
GAPSYS: A GA-based Tool for Automated Passive
Analog Circuit Synthesis

Angan Das and Ranga Vemuri
Department of Electrical and Computer Engineering, University of Cincinnati, Cincinnati, OH 45221-0030, USA

Email: {dasan, ranga}@ece.uc.edu

Abstract— This paper presents GAPSYS - a genetic algorithm
based automated circuit synthesis tool for passive analog circuits.
It describes the procedure for developing both the circuit topology
and the component values for a passive analog circuit comprising
of R, L and C components from a given set of specifications.
The novelty of the work pertains to the component value
assignment procedure for the initial set of circuits and the
crossover techniques employed. Experiments conducted on two
low-pass filter design benchmarks demonstrate the effectiveness
of GAPSYS as a synthesis tool.

I. INTRODUCTION

Circuit synthesis is defined as the process of constructing
a circuit or network that satisfies the desired performance
specifications. This essentially comprises of two sequential
steps viz. Topology selection and Circuit sizing. While the
former depends heavily on expert analog designers, the latter
suffers from the drawbacks of either a high setup effort
(for knowledge based methodology) or that of a three-fold
trade-off between speed, accuracy and global convergence (for
numerical optimization based methodology). Hence, there is a
need for a flexible, automated circuit synthesis framework that
can produce both the topology and component values, but with
minimal design expertise and reasonable computational effort.
This kind of objective is well achieved through evolutionary
search techniques like Genetic Algorithms (GA) and Genetic
Programming (GP). Both of them evolve and maintain a set of
possible solutions in a generation. Previous generations give
birth to newer generations till the design goals are fulfilled.

Previous work in this context has been done by Koza et
al. [1] and Lohn et al. [2], followed by Zebulum et al. [3],
Grimbleby et al. [4], Goh et al. [5] and Chang et al. [6].
The common drawback in all of these works is that the
initial set of circuits (i.e. those circuits belonging to the
first generation) have been built by connecting components
having totally random values. This introduces a huge initial
gap between the desired and obtained performance metrics.
It indirectly increases the subsequent number of generations
required to gradually decrease this gap and produce a fully
compliant circuit. Furthermore, to the best of our knowledge,
in case of GAs, the crossover procedures adopted till date
exchanges a handful of random elements between two parent
circuits. This kind of crossover produces a lot of structurally
incorrect or pathological circuits which cannot be simulated
by a standard circuit simulator like SPICE. All of the above
factors contribute to the delayed convergence for the GA.

This work was supported in part by National Science Foundation under
award number CCF-0429717 and in part by Ohio Board of Regents PhD
Enhancement Program.

In this paper, we present a GA-based synthesis framework,
GAPSYS, for simultaneous topology generation and compo-
nent sizing for passive analog circuits. Here, we alleviate all
of the above shortcomings. First of all, in the first generation
of circuits, we assign values to certain components through a
deterministic technique, rather than all of them being random.
It is ensured though that minimal design knowledge is required
in the process. Secondly, the crossover procedure involves
exchange of proper and well-defined subcircuits between two
participating parent circuits. This maintains the structural
integrity of the offspring circuits produced.

The rest of the paper is organized as follows. Section II
discusses the basic formulation underlying GAPSYS. The
initial circuit formulation and crossover techniques are de-
scribed in details. Section III demonstrates the effectiveness
of the tool through two low-pass filter design benchmarks.
The conclusion is finally drawn in Section IV.

II. GAPSYS: BASIC FORMULATION

The GA-based synthesis approach is shown in Fig. 1. The
user provides certain control parameters along with the re-
quired specifications. The GA builds an initial set of solutions,
called chromosomes, that collectively form the first generation.
Each of these chromosomes are evaluated for their fitness,
which measures their degree of compliancy to the target
specifications. The selection procedure selects prospective
parent circuits for reproduction (crossover and mutation) of
the present generation in order to produce future generations
of chromosomes. This process continues either till the target is
met, or until the maximum number of generations is reached,
whichever occurs earlier. The individual aspects of GAPSYS
are detailed in the following subsections.

A. Embryonic Circuit

The process of generating circuits by means of genetic
algorithm comprises of evolving a circuit and placing it in a
predefined template or framework, the embryonic circuit. The
single-input single-output embryonic circuit [1] is shown in
Fig. 2. The nodes 1, 2 and 3 form the gateway of connection
for the evolved circuit to the template circuit.

