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Abstract

We present a method of handwritten numeral recognition, where we introduce hi-
erarchical Gabor features (HGFs) and construct a Bayesian network classifier that
encodes the dependence between HGFs. We extract HGF's in such a way that they
represent different levels of information which are structured such that the lower
the level is, the more localized information they have. At each level, we choose an
optimal set of 2-D Gabor filters in the sense that Fisher’s linear discriminant (FLD)
measure is maximized and these Gabor filters are used to extract HGFs. We con-
struct a Bayesian network classifier that encodes hierarchical dependence among
HGF's. We confirm the useful behavior of our proposed method, comparing it with
the naive Bayesian classifier, k-nearest neighbor, and an artificial neural network,
in the task of handwritten numeral recognition.

Key words: Bayesian networks, Gabor filters, Handwritten numeral recognition,
Hierarchical models.

1 Introduction

The problem of pattern recognition consists of two important parts which are
feature extraction and classification. A variety of methods of feature extraction
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have been studied and among those, some statistical features based on prin-
ciple component analysis (PCA) (Joliffe, 1986; Oja, 1988) and independent
component analysis (ICA) (Hyvarinen et al., 2001; Choi et al., 2005), and Ga-
bor filters (Gabor, 1946), drew extensive attraction. Apart from those, kernel-
based methods (Yang et al., 2004) and wavelet-based multiresolution meth-
ods (Zhang et al., 2004; Sastry et al., 2004; Li and Shawe-Taylor, 2005) have
been developed to extract features. Popular classifiers include naive Bayesian
classifiers, k-nearest neighbor classifiers, artificial neural networks, fuzzy clas-
sifiers, and support vector machines (SVMs) (for example see (Duda et al.,
2001; Liu et al., 2003) and references therein).

For handwritten numeral recognition, various methods have been developed.
These include a neural network with PCA-based features (Zhang et al., 2001;
Cao et al., 1997), a self-organizing map with fuzzy rules (Chi et al., 1995),
tolerant rough set (Kim and Bang, 2000), and so on. It was shown that Gabor
features were somewhat robust to the noise and could model the receptive
field characteristics of simple cells in the primary visual cortex (Porat and
Zeevi, 1988; Daugman, 1980). Gabor filters were also used in feature extrac-
tion from handwritten numerals (Hamamoto et al., 1998; Shustorovich, 1994).
So far, most of methods have considered the feature extraction and classifi-
cation, separately. However, it is desirable to consider both feature extraction
and classification simultaneously, in order to extract useful features and to
construct a better classifier which incorporates with features.

The extensive survey of recognition performance for large handwritten digit
database was reported in (Liu et al., 2003) through many kinds of features and
classifiers. However, it excluded the Gabor features and the Bayesian network
classifier, which we will explore. In this paper, we present a method of ex-
ploiting feature extraction and constructing a classifier simultaneously, in the
task of handwritten numeral recognition. To this end, we first introduce hier-
archical Gabor features (HGFs) which represent different levels of information
which are structured such that the lower the level is, the more localized infor-
mation they have. At each level, we choose an optimal set of 2-D Gabor filters
in the sense that Fisher’s linear discriminant (FLD) measure (Duda et al.,
2001) is maximized and these Gabor filters are used to extract HGFs. Then,
we construct a Bayesian network classifier that encodes hierarchical depen-
dence among HGFs. We confirm the useful behavior of our proposed method,
comparing it with the naive Bayesian classifier, k-nearest neighbor, and an
artificial neural network, in the task of handwritten numeral recognition.

The rest of this paper is organized as follows. Next section briefly overviews
2-D Gabor filters and presents a method of extracting HGFs. Sec. 3 explains
how to construct a hierarchical Bayesian network classifier which encodes de-
pendence in HGF's. Experimental results in handwritten numeral recognition,
are shown in Sec. 4. Finally conclusions are drawn in Sec. 5.



2 Hierarchical Gabor Features

Hierarchical features are expected to represent different levels of information
where the lower the level is, the more localized the information is. To this end,
we first consider 2-D Gabor filters in a hierarchy with several levels. Then for
each level we select a set of Gabor filters with an optimal frequency in the
sense that FLD measure is maximized. Finally, we extract HGFs from these
optimal Gabor filters.

