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Integration of Hyperspectral Imagery
and Sparse Sonar Data for Shallow

Water Bathymetry Mapping
Liang Cheng, Lei Ma, Wenting Cai, Lihua Tong, Manchun Li, and Peijun Du

Abstract—Accurate and rapid mapping of shallow water
bathymetry is essential for the safe operation of many industries.
Here, we propose a new approach to shallow water bathymetry
mapping that integrates hyperspectral image and sparse sonar
data. Our approach includes two main steps: dimensional reduc-
tion of Hyperion images and interpolation of sparse sonar data.
First, we propose a new algorithm, i.e., a sonar-based semisuper-
vised Laplacian eigenmap (LE) using both spatial and spectral dis-
tance, for dimensional reduction of Hyperion imagery. Second, we
develop a new algorithm to interpolate sparse sonar points using
a 3-D information diffusion method with homogeneous regions.
These homogeneous regions are derived from the segmentation
of the dimensional reduction results based on depth. We conduct
the experimental comparison to confirm the applicability of the
dimensional reduction and interpolation methods and their ad-
vantages over previously described methods. The proposed dimen-
sional reduction method achieves better dimensional results than
unsupervised method and semisupervised LE method (using only
spectral distance). Furthermore, the bathymetry retrieved using
the proposed method is more precise than that retrieved using
common interpolation methods.

Index Terms—Bathymetry mapping, data integration, hyper-
spectral image, sparse sonar data.
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I. INTRODUCTION

SHALLOW water bathymetry mapping is essential for nav-
igation, fishery, offshore oil exploration, pipeline laying,

and many other activities [1]. In coastal areas, intensive sed-
iment transport due to, for example, tidal movements, wave
propagation, and bottom currents results in significant tempo-
ral and spatial changes to underwater topography [2]. Such
intensive and frequent changes demand efficient and recur-
sive updating of bathymetric information [3]. Consequently,
practical techniques have been sought that can obtain general
bathymetry for coastal areas both rapidly and economically [4].
Currently, scholars have paid more attention to LiDAR for
bathymetry, since LiDAR does not require for concurrently
acquired sea-truth bathymetric data. LiDAR generates accurate
bathymetric information over clear waters at a depth up to 70 m
[5]. However, this method is limited by its expense and a
narrow swath. Hence, it is not our focus in this paper. To find
a rapid and economical strategy of bathymetry, here, we still
consider more traditional echo sounders and optical remote
sensing technology.

Bathymetry has conventionally been mapped using ship-
borne echo sounders, which are able to generate accurate
depth points [3]. This technology has improved with time with
the introduction of more accurate and reliable equipment [6].
Currently, main echo sounder technologies include Single-
Beam Echo Sounders (SBES) and MultiBeam Echo Sounders
(MBES). MBES can provide continuous acoustic coverage of
large swaths of the seafloor, and most of the literature has
suggested that multibeam technology is largely fulfilling the
potential of bathymetry [7]. However, the use of MBES has
not yet become economical owing to its high equipment and
computational costs. Conversely, inexpensive SBES is now
relatively commonplace [8] and can reach the same level of
precision as MBES [9]. Owing to its narrow observation mode,
SBES provides detailed information along ship routes but can-
not convey changes in the broader coastal environment [4].
Moreover, environmental conditions and technological re-
straints prevent echo sounders’ applicability in nearshore wa-
ters because shallow coastal waters are hazardous to navigate,
particularly at low tides [5]. In addition, echo sounder systems
are not capable of measuring depth in very shallow water,
and bathymetry coverage is usually incomplete in coastal and
inland waters. Mostly, the utility of bathymetric data from each
echo sounder is highly dependent on the resolution at which it
is collected. Spatial interpolation is a classic solution for this
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TABLE I
EVALUATION OF BATHYMETRIC METHODS

problem. While this approach requires no data other than depth
measurements, the accuracy strongly depends on the geometry
of measured and interpolated points and the spatial dependence
of water depth [10].

Many interpolation and geostatistics methods were devel-
oped to predict values of spatial phenomena in unsampled
locations [11]. Typical examples are conditions based on geo-
statistical concepts (kriging) and locality [inverse distance
weighted (IDW) interpolation] [12]. Many factors affect the
performance of spatial interpolation methods. These include:
sampling density, sample spatial distribution, sample clustering,
surface type, data variance, data normality, quality of secondary
information, stratification, and grid size or resolution [13].
Here, we mainly consider sampling density and spatial distri-
bution to improve accuracy of bathymetry mapping through
geostatistics, which is achieved by combining with remote
sensing imagery.

The optical remote sensing technique has become a viable
alternative to classical methods of bathymetry mapping [3].
Bathymetry mapping using optical remote sensing techniques
is cheap over large spatial extents [14]. However, accuracy
of the retrieved water depth is difficult to predict, because
it is influenced by factors including atmospheric absorption
and scattering, water surface conditions, in-water constituents,
and substrate reflectance properties. Furthermore, a priori or
empirical knowledge is required for the retrieval technique and
is not always available.

Table I presents an evaluation of the principal bathymetric
methods, including both echo sounder and remote sensing
methods. MBES can acquire accurate bathymetry over large
areas, although its cost is very high. Conversely, SBES offer
similar accuracy but at a much lower cost than that of MBES;
in these cases, the low cost is offset by the limited coverage.
Thus, the generation of extensive bathymetric coverage from
sparse but accurate sonar points is an issue that merits further
study. It is clear that shipboard echo sounder methods and
optical remote sensing methods are strongly complementary
(see Table I) [15]; this suggests that shallow water bathymetry
mapping could be achieved by the integration of cheap, sparse,
and accurate sonar points with remotely sensed optical images
that offer real-time data over large spatial and temporal extents.
Similar researches, integration of laser scanning points and op-
tical images for information extraction and 3-D reconstruction,

have been reported [16]–[18]. Accordingly, we combine these
techniques here to map the bathymetry of shallow water areas.
We use SBES data as the sparse sonar data source, owing to its
high accuracy and cheap price. Lee and Carder demonstrated
that reliable derivation of bathymetry from spectral remote
sensing images requires a sensor with hyperspectral capability
[19]. Hyperion has more than 200 bands covering 430–2400
nm and a spatial resolution of about 30 m; even low signal-
to-noise ratio, it is well suited to divide shallow area into
homogeneous depth regions for bathymetric mapping in this
context [4].

