
Creating Repeatable Computer Science and Networking
Experiments on Shared, Public Testbeds

Sarah Edwards
GENI Project Office

Raytheon BBN Technologies
10 Moulton St.

Cambridge, MA 02139
sedwards@bbn.com

Xuan Liu
University of Missouri,

Kansas City
5100 Rockhill Rd

Kansas City, MO 64110
xuan.liu@mail.umkc.edu

Niky Riga
GENI Project Office

Raytheon BBN Technologies
10 Moulton St.

Cambridge, MA 02139
nriga@bbn.com

ABSTRACT

There are many compelling reasons to use a shared, public
testbed such as GENI, Emulab, or PlanetLab to conduct
experiments in computer science and networking. These
testbeds support creating experiments with a large and di-
verse set of resources. Moreover these testbeds are con-
structed to inherently support the repeatability of experi-
ments as required for scientifically sound research. Finally,
the artifacts needed for a researcher to repeat their own ex-
periment can be shared so that others can readily repeat the
experiment in the same environment.

However using a shared, public testbed is different from
conducting experiments on resources either owned by the
experimenter or someone the experimenter knows. Experi-
ments on shared, public testbeds are more likely to use large
topologies, use scarce resources, and need to be tolerant to
outages and maintenances in the testbed. In addition, ex-
perimenters may not have access to low-level debugging in-
formation.

This paper describes a methodology for new experimenters
to write and deploy repeatable and sharable experiments
which deal with these challenges by: having a clear plan;
automating the execution and analysis of an experiment by
following best practices from software engineering and sys-
tem administration; and building scalable experiments.

In addition, the paper describes a case study run on the
GENI testbed which illustrates the methodology described.
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1. INTRODUCTION
Public, shared computer science and networking testbeds

such as GENI [9], Emulab [34], PlanetLab [28], ORBIT [31],
DeterLab [24], Orca [10], FIRE [13], and others make a va-
riety of resources available to experimenters conducting re-
lated research. The wide variety and volume of compute
and networking resources available in these testbeds would
be prohibitively expensive or impossible to have in a pri-
vately held lab. Some of these (e.g. PlanetLab, GENI) also
provide geographic diversity of their resources.

By their very nature, community testbeds support re-
peatability [14] of experiments. In particular, these testbeds
already provide standardized ways to request resources, op-
erating system images, software, etc. These standard mech-
anisms are used to make repeated runs of the same exper-
iment, varying parameters and configurations as necessary
to make a scientifically sound argument.

Part of the promise of a shared, public testbed is that it
makes it possible to not just repeat your own experiments
but to publish and share experiments so that others can re-
peat them. While tools to make publishing experiments easy
are certainly needed, it is possible to do so today since the
artifacts needed to share an experiment are very similar to
those needed by a researcher to repeat their own experi-
ment. If a researcher automates, stores, and documents
their experiment enough to reliably repeat it themselves,
then they have most of the pieces needed to share it with
others. Moreover, the testbeds represent a solution to one
of the biggest challenges of reproducible experimentation;
by providing widely available access to the laboratory and
tools used to perform an experiment, another researcher can
quickly and easily repeat an experiment using the same or
equivalent equipment used in the original experiment.

Being able to repeat someone else’s experiment however,
does not guarantee the ability to reproduce the same results
or the soundness of the original experiment. It is up to
the experimenter to study the effects of the environment
and produce repeatable results. These are issues beyond
the scope of this article but are addressed by others [16].

This article introduces novice users of community testbeds
to the process of creating and documenting an experiment
so that it is repeatable by themselves and others.

Properties of Shared, Public Testbeds: Some of the
very features of community testbeds which make them com-
pelling present very different challenges from the situation
where the experimenter either is, or personally knows, the
operator of the testbed:
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1. Large, diverse topologies are possible. Therefore exper-
imenters are likely to use more resources than can be
managed manually.

2. Some (or all) resources are rare and have heavy de-
mand. Therefore the experimenter can not keep some
resources for long periods.