2.1 Gabor Filters

2-D Gabor filters have been widely used in computer vision and image process-
ing, due to its usefulness in representing images in an efficient manner. In
general, the 2-D Gabor filter centered at (0,0) in the spatial domain is defined
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Physiological findings revealed that simple and complex cells in primary visual
cortex usually have an elliptical Gaussian envelope with an aspect ratio of
1.5 ~ 2.0 and have the plane wave’s propagating direction along the short
axis of the elliptical Gaussian envelope (Daugman, 1985; Lee, 1996). These
finding suggest the relation

& =wcosf and §, =wsinb, (2)

where w = /&% + fyz.

Incorporating these relations into the form of Gabor filter (1), leads to

G(z,y,w,o,1,0) = %e_;{(?) +(%> ] elwhn (3)

where o = o0,. This Gabor filter is centered at (0,0) in the spatial domain.
In addition, it has the elliptical Gaussian envelope with an aspect ratio of
r = o,/0, and has the plane wave’s propagation direction along the z-axis,
which is the short axis of Gaussian envelope. The Gabor filter centered at
(',y'), is simply represented by G(z' — =,y — y,w,0,7,0).



Given an input image I, the response, z, of the Gabor filter G' centered at
(2',y"), is computed as the convolution,

Z:ZZI(CE,y}G(.ﬁU,—[E,y/—y7u}70',7”,0), (4>
Ty

where I(z,y) is the intensity value of the image I at (z,y).

Since the complex-valued Gabor filter in (1) consists of real component (even
symmetric function) and imaginary component (odd symmetric function), the
response z also consists of real response and imaginary response. We can use
the real response or imaginary response of z as a feature. Also, the magni-
tude of z can be used as a feature. While the imaginary component of the
Gabor filter is zero mean, the real component is not zero mean and has the
d.c. response. This d.c. response can be sensitive to the size and thickness
of numeral in an image, which is irrelevant information for the recognition.
Therefore, the real response or the magnitude including d.c. information may
lead to poor recognition of handwritten numeral. Through experiments, we
found that the imaginary response of Gabor filter gives better recognition
performance than the real response or the magnitude on the handwritten nu-
meral database, which we used. Therefore, we employ the only imaginary part
of z as a feature.

2.2  Hierarchical Gabor Features

2-D Gabor filters involve several parameters such as centers, frequencies, ori-
entations, and standard deviations. Thus various combinations of these para-
meters produce a set of Gabor filters, some portion of which might be useful
in the task of pattern recognition. An open issue is concerned with a way of
selecting an optimal (in some sense) set of Gabor filters which produce fea-
tures providing the best classification performance. Here we propose a method
of constructing a set of Gabor filters in a hierarchical way with Gabor filters
at each level being selected such that FLD measure is maximized.

First, we determine the center of a Gabor filter in the spatial domain using
the 9-sub-sampling decomposition in a hierarchy with L levels so that some
sub-sampling points of neighbor sampling points are shared (see Fig. 1). Those
shared sub-sampling points in level [ play a role to capture the correlations
between Gabor features extracted from neighbor sampling points in the upper
level [ —1 in the hierarchical Bayesian network classifier, which we will present
next section. Levels in a hierarchy are numbered from the top to the bottom,
that is, the level 1 is the top level and the level L is the bottom level. Starting
from single point located at the center of an image in the top level, the sample
point is gradually decomposed into 9 sub-sample points from the top to the
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Fig. 1. An illustration of the 9-sub-sampling decomposition is shown. Starting from
a single point at the top level (level 1) in (a), the number of sample points gradually
increases in order to pick up more localized features. Sample points at level 2 and
level 3 are shown in (b) and (c), respectively. In the level 3, the sampling points in
rectangles indicate the sub-sampling points shared with adjacent neighbor centers,
some of which correspond to sampling points in level 2.

bottom level. For instance, the top level contains a single sample point which
is served as a center of the Gabor filter that covers the whole area of an image.
The next lower level contains 9 sample points, each of which corresponds to
the center of a Gabor filter which covers local area of an image. In this way, the
lower the level is, the more localized area is covered by an Gabor filter. Note
that after top level the sampling points located in a neighbor share some sub-
sample points. In the example of 3 level hierarchy in Fig. 1, we actually have 1
sampling point in level 1, 9 sampling points in level 2, and 49 sampling points
in level 3. In general, n-sub-sampling decomposition is possible, however, we
employ the 9-sub-sampling decomposition in this paper.

