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Emerging scale-out workloads require extensive amounts of computational resources. However, data centers
using modern server hardware face physical constraints in space and power, limiting further expansion and
calling for improvements in the computational density per server and in the per-operation energy. Continu-
ing to improve the computational resources of the cloud while staying within physical constraints mandates
optimizing server efficiency to ensure that server hardware closely matches the needs of scale-out workloads.

In this work, we introduce CloudSuite, a benchmark suite of emerging scale-out workloads. We use perfor-
mance counters on modern servers to study scale-out workloads, finding that today’s predominant processor
microarchitecture is inefficient for running these workloads. We find that inefficiency comes from the mis-
match between the workload needs and modern processors, particularly in the organization of instruction
and data memory systems and the processor core microarchitecture. Moreover, while today’s predominant
microarchitecture is inefficient when executing scale-out workloads, we find that continuing the current
trends will further exacerbate the inefficiency in the future. In this work, we identify the key microarchi-
tectural needs of scale-out workloads, calling for a change in the trajectory of server processors that would
lead to improved computational density and power efficiency in data centers.
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1. INTRODUCTION

Cloud computing is emerging as a dominant computing platform for delivering scal-
able online services to a global client base. Today’s popular online services, such as
web search, social networks, and video sharing, are all hosted in large data centers.
With the industry rapidly expanding [Facebook 2012], service providers are build-
ing new data centers, augmenting the existing infrastructure to meet the increas-
ing demand. However, while demand for cloud infrastructure continues to grow, the
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semiconductor manufacturing industry has reached the physical limits of voltage scal-
ing [Hardavellas et al. 2011; Horowitz et al. 2005], no longer able to reduce power
consumption or increase power density in new chips. Physical constraints have there-
fore become the dominant limiting factor for data centers, because their sheer size and
electrical power demands cannot be met.

Recognizing the physical constraints that stand in the way of further growth,
cloud providers now optimize their data centers for compute density and power
consumption. Cloud providers have already begun building server systems specifically
targeting cloud data centers, improving compute density and energy efficiency by us-
ing high-efficiency power supplies and removing unnecessary board-level components
such as audio and graphics chips [Google 2012; OpenCompute 2012].

Although major design changes are being introduced at the board- and chassis-level
of new cloud servers, the processors used in these new servers are not designed to
efficiently run scale-out workloads. Processor vendors use the same underlying archi-
tecture for servers and for the general purpose market, leading to extreme inefficiency
in today’s data centers. Moreover, both general purpose (e.g., Intel and AMD) and tra-
ditional server processor (e.g., Sun Niagara, IBM Power7) designs follow a trajectory
that benefits scale-up workloads, a trend that was established long before the emer-
gence of scale-out workloads. Recognizing the space and power inefficiencies of modern
processors for scale-out workloads, some vendors and researchers conjecture that even
using processors built for the mobile space may be more efficient [EuroCloud 2012;
Kgil et al. 2006; Reddi et al. 2010; SeaMicro 2011].

In this work, we observe that scale-out workloads share many inherent character-
istics that place them into a distinct workload class from desktop, parallel, and tradi-
tional server workloads. We perform a detailed microarchitectural study of a range of
scale-out workloads, finding a large mismatch between the demands of the scale-out
workloads and today’s predominant processor microarchitecture. We observe signifi-
cant over-provisioning of the memory hierarchy and core microarchitectural resources
for the scale-out workloads. Moreover, continuing the current processor trends will
result in further widening the mismatch between the scale-out workloads and server
processors. Conversely, we find that the characteristics of scale-out workloads can be
leveraged to gain area and energy efficiency in future servers.

We use performance counters to study the behavior of scale-out workloads running
on modern server processors. We demonstrate:

— Scale-Out Workloads Suffer from High Instruction-Cache Miss Rates. Instruction-
caches and associated next-line prefetchers found in modern processors are inade-
quate for scale-out workloads.

— Instruction- and Memory-Level Parallelism in Scale-Out Workloads is Low. Modern
aggressive out-of-order cores are excessively complex, consuming power and on-chip
area without providing performance benefits to scale-out workloads.

— Data Working Sets of Scale-Out Workloads Considerably Exceed the Capacity of
On-Chip Caches. Processor real-estate and power are misspent on large last-level
caches that do not contribute to improved scale-out workload performance.

— On-Chip and Off-Chip Bandwidth Requirements of Scale-Out Workloads Are Low.
Scale-out workloads see no benefit from fine-grained coherence and high memory
and core-to-core communication bandwidth.

2. MODERN CORES AND SCALE-OUT WORKLOADS

Today’s data centers are built around conventional desktop processors whose ar-
chitecture was designed for a broad market. The dominant processor architecture
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closely followed the technology trends, improving single-thread performance with each
processor generation by using the increased clock speeds and “free” (in area and power)
transistors provided by progress in semiconductor manufacturing. Although Dennard
scaling has stopped [Esmaeilzadeh et al. 2011; Hameed et al. 2010; Hardavellas
et al. 2011; Venkatesh et al. 2010], with both clock frequency and transistor counts
becoming limited by power, processor architects have continued to spend resources on
improving single-thread performance for a broad range of applications at the expense
of area and power efficiency.

2.1. Dominant Processor Architectures

Modern processors comprise several aggressive out-of-order cores connected with a
high-bandwidth on-chip interconnect to a deep (three-level) cache hierarchy. While
core aggressiveness and clock frequency scaling enabled a rapid increase in computa-
tional performance, off-chip memory latency improvements were not as rapid. The
“memory wall”—the gap between the speed at which cores could compute and the
speed at which data could be delivered to the cores for computation—mandated that
the data working set must fit into the on-chip caches to allow the core to compute at
full speed. Modern processors therefore split the die area into two roughly equal parts,
with one part dedicated to the cores and tightly-coupled private caches and the other
dedicated to a large shared last-level cache. The emergence of multicore processors
offered the possibility to run computationally intensive multithreaded applications,
adding the requirement of fast and high-bandwidth core-to-core communication to al-
low cores to compute without incurring significant delays when operating on actively
shared data.

To leverage the increasing number of transistors on chip for higher single-thread
performance, cores are engineered to execute independent instructions out of order
(OoO), allowing the processor to temporarily bypass instructions that stall due to a
cache access. While OoO execution can improve core resource utilization through
instruction-level parallelism (ILP), the core’s complexity increases dramatically de-
pending on the width of the pipeline and the size of the reorder window. Large windows
require selecting and scheduling among many instructions while tracking all mem-
ory and register dependencies. This functionality requires a large and power-hungry
scheduler, reorder buffer, and load-store structures. Moreover, the efficacy of grow-
ing the instruction reorder window rapidly drops off, resulting in diminishing returns
at exponentially increasing area and energy costs with every processor generation.
Notably, although wide pipelines and large reorder windows do not harm the core per-
formance, low-ILP applications execute inefficiently because the area and power costs
spent on OoO execution do not yield a performance benefit.