Therefore, we propose a new approach for integrating Hype-
rion images and sparse sonar data (SBES data) that includes
three main steps. 1) We conduct two preprocessing steps:
Hyperion preprocessing and sonar data preprocessing. 2) We
propose a new algorithm for Hyperion dimensional reduction:
a sonar-based semisupervised LE using spatial and spectral
distance metrics. In this algorithm, sonar points are clustered
as sample points of the semisupervised LE, such that the
dimensional reduction result is related to water depth. Spatial
distance metrics are then used in the semisupervised LE to
improve existing spectral distance metrics, initiating a tendency
for adjacent pixels in high-dimensional space to cluster in low-
dimensional manifold space. 3) We conduct data interpolation
as follows. Based on the dimensional reduction results, a multi-
scale segmentation algorithm is used for deriving homogeneous
depth regions. With the homogeneous regions, a new algorithm,
i.e., 3-D information diffusion algorithm, is introduced for the
interpolation of sparse sonar points.

This paper is structured as follows. In Section II, we review
the remote sensing retrieval of bathymetry, nonlinear manifold
learning dimensional reduction, and spatial interpolation. In
Section III, we describe the proposed bathymetry mapping ap-
proach in details. We introduce the test data set in Section IV-A,
before we discuss the experimental results in Section IV-B
and C. Finally, we draw conclusions in Section V.

II. RELATED WORK

A. Review of Remote Sensing Retrieval of Bathymetry

Remote sensing retrieval of bathymetry requires a model
between radiance values on satellite imagery and water depth.
This model can be theoretical, semiempirical, and statistical.
Theoretical models are based on radiative transfer models of
water in visible bands. With the development of measure instru-
ment, it becomes possible to measure the internal light field of
water. Hence, the optical characteristics of water attract more
attention, and more high-accuracy radiative transfer models
are developed [20]. Ji et al. proposed a modified model in
turbid waters [21], whereas the modified and rescaled model
by Philpot (1989) may be used in areas of homogeneous water
optical properties [22]. Lee et al. [15] utilized the Hydrolight
model [23] as the basis for generating a semianalytical hy-
perspectral inversion model. Lyzenga et al. [24] proposed a
simple physical algorithm to estimate bathymetry, in which
information in other multispectral bands is not used. Legleiter
and Roberts [25] constructed a framework for forward models
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TABLE II
COMPARISON OF THREE TYPES OF INVERSION METHOD

based on radiation transmission and analyzed the accuracy and
limitations of remote sensing retrieval of bathymetry.

In comparison with theoretical models, semiempirical mod-
els are much simpler and easy to use, which integrate radia-
tive decay models with empirical parameters for bathymetry
retrieval; such models can be classified into single-band mod-
els and multiband models. The single-band models were first
developed in the 1960s [26], [27], and high retrieval accuracy
can be obtained using this model; comparing with single-band
models, multiband models make comprehensive use of more
than two wavebands for bathymetry retrieval. For example,
Spitzer and Dirks [28] introduced a multiband retrieval model
based on a two-flow radiation model. Bierwirth et al. [29]
introduced a bathymetry retrieval model that incorporated the
effects of substances at the water bottom.

Statistical models that are based on the relationship between
bathymetry and the factors that affect it incorporate various
statistical methods for bathymetry retrieval. Early in the 1970s,
Lyzenga [30] derived a relationship between bathymetry and
radiation intensity through hypothesis verification and used the
principal component analysis method for bathymetry retrieval.
Cracknell and Ibrahim [31] constructed a model for bathymetry
retrieval by performing a regression analysis between the vis-
ible bands of MOMS and measured bathymetry. Sandidge
and Holyer [32] introduced a machine learning method into
bathymetry retrieval for the first time, and the retrieval results
for this method exhibited better accuracy than those of tradi-
tional methods.

According to above, implementations of the optical method
are very efficient for mapping bathymetry over a large area,
although the range of detectable depths is reduced [5] com-
paring with LiDAR. All of the methods also described possess
both advantages and disadvantages, particularly in terms of
theoretical basis, number of parameters required, difficult of
obtaining the relevant parameters, and retrieval accuracy (see
Table II). The application of both theoretical and semiempirical
models is restricted by many factors, including the optical
characteristics of parameters of water. Moreover, the retrieval
accuracy of these methods is poor. Conversely, statistical mod-
els may exhibit higher retrieval accuracy but require many water
depth measurements, which limit the spread of such models
somewhat.

B. Review of Nonlinear Manifold Learning
Dimensional Reduction

The manifold learning method was first introduced by
Seung and Lee [33], who found that only a few variables
were sufficient for description of a cell group’s trigger rate,
i.e., that the activity of neurons could be controlled by an
intrinsic low-dimensional structure. Moreover, they concluded
that perception existed in the form of a manifold. Based on
manifold learning theory, nonlinear manifold dimensional re-
duction methods were introduced by Tenenbaum et al. [34]
and Roweis and Saul [35], who proposed the isometric map-
ping (ISOMAP) and locally linear embedding (LLE) methods,
respectively. Subsequently, based on the Laplacian–Beltrami
operator, Belkin and Niyogi [36] transferred the minimization
of objective functions to an eigendecomposition problem and
designed the Laplacian eigenmap (LE) method. The LE method
was linearized by He et al. [37], who proposed the locality
preserving projection method. Zhang and Zha [38] used local
tangent space in hyperspectral data for the description of local
properties and proposed the local tangent space alignment
algorithm. Bachmann et al. [39] examined the accuracy of man-
ifold coordinate representations as a reduced representation of
hyperspectral imagery lookup table for bathymetry retrieval. A
review on manifold-learning-based feature extraction for clas-
sification of hyperspectral data can be seen in Lunga et al. [40].