3. A shared testbed is not run by the experimenters. There-
fore, an experimenter may need to talk to the opera-
tors of the testbed for access to low-level debugging
information.

4. A geographically diverse, federated testbed is maintained
by many different groups (GENI, PlanetLab) or at least
reliant on others for power, network connectivity, etc.
This means outages and maintenances occur at a va-
riety of times. Therefore all resources in the testbed
may not be continuously available.

In summary, the very nature of a community testbed poses
a unique set of challenges to the researcher. There is an
inherent need for automation since researchers need to be
able to bring their experiment up and down quickly, even
possibly switching between equivalent resources. Moreover,
experimenters need to be able to work with other members
of their community to execute their experiment and resolve
bugs.

To the best of our knowledge there is no work that pro-
vides guidelines for how to overcome the basic challenges in
the use of public testbeds and that is the gap that we envi-
sion this paper to fill. This paper is intended to be a short
and comprehensive guide for experimenters to deploy com-
puting and networking experiments in community testbeds.
The reader is encouraged to also turn to the multitude of
resources that provide advice about how to systematically
design their experiments and build a rigorous experimenta-
tion process.

The authors of this paper draw from their experience in
supporting and deploying experiments in GENI. Although
we are steeped in the GENI community we believe that the
guidelines in this paper apply to researchers using other pub-
lic infrastructure for their experimentation.

2. RECOMMENDED METHODOLOGY
Based on these properties, we believe that there are a few

main pieces of advice for beginning experimenters:

1. Formulate a clear plan for your experiment; Section 3

2. Systematically design and execute your experiment:

(a) Automate the execution and analysis of your ex-
periment following best practices; Section 4

(b) Build scalable experiments; Section 5

This paper covers each of these items in turn and explains
them in the context of a case study run on the GENI testbed.

While much of the methodology in this article is gener-
ally applicable for running computer science and network-
ing experiments, it becomes critical when using a community
testbed.

2.1 Case Study: OSPF Convergence Time
Throughout this paper, we present a case study which

illustrates the key points covered in this paper to show how
to deploy an experiment systematically and repeatably.

This case study was done as a portion of a larger series of
experiments to evaluate the algorithm described in [22] for
the selection of standby virtual routers in virtual networks.
The case study topology is a wide area, layer 3, virtual
network formed from software routers running the OSPF
(Open Shortest Path First) routing protocol. During the
experiment, we monitor the OSPF updates at each router
to determine how long changes take to propagate through
the network after a network event (failure/recover).

In this paper we explain how to plan the experiment,
choose a trivial initial setup, orchestrate and instrument the
experiment, and then show how to scale up the experiment
to a multi-node geographically distributed topology.

3. FORMULATING A CLEAR PLAN

3.1 What vs. How
Before reserving any resources, it is important to make a

detailed plan for your experiment.
At a minimum there are two parts to this plan:

1. Experiment Design: What do you want to do?

2. Experiment Implementation and Deployment: How
are you going to do it?

Determining the what and the how (and distinguishing
between them) may be the most important part of your
experiment and it is worth spending time to get it right.

3.1.1 What do you want to do?
First consider what question you are trying to answer.

This requires identifying two parts: what is the system you
want to test; and what question about that system are you
trying to answer [16].

A picture explaining how the system under test works [16]
in the real world (or how it would work if it were actually
deployed) is often useful and can be used to describe the
boundaries of the system. For even the simplest experiment,
a picture and some notes describing metrics to collect, and
the parameters to vary are invaluable [16].

3.1.2 How are you going to do it?
Second consider what pieces must be implemented faith-

fully in order to answer your question. The items within
the system boundary should be faithfully represented, but
items outside the system boundary may not require as much
fidelity. A picture is also helpful to describe your experiment
design and implementation.

Both your “what” and “how” pictures might be simple,
hand-drawn pictures. With the prevalence of digital cam-
eras, these are easily shared. Drawing tools and Powerpoint
are other options for creating these simple but useful draw-
ings.

