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Abstract

Local space-time features have recently shown promising results within Bag-of-Fea-
tures (BoF) approach to action recognition in video. Pure local features and descriptors,
however, provide only limited discriminative power implying ambiguity among features
and sub-optimal classification performance. In this work, we propose to disambiguate lo-
cal space-time features and to improve action recognition by integrating additional non-
local cues with BoF representation. For this purpose, we decompose video into region
classes and augment local features with corresponding region-class labels. In particular,
we investigate unsupervised and supervised video segmentation using (i) motion-based
foreground segmentation, (ii) person detection, (iii) static action detection and (iv) object
detection. While such segmentation methods might be imperfect, they provide comple-
mentary region-level information to local features. We demonstrate how this information
can be integrated with BoF representations in a kernel-combination framework. We eval-
uate our method on the recent and challenging Hollywood-2 action dataset and demon-
strate significant improvements.

1 Introduction

Local video descriptors in combination with Bag-of-Features (BoF) video classification have
been shown successful for the task of action recognition [5, 10, 13, 15, 18, 21]. Pure local
descriptors, however, should balance a trade-off between the discriminative power and the
invariance needed to overcome irrelevant variations in video due to e.g. camera motion,
lighting changes, projective effects and background clutter. Limited discriminative power of
local descriptors may imply ambiguity of video representations and the resulting decrease of
recognition performance.

The goal of this work is to improve discriminative power of local video features by
integrating non-local cues available at the region-level of a video. For this purpose, we
decompose video into region classes and augment local features with corresponding region-
class labels. For motivation, consider regions of a parking lot and side walks in Figure 1.
Such regions are likely to correlate with specific actions such as opening a trunk and running.
As a consequence, propagating region labels to the local feature level in this example is
expected to increase discriminative power of features with respect to particular actions.
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Figure 1: Regions in video such as road, side walk and parking lot frequently co-occur with
specific actions (e.g. driving, running, opening a trunk) and may provide informative priors
for action recognition.

To decompose a video into region classes, we in this paper resort to multiple and readily-
available segmentation methods. In particular, we investigate unsupervised and supervised
video segmentation using (i) motion-based foreground separation, (ii) person detection, (iii)
static action detection and (iv) object detection. While such segmentation methods might be
imperfect, they provides complementary region-level information to local features. More-
over, segmentation methods trained on additional training data (e.g. person and object de-
tection) will introduce additional supervision into the BoF framework and will potentially
increase its discriminative power.

Using different types of regions, we construct alternative video representations from the
original set of local spatio-temporal features. We exploit complementarity of such repre-
sentations and combine them within a multi-channel SVM framework [22]. We evaluate
our method on the challenging Hollywood-2 human actions dataset [13] and demonstrate
significant improvement with respect to the state of the art.

In summary, contributions of our work concern (i) increase of discriminative power of
local features and associated BoF representations using region-level information and (ii) in-
troduction of additional supervision into the BoF framework in the form of pre-trained region
segmentation. The rest of the paper is organized as follows. Section 2 describes the BoF
framework and its proposed extension. Section 3 presents details of alternative segmentation
methods used in this work. Section 4 presents results while Section 5 concludes the paper.

2 Bag-of-Features with non-local cues

This section presents details of the BoF framework for action recognition and its extension.

2.1 Local features

We follow previous methods for action recognition [10, 18] and build upon Bag-of-Features
(BoF) approach using local space-time features. To extract local features in video, we use
the on-line implementation' of Spatio-temporal Interest Points (STIP) [9] combined with
HOG/HOF descriptors [10]. Local features are extracted at multiple scale levels in space-
time video pyramid. HOG and HOF descriptors are computed in the local space-time neigh-
borhood of each feature and correspond to position-dependent histograms of spatial gradient
and optical flow respectively. We concatenate HOG and HOF descriptors into a single vector
describing appearance and motion of local neighborhoods.

Thttp://www.irisa.fr/vista/Equipe/People/Laptev/download.html
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Figure 2: An illustration of our approach to disambiguate local descriptors with the help of
semantic regions in video.

2.2 BoF representation

In the BoF framework, a video sequence is represented as a normalized frequency his-
togram of local space-time features. The histogram is computed over labels (or visual
words [19]) associated with each local feature. Feature labels are commonly obtained by
quantizing local feature descriptors according to a pre-learned dictionary. Following previ-
ous work [4, 10, 13, 19, 21], we construct a visual dictionary using K-Means with K = 4000
visual words. While K-Means is a conceptually simple and unsupervised approach to feature
quantization, previous work [7, 14] aimed to improve image classification tasks by construct-
ing supervised dictionaries. Here we follow [14] and use ERC-Forest to construct supervised
visual dictionary for action classification.