With the development of manifold dimensional reduction
methods, supervised and semisupervised manifold dimensional
reduction methods have become the subject of many researches,
because these methods produce results more suitable for classi-
fication and identification [41]. Yang et al. [41] applied semisu-
pervised theory to manifold dimensional reduction, making full
use of sample points and Laplacian–Beltrami operators for the
construction of optimal embedding. Their results indicated that
semisupervised manifold learning methods can achieve more
precise results than traditional methods and that the results
of dimensional reduction are more suited to classification of
information.

C. Review of Geostatistics and Spatial Interpolation

Spatial interpolation techniques can be used and broadly
classified into two main groups: deterministic and geostatistical
[42]. The most frequently used deterministic methods in
spatial interpolation are the Thiessen polygon and IDW. The
geostatistical method constitutes a discipline involving mining
engineering, mathematics, and earth sciences [13], which
there are several possibilities to incorporate secondary data to
improve primary data [42]. Further and extensive analysis about
geostatistics and spatial interpolation has been employed into
the geosciences, soil sciences, water resources, environmental
sciences, and so on. Schuurmans et al. [43] used range corrected
daily radar composites to integrate into two methods of geo-
statistics, and it proved to be more accurate than a method using
rainfall alone. Velasco-Forero et al. [44] and Schiemann et al.
[45] also integrated radar data into two geostatistical methods.
Moreover, Kanno et al. combined spatial interpolation with
multispectral remote sensing for shallow water bathymetry
[10], and it is a successful case of combination between
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Fig. 1. Flowchart of the proposed approach.

depth-measurement data and multispectral product of
QuickBird. However, QuickBird bands are limited, so that more
information about water depth may be missed. Dirks et al.
[46] compared IDW and the Thiessen polygon in interpolating
rainfall data, and they recommended the use of IDW for
interpolations for spatially dense networks. In general, kriging
methods perform better than nongeostatistical methods [47].
Kriging and IDW are the frequently compared methods in most
of the literature [13].

III. METHODOLOGY

The proposed approach includes the following three main
steps (see Fig. 1): 1) data preprocessing is implemented for
Hyperion data and sonar data, respectively (see Section III-A);
2) sonar-based semisupervised LE using mixed distance metrics
(see Section III-B) are employed for dimensional reduction
of Hyperion imagery; and 3) guided by homogeneous regions
derived from segmentation of dimensional reduction results,
sonar data interpolation based on 3-D information diffusion
method is conducted (see Section III-C).

A. Data Preprocessing

1) Hyperion Preprocessing: We conduct Hyperion pre-
processing in several steps: 1) scaling factor correction;
2) band subset selection; 3) bad line repair and stripe removal;
4) geometric correction; and 5) filter smoothing. During the
preprocessing step, Hyperion data are scaled to limit the amount
of saturation and storage space. Therefore, during 1), the digital
values of the Level 1 product are 16-bit radiances and are stored
as a 16-bit signed integer, and the short-wave infrared (SWIR)
bands have a scaling factor of 80, and the visible and near-
infrared (VNIR) bands have a scaling factor of 40 applied.
Thus, we divide the radiation values in the VNIR bands by 40
and those in the SWIR bands by 80, respectively.

The Hyperion VNIR and SWIR data have 70 and 172 bands,
respectively; however, a number of these bands are not illu-
minated, and others correspond to areas of low sensitivity of
the spectrometer material. Therefore, the following bands are
abandoned during 2): those not radiometrically calibrated (1–7,
58–76, 225–242), those overlapped (56–57, 77–78), and those
affected by water vapor (121–127, 167–178).

Hyperion data are rotated such that the bad lines and stripes
are vertical. Therefore, in 3), we adopt a bad-line-repair method
proposed by Goodenough et al. [48] to repair bad line and a
global-stripe-removal method proposed by Tan et al. [49] to
remove the stripes. We then rotate the Hyperion data back to
its original attitude.

Because the Level 1 product is only radiometrically corrected
and is not geometrically resampled, here, we use Landsat
imagery (the same spatial resolution with Hyperion imagery) to
do geometric correction of the Hyperion imagery. Accordingly,
in 4), we use a registered TM image to register the Hyperion
imagery. The accuracy is controlled within half a pixel.

In general, bathymetry exhibits sharp changes. Subsequently,
some stochastic noise may occur owing to bottom substances or
water body and atmospheric effects. For example, in the study
area used for this analysis, bathymetry exhibits sharp changes
along the edge of the shipping channel. Therefore, we apply a
5 × 5 median filter in 5) to remove the high-frequency noise.

2) Sonar Data Preprocessing: There may be as many as
two points per meter along the ship routes for the SBES.
However, this high point density has no notable advantages
for interpolation and aggravates computational complexity and
memory overhead. To address this, we subsample the SBES
data. The points are segmented using image pixels, and points
inside the same pixel are grouped. In each group, a new point
is created and endowed with the average value of the original
points. The final stage of this process is to apply a correction to
the ground truth to account for the tide height at the time of the
Hyperion data collection.

B. Sonar-Based Semisupervised LE Using Mixed
Distance Metrics

Because traditional dimensional reduction methods are based
on spectral information, the dimensional results derived from
such methods are lacking in spatial information. Various issues
can arise, including different spectra being exhibited by the
same object and different objects exhibiting the same spectrum.
As pixels corresponding to deeper water in high-dimensional
space tend to cluster in low-dimensional manifold space, the
introduction of spatial distance metrics in dimensional reduc-
tion methods can solve the above problems effectively. Many
researchers have proposed extended methods for dimensional
reduction. In particular, Zhang et al. [50] proposed a very inter-
esting scheme to combine the multiple features, considering the
specific statistical properties of each feature. Zhang et al. [51]
defined a tensor organization scheme for representing a pixel’s
spectral–spatial feature and developed tensor discriminative
locality alignment for removing redundant information for sub-
sequent classification. Mohan et al. [52] introduced spatial dis-
tance into the construction of a weighted undirected graph using
a 3 × 3 window and provided an improved LLE dimensional
reduction method.
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Fig. 2. Flowchart of the proposed dimensional reduction algorithm.