The first-level instruction and data caches capture the primary working set of
applications, enabling low-latency access to the most-frequently referenced memory
addresses. To maintain low access latency, the first-level cache capacity must remain
small due to hardware constraints, whereas the last-level caches can have larger
capacity, but with a higher access latency. As the size of the last-level cache (LLC) has
reached tens of megabytes in modern processors, the access latency of the LLC has
itself created a speed gap between the first-level caches and LLC, pushing processor
designers to mitigate the gap by inserting an intermediate-size secondary cache. Addi-
tionally, to further mitigate the large LLC latency, the number of miss-status handling
registers (MSHRs) is increased to allow for a large number of memory-reference
instructions to be performed in parallel. Like the core structures for supporting
ILP, the mechanisms to support memory-level parallelism (MLP) use considerable
area and energy. Increasing parallelism in LLC and off-chip accesses can give a
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tremendous performance improvement when many independent memory accesses are
available to execute, but results in poor efficiency when executing workloads with
low MLP.

To increase the core utilization when MLP is low, modern processors add support
for simultaneous multithreading (SMT), enabling multiple software threads to be exe-
cuted simultaneously in the same core. SMT cores operate like single-threaded cores,
but introduce instructions from two independent software threads into the reorder
window, enabling the core to find independent memory accesses and perform them in
parallel, even when both software threads have low MLP. However, introducing in-
structions from multiple software threads into the same pipeline causes contention for
core resources, limiting the performance of each thread compared to when that thread
runs alone.

2.2. Dominant Scale-Out Workloads

To find a set of applications that dominate today’s cloud infrastructure, we examined
a selection of internet services based on their popularity [Alexa 2012]. For each popu-
lar service, we analyzed the class of application software used by the major providers
to offer these services, either on their own cloud infrastructure or on a cloud infras-
tructure leased from a third party. We present an overview of the applications most
commonly found in today’s clouds, along with brief descriptions of typical configuration
characteristics and dataset sizes. Overall, we find that scale-out workloads have simi-
lar characteristics; all applications we examined (1) operate on large data sets that are
split across a large number of machines, typically into memory-resident shards, (2)
serve large numbers of completely independent requests that do not share any state,
(3) have application software designed specifically for the cloud infrastructure where
unreliable machines may come and go, and (4) use intermachine connectivity only for
high-level task management and coordination.

Data Caching. Popular online applications rely on several tiers of servers. These
services commonly have a frontend server that accepts the client requests and cooper-
ates with backend servers to provide responses to the service users. The bulk of the
dataset resides in the backend servers, where highly-specialized software is deployed
to organize and maintain the dataset and to serve the frontend read and write requests
to specific pieces of the data.

Frequently, the computational complexity and persistence requirements of the back-
end servers do not permit sufficiently high throughput or sufficiently low latency to op-
erate large-scale services. In such cases, an additional layer of in-memory data caching
servers is used to maintain a subset of the hot data, enabling high performance by
quickly servicing the majority of the requests from an in-memory cache and avoiding
sending these requests to the more complex backend servers. Although traditional
data caching servers predominantly observed read requests, the rapid evolution and
adoption of caching servers has resulted in their adaptation for other uses with higher
frequency of write requests. Today, in addition to reducing the load on the backend
data servers, data caching servers are also used for server-side storage of non-critical
objects that do not require persistence in case of failure; for example, web client session
data is frequently stored in the caching servers without saving the data to permanent
storage at the backend.

Data Serving. The requirements of the backing stores in global-scale online appli-
cations differ from the requirements of databases deployed in traditional transaction
processing applications (e.g., banking systems). The larger scale of client base results
in higher demand for service throughput. The actions and contents generated by the
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large number of users results in a large volume of mostly unstructured data to be
stored and processed in a timely manner. The data consistency requirements are
usually more relaxed for online services. Moreover, popular services continuously add
more features to enhance their services and to attract more clients. To meet all these
demands, service operators started adopting non-traditional databases to achieve the
scalability, speed, and flexibility requirements of their services.

Various NoSQL data stores [Cassandra 2012; Chang et al. 2006; DeCandia et al.
2007] have been explicitly designed to serve as the backing store for large-scale web
applications such as the Facebook inbox, Google Earth, and Google Finance, provid-
ing fast and scalable storage with varying and rapidly evolving storage schemas. The
NoSQL systems split hundreds of terabytes of data into shards and horizontally scale
out to large cluster sizes. Most operations on requested objects are performed using
indexes that support fast lookup and key range scans. For simplicity and scalability,
these systems are designed to support queries that can be completely executed by a
single machine, with all operations that require combining data from multiple shards
relegated to the middleware.

MapReduce. Data is getting generated at extremely high rates from nontraditional
sources (e.g., social media, blogs, sensors, and media streams) and in varying forms
(e.g., text files, click streams, videos, sensor data, and log files). Finding insights in
the available data opens opportunities to achieve significant benefits, such as busi-
ness profits and security improvements, and to even answer analytics questions that
were previously considered beyond reach. Finding those insights requires automated
analytical processing to cluster, classify, and filter big data.

The map-reduce paradigm [Dean and Ghemawat 2004] has emerged as a popular
approach to large-scale analysis, farming out requests to a cluster of machines that
first perform filtering and transformation of the data (map) and then aggregate the re-
sults (reduce). A key advantage of the map-reduce paradigm is the separation of infras-
tructure and algorithms [Mahout 2012]. Users implement algorithms using map and
reduce functions and provide these functions to the map-reduce infrastructure, which
is then responsible for orchestrating the work. Because of the generality of the infras-
tructure and the need to scale to thousands of independent servers, communication
between tasks is typically limited to reading and writing files in a distributed file sys-
tem. For example, map tasks produce temporary files that are subsequently read by the
reduce tasks, effectively rendering all map and reduce tasks architecturally indepen-
dent. Whenever possible, the map-reduce infrastructures strive to further reduce com-
munication by scheduling the processing of data on the servers that store that data.

Text analysis has emerged as one of the popular tasks applied at various stages of
big data analysis such as filtering operations (e.g., log analysis), targeted crawling,
spam identification, and sentiment analysis. As a typical machine learning task, text
classification involves building a model of the data being classified and then using this
model to classify the dataset using a cluster of map-reduce nodes.

Media Streaming. The availability of high-bandwidth connections to home and
mobile devices has made media streaming services such as NetFlix, YouTube, and
YouKu ubiquitous. The process of streaming the packetized video contents and the pro-
tocols involved in the streaming process vary among the service providers and client
devices. For example, while the desktop version of YouTube streams contents over
HTTP, the mobile version (i.e., m.youtube.com) uses RTSP (real-time streaming proto-
col). Regardless of the protocol details, all streaming service providers use large server
clusters to gradually packetize and transmit media files ranging from megabytes to
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gigabytes in size, pre-encoded in various formats and bit-rates to suit a diverse client
base.

The various media streaming methods involve common tasks, starting with the
clients sending requests to a frontend/load-balancer that accepts the client requests
and balances the load on the various backend streaming servers. Once the connection
is established between the streaming server and the client, the server starts to grad-
ually send the necessary frames at the rate requested by the client, until the video
duration is finished or according to the client interactions with the server (e.g., termi-
nate, skip forward, or rewind).

To improve quality of service, the media dataset is both sharded and replicated
among many servers. Sharding of media content ensures that servers frequently send
the same content to multiple users, enabling in-memory caching of content by the
servers. While in-memory caching is effective, the on-demand unicast nature of today’s
streaming services practically guarantees that the streaming server will work on a
different piece of the media file for each client, even when concurrently streaming the
same file to many clients.

SAT Solver. The ability to temporarily allocate, almost infinite compute resources
in the cloud without purchasing the infrastructure has created an opportunity for engi-
neers and researchers to conduct large-scale computations, which would be otherwise
considered impractical. Cloud9 [Ciortea et al. 2010], provides software testing as a
service in the cloud, relying on symbolic execution algorithms. Such complex algo-
rithms become tractable when the computation is split into smaller subproblems and
distributed within the cloud where a large number of SAT Solver processes are hosted.