ERC-Forest is an ensemble of randomly created clustering trees [14]. It predicts class la-
bels ¢ from local feature descriptors d. It benefits from labeled training set J = {(dy,¢,) ,n =
1,--+,N} with N descriptors d associated with class labels ¢ and recursively builds random
trees in a top-down manner. At each node, the labeled training set is divided into two halves
such that the classes are separated well by maximizing the Shannon entropy:

__ 2lerl)
SO0 e iy ) o

where Hc denotes the entropy of the class distribution in J, Hr is the split entropy of the
test 7 which splits the data into two partitions, and Ic 7 is the mutual information of the
split (see [14] for further details). Following [14] we use ERC-Forest to build supervised
visual vocabulary for local space-time features. We construct M = 5 multiple trees with
1000 leaf nodes each and assign M labels to each local feature according to each tree. ERC-
Forests have been previously employed for image classification [12, 14, 16]. In Section 4 we
demonstrate ERC-Forest to improve action recognition performance compared to K-means
visual dictionary.
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Figure 3: Left: Examples of spatio-temporal grids, Right: Illustration of video decomposi-
tion according to A3 x 1 ¢1 grid.

2.3 Extended BoF representation

We propose to extend BoF representation and to decompose video into a set of regions r
assigned to labels [, | € {L1 o IM } A separate BoF histogram /' is accumulated from
quantized features within all regions with labels L'. Following the terminology of [11],
video signature, i.e. a channel is then constructed by concatenating BoF histograms for all
region labels, i.e. x = [h',...,hM] as illustrated in Figure 2. In this paper, we investigate
different types of channels obtained with alternative video segmentation methods described
in Section 3.

2.4 Mutli-channel SVM

For action classification we use non-linear Support Vector Machine (SVM)[3] with RBF
kernel. To investigate combination of different channels, we use multi-channel kernel [22]

K (xi,xj) —exp< ZQ x5, ]) 2

where D(x{,x /) is x? distance defined on histogram representations x5, x5 G obtained from
videos i, j using feature channel c. We use normalization factor Q. computed as average

channel distance [22]. For multi-class classification we use one-against-all approach.

3 Video segmentation

In this section, we describe alternative methods for decomposing video into region classes
and providing means for disambiguating local features.

3.1 Spatio-temporal grids

Spatio-temporal video grids were introduced in [10] and showed promising results for action
recognition. The basic idea is to divide a video into a set of predefined spatio-temporal re-
gions. We follow this approach and use 24 spatio-temporal grids defined by the combination
of six spatial subdivisions of a video: 1 x 1,2 x2, h3 x 1, vl x 3, 3 x 3, 02 x2 and four
temporal ones: 71, ¢2, t3 and 0r2.” Figure 3 illustrates a few examples of grid configurations.
All the grids together define a set of 24 channels which we denote by ST Grid24.

2«1” stands for no subdivision, &, v and r denote subdivisions along horizontal, vertical and temporal axes of the

FTPRL)

video volume. “0” stands for cells with 50% overlap of their spatial or temporal extents.
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Figure 4: Illustration of proposed semantic region extraction in video according to (from
left to right): motion region segmentation, action detection, person detection and object
detection. Correct segmentation separates local features into meaningful groups denoted
by yellow and red crosses. We also illustrated failures of automatic segmentation due to

false negative detections (see e.g. missed running action in the first row) and false positive
detections (see e.g. incorrect table detection in the third row ).
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3.2 Foreground/background motion segmentation

Segmenting local descriptors based on the foreground (FG) and background (BG) motions
in video can be valuable in order to separate foreground features which are more likely
to belong to the action from the background features which can help action recognition
by capturing scene context. We use the Motion2D software [17] * to estimate regions of
dominant motion in a video sequence. We then threshold (with four threshold values: 127,
150, 170, 200) the estimated foreground likelyhood maps and generate FG/BG masks. We
use these masks to segment local descriptors into FG and BG classes. Figure 4 (1st column)
shows FG masks (in green) together with the segmented features (in yellow and red). By
separating features and building feature histograms according to FG and BG regions as well
as for four different threshold values, we obtain 8 channels. We will refer to these eight
channels as Motion8.

3.3 Action detection

The ability to localize actions in a video can be helpful for separating action-specific descrip-
tors and thus building less ambiguous BoF representations for a particular action. Of course,
all the remaining descriptors that belong to the background of action can form another com-
plementary channel by capturing the context information.