We propose a new dimensional reduction algorithm: a sonar-
based semisupervised LE that uses spatial and spectral distance
metrics (see Fig. 2). As a nonlinear manifold learning method
of dimensional reduction, LE has a strong ability to resist noise
and to process sparse data. However, this method does possess
some disadvantages. In particular, when dealing with certain
remote sensing images, the classification and identification
accuracy can be low, and the dimensional reduction results
may not be appropriately related to water depth [40]. This
proposed algorithm can perform the dimensional reduction of
hyperspectral data effectively, and the dimensional reduction
results are related to water depth, which contributes to more
precise bathymetry mapping. Due to only considering the
water depth, this method also ignores the effect from the water
properties and bottom composition, through retaining most
correlated bands with water depth. However, it does not affect
the results because the hyperspectral data are used as auxiliary
data to improve the interpolation, while the sonar data are as
the primary data source.

1) Mixed Distance Metrics: In this semisupervised LE algo-
rithm, spatial and spectral distance metrics are combined, called
mixed distance metrics. We use Gaussian distance for distance
metrics, and the distance metrics in the LE can be written as
follows:

dSij =1− exp

(
−
∥∥xS

i − xS
j

∥∥2
2

2(σS)2

)

=1− exp

⎛
⎜⎜⎜⎝−

D∑
k=1

(
xS
ik − xS

jk

)2

2(σS)2

⎞
⎟⎟⎟⎠ Spectral distance

dLij =1− exp

(
−
∥∥xL

i − xL
j

∥∥2
2

2(σL)2

)

=1− exp

⎛
⎜⎜⎝−

2∑
k=1

(
xL
ik − xL

jk

)2

2(σL)2

⎞
⎟⎟⎠ Spatial distance

dij = dSij + dLij Combined distance. (1)

Here, D depicts the numbers of spectral bands. S and L
are the symbols to differentiate the spectral equation and the
spatial equation, which are not used in calculation. i or j
shows the number of the sample points. σS and σL are the
magnitude-adjusting parameters that control the difference in
magnitude between spectral distance and spatial distance. The
spatial location of a pixel is merely a 2-D vector, while the
spectral band number is far greater than 2. Therefore, the
spectral 2-norm ‖xS

i − xS
j ‖22 is larger than the spatial 2-norm

‖xL
i − xL

j ‖22. Thus, a proper magnitude-adjusting parameter is
needed in order to make full use of the spatial characteristics.

2) Sonar-Based Sample Point Selection: Here, sonar-based
sample point selection is used for semisupervised LE. We use
sonar points (SBES points) to guide the selection of sample
points of pixels. The cluster results of sonar points are first
determined. Pixels corresponding to the center of these clusters
are selected as sample points for the semisupervised LE. A
procedure to find optimal clusters of sonar points is as follows.

Step 1: Determining number of clusters. K-means algo-
rithm is iteratively used for clustering sonar points,
with the increase of cluster number. The average
cluster discrepancy during the iterations is calculated.
Number of cluster that corresponds to the smallest
discrepancy is selected as the proper number.

Step 2: Determining center of clusters. Based on the deter-
mined number of clusters, clustering is performed
with an increasing sample size. The average cluster
discrepancy is calculated. The smallest discrepancy
corresponding to sample size is selected. Center of
each cluster is then determined.

3) Semisupervised LE: The work flow of the semisupervised
LE is as follows.

Step 1: Searching for neighboring points. We traverse data

set
−→
X (

−→
X ∈ RD depicts D-dimensional vector set,

and the number of vectors is n) and seek the neigh-
boring points for each point. During this procedure,
mixed distance metrics are used. Certain number of
points most close to each point should be considered
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to be neighboring points. After the traversal, we
construct neighboring graph G.

Step 2: Calculating weight metrics. We use a kernel function
to determine weight W . If xi and xj are connected,
the weight is calculated as wi,j = exp(−‖xi −
xj‖2/t) (t is a scale parameter to adjust the
weight, generally equal to 1); otherwise, it is set 0.

Because the input sets
−→
X are partitioned as [

−→
X1

−→
X2],

where
−→
X1 = [x11, x12, . . . , x1m] is composed of m

priori sample sets (m is the number of priori sam-
ples),

−→
X2 = [x21, x22, . . . , x2(n−m)] is the unknown

dimension data set (n−m is the number). Sim-
ilarly,

−→
Y are partitioned as [

−→
Y1

−→
Y2], where

−→
Y1 =

[y11, y12, . . . , y1m] is the low-dimensional embed-
ding corresponding to the sample sets (it means that−→
Y1 is known),

−→
Y2 = [y21, y22, . . . , y2(n−m)] is low-

dimensional embedding coordinates of
−→
X2.

Step 3: Blocking Laplace matrix. We block the Laplacian

matrix (L =

[
L11 L12

LT
12 L22

]
) according to the sample

data set
−→
X1 and its corresponding low-dimensional

embedding information
−→
Y1, where L11 is m×m

matrix (m is the number of priori samples).
Step 4: Solving formula. The minimization problem can be

written as min
Y2

[Y1Y2]

[
L11 L12

LT
12 L22

] [
Y T
1

Y T
2

]
. Since Y1 is

known, we solve the formula Y T
2 = −L12Y

T
1 LT

22 for
the low-dimensional embedding result of the whole
data set

−→
X [41], thus obtaining the dimensional re-

duction result Y T
2 .

C. Sonar Interpolation Integrating 3-D Information Diffusion
Method With Homogeneous Regions

A satisfactory dimensional reduction result, which is re-
lated to water depth, is obtained after producing a sonar-based
semisupervised LE using spatial and spectral distance metrics.
For the purpose of bathymetry mapping, we introduce a new
interpolation algorithm for sparse sonar points.

1) Segmentation of Dimensional Reduction Results for Ho-
mogeneous Regions: A multiscale segmentation method is used
for homogeneous regions and consists of three steps: initial
segmentation, patch mergence, and attribute calculation.

Step 1: Initial segmentation. Initial segmentation is per-
formed through ENVI software, to generate a region
of interest. It needs a parameter to control the size of
the segmented object.