Cloud environments offer dynamic and heterogeneous resources that are loosely
connected over an IP network. The Cloud9 large-scale computation tasks are there-
fore adapted to a worker-queue model with centralized load balancing that rebalances
tasks across a dynamic pool of compute resources, minimizing the amount of data
exchanged between the workers and load balancers and practically eliminating any
communication between workers.

Web Frontend. Accessing web pages has been the backbone of all internet-based
services. Traditional web applications followed a model where the service published
a mostly-static page that would be accessed by many users. The interactions between
the users and the page contents were minimal. However, web serving technologies
have seen critical changes over the past several years. For example, the wide adoption
of Web 2.0 concepts has led to a richer user experience (e.g., widgets and interactive
web applications) where online services are dominated by user-generated contents.
Interactive web applications result in a higher number of smaller dynamic requests
and affect the way web servers are designed and optimized.

Popular online services rely on fast, reliable, and scalable web frontend servers to
provide their clients with a high-quality experience. Although a variety of web soft-
ware stacks are used in datacenters, the underlying service architectures are similar.
A load balancer distributes independent client requests (e.g., read and write request)
across a large number of stateless web servers. The frontend web servers cooperate
with the backend tiers (e.g., NoSQL or traditional databases) to serve pages that in-
clude dynamically retrieved and frequently changing contents.

Web Search. Web search engines, such as those powering Google and Microsoft
Bing, have become fundamental to web users’ experience. Although the major search
engine operators compete using different technologies, the fundamental service archi-
tecture and tasks involved in a search operation are similar; search engines comprise
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Table I. Architectural Parameters

Processor 32nm Intel Xeon X5670, operating at 2.93 GHz.
CMP width 6 OoO cores
Core width 4-wide issue and retire

Reorder buffer 128 entries
Load/Store buffer 48/32 entries

Reservation stations 36 entries
L1 cache 32KB, split I/D, 4-cycle access latency
L2 cache 256KB per core, 6-cycle access latency

LLC (L3 cache) 12MB, 29-cycle access latency
Memory 24GB, 3 DDR3 channels, delivering up to 32GB/s

several stages of nodes, starting with a frontend that accepts the user queries and
ending with index serving nodes (ISN) that contain the dataset (i.e., a web index). The
dataset is harvested from web pages using a background crawling process. The crawl-
ing process fetches web pages, extracts the terms from the fetched text, and creates an
inverted index that maps each term to a list of web pages.

To support a large number of concurrent latency-sensitive search queries against
the index, the data is split into memory-residents shards, with each index serving
node (ISN) responsible for processing requests to its own shard. Hundreds of unrelated
search requests are handled by each ISN every second, with minimal locality; shards
are therefore sized to fit into the memory of the ISNs to avoid reducing throughput and
degrading quality of service due to disk I/O. For performance scalability, ISNs may be
replicated, allowing the frontend to load balance requests among multiple ISNs that
are responsible for the same shard. ISNs communicate with the frontend machines
and not with other ISNs. In an ISN, each request is handled by a software thread,
without communicating with other threads.

A search operation begins when a user submits a search query to a frontend server.
The frontend distributes the query to the ISNs. Each ISN is responsible for performing
the query against its index shard and returning a list with the top N addresses (based
on the service’s specific ranking algorithm) to the frontend server. The frontend is
then responsible for merging and sorting the addresses received from all ISNs. After
selecting the top-ranked addresses, the frontend collects text captions for each of the
top addresses from the corresponding ISNs. Finally, the frontend generates an HTML
page that contains the top results formatted with their captions and sends the result
page to the user.

3. METHODOLOGY

We conduct our study on a PowerEdge M1000e enclosure [Dell 2012] with two Intel
X5670 processors and 24GB of RAM in each blade. Each Intel X5670 processor in-
cludes six aggressive out-of-order processor cores with a three-level cache hierarchy:
the L1 and L2 caches are private to each core, while the LLC (L3) is shared among
all cores. Each core includes several simple stride and stream prefetchers labeled as
adjacent-line, HW prefetcher, and DCU streamer in the processor documentation and
system BIOS settings. The blades use high-performance Broadcom server NICs with
drivers that support multiple transmit queues and receive-side scaling. The NICs are
connected by a built-in M6220 switch. For bandwidth-intensive benchmarks, two giga-
bit NICs are used in each blade. Table I summarizes the key architectural parameters
of the systems.
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In this work, we introduce CloudSuite, a benchmark suite of emerging scale-
out workloads. We present a characterization of the CloudSuite workloads along-
side traditional benchmarks, including desktop and engineering (SPEC2006), parallel
(PARSEC), enterprise web (SPECweb09), and relational database server (TPC-C, TPC-
E, Web Backend) workloads. For all but the TPC-E benchmark, we use CentOS 5.5
with the 2.6.32 Linux kernel. For the TPC-E benchmark, we use Microsoft Windows
Server 2008 R2.

3.1. Measurement Tools and Methodology

We analyze architectural behavior using Intel VTune [Intel 2012], a tool that provides
an interface to the processor performance counters. For all scale-out and traditional
server workloads except SAT Solver, we perform a 180-second measurement after the
workload completes the ramp-up period and reaches a steady state. Because SAT
Solver has no steady-state behavior, we achieve comparable results across runs by
reusing input traces. We create SAT Solver input traces that take 45 minutes to ex-
ecute in our baseline setup and use the first 30 minutes as warmup and the last 15
minutes as the measurement window. We measure the entire execution of the PAR-
SEC and SPEC CPU2006 applications.

For our evaluation, we limit all workload configurations to four cores, tuning the
workloads to achieve high utilization of the cores (or hardware threads, in the case of
the SMT experiments) while maintaining the workload QoS requirements. To ensure
that all application and operating system software runs on the cores under test, we
disable all unused cores using the available operating system mechanisms.

We note that computing a breakdown of the execution-time stall components of
superscalar out-of-order processors cannot be performed precisely due to overlapped
work in the pipeline [Eyerman et al. 2006; Keeton et al. 1998]. We present execution-
time breakdown results based on the performance counters that have no overlap. How-
ever, we plot memory cycles side-by-side rather than in a stack to indicate the potential
overlap with cycles during which instructions were committed. We compute the mem-
ory cycles as a sum of the cycles when an off-core request was outstanding, instruction
stall cycles contributed by L2 instruction hits, second-level TLB miss cycles, and the
first-level instruction TLB miss cycles. Because data stalls can overlap other data
stalls, we compute the number of cycles when an off-core request was outstanding us-
ing MSHR occupancy statistics,1 which measure the number of cycles when there is at
least one L2 miss being serviced. We do not include L1-D and L2 data cache hits in the
computation because they can be effectively hidden by the out-of-order core [Karkhanis
and Smith 2004].

We perform a cache sensitivity analysis by dedicating two cores to cache-polluting
threads. The polluter threads traverse arrays of predetermined size in a pseudoran-
dom sequence, ensuring that all accesses miss in the upper-level caches and reach the
LLC. We use performance counters to confirm that the polluter threads achieve nearly
100% hit ratio in the LLC, effectively reducing the cache capacity available for the
workload running on the remaining cores of the same processor.