Once sample points at each level are determined, a set of Gabor filters is
defined at each sample point corresponding to the center of a Gabor filter in
the spatial domain. Denote by p! = (2%, y') the sth sample point in the
level [ for I =1,...,L and s = 1,..., N;, where N, is the number of sample
points in the level [. For example, Ny =1, Ny =9, and N3 = 49.

Let Q = {wy,...,wk} be a set of K frequencies and © = {6,...,0p} be a
set of D orientations. Given a sample point p'* and an orientation 6; € ©, we
define a set of Gabor filters, which is located at (%, y') in the spatial domain
and have K-frequencies in (), such as

Gl={ak ....ch}, (5)
where Gjlf = Gjl-f(x,y) =G (xls —z,y® —y,w;, 07, Qj) defined in (3).

To extract the hierarchical information with these Gabor filter sets, we de-
termine the standard deviation in such a way that the average of distances
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Fig. 2. A pictorial illustration for regions covered by Gabor filters with standard
deviations determined by (7): (a) Distances between the point in the center, p'*,
and its 4 neighbor points, are denoted by dy, ..., dy, the average of which is d**; (b)
Circles represent the regions of Gabor filters. A big circle whose center is located
at p'* is an area covered by a Gabor filter in the upper level and 9 smaller circles
represent more localized areas covered by Gabor filters whose centers are located at
9 sub-sample points in the current level.

between p* and its four neighbor sample points, denoted by d'*, satisfies the

following relation:
1/ d*\* 1
i) 2 ?

dls
N 7
7 = log? (M)

Figs. 2 and 3 illustrate the regions covered by Gabor filters with standard
deviations determined by (7). The Gabor filter in the top level take care of
a global region, then Gabor filters extract more localized information in the
lower level since o' decreases gradually as moving from the top to the bot-
tom level. The lower the level is , the more detailed the information can be
extracted by these Gabor filter sets. Gabor filters in the same level take care
of regions that are sufficiently overlapped in the spatial domain, hence the loss
of information is insignificant.

which leads to

Remaining parameters controlling the shape of a Gabor filter are frequencies
which are crucial in the design of a Gabor filter and have high influence on the
recognition performance Hamamoto et al. (1998). Gabor filters with all K fre-
quencies may result in irrelevant features which could decrease the efficiency
of a classifier and do not necessarily improve the recognition performance.
Therefore, the selection of optimal Gabor filters with an efficient frequency
is required to extract the relevant features for recognition. We can directly
select optimal Gabor filters among candidates based on the recognition rate.
However, a few drawbacks exist with such a method. The first is that the num-
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Fig. 3. Regions covered by Gabor filters in: (a) level 1 (top level); (b) level 2; (c)
level 3 (bottom level). Areas taken care of by Gabor filters are gradually smaller as
moving from top level to bottom level, in order to extract more localized information
in the lower level.

ber of candidates increase exponentially with the number of Gabor filter sets,
because the recognition rate depends on all Gabor filters from the top to the
bottom level. The second drawback is that the selected Gabor filters depend
on the used classifier. Therefore, we introduce another method that selects an
optimal set of Gabor filters with a single frequency, such that FLD measure
is maximized ; the FLD measure is a measure to how certain information is
efficient for discrimination. This selection is carried out for every Gabor filter
set in (5), independently.

Suppose that a set of n labelled pattern images, I, consists of I,..., I, and
n, labelled pattern images of subset I, ( C I ) are labelled ¢,, where p =
0,1,...,¢—1 for c-class problem ; the handwritten numeral recognition is a
10-class problem. Let z!¥ be a set of responses of GI¥ ('€ G* ) with I, which
is defined as follows

zjl»f:{z:z:ZZIk(:p,y)G}f(m,y),k:zl,...,n}. (8)

T

Let z!?, denote a subset of z/7 associated with I,,, then the within-class scatter

is defined as

c—1
Swizf) =3 > (z—mp)’, (9)
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where my,(= =3, i z) denotes a class mean. The between-class scatter is
P Jup
defined as