Step 2: Patch mergence. We use the Full Lambda-Schedule
algorithm [53] to merge the same objects, which are
segmented into a multiobject in the initial segmenta-
tion step. It needs a threshold to decide whether the
combination between both objects is done. The seg-
mentation and merge scales are manually determined
by comparing a series of different parameters.

Step 3: Attribute calculation. After the segmentation, the
study area is segmented into several homogeneous

regions in which the bathymetry tends to remain
consistent. Subsequently, the attribute of the object
with spatial, spectral, and/or texture can be calculated
to describe the region.

2) Information Diffusion of Sparse Sonar Points in Homoge-
neous Regions: Interpolation is an important step in bathymetry
mapping from sonar points. Many interpolation methods exist,
including kriging, IDW, and spline. However, these traditional
interpolation methods require an adequate number of evenly
distributed points, which is impossible for sparse sonar points.
Although there are as many as two points per meter along
ship routes, the distance between ship routes can reach up to
500 m, which means that sonar points are quite sparse. Thus,
obvious stripes can be found in interpolated results derived
using traditional interpolation methods.

In this paper, we use a 3-D information diffusion method
for the interpolation of sparse sonar points. Information dif-
fusion is a basic method in fuzzy mathematics. Single-valued
samples are converted into fuzzy set-valued samples, which
are expressed in the form of probabilities. Subsequently, the
samples are used for fuzzy diffusion and interpolation. This
method can be applied well to problems with a small sample
set. The detailed procedure for information diffusion can be
described as follows.

Step 1: Calculating minimum steps of each variable. We
calculate the minimum steps of each variable in or-
der to construct the monitoring space. The observed
values are discretized based on the minimum steps.
We assume that the minimum steps are Δu = Δx,
Δv = Δy, and Δw = Δz

Δx = min
xi �=xj

{|xi − xj ||i, j = 1, 2, . . . , n} (2)

Δy = min
yi �=yj

{|yi − yj ||i, j = 1, 2, . . . , n} (3)

Δz = min
zi �=zj

{|zi − zj ||i, j = 1, 2, . . . , n} (4)

where xi, yi, and zi is the coordinate of the ith sample
points (1 ≤ i ≤ n); xj , yj , and zj is the coordinate
of the jth sample points (1 ≤ j ≤ n); according
to the minimum steps, the monitoring space (U ×
V × W) can be easily generated, and universes of
each dimension are U = {ui|i = 1, 2, . . . ,m}, V =
{vj |j = 1, 2, . . . , t}, W = {wk|k = 1, 2, . . . , s}, re-
spectively; here, ui = u0 + iΔx, vj = v0 + jΔy,
wk = w0 + kΔz, and default setting is u0 = v0 =
w0 = 0.

Step 2: Constructing monitoring space. As the observing
values in each dimension are bx = max

1≤i≤n
{xi}, ax =

min
1≤i≤n

{xi}, by = max
1≤i≤n

{yi}, ay = min
1≤i≤n

{yi}, bz =

max
1≤i≤n

{zi}, and az = min
1≤i≤n

{zi}. According to the

average distance model, the diffusion coefficient h
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Fig. 3. Experimental data. (a) Hyperion data (Band 18). (b) SBES points. (c) Existing water bathymetry.

can be solved [54]. Thus

h =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0.8146(b− a) n = 5

0.5690(b− a) n = 6

0.4560(b− a) n = 7

0.3860(b− a) n = 8

0.3362(b− a) n = 9

0.2986(b− a) n = 10

2.6851(b− a)/(n− 1) n > 10

(5)

where b = bx or b = by or b = bz; a = ax or a = ay
or a = az; n is the numbers of samples; h is called
diffusion coefficient.

Step 3: Calculating information diffusion of sample points.
If we assume that the information diffusion result
Q(u, v, w) of sample point (xl, yl, zl) in monitoring
space (ui, vj , wk) is ql(ui, vj , wk), then its informa-
tion diffusion value is defined as follows:

ql(ui, vj , wk) =
1

hx

√
2π

exp

[
− (ui − xl)

2

2h2
x

]

× 1

hy

√
2π

exp

[
− (vj − yl)

2

2h2
y

]

× 1

hz

√
2π

exp

[
− (wk − zl)

2

2h2
z

]
(6)

where hx, hy , and hz are calculated by (5); l is
the number of the sample point; ui, vj , wk are the
monitoring point, 1 ≤ i ≤ m, 1 ≤ j ≤ t, 1 ≤ k ≤ s.

Step 4: Calculating original information matrix. We calcu-
late the information value of each observing point in
monitoring space by (6), and calculate the original
information matrix Q as follows:

Qijk =

n∑
l=1

ql(ui, vj , wk) (7)

where ql(ui, vj , wk) is easily calculated by (6); l
is the number of the sample point; according to

(7), original information matrix {Qijk}m×t×s can be
generated for next work.

Step 5: Calculating fuzzy relation matrix. The fuzzy relation
matrix is calculated using the original information
matrix Q, and some method used by Wang [55].
Here, we use the Rf model [54] to change th orig-
inal information matrix {Qijk}m×t×s into the fuzzy
input–output relationship {rijk}m×t×s⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Sk = max
1≤i≤m,1≤j≤t

Qijk, k = 1, 2, . . . , s

μk(ui, vj)=
Qijk

Sk
, i=1, 2, . . . ,m, and

j=1, 2, . . . , t

rijk = μk(ui, vj), i = 1, 2, . . . ,m,

j=1, 2, . . . , t, and

k=1, 2, . . . , s.
(8)

Then, based on Q, we obtain a fuzzy relation Rf =
{Qijk}m×t×s, where we use the first letter “f” of
factor space to indicate this kind of fuzzy relation.

Step 6: Predicting water depth. To predict the value of water
depth, we calculate the gravity center of the fuzzy set
based on the following equation:

R =
∑
z∈w

(
rijk
wk

)
(9)

where W = {wk|k = 1, 2, . . . , s}; rijk can be calcu-
lated by (8); 1 ≤ i ≤ m 1 ≤ j ≤ t.

