information available. This constraint
makes the generation of an appropriate training set a difficult and expensive
task requiring extensive manual human-image interaction. Therefore, in order
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to make the models as efficient as possible, the training set should be kept
as small as possible and focused on the pixels that really help to improve the
performance of the model. Active learning aims at responding to this need,
by constructing effective training sets.

In remote sensing, application of active learning methods that select the
most relevant samples for training is quite recent. A SVM method for object-
oriented classification was proposed in [81], while maximum likelihood clas-
sifiers for pixel-based classification was presented in [82]. Recently, this ap-
proach was extended in [83] by proposing boosting to iteratively weight the
selected pixels. In [84,85] information-based active learning was proposed for
target detection, and in [86], a model-independent active learning method was
proposed for very-high resolution satellite images.

1.6.5 Parallel Implementations

Kernel methods in general, and the SVM in particular, have the problem of
scaling at least quadratically with the number of training samples. With the
recent explosion in the amount and complexity of hyperspectral data, and with
the increasing availability of very high resolution images, the number of la-
beled samples to train kernel classifiers is becoming a critical problem. In this
scenario, parallel processing constitutes a requirement in many remote sensing
missions, especially with the advent of low-cost systems such as commodity
clusters and distributed networks of computers. Several efforts are being pur-
sued to develop parallel implementations of SVMs for remote sensing data
classification: boss-worker approaches [87,88,89] and parallelization through
decomposition of the kernel matrix have been successfully explored [90].

1.7 Conclusions

Kernel methods allow us to transform almost any linear method into a non-
linear one, while still operating with linear algebra. The methods essentially
rely on embedding the examples into a high dimensional space where a lin-
ear method is designed and applied. Access to the mapped samples is done
implicitly through kernel functions. This chapter reviewed the field of kernel
machines in remote sensing data processing. The important topics of classifi-
cation, model inversion, and feature extraction with kernels have been revised.
The impact and development of kernel methods in this area during the last
decade has been large and fruitful, overcoming some of the problems posed
both by the recent satellite sensors acquired data, and the limitations of other
machine learning methods. New developments are expected in the near future
to encompass both remote sensing data complexity and new problem settings.
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supervised image classification with Laplacian support vector machines. IEEE
Geoscience and Remote Sensing Letters 5 (2008) 336–340
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