Sp(nls) = Cz_:onpmp —m)?, (10)

where m(= 3", s z) denotes the total mean. The FLD measure is defined

by the ratio of between-class scatter and within-class scatter and for the set
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of responses z;;, it becomes

= 1) = (1)

Given a orientation 6; and a center p'*, we search for an optimal frequency
(among K possible frequencies), which produces the largest FLD measure. In
other words, an optimal Gabor filter Gjl-j (e GJZ»S ) has the frequency w;« ( €
2 ), which is determined such as

i* = arg max jlis. (12)

Afterwards, we refer to a Gabor feature of a pattern image, I, as the response
with an optimal Gabor filter, i.e.,

af* =33 I(x,y) Gli(x,y) . (13)

For a sample point p’, we obtain a D-dimensional Gabor feature vector
als = [afs,...,aE]T, (14)

where D is the number of orientations and 7" denotes the transpose. Finally,
we define the hierarchial Gabor features (HGFs) of a pattern image as the
collection of all Gabor feature vectors from the top to the bottom level and a
= {a'*} denotes the HGFs.

3 A Hierarchical Bayesian Network Classifier
3.1 Bayesian network

A Bayesian network consists of a set of variables, V.= {A;,..., Ay}, and
a set of directed edge, E, between variables, which form a directed acyclic
graph (DAG), G = (V,E), where a joint distribution of variables is repre-
sented by the product of conditional distributions of each variable given its
parents (Pearl, 1988; Jordan, 1998). Each node, A; € V| represents a random
variable and a directed edge from A; to A;, (A4;, A;) € E, represents the con-
ditional dependency between A; and A;. In a Bayesian network, each variable
is independent of its non-descendants, given a value of its parents in G. This
independence encoded in G reduces the number of parameters which is re-
quired to characterize a joint distribution, so that posterior distribution given
evidence can be efficiently done.



In a Bayesian network over V.= {A;, ..., Ay}, the joint distribution P(V) is
the product of all conditional distributions specified in the Bayesian network,
ie.,

P(A, ..., Ay) = ﬂ P(4; | Pay), (15)

where P(A;|Pa;) is the conditional distribution of A;, given Pa; which de-
notes the parent set of A;. A conditional distribution for each variable has a
parametric form that can be learned by the maximum likelihood estimation.
Please refer to (Pearl, 1988) for more details on Bayesian networks.

3.2 Bayesian Network Classifier

The Bayesian network classifier (Friedman et al., 1997) is a Bayesian network
that distinguishes a class node from the nodes of feature variables (feature
nodes) The Bayesian network classifier requires the class node to be a parent
of all feature nodes. This ensures that all feature nodes are taken into account
in the learned Bayesian network when one computes the posterior probability
of the class node, which is a main term determining the classification. For ex-
ample, the simplest Bayesian network classifier is the naive Bayesian classifier
(NBC) which assumes the statistical independence between feature variables.
Fig. 4 shows the pictorial description for NBC where C' denotes the class node
and Ap,..., Ay denote the feature nodes.

In NBC, each feature variable is independent of the remainder of the feature
variables, given a value of the class variable. It follows from (15) that the joint
distribution determined by NBC is decomposed as

P(C,Ay,... Ay) = ﬁ P(A,|C)P(C). (16)

i=1

Denote by a = {ay,...,ay} the instances of feature variables. For classifica-
tion, one computes the posterior distribution over the class variable, which is
of the form

P(ClA; = ay,..., Ay = ay) = = : 17
( ’ 1 ay, y LAN aN) ZC/ H,JL\;1P<A1:O/Z|C/)P(C/) ( )

Then, a is assigned to a class through MAP
¢ = arg max P(C|A1 =ay,..., Ay = ay). (18)



Fig. 4. The naive Bayesian classifier consists of a class node C and a set of feature
nodes, {A1,...,An}, assuming that feature nodes are statistically independent,
given C.

3.3 Hierarchical Bayesian Network Classifier

A critical limitation of NBC results from the assumption that feature nodes
are statistically independent given a value of the class node, which is unrealis-
tic in practical applications. In order to overcome this limitation, Friedman et
al. (Friedman et al., 1997) extended NBC, incorporating with a tree structure,
to improve the classification performance. In this paper we construct a hier-
archical Bayesian network classifier (HBNC) which encodes the dependence
between nodes in different levels, induced by HGFs.