To measure the frequency of read-write sharing, we execute the workloads on cores
split across two physical processors in separate sockets. When reading a recently mod-
ified block, this configuration forces accesses to actively-shared read-write blocks to
appear as off-chip accesses to a remote processor cache.

1In the processors we study, we measure the occupancy statistics of the super queue structure, which tracks
all accesses that miss in the L1 caches.
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3.2. Scale-Out Workload Experimental Setup

Data Caching. We benchmark the Twemcache 2.5.0 memory object caching system
(a scalable variant of the popular Memcached software) with a 2GB Yahoo! Cloud
Serving Benchmark (YCSB) dataset. Server load is generated using the YCSB 0.1.3
client [Cooper et al. 2010] that sends requests following a Zipfian distribution with a
95:5 read to write request ratio using 1KB objects.

Data Serving. We benchmark the Cassandra 0.7.3 database with a 15GB Yahoo!
Cloud Serving Benchmark (YCSB) dataset. Server load is generated using the
YCSB 0.1.3 client [Cooper et al. 2010] that sends requests following a Zipfian dis-
tribution with a 95:5 read to write request ratio. Cassandra is configured with a 7GB
Java heap and 400MB new-generation garbage collector space.

MapReduce. We benchmark a node of a four-node Hadoop 0.20.2 cluster, running
the Bayesian classification algorithm from the Mahout 0.4 library [Mahout 2012]. The
algorithm attempts to guess the country tag of each article in a 4.5GB set of Wikipedia
pages. One map task is started per core and assigned a 2GB Java heap.

Media Streaming. We benchmark the Darwin Streaming Server 6.0.3, serving
videos of varying duration, using the Faban driver [Faban 2012] to simulate the clients.
We limit our setup to low bit-rate video streams to shift stress away from network I/O.

SAT Solver. We benchmark one instance per core of the Klee SAT Solver, an im-
portant component of the Cloud9 parallel symbolic execution engine [Ciortea et al.
2010]. Input traces for the engine are produced by Cloud9 by symbolically executing
the command-line printf utility from the GNU CoreUtils 6.10 using up to four 5byte
and one 10-byte symbolic command-line arguments.

Web Frontend. We benchmark a frontend machine serving Olio, a Web 2.0 web-
based social event calendar. The frontend machine runs Nginx 1.0.10 with PHP 5.3.5
and APC 3.1.8 PHP opcode cache. We generate a backend dataset using the Cloudstone
benchmark [Sobel et al. 2008] and use the Faban driver [Faban 2012] to simulate
clients. To limit disk space requirements, we generate a 12GB on-disk file dataset and
modify the PHP code to always serve files from the available range.

Web Search. We benchmark an index serving node (ISN) of the distributed version
of Nutch 1.2/Lucene 3.0.1 with an index size of 2GB and data segment size of 23GB of
content crawled from the public internet. We mimic real-world setups by making sure
that the search index fits in memory, eliminating page faults and minimizing disk
activity [Reddi et al. 2010]. We simulate clients using the Faban driver. The clients
are configured to achieve the maximum search request rate while ensuring that 90%
of all search queries complete in under 0.5 seconds.

3.3. Traditional Benchmark Experimental Setup

PARSEC 2.1. We benchmark the official applications with the native input, re-
porting results averaged across all benchmarks. We present results averaged into two
groups, CPU-intensive (cpu) and memory-intensive (mem) benchmarks.

SPEC CPU2006. We benchmark the official applications, both integer and floating
point, running with the first reference input, reporting results averaged across all
benchmarks. Similarly to PARSEC, we separately present CPU-intensive (cpu) and
memory-intensive (mem) applications.
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SPECweb09. We benchmark the e-banking workload running on the Nginx 1.0.1
web server with the FastCGI PHP 5.2.6 interpreter and APC 3.0.19 PHP opcode cache.
We disable connection encryption (SSL) when running SPECweb09 to allow for better
comparison to the Web Frontend workload.

TPC-C. We benchmark the TPC-C workload on a commercial enterprise database
management system (DBMS). The database load is generated by 32 clients configured
with zero think time and running on a separate machine. The TPC-C database has 40
warehouses. The DBMS is configured with a 3GB buffer pool and direct I/O.

TPC-E. We benchmark the TPC-E 1.12 workload on a commercial enterprise
database management system (DBMS). The client driver runs on the same machine,
bound to a core that is not used by the database software. The TPC-E database con-
tains 5000 customer records (52GB). The DBMS is configured with a 10GB buffer pool.

Web Backend. We benchmark a machine executing the database backend of the
Web Frontend benchmark presented previously. The back-end machine runs the
MySQL 5.5.9 database engine with a 2GB buffer pool.

3.4. I/O Infrastructure

Data-intensive scale-out workloads and traditional database server workloads exhibit
a significant amount of disk I/O, with a large fraction of the non-sequential read and
write accesses scattered throughout the storage space. If the underlying I/O bandwidth
is limited, either in raw bandwidth or in I/O operation throughput, the I/O latency is
exposed to the system, resulting in an I/O-bound workload where the CPU is under-
utilized and the application performance unnecessarily suffers.

To isolate the CPU behavior of the applications, our experimental setup over-
provisions the I/O subsystem to avoid an I/O bottleneck. To avoid bringing up disk
arrays containing hundreds of disks and flash devices, as it is traditionally done
with large-scale database installations [TPC 2012], we construct a network-attached
iSCSI storage array by creating large RAM disks in separate machines and connect
the machine under test to the iSCSI storage via the high-speed Ethernet network.
This approach places the entire dataset of our applications in the memory of the
remote machines, creating an illusion of a large disk cluster with extremely high I/O
bandwidth and low latency.

4. RESULTS

We begin exploring the microarchitectural behavior of scale-out workloads through
examining the commit-time execution breakdown in Figure 1. We classify each cycle
of execution as Committing if at least one instruction was committed during that cycle
or as Stalled otherwise. Overlapped with the execution-time breakdown, we show the
Memory cycles bar, which approximates the number of cycles when the processor could
not commit instructions due to outstanding long-latency memory accesses.

The execution-time breakdown of scale-out workloads is dominated by stalls in both
application code and operating system. Notably, most of the stalls in scale-out work-
loads arise due to long-latency memory accesses. This behavior is in contrast to the
CPU-intensive desktop (SPEC2006) and parallel (PARSEC) benchmarks, which stall
execution significantly less than 50% of the cycles and experience only a fraction of
the stalls due to memory accesses. Furthermore, although the execution-time break-
down of some scale-out workloads (e.g., MapReduce and SAT Solver) appears similar to
the memory-intensive PARSEC and SPEC2006 benchmarks, the nature of the stalls
of these workloads is different. Unlike the scale-out workloads, many PARSEC and
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Fig. 1. Execution-time breakdown and memory cycles of scale-out workloads (left) and traditional bench-
marks (right).

SPEC2006 applications frequently stall due to pipeline flushes after wrong-path in-
structions, with much of the memory access time not on the critical path of execution.

Scale-out workloads show memory system behavior that more closely matches tra-
ditional online transaction processing workloads (TPCC, TPCE, and Web Backend).
However, we observe that scale-out workloads differ considerably from traditional on-
line transaction processing (TPC-C) which spends over 80% of the time stalled due to
dependent memory accesses.2 We find that scale-out workloads are most similar to the
more recent transaction processing benchmarks (TPC-E) that use more complex data
schemas or perform more complex queries than traditional transaction processing. We
also observe that a traditional enterprise web workload (SPECweb09) behaves differ-
ently from the Web Frontend workload, representative of modern scale-out configura-
tions. While the traditional web workload is dominated by serving static files and a
small number of dynamic scripts, modern scalable web workloads like Web Frontend
handle a much higher fraction of dynamic requests, leading to higher core utilization
and less OS involvement.