The idea is to train an action specific detector on still images collected from the Internet
and to perform action detections on the Hollywood-2 video sequences. Depending upon the
availability of sufficient amount of action samples on the Internet, we investigate the idea for
the following action classes: answering the phone, hugging, hand shaking, kissing, running,
eating, driving a car, and sitting on sofa/chair. The last class corresponds to the action classes:

3http://www.irisa.fr/vista/Motion2D
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AnswerPhone DriveCar Eat HandShake HugPerson Kiss
Figure 5: Sample images collected from the Internet used to train the action detectors.

Sitting

sitting down, standing up, and sitting up. Figure 5 presents sample images collected from
the Internet. We train Felzenszwalb’s object detector [6] for each action class (using 100-
170 positive and approximately 9000 negative images for training) and run detector on the
frames of Hollywood-2 videos (see Figure 4, 2nd column). The returned bounding boxes
segment video into FG/BG corresponding to Action/Non-action regions. We then perform
the following steps:

1. Threshold bounding boxes with six threshold values 6 and divide each corresponding
FG regionintoa 1 x 1 or 2 x 2 grid.

2. Compute 12 channels for six threshold values and two types of grid, i.e. xg,1x1 =
[A',h?] and xg 2> = [h', 1?13, h*, h°].

We will refer to the 12 obtained channels as Actioni?2 for each of the eight aforemen-
tioned action classes.

3.4 Person detection

Separation of local descriptors on the basis of person/non-person region segmentation should
potentially provide less ambiguous and more discriminative BoF representation for action
recognition. We use the Calvin upper-body detector [1] which is a combination of the
Felzenszwalb’s object detector [6] and the Viola-Jones’ face detector [20]. This detector
returns bounding boxes fitting the head and upper half of the torso of the person (see Fig-
ure 4, 3rd column), which segment video into FG/BG corresponding to Person/Non-person
regions. Following the steps of Section 3.3, we generate 12 channels. We will refer to these
channels as Personl?2.

3.5 Object detection

Objects can provide a valuable context information for recognizing actions in video. For
instance, the object car can be helpful to recognize the actions driving a car and getting out of
a car, and the objects chair and sofa can be helpful for the classes sitting down and standing
up. We investigate this concept by using Felzenszwalb’s object detectors [6] # trained for
the following object classes: car, chair, table and sofa, and perform separate detections on
the Hollywood-2 sequences (see Figure 4, 4th column). The returned bounding boxes divide
video into FG/BG corresponding to Object/Non-object regions. Again, following the steps
of Section 3.3, we compute 12 channels per object class. We will refer to the corresponding
12 channels for each object class as Objectsi?2.

4We use object detectors trained by the authors on VOC2008 dataset.
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Figure 6: Sample frames from V1deo sequences of Hollywood-2 human actions dataset.

Channels Performance (mean AP)
BoF with K-Means 0.479
BoF with ERC-Forest 0.486
STGrid24 with K-Means 0.504
STGrid24 with ERC-Forest 0.518

Table 1: Overall performance by the baseline channels.

4 Experimental results

This section presents our experimental results in detail. All the experiments have been per-
formed on the Hollywood-2 dataset [13] using the clean training subset. The dataset is
comprised of video sequences collected from 69 different Hollywood movies. It contains 12
action classes: answering a phone, driving a car, eating, fighting, getting out of a car, hand
shaking, hugging, kissing, running, sitting down, sitting up, and standing up (see Figure 6).
In total, there are 1707 action samples divided into a training set (823 sequences) and a test
set (884 sequences). Train and test sequences are collected from different movies. For per-
formance evaluation, we report the average precisions (APs) for individual classes as well as
the mean average precision (mAP) over all the action classes.

4.1 Baseline performance

To get a baseline, we performed experiments with (i) the standard BoF method, and (ii)
STGrid24 channels using the K-Means as well as ERC-Forest generated visual dictionaries.
Table | compares their mean average precisions. It turns out that STGrid24 channel improves
upon the standard BoF approach (consistent with the findings in [10]), and the two methods
perform better (about 1%) with ERC-Forest generated dictionary. Therefore, from here on,
we only present results obtained with ERC-Forest dictionary. Note that our baseline result
for BoF with K-Means (mAP 0.479) is comparable to the best result (mAP 0.476) previously
reported on this dataset in [21].