Let A" be a node associated with the sample point p*, the value of which is
assigned by Gabor feature vector a'* in (14). We first define the structure of
HBNC with only feature nodes excluding the class node. For V.= {A%*}  sup-
pose that the DAG G = (V, E) defines the structure of HBNC with excluding
the class node, i.c., C ¢ V. Let Al = {A" ... A™} denote a set of feature
nodes in the level I. We also define B* as a set of nodes which are associated
with 9 sub-sample points of A%, i.e.,

Bl = {Bjs,... B}, (19)

where B! € B! is a node associated with the sub-sample point of p'* and
B’ c AL Then, the structure of HBNC is composed of the following sub-
structure

G = ({AF}UB", BN = {(A",BF),... (A% Bl}),  (20)

forall [,s with l = 1,..., L —1. Therefore, a set of directed edges in G is given
by
E= U E'’, (21)

l,s

10



Fig. 5. The sub-structure of HBNC is shown. The nodes of Blls, ... ,Bgls, which are
associated with 9 sub-sample points of p'*, are influenced by its parent node A!S
that is associated with the sample point p's.

for all [, s with { = 1,..., L —1. Fig. 5 and Fig. 6 show the sub-structure, G'**,
and the pictorial description of the HBNC excluding class node, G.

Note that A" directly influences only nodes in B'* which represent more lo-
calized information than A!. See Fig. 5 for this local sub-structure of our
HBNC. From the top to the bottom level, this limited direct dependence en-
tirely encodes the hierarchical dependence between nodes in levels, implied by
HGFs (see Fig. 6). In addition, nodes associated with the shared sub-sampling
points have more parents than one so that they capture the correlations be-
tween their parents associated with neighbor sampling points located in the
upper level.

Now we include the class node as a parent of all feature nodes in G | in order
to complete the overall structure of our HBNC. We denote the overall DAG
G, (including the class node) by G. = (V., E.) where V. = V U {C} and
E. = EU {(C, A¥)} for all A" € V. Denote by Pa' a set of parent nodes
of A® in G, then the set of parent nodes of A* in G, becomes Pa" U {C}.

11



Fig. 6. The structure of our HBNC (excluding the class node C) is shown. Starting
from a single point in the top level, the number of nodes are gradually increas-
ing, following the 9-sub-sampling decomposition. Nodes associated with the shared
sub-sampling points have more parents than one so that they capture correlations
between their parents associated with neighbor sampling points located in the upper
level.

Therefore, the joint distribution of all nodes in HBNC is decomposed as

P(C,V = {Al"}) = [ P(A"*|Pa”,C)P(C). (22)

l,s

It follows from (22) that the complete definition of HBNC requires the condi-
tional distributions to be specified. Apparently, C'is a discrete random variable
and A% are continuous multivariate random variables. We use the multino-
mial distribution for P(C) and the conditional multivariate Gaussian density
(Lauritzen and Wermuth, 1989) for P(A" | Pa’, C). These conditional distri-
butions can be learned by maximum likelihood estimation, after HGF's are
obtained from a set of labelled images.

12
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Fig. 7. 100 handwritten numeral images of UCI database.
Given HGFs a = {a’} of a pattern image, the classification requires the
computation of the posterior distribution of C' given a, which is of the form
[1,s P(A" = a’*|Pa’ = pa’, C)P(C)
Yo s P(A" = al*|Pa” = pals, C") P(C")

P(C|V =a) = (23)
In this paper, we compute this posterior distribution by the junction tree al-
gorithm (Lauritzen and Spiegalhalter, 1988; Cowell et al., 1999) which is a
well-known exact inference method for Bayesian networks. Finally, the clas-
sification is achieved by assigning the pattern to class label which produces
maximum posterior probability.

4 Experiments

We used the 32 x 32 binary handwritten numeral image data from the UCI
database (Blake and Merz, 1998). These numeral images were centered and
normalized. We did not performed any other preprocessing, such as slant cor-
rection and smoothing. A few researchers used these data in their experiments
(Kim and Bang, 2000). Fig. 7 shows some UCI numeral images, which we
used. We randomly chose 25, 50, 300 images per class for training and 1,943
images for testing. Table 1 shows the configuration of these testing image
data. Training and testing images did not overlap. For comparison, we tested
our methods with the standard Gabor features, which did not represent the
hierarchical information, and other well-known classifiers, such as the naive

13



Table 1
The number of testing numeral image data per class.