Although the behavior across scale-out workloads is similar, the class of scale-out
workloads as a whole differs significantly from other workloads. Processor architec-
tures optimized for desktop and parallel applications are not optimized for scale-out
workloads that spend the majority of their time waiting for cache misses, resulting
in a clear microarchitectural mismatch. At the same time, architectures designed for
workloads that perform only trivial computation and spend all of their time waiting
on memory (e.g., SPECweb09 and TPC-C) also cannot cater to scale-out workloads. In
the rest of this section, we provide a detailed analysis of the inefficiencies of running
scale-out workloads on modern processors.

4.1. Frontend Inefficiencies

— Cores idle due to high instruction-cache miss rates
— L2 caches increase average I-fetch latency
— Excessive LLC capacity leads to long I-fetch latency

Instruction-fetch stalls play a critical role in processor performance by preventing
the core from making forward progress due to a lack of instructions to execute. Fron-
tend stalls serve as a fundamental source of inefficiency for both area and power, as

2In addition to instructions and data, TPC-C includes 14% Request-For-Ownership memory cycles. These
accesses are not on the critical path, but are part of the memory cycles that appear in Figure 1.
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Fig. 2. L1-I and L2 instruction miss rates for scale-out workloads (left) and traditional benchmarks (right).
The OS bars present the instruction cache miss rates of the workloads that spend significant time executing
operating system code.

the core real-estate and power consumption are entirely wasted for the cycles that the
frontend spends fetching instructions.

Figure 2 presents the L1-I and L2 instruction miss rates of our workloads. We find
that, in contrast to desktop and parallel benchmarks, the instruction working sets of
many scale-out workloads considerably exceed the L1-I cache capacity, resembling the
instruction-cache behavior of traditional server workloads. Moreover, the instruction
working sets of most scale-out workloads also exceed the L2 cache capacity, where even
relatively infrequent instruction misses incur considerable performance penalties.

We note that the operating system behavior differs between the scale-out workloads
and traditional server systems. Although many scale-out workloads actively use the
operating system, the functionality exercised by the scale-out workloads is more re-
stricted. Both L1-I and L2 operating system instruction cache miss rates across the
scale-out workloads are lower compared to traditional server workloads, indicating a
smaller operating system instruction working set in scale-out workloads.

Stringent access-latency requirements of the L1-I caches preclude increasing the
size of the caches to capture the instruction working set of many scale-out workloads,
which is an order of magnitude larger than the caches found in modern processors.
We find that modern processor architectures cannot tolerate the latency of L1-I cache
misses, avoiding frontend stalls only for applications whose entire instruction working
set fits into the L1 cache. Furthermore, the high L2 instruction miss rates indicate
that the L1-I capacity experiences a significant shortfall and cannot be mitigated by
the addition of a modestly sized L2 cache.

The disparity between the needs of the scale-out workloads and the processor archi-
tecture are apparent in the instruction-fetch path. Although exposed instruction-fetch
stalls serve as a key source of inefficiency under any circumstances, the instruction-
fetch path of modern processors actually exacerbates the problem. The L2 cache expe-
riences high instruction miss rates, increasing the average fetch latency of the missing
fetch requests by placing an additional intermediate lookup structure on the path to
retrieving instruction blocks from the LLC. Moreover, the entire instruction working
set of any scale-out workload is considerably smaller than the LLC capacity. However,
because the LLC is a large cache with large uniform access latency, it contributes an
unnecessarily large instruction-fetch penalty (29 cycles to access the 12MB cache).
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Implications. To improve efficiency and reduce frontend stalls, processors built for
scale-out workloads must bring instructions closer to the cores. Rather than relying on
a deep hierarchy of caches, a partitioned organization that replicates instructions and
makes them available close to the requesting cores [Hardavellas et al. 2009] is likely
to considerably reduce frontend stalls. To effectively use the on-chip real-estate, the
system would need to share the partitioned instruction caches among multiple cores,
striking a balance between the die area dedicated to replicating instruction blocks and
the latency of accessing these blocks from the closest cores.

Furthermore, although modern processors include next-line prefetchers, high
instruction-cache miss rates and significant frontend stalls indicate that the pre-
fetchers are ineffective for scale-out workloads. Scale-out workloads are written in
high-level languages, use third-party libraries, and execute operating system code, ex-
hibiting complex non-sequential access patterns that are not captured by simple next-
line prefetchers. Including instruction prefetchers that predict these complex patterns
is likely to improve overall processor efficiency by eliminating wasted cycles due to
front-end stalls.

4.2. Core Inefficiencies

— Low ILP precludes effectively using the full core width
— ROB and LSQ are underutilized due to low MLP

Modern processors execute instructions out of order to enable simultaneous execu-
tion of multiple independent instructions per cycle. Additionally, out-of-order execu-
tion elides stalls due to memory accesses by executing independent instructions that
follow a memory reference while the long-latency cache access is in progress. Mod-
ern processors support up to 128-instruction windows, with the width of the processor
dictating the number of instructions that can simultaneously execute in one cycle.

In addition to exploiting ILP, large instruction windows can exploit memory-level
parallelism (MLP) by finding independent memory-accesses within the instruction
window and performing the memory accesses in parallel. The latency of LLC hits and
off-chip memory accesses cannot be hidden by out-of-order execution; achieving high
MLP is therefore key to achieving high core utilization by reducing the data access
latency.

Modern processors use 4-wide cores that can decode, issue, execute, and commit up
to four instructions on each cycle. However, in practice, instruction-level parallelism
(ILP) is limited by dependencies. The Baseline bars in Figure 3 (left) show the aver-
age number of instructions committed per cycle when running on an aggressive 4-wide
out-of-order core. Despite the abundant availability of core resources and functional
units, scale-out workloads achieve a modest application IPC, typically in the range
of 0.6 (Data Caching and Media Streaming) to 1.1 (Web Frontend). Although work-
loads that can benefit from wide cores exist, with some CPU-intensive PARSEC and
SPEC2006 applications reaching an IPC of 2.0 (indicated by the range bars in the
figure), using wide processors for scale-out applications does not yield significant
benefit.

Modern processors have 48-entry load-store queues, enabling up to 48 memory-
reference instructions in the 128-instruction window. However, just as instruction
dependencies limit ILP, address dependencies limit MLP. The Baseline bars in
Figure 3 (right) present the MLP, ranging from 1.4 (Web Frontend) to 2.3 (SAT
Solver) for the scale-out workloads. These results indicate that the memory accesses
in scale-out workloads are replete with complex dependencies, limiting the MLP that
can be found by modern aggressive processors. We again note that while desktop and
parallel applications can use high-MLP support, with some PARSEC and SPEC2006
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Fig. 3. Application instructions committed per cycle for systems with and without SMT out of maximum
IPC of 4 (left) and memory-level parallelism for systems with and without SMT (right). Range bars indicate
the minimum and maximum of the corresponding group.

applications having an MLP up to 5.0, support for high MLP is not useful for scale-out
applications. However, we find that scale-out workloads generally exhibit higher MLP
than traditional server workloads.