B. Circuit Representation

One of the most important aspects of any GA-based search
technique is the representation of a solution. Here, a gene
represents an element of a circuit and several such genes
combine to form a chromosome, representing the complete
circuit. The information carried by each gene comprises of:

27021-4244-0921-7/07 $25.00 © 2007 IEEE.

Fig. 1. GAPSYS architecture

1) Type of element: The three kinds of elements possible
and their respective integer representations are: 0 →
Resistor, 1 → Inductor and 2 → Capacitor.

2) Connectivity nodes: The two circuit nodes between
which the R, L and C components are connected.

3) Value: The numerical value of the element X lies within
the range [Xmin, Xmax] where X ∈ {R, L, C}.

The length of the chromosome is made variable to assign
flexibility to the evolvable circuit sizes. An example repre-
sentation of the chromosome for parent circuit P1 of Fig. 4
is shown in Fig. 3. It is to be noted that we do not encode
Rsource, LOAD, Rgnd and Rout since they belong to the common
template contained in all circuits.

C. Initial Circuit Formulation

Most of the previous works [1, 2] greatly stress on evolving
circuits with almost nil design knowledge. But the fact re-
mains that some kind of design knowledge, however minimal,
always helps in minimizing the unwanted search space for
evolutionary circuits [7]. In GAPSYS, we utilize this fact

AC

L

O

A

D

1 Out

Evolved

Circuit

R

R

R

2

3

0

V

V : Source voltage, R : Finite source resistance,

R : Connectivity to ground, R : Connectivity to output

Fig. 2. Embryonic Circuit

Fig. 3. Chromosome representing the parent circuit P1 of Fig. 4

while assigning values to the components building the set of
circuits belonging to the first generation. It is achieved by
a two-step process. First, the symbolic gain of the circuit
(Vout/Vin) is computed in terms of the component values as
parameters. The gain expression obtained is then equated to
certain desired values at specific frequency points in order to
solve the unknown parameters. The procedure is schematically
shown in Fig. 1. The process is repeated for non-simulatable
circuits till we get a structurally correct, simulatable circuit.
This ensures that all the circuits in the initial generation are
non-pathological circuits representing valid circuit graphs.

The procedure outlined above has its own limitations like
occasional failure to solve multiple equations and production
of invalid solutions, apart from the computational burden
involved herein. But it certainly proves effective if one judi-
ciously chooses the number of unknown parameters involved
and takes help of a good numeric solver. In extreme cases
where the procedure fails to produce valid solutions, the
unknowns are assigned random values in order to prevent the
termination of the evolutionary process.

GAPSYS uses TOPCAP [8] as the symbolic simulator
owing to its speed and ease of implementation. MATLAB R©
is used as the computational engine and Synopsys R© HSPICE
as the circuit simulator for fitness evaluation.

D. Crossover

The crossover operation selects certain portions individually
from two participating parent circuits and swaps them to from
two new offspring circuits. In this work, a novel crossover
technique is developed comprising of the following features:

• The group of elements extracted out of a parent circuit
(say P) forms a specific subcircuit (say S).

• Empty pockets are created in the two participating parent
circuits (P1 and P2) when corresponding subcircuits (S1

and S2) are extracted out of them. The extraction is done
in such a way that S1 exactly fits into the empty pocket
of P2 and S2 into that of P1. This leads to the formation
of two structurally perfect offspring circuits.

The crossover process is illustrated with an example shown
in Fig. 4. The operation is performed through the following
steps in sequence (explained with the help of Fig. 4).

Formation of S1 from P1

1) Start node (node 6) is chosen randomly.
2) Branches connected to start node form the subcircuit S1.

The corresponding nodes are designated as stitch nodes
(here nodes 1, 4 and 5).

3) The subcircuit S1 comprises of the portion encom-
passed by the connectivity nodes (stitch nodes + em-
bryo nodes) and internal nodes. Embryo nodes and in-
ternal nodes are not applicable for S1 in this example.

2703

Fig. 4. Example illustrating the process of crossover

Formation of S2 from P2

4) Same as step-1 (node 2).
5) Same as step-2 (node 5).
6) For each stitch node selected in step-5, it is checked if

the total number of connectivity nodes of S2 is equal to
that of S1 (no. of connectivity nodes should be same).