IV. EXPERIMENT

A. Datasets

We select Tampa Bay in Florida as the study area and use
data including Hyperion, registered TM, sparse sonar points,
and existing water bathymetry (see Fig. 3). 1) The Hyperion im-
age used in this study is named EO1H0170412003042110PZ_
AGS_01 with acquisition date in 2003/02/11. 2) We interpo-
late sparse sonar points for underwater topography, which is
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TABLE III
DETAILS OF THE EXPERIMENTAL DATA

collected by SBES, dating from 2001 to 2003. The aver-
age point distance along ship routes is 0.5 m, and the dis-
tance between neighboring routes is about 500 m. The to-
tal number of points is 47 550 in the research area. Its area
is 48 km2, and then, the density is about 990 points per
square kilometer. A channel exists in this study area, where
sonar points are densely measured [zigzag in Fig. 3(b)]. Dur-
ing the preprocessing of sonar data, sonar points are classi-
fied into two classes: normal and densely measured points.
Only the normal points are subsampled. All densely mea-
sured points are retained. The subsampled points and densely
measured points are then merged. 3) The TM imagery is
used for the registration of Hyperion. The TM imagery used
in this study is labeled LT50170412003050LGS01 with ac-
quiring in 2003/02/19. 4) We use Tampa Bay topographic/
bathymetric DEM with a resolution of 30 m to assess the
accuracy of the retrieval results. It is a hybrid elevation model
created from USGS topography and NOAA bathymetry data
in 2003. In this paper, we focus on bathymetry, which was
provided by NOAA. The best available bathymetric data were
selected with a GIS query procedure that applied spatial and
temporal filters to obtain 47 digital NOAA hydrographic sur-
veys, in the Tampa Bay region. Approximately 600 000 sound-
ings were transformed from multiple orthometric and tidal
vertical datums to a common vertical reference (the NAD83
ellipsoid). Then, the bathymetry points were gridded to produce
a raster surface model with a 1-arc-second (approximately
30 m) grid spacing. The details are presented in Table III.

B. Experimental Results

1) Results of Sonar Point Clustering: Fig. 4 illustrates the
results of bathymetry mapping using our proposed approach.
Table IV presents the iterative procedures for sonar points using
the K-means algorithm, which generates ideal sample points for
the semisupervised LE. In the first phase, the average discrep-
ancy decreases with increasing cluster number. We select 12 as
the optimal cluster number in order to avoid the presence of
clusters without any sonar points. In the second phase, we con-
sider 200 and 700 to be the best initial random point number for
their corresponding smallest average discrepancies. In the third
phase, we select values of around 200 and 700 as random point
numbers for further clustering in order to determine the final
best random point number; we consider 195 to be the optimal

Fig. 4. Experimental procedures. (a) Clustered sonar points. (b) Sample
points. (c) Distribution of pixels in two dimensions (LE). (d) Distribution of
pixels in two dimensions (semisupervised LE using spectral distance metrics
with clustered sample points). (e) Distribution of pixels in two dimensions
(semisupervised LE using combined distance metrics with clustered sample
points). (f) Distribution of pixels in two dimensions (semisupervised LE
using combined distance metrics with random sample points). (g) Dimensional
reduction result. (h) Result after multiscale segmentation. (i) Segmented result
and clustered bathymetry. (j) Information diffusion result.
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TABLE IV
CLUSTERED RESULTS OF SONAR POINTS

USING THE K-MEANS ALGORITHM

TABLE V
CLUSTERING STATISTICS FOR SONAR POINTS

random point number due to the smallest average discrepancy.
Finally, we cluster sonar points with cluster number 12 and
random point number 195 [see Table V; Fig. 4(a)]. Fig. 4(a)
illustrates the pixels intersecting the clustered centers, i.e., the
sample points for the semisupervised LE. It is clear that more
pixels are selected in areas where topography has a big change,
whereas fewer pixels are selected in flat areas.

2) Results of Dimensional Reduction of Hyperion Imagery:
In order to verify the effectiveness of our proposed approach,
we adopt four methods for dimensional reduction of Hyperion:
unsupervised LE, semisupervised LE using spectral distance
metrics with clustered sample points, semisupervised LE using
spatial and spectral distance metrics with clustered sample
points, and semisupervised LE using spatial and spectral dis-
tance metrics with random sample points [see Fig. 4(c)–(f),
respectively]. The x-axis in Fig. 4 refers to the first band
of the dimensional reduction results, the y-axis refers to the
second band, and the colors of points refer to the corresponding
clustered classes in the existing water bathymetry. Clustering of
pixels of the same color indicates that the dimensional reduction
result is easily segmented and is related to bathymetric informa-
tion; such clustering indicates that the method is suitable for the
generation of homogeneous bathymetry regions.

Fig. 4(c) illustrates the dimensional reduction result by using
the unsupervised LE algorithm, in which clusters are unevenly
distributed. Fig. 4(d) illustrates the dimensional reduction result
by using the semisupervised LE using spectral distance metrics
with clustered sample points, in which almost all clusters are
evenly distributed. However, many mixtures remain along the
boundary between clusters. The results of our proposed ap-
proach, in which the dimensional reduction results for the semi-
supervised LE using spatial and spectral distance metrics is used,
are presented in Fig. 4(e). In this experiment, the spectral
controlling parameter σS is set to 1 and the spatial controlling

parameter σL to 100. It is clear that the different clusters are se-
parated well, and fewer mixtures are found than in the semisu-
pervised LE using only spectral distance metrics. Because points
with exiguous spectral differences may be located far away
from each other, the introduction of spatial distance metrics can
enhance their differences effectively, which can lead finally to
the decrease of mixtures in the dimensional reduction result. In
order to verify the importance of clustered sample points, we
conduct the experiment in Fig. 4(f), in which a semisupervised
LE using spatial and spectral distance metrics with random
sample points is used. Obviously, many mixtures occur in the re-
sult, and it is difficult to separate the clusters. Therefore, the
selection of sample points is quite important, reinforcing the
importance of the K-means cluster method for sonar points.
There is a clear difference in the pixel values on the x-axes in
Fig. 4(d) and (e) (−0.02–0.02 and −0.15–0.15, respectively).
Thus, the dimensional reduction result obtained using only
spectral distance metrics is shrunken compared with that ob-
tained using both spatial and spectral distance metrics; this is
inconvenient for classification and identification. Finally, the
dimensional reduction result obtained by producing a semisu-
pervised LE using spatial and spectral distance metrics with
clustered sample points is presented in Fig. 4(g), and it is from
this result that the overall bathymetry information is obtained.