4.2 Improvements with channel combination

The performance by STGrid24 channels (0.518) will serve as the baseline result here. Table 2
(1st portion) reports results for the new channels (introduced in Section 3), with Action12
channels having the highest mAP (0.528). While most of our new channels do not outper-
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Channels Performance (mean AP)
Motion8 0.504
Person12 0.493
Objects12 0.499
Action12 0.528
STGrid24 + Motion8 0.532
STGrid24 + Person12 0.532
STGrid24 + Objects12 0.530
STGrid24 + Action12 0.557
STGrid24 + Motion8 + Action12 0.553

+ Person12 + Objects12

Table 2: Overall performance of different channels individually as well as in combination
with other complementary channels.

form the baseline, the advantage of all new channels becomes apparent when combined with
the baseline channels STGrid24. As can be seen from Table 2, new channels combined with
STGrid24 not only improve upon their individual performance but also improve the baseline
result up to 0.557. This can be explained by the complementarity of channels adding differ-
ent information to the BoF representation. Note, however, that the integration of Actionl2,
Person12 and Object12 channels implies the use of additional training data which makes
corresponding results not directly comparable to previous results reported on Hollywood-
2 dataset. When combining all the four new channels with STGrid24 channels, we obtain
0.553 mAP, which is a significant improvement over the baseline. We also note that the
channel combination STGrid24+Action12 (0.557) slightly outperforms combination of all
channels. This behavior highlights the need for more sophisticated methods for kernel com-
bination compared to the simple multi-channel approach (product of kernels) considered
in this paper. We have tried learning kernel combination using Multiple Kernel Learning
(MKL) framework [2], however, similar to previous findings [8], MKL did not improve re-
sults in our case.

In table 3, we present per-class average precision values corresponding to the baseline
channels as well as the best performing new channels and their combinations. We note
improvement of eleven out of twelve action classes (APs in bold in the last two columns)
when combining new channels with the baseline channels. Distribution of the best class APs
across three columns (corresponding to different channel(s)) points out the need to devise
some sophisticated technique for class-specific channel(s) selection. Moreover, we observe
significant performance gain for some classes (e.g. HandShake) and a relatively small im-
provement for some others classes (e.g. DriveCar). One reason, in addition to varying
intra-class variation for each action class, could be the quality of the additional training data
that we used to train different detectors. For instance, for HandShake, the collected images
were quite representative of the Hollywood-2 samples (see HandShake in Figure 5 and 6).
Whereas, for DriveCar, majority of the collected images were side-viewed, where in fact
DriveCar is mostly frontal-viewed in Hollywood-2 (see DriveCar in Figure 5 and 6). We
therefore believe that performance for the lower performing classes can be further improved
by using better quality training images. Moreover, although the mean AP performance by
the final channel combination (0.553) is slightly lower than that by the STGrid24+Action12
channels (0.557), yet it achieves the best results for seven action classes (APs in bold in the
last column).
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Channels BoF | STGrid24 | Actionl2 | STGrid24 STGrid24
+ Actionl2 | + Motion8
+ Action12
+ Personl12
+ Objects12
mean AP H 0.486 \ 0.518 0.528 \ 0.557 \ 0.553 ‘
AnswerPhone || 0.157 0.259 0.208 0.263 0.248
DriveCar 0.876 0.859 0.869 0.865 0.881
Eat 0.548 0.564 0.574 0.592 0.614
FightPerson 0.739 0.749 0.757 0.762 0.765
GetOutCar 0.334 0.440 0.383 0.457 0.474
HandShake 0.200 0.297 0.457 0.497 0.384
HugPerson 0.378 0.461 0.408 0.454 0.446
Kiss 0.521 0.550 0.560 0.590 0.615
Run 0.711 0.694 0.732 0.720 0.743
SitDown 0.590 0.589 0.596 0.624 0.613
SitUp 0.239 0.184 0.241 0.275 0.255
StandUp 0.533 0.574 0.549 0.588 0.604

Table 3: Per-class AP performance by different channels and channel combinations.

5 Conclusions

We have presented an extension to the standard BoF approach for classifying human actions
in realistic videos. Our main idea is to segment videos into semantically meaningful regions
(both spatially and temporally) and then to compute histogram of local features for each
region separately. As we have shown experimentally, this separation helps to get significant
improvement over our strong baseline by disambiguating histograms of local features. Our
framework also enables introduction of additional supervision into BoF action classification
in the form of region detectors that could be trained on related tasks. Our method thus
provides the flexibility to utilize additional training data (Web images, annotation and images
from PASCAL VOC dataset, etc.) to mitigate the problem of having limited training data
within the Hollywood-2 dataset.

While we have shown significant improvement with the proposed method, we believe
even higher improvement could be obtained by using a more appropriate procedure for com-
bining different channels. Our main focus in this paper has been to demonstrate a notion
of semantic level video segmentation and its advantage for action recognition. We plan to
optimize channel combination and better adapt our method for each particular action class
in the future work using frameworks such as Multiple Kernel Learning [2, 8].
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