Class 0 1 2 3 4 5 6 7 8 9 | Total

# 189 198 195 199 186 187 195 201 180 204 | 1934

Bayesian classifier (NBC), k-nearest neighbor classifier (KNN), and artificial
neural network (NN).

4.1 Implementation

We used the imaginary part of the response in (4) as a Gabor feature and
employed the fixed four orientations © = { 0, 7/4, 7/2, 37/4 }. Based on
the physiological findings mentioned in Sec. 2.1, we fixed the aspect ratio r to
2 and level size L to 3, such as that of Fig. 1. For each sampling point and
orientation, we selected single optimal frequency among 10 frequencies Q = {
0.025, 0.05, 0.075, 0.1, 0.15, 0.2, 0.4, 0.6, 0.8, 1 } based on randomly chosen 300
training images per class by FLD measure in Sec 2.2. Therefore, we had 236
(=59 nodes x 4 orientations x 1 frequency) Gabor filters to extract HFGs,
which consisted of 236 Gabor features. Fig. 8 shows some of those optimal
Gabor filters with 6; = /4.

All classifiers tested with same training and testing numeral images for the
comparison. (1) For the proposed HBNC and the NBC, we learned the para-
meters of conditional distributions by maximum likelihood method with HGF's
of training numeral images. Note that the NBC had exactly the same feature
nodes as HBNC, but did not encode the dependencies among the HGFs. To
classify HGF's, we inferred the posterior distribution of the class variable by
the junction tree algorithm. (2) To learn the parameters of NN, we fixed the
number of hidden units to 150, the learning rate to 0.01, the momentum rate
to 0.5, and the number of learning iteration to 10,000. (3) KNN did not re-
quire parameter learning. In our experiments, when the number of the nearest
neighbors, k, was one, KNN best performed among k=1, 3, 5. Therefore, we
reported the result with only k=1.

4.2 FEzxperimental Results

We performed experiments focused on two aspect. The first was to show the
effectiveness of HGF's and the second was to verify that the HBNC improves

14
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Fig. 8. Optimal Gabor filters, which were selected using FLD measure from 300
labelled numeral images per class, are shown with orientation §; = 7/4 and aspect
ratio r = 2. From the top to the bottom level, each optimal Gabor filter is centered
at sample points (see Fig. 1) and has an optimal frequency in which FLD measure
maximizes (see Sec. 2.2).

the classification performance of HGFs. For the first, We selected the Gabor
features with only the bottom level in order to remove the hierarchical in-
formation. We refer to these Gabor features as the standard Gabor features
(SGF's). The SGFs are similar features introduced in (Hamamoto et al., 1998).
For the second, the HGF's of 1934 testing numeral image data were classified
by the proposed HBNC and other well-known classifiers such as NBC, KNN
and NN.

Fig. 9 and Table 2 show the average recognition performance from 30 trials of
differently chosen training and testing numeral images. First, the recognition
performance of the proposed HGFs outperformed that of SGFs within the
same classification method. Moreover, the proposed HGFs significantly im-
proved the recognition performance, when the number of training data were
small. However, the improvement was less significant with NBC. The NBC
showed the similar recognition performance on both HGFs and SGF's, because
it did not encode the hierarchical dependencies imposed by HGFs. Second,
the proposed HBNC, which overcomes the limitation of NBC, best classified
HGFs among other classifiers in experiments. However, when the number of
training numeral images per class was 25, the NBC outperformed the HBNC.
This shows that 25 training numeral image data were insufficient to learn our
HBNC, because conditional distributions of the HBNC had more parameters

15
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Fig. 9. The average recognition performance of 1934 testing numeral image data
from 30 trials when the number of training numeral image data per class is 25, 50,
and 300. HBNC : hierarchical Bayesian network classifier, NBC : naive Bayesian
classifier, KNN : k-nearest neighbor classifier with k=1, NN : artificial neural net-
work. HGF denotes the hierarchical Gabor features and SGF denotes the standard
Gabor features.

Table 2
The average recognition performance of 1934 testing numeral image data from 30
trials when the number of training numeral image data per class is 300.