3) Results of Segmentation and Interpolation: After dimen-
sional reduction, the multiscale segmentation technique is used
for the acquisition of homogeneous regions. The segmentation
and merging scales are set to 62 and 91, respectively, which
are manually determined by comparing a series of different pa-
rameters. The segmented homogeneous regions are illustrated
in Fig. 4(h); in Fig. 4(i), these regions are overlaid on the
clustered result of existing water bathymetry, and the primary
structures of underwater topography can be seen clearly. Al-
though oversegmentation and undersegmentation do occur, we
find that it has little influence on the final retrieval results.
These differences may be due to the fact that the hyperspectral
imagery is influenced by water depth, water properties, and
bottom composition. It is easy to know that bottom composition
play a greater influence on segmentation results in the shallow
sea, and water properties may be the influences on the results
deeper in the deep sea. Essentially, the results are correlated
with the water depth. Furthermore, it has little influence on the
final retrieval results according to Fig. 4(i).

Finally, we use the information diffusion method for the
interpolation of sonar points in each homogeneous region and
obtain the shallow water bathymetry of the experimental area
[see Fig. 4(j)].

C. Analysis of Comparison Experiments

Here, four strategies are used to compare the retrieved
bathymetry generated by the proposed approach, IDW interpo-
lation, and kriging interpolation, respectively. These four strate-
gies include comparison by visual effect (see Section IV-C1),
comparison by profiles (see Section IV-C2), comparison by
sample points (see Section IV-C3), and comparison by global
errors (see Section IV-C4).

1) Comparison by Visual Effect: Fig. 5 illustrates the re-
trieval bathymetries obtained using the proposed approach,
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Fig. 5. Comparison of interpolated results. (a) Existing water bathymetry. (b) Result using proposed approach. (c) Result using IDW method. (d) Result using
kriging method.

IDW, and kriging. It is particularly clear that there are many
stripes present in Fig. 5(c) and (d) that are not present in
Fig. 5(b). The bathymetry changes derived using the informa-
tion diffusion method are gentle and exhibit spatial patterns
that mimic those of the existing water bathymetry, except in
a few small portions (e.g., terrain mutation). The channel in the
northern part of the experimental area, the mapping of which
is very important for activities including navigation and fishery,
is well mapped. However, the IDW and kriging methods [see
Fig. 5(c) and (d)] produce results in which the boundary of the
channel is blocked and enlarged in comparison to the existing
water bathymetry, and such confusing information could have
disastrous consequences. Moreover, other underwater topo-
graphic features (e.g., basins and stages) can be seen clearly
in Fig. 5(b), but are barely recognizable in Fig. 5(c) and (d).

2) Comparison by Profiles: In order to quantitatively com-
pare the retrieved bathymetry, we generate three cross sections
(see Fig. 6): a 6-km transect that extends along ship routes
and is designed to check retrieval accuracy along the region

of dense sonar points (A); a profile oriented perpendicular to
ship routes, with a length of 8 km, that is designed to verify
retrieval accuracy in the region of sparse sonar points (B);
and a profile that extends from the southwestern corner to the
northern part of the area and traverses all primary topographic
fluctuations of the study area (C). Then, for each cross section,
we generate four profiles using the existing bathymetry, our
proposed approach, and the IDW and kriging methods.

1) Comparison along profile line A: The characteristics of
and relationships between the profiles generated along
line A are illustrated in Fig. 7. It is clear that sim-
ilar profiles are obtained for our proposed approach
and the IDW and kriging methods [see Fig. 7(a)]. We
obtain Pearson correlation coefficients between the ex-
isting and retrieved bathymetry for statistical analysis
(see Table VI). In general, we find the coefficients to
be extremely high. The coefficients between various
combinations of retrieved bathymetry all exceed 0.983,
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Fig. 6. Profile lines (Line A: a 6-km transect that extends along ship routes;
Line B: a profile oriented perpendicular to ship routes, with a length of 8 km;
Line C: a profile that extends from the southwestern corner to the northern part
of the area and traverses primary topographic fluctuations of the study area).

Fig. 7. Comparison of profiles along line A. (a) Cross section along line A.
(b) Comparison between proposed approach and existing bathymetry.
(c) Comparison between IDW and existing bathymetry. (d) Comparison be-
tween kriging and existing bathymetry.

indicating that the different methods produce almost
identical bathymetry. This, perhaps, is unsurprising, be-
cause line A is located along ship routes in regions with
dense sonar points.

2) Comparison along profile line B: Fig. 8 illustrates the
characteristics of and relationships between the profiles
generated along line B. Similar profiles are obtained us-
ing IDW and kriging methods (see Fig. 8(a); Table VII).
However, the Pearson coefficients for the correlations
between the bathymetry obtained using the IDW and
kriging methods with the existing bathymetry (equal to
0.975 and 0.972, respectively) are lower than those for

TABLE VI
PEARSON CORRELATION COEFFICIENTS FOR RETRIEVED

BATHYMETRY ALONG LINE A

Fig. 8. Comparison of profiles along line B. (a) Cross section along line B.
(b) Comparison between proposed approach and existing bathymetry.
(c) Comparison between IDW and existing bathymetry. (d) Comparison be-
tween kriging and existing bathymetry.