Support for 4-wide out-of-order execution with a 128-instruction window and up
to 48 outstanding memory requests requires multiple-branch prediction, numerous
ALUs, forwarding paths, many-port register banks, large instruction schedulers,
highly-associative reorder buffers (ROB) and load-store queues (LSQ), and many other
complex on-chip structures. The complexity of the cores limits core count, leading to
chip designs with several cores that consume half of the available on-chip real-estate
and dissipate the vast majority of the chip’s dynamic power budget. However, our
results indicate that scale-out workloads exhibit low ILP and MLP, deriving benefit
only from a small degree of out-of-order execution. As a result, the nature of scale-out
workloads cannot effectively utilize the available core resources. Both the die area
and the energy are wasted, leading to data-center inefficiency. Entire buildings are
packed with aggressive cores, designed to commit 4 instructions per cycle with over 48
outstanding memory requests, but executing applications with an average IPC of 0.8
and average MLP of 1.9. Moreover, current industry trends point toward greater inef-
ficiency in the future; over the past two decades, processors have gradually moved to
increasingly complex cores, raising the core width from 2-way to 4-way and increasing
the window size from 20 to 128 instructions.

The inefficiency of modern cores running applications without abundant IPC and
MLP has led to the addition of simultaneous multithreading (SMT) to the processor
cores to enable the core resources to be simultaneously shared by multiple software
threads, thereby guaranteeing that independent instructions are available to exploit
parallelism. We present the IPC and MLP of an SMT-enabled core in Figure 3 using
the bars labeled SMT. As expected, the MLP found and exploited by the cores when
two independent application threads run on each core concurrently is nearly doubled
compared to the system without SMT. Unlike traditional database server workloads
that contain many inter-thread dependencies and locks, the independent nature of
threads in scale-out workloads enables them to observe considerable performance ben-
efits from SMT, with 39-69% improvements in IPC.

Implications. The nature of scale-out workloads makes them ideal candidates to
exploit multithreaded multicore architectures. Modern mainstream processors offer
excessively complex cores, resulting in inefficiency through waste of resources. At the
same time, our results corroborate prior work [Reddi et al. 2010], indicating that niche
processors offer excessively simple (e.g., in-order [Davis et al. 2005; Kgil et al. 2006])
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cores that cannot leverage the available ILP and MLP in scale-out workloads. We
find that scale-out workloads would be well-suited by architectures offering multiple
independent threads per core with a modest degree of superscalar out-of-order
execution and support for several simultaneously outstanding memory accesses. For
example, rather than implementing SMT on a 4-way core, two independent 2-way
cores would consume fewer resources while achieving higher aggregate performance.
Furthermore, each narrower core would not require a large instruction window,
reducing the per-core area and power consumption compared to modern processors
and enabling higher compute density by integrating more cores per chip.

4.3. Data-Access Inefficiencies

— Large LLC consumes area, but does not improve performance
— Simple data prefetchers are ineffective

More than half of commodity processor die area is dedicated to the memory system.
Modern processors feature a three-level cache hierarchy where the last-level cache
(LLC) is a large-capacity cache shared among all cores. To enable high-bandwidth data
fetch, each core can have up to 16 L2 cache misses in flight. The high-bandwidth on-
chip interconnect enables cache-coherent communication between the cores. To miti-
gate the capacity and latency gap between the L2 caches and LLC, each L2 cache is
equipped with prefetchers that can issue prefetch requests into the LLC and off-chip
memory. Multiple DDR3 memory channels provide high-bandwidth access to off-chip
memory.

The LLC is the largest on-chip structure; its cache capacity has been increasing
with each processor generation due to semiconductor manufacturing improvements.
We investigate the utility of growing the LLC capacity for scale-out workloads in
Figure 4. We plot the average system performance3 of scale-out workloads as a func-
tion of the LLC capacity, normalized to a baseline system with a 12MB LLC. Unlike
in the memory-intensive desktop applications (e.g., SPEC2006 mcf), we find minimal
performance sensitivity to LLC size above 4-6MBs in scale-out and traditional server
workloads. The LLC captures the instruction working sets of scale-out workloads,
which are less than two megabytes. Beyond this point, small shared supporting
structures may consume another one to two megabytes. Because scale-out workloads
operate on massive datasets and service a large number of concurrent requests, both
the dataset and the per-client data are orders of magnitude larger than the available
on-chip cache capacity. As a result, an LLC that captures the instruction working set
and minor supporting data structures achieves nearly the same performance as an
LLC with double or triple the capacity.

Our results show that the on-chip resources devoted to the LLC are one of the key
limiters of scale-out application compute density in modern processors. For traditional
workloads, increasing the LLC capacity captures the working set of a broader range
of applications, contributing to improved performance due to a reduction in average
memory latency for those applications. However, because the LLC capacity already
exceeds the scale-out application requirements by 2-3×, whereas the next working set
exceeds any possible SRAM cache capacity, the majority of the die area and power
currently dedicated to the LLC is wasted. Moreover, prior research [Hardavellas et al.
2007] has shown that increases in the LLC capacity that do not capture a working
set lead to an overall performance degradation—LLC access latency is high due to its

3User-IPC has been shown to be proportional to application throughput [Wenisch et al. 2006]. We verified
this relationship for the scale-out workloads.
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Fig. 4. Performance sensitivity to LLC.
Fig. 5. L2 hit ratios of a system with enabled and
disabled adjacent-line and HW prefetchers.

large capacity, not only wasting on-chip resources, but also penalizing all L2 cache
misses by slowing down LLC hits and delaying off-chip accesses.

In addition to leveraging MLP to overlap demand requests from the processor core,
modern processors use prefetching to speculatively increase MLP. Prefetching has
been shown effective at reducing cache miss rates by predicting block addresses that
will be referenced in the future and bringing these blocks into the cache prior to the
processor’s demand, thereby hiding the access latency. In Figure 5, we present the hit
ratios of the L2 cache when all available prefetchers are enabled (Baseline), as well
as the hit ratios after disabling the prefetchers. We observe a noticeable degradation
of the L2 hit ratios of many desktop and parallel applications when the adjacent-line
prefetcher and L2 HW prefetcher are disabled. In contrast, only one of the scale-out
workloads (MapReduce) significantly benefits from these prefetchers, with the major-
ity of the workloads experiencing negligible changes in the cache hit rate. Moreover,
similar to traditional server workloads (TPC-C), disabling the prefetchers results in an
increase in the hit ratio for some scale-out workloads (Data Caching, Media Streaming,
SAT Solver). Finally, we note that the DCU streamer (not shown) provides no benefit
to scale-out workloads, in some cases marginally increasing the L2 miss rate because
it pollutes the cache with unnecessary blocks.

Implications. While modern processors grossly over-provision the memory system,
data-center efficiency can be improved by matching the processor design to the needs
of the scale-out workloads. Whereas modern processors dedicate approximately half
of the die area to the LLC, scale-out workloads would likely benefit from a different
balance. A two-level cache hierarchy with a modestly sized LLC that makes special
provision for caching instruction blocks would benefit performance. The reduced LLC
capacity along with the removal of the ineffective L2 cache would offer access-latency
benefits while at the same time freeing up die area and power. The die area and power
can be applied toward improving compute density and efficiency by adding more hard-
ware contexts and more advanced prefetchers. Additional hardware contexts (more
threads per core and more cores) should linearly increase application parallelism,
while more advanced correlating data prefetchers could accurately prefetch complex
access data patterns and increase the performance of all cores.