HBNC | NBC-HGF | NBC-SGF | KNN-HGF | KNN-SGF | NN-HGF | NN-SGF
0.983 0.967 0.966 0.980 0.974 0.976 0.971
£ 0.003 £ 0.004 £ 0.004 £ 0.003 £ 0.004 | +£0.003 | =+ 0.006

than NBC. Although KNN showed a remarkable performance in the case of
300 training numeral image data per class, it required larger computation time
than other classifiers. This burden of computation with KNN generally comes
from comparing each testing instance with every training instance. Therefore,
we suggest that KNN should be considered only to compare it with other
methods, but not in practice. Finally, Table 3 shows the average confusion
tables of classification result on HGF's of 1934 testing numeral data, which are
classified by HBNC and NBC, when the number of training numeral data per
class is 300.

16



Table 3

Average confusion tables of classification result on HGFs of 1934 testing numeral
image data by the proposed HBNC and the NBC from 30 trials, when the number
of training numeral image data per class is 300.

Class 0 1 2 3 4 5 6 7 8 9| Rate | Total

0 (1875 00 00 00 02 09 02 00 01 0.1/0.99]| 189
0.01940 04 03 01 06 00 05 15 1.0/0.98]| 198
0.0 021928 01 04 00 00 00 1.1 0.5/099]| 195
0.0 00 011961 0.0 10 00 0.2 0.7 1.0[{0.99]| 199
01 00 00 001818 03 07 04 11 1.7/0.98]| 186
0.0 00 00 07 031837 00 02 05 1.8/098| 187
04 09 00 00 06 011917 0.0 1.5 0.0[{0.98]| 195
0.0 00 00 06 0.0 00 001993 0.5 0.710.99| 201
00 1.7 00 02 00 00 00 0.0177.7 0.4]0.99]| 180
0.0 00 00 37 13 04 00 0.5 1.5196.7/0.96 204

—_

© 0 N O Ot ks W N

187.9 196.7 193.2 201.5 184.6 186.9 192.5 201.0 186.1 203.8|0.983| 1934

(a) Proposed HBNC with HGF's

Class 0 1 2 3 4 5 6 7 8 9| Rate | Total

0 (1868 00 00 00 07 04 00 00 06 0.6/0.99]| 189
1 0.0189.1 21 03 01 03 0.1 08 25 29/ 0.96]| 198
0.0 121907 00 0.0 00 00 1.0 1.6 0.6/0.98]| 195
0.0 00 041915 00 21 00 1.8 25 0.8/096| 199
00 03 00 001785 0.1 1.0 10 31 22/ 0.96]| 186
0.0 00 00 04 041782 00 0.0 04 7.7/095| 187
01 11 00 00 1.1 021916 0.0 1.0 0.0/0.98]| 195
00 05 00 05 04 00 001985 05 0.7/0.99| 201
00 38 00 03 02 00 00 031727 29]0.96| 180
00 16 00 24 28 07 0.0 23 231921094 204

© 0 N O ot ks W N

186.9 197.5 193.1 195.3 183.9 181.8 192.7 205.4 187.1 210.5(0.967| 1934
(b) NBC with HGFs

17



5 Conclusions

In this paper, we simultaneously considered feature extraction and classifica-
tion within the hierarchical property for handwritten numeral recognition. For
the feature extraction, we introduced Gabor filters to extract different levels
of information. As a result, we obtained the hierarchical Gabor features. For
the classification, we constructed the hierarchical Bayesian network classifier
to encode dependencies implied by HGFs and to improve the classification
performance.

For the handwritten numeral images of UCI database, we successfully demon-
strated the useful behaviors of our proposed HGFs and HBNC. We showed
through experiments that the HGF's are an effective representation of a pat-
tern for the recognition. Based on this result, we suggest that the proposed
HGF's should be considered, when Gabor filters are applied to extract features
for the recognition. Also, we empirically verified that our HBNC better clas-
sify the HGFs in comparison with other well known classifiers. Therefore, we
conclude that a Bayesian network classifier exploiting dependencies implied
by features can improve the recognition performance, such as our HBNC.

Although we applied the proposed methods for the handwritten numeral data,
we believe that the performance of our methods will be promising for other
recognition problems.
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