7) When condition is met, jump to step-11.
8) If condition is not met, start node is put (status changed)

either into the queue of embryo nodes (if start node ∈
{0, 1, 2, 3}) or else to that of internal nodes (as is here).
Then, we get the new start node from the stitch nodes
queue (new start node is node 5) and go back to step-
5. Also, we consider only those branches that have not
already been chosen for S2.

9) If condition is not met even after all nodes have been
explored, S1 and S2 comprise of a single element chosen
randomly from their parent circuits (not applicable here).

10) Same as step-3 (S2 is shown with dotted lines).
Offspring circuit formation

11) Node correspondence is established between S1 and S2.
Offspring circuits to be formed may differ from their
parent circuits in terms of number of nodes (extra node
(node 6) for O2).

12) Offspring circuit O1 = remaining(P1) ∪ S2

13) Offspring circuit O2 = remaining(P2) ∪ S1

E. Mutation

Mutation is a genetic operator used to avoid any local
minima, that may slow or even stop evolution. It is achieved
by preventing the population of chromosomes from becoming
too similar to each other. The mutation process used here
comprises of six different types viz. series, parallel, open
circuit, short circuit, change value of element and change type
of element [5].

F. Fitness

The fitness metric determines how well the generated circuit
meets the given performance specifications. The user specifi-
cations for a passive analog circuit (like a filter) are generally
given in terms of its frequency response [9]. Hence, the fitness
evaluation for the circuit comprises of the following steps:

• Evaluate the circuit at various frequency points.
• Penalize the circuit with varying degrees of penalty where

it fails to comply with the desired values.

Quantitatively, over the N frequency points chosen for evalu-
ating fitness, the fitness (F) is given by the absolute weighted
deviation as shown in the expression below.

F =
N∑

j=1

Wj(δj) ∗ δj , δj = ‖Pobtained|wj
− Pexpected|wj

‖

W,P, δ and w denotes the weightage of penalty, performance
measure, difference between obtained and target performance
measures, and frequency respectively. The obtained fitness is
then normalized to a value between 0 to 1 with the fully
compliant circuit having a fitness of unity.

III. EXPERIMENTS AND RESULTS

Filters (especially LC filters) are the most well-defined
passive analog circuits having a wide range of applications [9].
Two such filters of increasing design difficulty level are chosen
as benchmarks for our test experiments. Table. I lists the
specifications for the filters along with the results obtained by
GAPSYS. The GA is coded in C++. It is to be noted that the
the circuits reported here are those that are actually obtained.
Further reduction in the size of the circuits is possible through
combining similar types of components connected serially or
parallely, into one single component.

A. 3rd order Butterworth Low-pass Filter (Filter-1)

This example, taken from some of the previous works [2,
5], is considered to be a difficult task to accomplish. Results
show that GAPSYS generates the required circuit in the 2900th
(100∗29) design explored, compared to 20000, the best among
the prior works [5]. Two initial unknown component values
are solved and the procedure succeeded for 81 circuits out
of 100. The average fitness for the first generation of circuits
with and without the component value assignment procedure
are 0.000635 and 0.000061 respectively. The former clearly
provides a 10X improvement. The fully compliant circuit,
shown in Fig. 5(a) is obtained in generation 29. The frequency
response given in Fig. 5(b) has a dont’ care band in the
range 925−3200Hz. Fig. 5(c) shows progressively increasing
average and best fitness curves.

B. 5th order Elliptic Low-pass Filter (Filter-2)

The specifications for this filter are more stringent than that
of the first. The transition band occurs in the range of 1−2kHz.
The size of each population is 200 and the final circuit evolves
in generation 142. Here, we solve for three initial unknowns
and the initial fitness improvement obtained is 12.5X. The
final circuit evolved, frequency response and fitness curves
are shown in Fig. 6.