4.4. Bandwidth Inefficiencies

— Lack of data sharing deprecates coherence and connectivity
— Off-chip bandwidth exceeds needs by an order of magnitude

Increasing core counts have brought parallel programming into the main-
stream, highlighting the need for fast and high-bandwidth intercore communication.
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Fig. 6. Percentage of LLC data references access-
ing cache blocks modified by a thread running on a
remote core.

Fig. 7. Average off-chip memory bandwidth utiliza-
tion as a percentage of available off-chip bandwidth.

Multithreaded applications comprise a collection of threads that work in tandem to
scale up the application performance. To enable effective scale-up, each subsequent
generation of processors offers a larger core count and improves the on-chip connectiv-
ity to support faster and higher-bandwidth core-to-core communication.

We investigate the utility of the on-chip interconnect for scale-out workloads in
Figure 6. We plot the fraction of L2 misses that access data most recently written
by another thread running on a remote core, breaking down each bar into Application
and OS components to offer insight into the source of the data sharing.

In general, we observe limited read-write sharing across the scale-out Applications.
We find that the OS-level data sharing is dominated by the network subsystem, seen
most prominently in the Data Caching workload, which spends the majority of its
time in the OS. This observation highlights the need to optimize the OS to reduce the
amount of false sharing and data movement in the scheduler and network-related data
structures. Multithreaded Java-based applications (Data Serving and Web Search)
exhibit a small degree of sharing due to the use of a parallel garbage collector that
may run a collection thread on a remote core, artificially inducing application-level
communication. Additionally, we found that the Media Streaming server updates
global counters to track the total number of packets sent; reducing the amount of
communication by keeping per-thread statistics is trivial and would eliminate the
mutex lock and shared-object scalability bottleneck, an optimization that is already
present in the Data Caching server we use. We note that the on-chip application-level
communication in scale-out workloads is distinctly different from traditional database
server workloads (TPC-C, TPC-E, and Web Backend), which experience frequent
interaction between threads on actively shared data structures that are used to
service client requests.

The low degree of active sharing indicates that wide- and low-latency interconnects
available in modern processors are over-provisioned for scale-out workloads. Although
the overhead with a small number of cores is limited, as the number of cores on chip
increases, the area and energy overhead of enforcing coherence becomes significant.
Likewise, the area overheads and power consumption of an over-provisioned high-
bandwidth interconnect further increase processor inefficiency.

Beyond the on-chip interconnect, we also find off-chip bandwidth inefficiency. While
the off-chip memory latency has improved slowly, off-chip bandwidth has been improv-
ing at a rapid pace. Over the course of two decades, the memory bus speeds have
increased from 66MHz to dual-data-rate at over 1GHz, raising the peak theoretical
bandwidth from 544MB/s to 17GB/s per channel, with the latest server processors
having four independent memory channels. In Figure 7, we plot the per-core off-chip
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bandwidth utilization of our workloads as a fraction of the available per-core off-chip
bandwidth. Scale-out workloads experience non-negligible off-chip miss rates, how-
ever, the MLP of the applications is low due to the complex data structure depen-
dencies, leading to low aggregate off-chip bandwidth utilization even when all cores
have outstanding off-chip memory accesses. Among the scale-out workloads we ex-
amine, Media Streaming is the only application that uses up to 15% of the avail-
able off-chip bandwidth. However, we note that our applications are configured to
stress the processor, actually demonstrating the worst-case behavior. Overall, we find
that modern processors significantly over-provision off-chip bandwidth for scale-out
workloads.

Implications. The on-chip interconnect and off-chip memory buses can be scaled
back to improve processor efficiency. Because the scale-out workloads perform only
infrequent communication via the network, there is typically no read-write sharing
in the applications; processors can therefore be designed as a collection of core is-
lands using a low-bandwidth interconnect that does not enforce coherence between
the islands, eliminating the power associated with the high-bandwidth interconnect
as well as the power and area overheads of fine-grained coherence tracking. Off-chip
memory buses can be optimized for scale-out workloads by scaling back unnecessary
bandwidth. Memory controllers consume a large fraction of the chip area and memory
buses are responsible for a large fraction of the system power. Reducing the number of
memory channels and the power draw of the memory buses should improve scale-out
workload efficiency without affecting application performance.

5. RELATED WORK

Previous research has characterized the microarchitectural behavior of traditional
commercial server applications when running on modern hardware, using real
machines [Ailamaki et al. 1999; Keeton et al. 1998] and simulation environments
[Hardavellas et al. 2007, 2009; Lo et al. 1998; Ranganathan et al. 1998]. We include
traditional server applications in our study to compare them with scale-out workloads
and to validate our evaluation framework.

The research community uses the PARSEC benchmark suite to perform experi-
ments with chip multiprocessors [Bienia et al. 2008]. Bienia et al. [2008] characterize
the PARSEC suite’s working sets and the communication patterns among threads. In
our work, we examine the execution time breakdown of PARSEC. Unlike the scale-out
and traditional server applications, PARSEC has a negligible instruction working set
and exhibits a high degree of memory-level parallelism, displaying distinctly different
microarchitectural behavior compared to scale-out workloads.

Previous research analyzed various performance or power inefficiencies of modern
processors running traditional commercial applications [Davis et al. 2005; Hameed
et al. 2010; Hardavellas et al. 2007; Kgil et al. 2006; Ranganathan and Jouppi
2005; Tuck and Tullsen 2003]. Tuck and Tullsen [2003] showed that simultaneous
multithreading can improve performance of scientific and engineering applications
by 20–25% on a Pentium4 processor. Our results show similar trends for scale-out
workloads. Kgil et al. [2006] show that, for a particular class of throughput-oriented
web workloads, modern processors are extremely power inefficient, arguing that the
chip area should be used for processing cores rather than caches. A similar observation
has been made in the GPU domain [Guz et al. 2012]. Our results corroborate these
findings, showing that, for scale-out workloads, the time spent accessing the large and
slow last-level caches accounts for more than half of the data stalls [Hardavellas et al.
2007], calling for resizing and reorganizing the cache hierarchy. We draw similar con-
clusions to Davis et al. [2005] and Hardavellas et al. [2007] who showed that heavily
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multithreaded in-order cores are more efficient for throughput-oriented workloads
compared to aggressive out-of-order cores. Ranganathan and Jouppi [2005] motivate
the need for integrated analysis of microarchitectural efficiency and application
service-level agreements in their survey of enterprise information technology trends.
To address the power inefficiencies of current general-purpose processors, specializa-
tion at various hardware levels has been proposed [Hameed et al. 2010; Venkatesh
et al. 2010].

As cloud computing has become ubiquitous, there has been significant research
activity on characterizing particular scale-out workloads, either microarchitecturally
[Reddi et al. 2010; Tang et al. 2011], or at the system level [Cooper et al. 2010;
Kozyrakis et al. 2010; Li et al. 2010a, 2010b; Soundararajan and Anderson 2010].
To the best of our knowledge, our study is the first work to systematically charac-
terize the microarchitectural behavior of a wide range of cloud services. Kozyrakis
et al. [2010] presented a system-wide characterization of large-scale online services
provided by Microsoft and showed the implications of such workloads on data-center
server design. Reddi et al. [2010] characterized the Bing search engine, showing
that the computational intensity of search tasks is increasing as a result of adding
more machine learning features to the engine. These findings are consistent with our
results, which show that web search has the highest IPC among the studied scale-out
workloads.