TABLE VII
PEARSON CORRELATION COEFFICIENTS FOR RETRIEVED

BATHYMETRY ALONG LINE B

line A and the plots are clearly more scattered. However,
the Pearson coefficient for the correlation between the
bathymetry obtained using our proposed approach and
the existing bathymetry is still high in this instance,
and the results obtained using our proposed approach
are clearly superior (see Fig. 8(b)–(d); Table VII). It is
clear that all three retrieval methods produce similar,
highly precise results for water depths shallower than
10 m. However, differences begin to appear when water
depth exceeds 10 m. In particular, the retrieved depths
for the IDW and kriging methods are considerably
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Fig. 9. Comparison of profiles along line C. (a) Cross section along line C.
(b) Comparison between proposed approach and existing bathymetry.
(c) Comparison between IDW and existing bathymetry. (d) Comparison be-
tween kriging and existing bathymetry.

TABLE VIII
PEARSON CORRELATION COEFFICIENTS OF RETRIEVED

BATHYMETRY ALONG LINE C

different to the depths indicated by the existing bathy-
metry, increasing the error of the retrieved result. This
phenomenon is absent in the results for our proposed
approach, demonstrating that our method can retrieve
bathymetry in deeper water and with more sparse sonar
data than other retrieval methods.

3) Comparison along profile line C: Fig. 9 illustrates the
characteristics of and relationships between the profiles
generated along line C. All methods retrieve the primary
topographic features, particularly the deep channel and
deep cliff [see Fig. 9(a)], and the retrieved bathymetry
correlates well with the existing bathymetry, with similar
distributions and correlation coefficients for all methods
(see Figs. 8(d)–9(b); Table VIII). However, despite this
consistency, the products of our proposed approach ex-
hibit stronger correlation with the existing bathymetry
than those of IDW or kriging, although some features
(particularly small local topographic features) are poorly
resolved even with our method.

3) Comparison by Sample Points: We select 500 random
sample points to compare our proposed approach with IDW and
kriging methods (see Fig. 10). In Fig. 10, the figures on the left
compare the existing bathymetry with that generated by various
retrieval methods, whereas those on the right illustrate the errors
associated with the corresponding methods. For our proposed

Fig. 10. Comparison by sample points. (a) Comparison between proposed
approach and existing bathymetry. (b) Distribution of errors from proposed ap-
proach. (c) Comparison between IDW and existing bathymetry. (d) Distribution
of errors from IDW. (e) Comparison between kriging and existing bathymetry.
(f) Distribution of errors from kriging.

approach [see Fig. 10(a)], there is little scatter in the data, and
the error values are centered around 0.3 m. Additionally, there
is no reduction in the retrieved accuracy with increasing water
depth. Nevertheless, the results of the IDW and kriging methods
are considerably different. There is little spread in results for
water depths below 10 m [see Figs. 9(e) and 10(c)], indicating
an ideal retrieval result. However, scatter increases for water
depths exceeding 10 m, indicating larger retrieval error. This
is confirmed by Figs. 9(f) and 10(d), in which error increases
with increasing depth of the existing bathymetry. Moreover, the
errors for the IDW and kriging methods are centered around
0.5 m, i.e., larger than those of our proposed approach. There-
fore, we confirm that our proposed approach can obtain more
precise results that exhibit good stability across a range of water
depths.

4) Comparison by Global Errors: We assess the global
errors in retrieved bathymetry for our proposed approach and
the IDW and kriging methods (see Fig. 11). We find that
the error related to our proposed approach exhibits gradual
changes, whereas that related to other retrieval methods
exhibits abrupt changes. In order to quantitatively assess these
results, we calculate the maximum, mean, and RMSE of errors
for all three retrieval methods (see Table IX). Our results
indicate that the maximum and mean errors are smaller for
our proposed approach than that for either IDW or kriging,
providing further evidence of the efficacy of our method.
RMSE of our method is smaller than that of IDW and kriging.
This indicates that the error value is closer to the mean value,
i.e., that the results of our method are more stable than those
generated by IDW and kriging.

Because large-scale topographic features can influence the
retrieval results considerably, we select channel and basin areas
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Fig. 11. Comparison by global error analysis. (a) Global error for proposed approach. (b) Global error for IDW. (c) Global error for kriging. (d) Two comparison
regions.

TABLE IX
GLOBAL ERROR ANALYSIS FOR RETRIEVED BATHYMETRY

(the long, deep, and narrow region and the broad, flat, elevated
region within the study area, respectively) for further analysis
(see Fig. 11(d); Table IX). It is clear that the errors in retrieved
bathymetry of the channel area are relatively large, with maxi-
mum error greater than 5 m and mean error greater than 0.5 m.
In fact, this agrees with the results presented above because wa-
ter depth in this region is relatively high, often exceeding 15 m;
such depths offer little useful information for remotely sensed
images owing to water properties [5]. Moreover, the channel is

an area in which topography fluctuates and the retrieval of this
complex topography requires denser sonar data. In spite of the
low accuracy of the retrieved results, our proposed approach
certainly offers the most compelling characteristics: maximum
error of 5.3 m, mean error of 0.58 m, and RMSE of 0.82 m.
Conversely, all three methods retrieve bathymetry with high
accuracy in the basin area. The maximum and mean errors
for our proposed approach are 1.09 and 0.24 m, respectively;
these errors are extremely small. In general, the results of our
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global error analysis indicate that the proposed approach always
obtains higher accuracy bathymetry than that retrieved using
IDW or kriging.

V. CONCLUSION

We have presented a workflow that integrates hyperspectral
and sonar data for bathymetry mapping, allowing us to extract
homogeneous regions from hyperspectral images and interpo-
late sonar points in each homogeneous region. We proposed a
new algorithm, i.e., sonar-based semisupervised LE using spa-
tial and spectral distance metrics, for the dimensional reduction
of Hyperion images. During the interpolation of sparse sonar
points, we also proposed a 3-D information diffusion method
with homogeneous regions. Conclusions can be summarized as
follows.

1) The proposed dimensional reduction method can achieve
better dimensional results than unsupervised LE and
semisupervised LE using only spectral distance metrics,
which are related more closely to water depth and allow
easier identification and classification.

2) The 3-D information diffusion interpolation method
with homogeneous regions can retrieve bathymetry with
much higher accuracy than common interpolation meth-
ods. The product of our proposed approach illustrates
good stability in various strategies of comparisons, ben-
efiting from the use of complementarity between sonar
data and optical remote sensing imagery.
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