2704

0 2 4 6 8 10
−50

−40

−30

−20

−10

0

FREQUENCY (kHz)

A
T

T
E

N
U

A
T

IO
N

 (
dB

)

(b)

1 5 10 15 20 25 30
10

−4

10
−3

10
−2

10
−1

10
0

GENERATION NO

F
IT

N
E

SS

AVERAGE FITNESS
BEST FITNESS

(c)

Fig. 5. (a) Circuit (units are Ω, mH and μF); (b) Frequency response; (c) Fitness curves for the evolved 3rd order Butterworth Low-pass filter

0 1 2 3 4 5 6
−100

−80

−60

−40

−20

0

FREQUENCY (kHz)

A
T

T
E

N
U

A
T

IO
N

 (
d

B
)

(b)

30 60 90 120 142

0.2

0.4

0.6

0.8

GENERATION NO

F
IT

N
E

S
S

AVERAGE FITNESS
BEST FITNESS

(c)

1.0

Fig. 6. (a) Circuit (units are Ω, mH and μF); (b) Frequency response; (c) Fitness curves for the evolved 5th order Elliptic Low-pass filter

TABLE I

GAPSYS-EVOLVED FILTER CIRCUITS

PARAMETERS FILTER-1 FILTER-2

Performance specifications:

Passband edge freq. in kHz (wp) 0.925 1

Stopband edge freq. in kHz (ws) 3.2 2

Passband attn. in dB (Kp) 3.01 1.11

Stopband attn. in dB (Ks) 22.0 64.7

GA parameters:

Size of population 100 200

Selection type Tournament Tournament

Selection size 2 2

Crossover rate 0.7 0.8

Mutation probability 0.05 0.1

Inductance in H (Min, Max) 1μ, 1 10μ, 1

Capacitance in F (Min, Max) 1p, 1μ 1p, 1μ

W for within 10 % deviation 1 1

W for > 10 % deviation 10 15

Results:

No. of generations required 29 142

Avg. % of faulty off. ckts / gen 7 10

Initial component value assignment method:

No. of unknowns 2 3

% Success in solving 81 72

% Initial fitness improvement 10X 12.5X

IV. CONCLUSION

We have presented GAPSYS, a tool to synthesize passive
analog circuits, based on genetic algorithms. The initial com-
ponent value assignment procedure increases the fitness level
for the first set of circuits. Further, the crossover method
employing sub-circuit exchange minimizes the production of
pathological circuits in subsequent generations. GAPSYS has
been successful in evolving two low-pass filter configurations.

REFERENCES

[1] J.R.Koza, F. H. B. III, D. Andre, and M. A. Keane, “Automated WYWI-
WYG design of both the topology and component values of electrical
circuits using genetic programming,” in Proc. First Annual Conference,
Stanford University, CA, July 1996, pp. 123–131.

[2] J. D. Lohn and S. P. Colombano, “A circuit representation technique for
automated circuit design,” IEEE Trans. Evol. Comput., vol. 3, no. 3, pp.
205–219, Sept. 1999.

[3] R. S. Zebulum, M. A. Pacheco, and M. Vellasco, “Comparison of different
evolutionary methodologies applied to electronic filter design,” in IEEE
Int. Conf. on Evol. Comput., May 1998, pp. 434–439.

[4] J. B. Grimbleby, “Automatic analogue circuit synthesis using genetic
algorithms,” in IEE Proc. - Circuits, Devices, Systems, vol. 147, no. 6,
Dec. 2000, pp. 319–323.

[5] C. Goh and Y. Li, “GA automated design and synthesis of analog circuits
with practical constraints,” in Proc. 2001 Congress on Evol. Comput.,
vol. 1, no. 1, May 2001, pp. 170–177.

[6] S.-J. Chang, H.-S. Hou, and Y.-K. Su, “Automated passive filter synthesis
using a novel tree representation and genetic programming,” IEEE Trans.
Evol. Comput., vol. 10, no. 1, pp. 93–100, Feb. 2006.

[7] J. R. Koza, L. W. Jones, M. A. Keane, M. J. Streeter, and S. H. Al-
Sakran, “Towards industrial strength automated design of analog electrical
circuits by means of genetic programming,” in Genetic Programming
Theory Practice Workshop, Univ. of Michigan, Ann Arbor, May 2004.

[8] J. Grimbleby. TOPCAP: Symbolic analysis tool. [Online]. Available:
http://www.elec.reading.ac.uk/people/J.Grimbleby/Analysis.html

[9] L. C. Huelsman, Active and Passive Analog Filter Design: An Introduc-
tion. McGraw-Hill, Inc., 1993.

2705