Much work focused on benchmarking the cloud and datacenter infrastructure. The
Yahoo! Cloud Serving Benchmark (YCSB) [Cooper et al. 2010] is a framework to bench-
mark large-scale distributed data serving systems. We include results for the YCSB
benchmark and provide its microarchitectural characterization running on Cassan-
dra, a popular cloud database. Fan et al. [2007] discuss web mail, web search, and
map-reduce as three representative workloads present in the Google datacenter. Lim
et al. [2008] extend this set of benchmarks and add an additional media streaming
workload. They further analyze the energy efficiency of a variety of systems when run-
ning these applications. Our benchmark suite similarly includes workloads from these
categories.

CloudCmp [Li et al. 2010a, 2010b] is a framework to compare cloud providers us-
ing a systematic approach to benchmarking various components of the infrastructure.
Huang et al. [2010] analyzed performance and power characteristics of Hadoop clus-
ters using HiBench, a benchmark that specifically targets the Hadoop map-reduce
framework. Our MapReduce benchmark uses the same infrastructure. However, we
provide the microarchitectural, rather than a system-wide, characterization of the
map-reduce workload. For benchmarking modern web technologies, we use Cloud-
Stone [Sobel et al. 2008], an open source benchmark that simulates activities related
to social events.

6. CONCLUSIONS

Cloud computing has emerged as a dominant computing platform to provide hundreds
of millions of users with online services. To support the growing popularity and con-
tinue expanding their services, cloud providers must work to overcome the physical
space and power constraints limiting data-center growth. While strides have been
made to improve data-center efficiency at the rack and chassis-levels, we observe that
the predominant processor microarchitecture of today’s data centers is inherently
inefficient for running scale-out workloads, resulting in low compute density and poor
tradeoffs between performance and energy.

In this work, we used performance counters to analyze the microarchitectural be-
havior of a wide range of scale-out workloads. We analyzed and identified the key
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sources of area and power inefficiency in the instruction fetch, core microarchitec-
ture, and memory system organization. We then identified the specific needs of scale-
out workloads and suggested the architectural modifications that can lead to dense
and power-efficient data-center processor designs in the future. Specifically, our anal-
ysis showed that efficiently executing scale-out workloads requires optimizing the
instruction-fetch path for multi-megabyte instruction working sets, reducing the core
aggressiveness and last-level cache capacity to free area and power resources in favor
of more cores each with more hardware threads, and scaling back the over-provisioned
on-chip and off-chip bandwidth.
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APPENDIX A

This appendix describes the performance counter methodology used in Section 4. We
break down events into Application and OS components, by considering kernel, net-
work, filesystem, and other OS-related modules as part of the OS (i.e., vmlinux, bnx2,
nfs, sep3 4, ext3, libiscsi, iscsi tcp).

A.1. Execution-Time Breakdown and Memory Cylces

Components Methodology
Stalled UOPS RETIRED.STALL CYCLES
Committing UOPS RETIRED.ACTIVE CYCLES
Memory The sum of the following sub-components:

LLC+Mem stalls: OFFCORE REQUESTS OUTSTANDING.ANY.READ NOT EMPTY

Instruction stalls on L2: (6 / 35) * (L2 RQSTS.IFETCH HIT /
L2 RQSTS.IFETCH MISS *
OFFCORE REQUESTS OUTSTANDING.DEMAND.READ CODE NOT EMPTY)

DTLB misses that result in page walks: DTLB LOAD MISSES.WALK CYCLES

ITLB misses that result in page walks: ITLB MISSES.WALK CYCLES

ITLB misses that hit in the second level of TLB: 10 * (ITLB MISSES.ANY -
ITLB MISSES.WALK COMPLETED)

Breakdown of the Memory component:

(1) The performance counter used in calculating the LLC+Mem stalls gives the
number of cycles during which there is at least one outstanding L2 miss request
(instruction or data).
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(2) We calculate instruction stalls on L2 by scaling the stalls on LLC+Mem instruction
accesses by a factor of (L2 fetch latency * L2 instruction hits) / (LLC fetch latency
* L2 instruction misses).

(3) We calculate stalls on ITLB misses that hit in the second-level TLB by multiplying
the number of these events with the access latency of the second-level TLB.

A.2. L1 and L2 Instruction Miss Rate

Components Methodology
L1-I miss rate 1000 * L1I.MISSES / INST RETIRED.ANY
L2-I miss rate L1-I miss rate * L2 RQSTS.IFETCH MISS / (L2 RQSTS.IFETCH HIT +

L2 RQSTS.IFETCH MISS)

A.3. Application IPC and MLP Per Hardware Context

Components Methodology
Application IPC INST RETIRED.ANY / CPU CLK UNHALTED.THREAD
Application MLP OFFCORE REQUESTS OUTSTANDING.DEMAND.READ DATA /

OFFCORE REQUESTS OUTSTANDING.DEMAND.READ DATA NOT EMPTY

Comments:

(1) We exclude OS events as explained in Section A.
(2) The first performance counter used in calculating the application MLP gives the to-

tal number of outstanding L2 data miss requests. The second performance counter
gives the number of cycles that there is at least one outstanding L2 data miss
request.

A.4. Performance Sensitivity to Last-Level Cache (LLC)

We perform a cache sensitivity analysis by dedicating two cores to cache-polluting
threads. The polluter threads traverse arrays of predetermined size in a pseudo-
random sequence, ensuring that all accesses miss in the upper-level caches and reach
the LLC. We use performance counters to confirm that the polluter threads achieve
nearly 100% hit ratio in the LLC, effectively reducing the cache capacity available for
the workload running on the remaining cores of the same processor.

Components Methodology
User IPC INST RETIRED.ANY / CPU CLK UNHALTED.THREAD

Comments:

(1) We define User IPC as the fraction of the number of instructions committed by the
application and the number of total cycles (include both application and OS).

(2) The first performance counter includes application instructions and the second per-
formance counter includes both application and OS cycles.
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A.5. L2 Hit Ratios of a System with Enabled and Disabled Adjacent-Line and HW Prefetchers

Components Methodology
L2 hit ratio MEM LOAD RETIRED.L2 HIT / (MEM LOAD RETIRED.L2 HIT +

MEM LOAD RETIRED.LLC MISS + MEM LOAD RETIRED.LLC UNSHARED HIT
+ MEM LOAD RETIRED.OTHER CORE L2 HIT HITM)

Comment: The metric includes both application and OS events.

A.6. Percentage of LLC Data References Accessing Cache Blocks Modified by Other Core

Components Methodology
LLC remote hits
normalized to LLC
data references

MEM UNCORE RETIRED.REMOTE HITM / (MEM LOAD RETIRED.LLC
MISS + MEM LOAD RETIRED.LLC UNSHARED HIT +
MEM LOAD RETIRED.OTHER CORE L2 HIT HITM)

Comment: The numerator includes either application events or OS events. The de-
nominator includes both application and OS events.

A.7. Off-Chip Bandwidth Utilization

Components Methodology
BW requirements
of one core in
bytes/second

( 64 * 2.926 * 109 ) * MEM LOAD RETIRED.LLC MISS /
CPU CLK UNHALTED.THREAD

Comment: We multiply the number of LLC misses per cycle with the number of bytes
fetched (64 bytes) and the frequency of the processor in Hertz.
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