Questions you might ask about “how” to build your ex-
periment include:

• What resources are needed to run this experiment?

• How many resources (i.e., nodes, bandwidth, software,
etc.) are needed for this experiment?
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• What parameters should be varied? What metrics
should be measured?

• How large should the experiment be? How many more
resources are needed to scale the experiment?

Use the answer to these questions to select an appropriate
testbed.

3.2 Select and Learn the Testbed
Currently, there are many testbeds available housed all

over the world. Each of these testbeds has its own specialties
to support particular categories of experiments, and they
also have some features in common. For example, GENI
provides nationwide layer 2 connectivity to support experi-
ments which are not compatible with IP and today’s Inter-
net. Another example is DeterLab which is isolated from
the public Internet which allows for security experiments
that could not safely be run on a testbed connected to the
Internet. In addition, commercially available cloud services
such as Amazon Web Services (AWS) [2] are suitable for
certain types of experiments.

You should select the testbed which will best support your
experiment and satisfies the answers to the questions listed
above.

Learning how to use the testbed helps reduce the time
spent on debugging problems that do not belong to the ex-
periment itself. Each testbed has a number of tutorials that
teach how to use the tools provided by the testbed. Once
you have selected a testbed for your experiment, it is worth
spending a few hours trying some examples and getting fa-
miliar with the testbed.

3.3 Ready to Proceed?
At this point you should have at a minimum: a picture

and accompanying text explaining “what” you want to do;
a second picture and a procedure (including metrics and
parameters to vary) explaining “how”; and have identified a
testbed that is capable of supporting your experiment.

Ask a colleague to review these artifacts and incorporate
their feedback. Armed with these artifacts, you are ready
to proceed.

3.4 Plan for the Case Study
Fig. 1 presents how we plan and conduct the experiments

for the case study. Since our goal is to measure OSPF con-
vergence time during recovery from a link or node failure
in a wide area virtual network, we need to create a virtual
network that is composed of several virtual routers that are
geographically distributed. There are at least two routing
software suites (e.g., XORP and Quagga) which can be in-
stalled on generic Linux virtual machines, and we are able
to configure the OSPF routing protocol with either of them.

Next we need to decide on a testbed. Because the software
routers can be installed on generic virtual machines, a vari-
ety of geographically distributed testbeds could theoretically
be used. Previously a similar experiment was deployed on
the GpENI Virtual Network Infrastructure (GpENI-VINI)
testbed [22], and the star-like GpENI substrate network
topology impacted the round trip time in the virtual net-
work. For the purposes of the case study, this feature does
not matter. But the case study was done as part of a larger
experiment to evaluate a selection algorithm to replace failed
virtual routers in virtual networks. For the larger experi-
ment the substrate topology has a big impact on the results.
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Figure 1: Plan for Case Study:
Capture OSPF convergence time during network
events

As a result we chose GENI [9] which has a a realistic partial
mesh substrate topology.

Next we need to plan the experiment deployment system-
atically. As shown in Fig. 1, we first create a trivial four-
node virtual network with XORP software routers running the
OSPF routing protocol. Second, we generate a failure by
bringing down a virtual link or a virtual router and recov-
ering the failure after some time. During this time, we peri-
odically track the OSPF routing table updates on each XORP

router recording the timestamp of when there are changes.
When there are no more updates, we calculate the routing
table convergence time. When we have tested the trivial
setup without any problems, we can scale the experiment to
a larger virtual network.

4. AUTOMATE USING BEST PRACTICES
Running a computer science or networking experiment is

challenging because it requires three distinct skills: apply-
ing the scientific method, software engineering, and system
administration.

Best practices for each of these skills should be applied
when running an experiment. Luckily, these best practices
have much in common and often focus on automation and
testing. In the context of experimentation, this means au-
tomating the configuration, execution, and analysis of the
experiment.

In particular, two good habits to keep in mind while ex-
ecuting and analyzing an experiment are: (1) always make
and test one small change at a time; (2) save your work using
version control. By doing these two things, you will always
know your last working configuration.
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4.1 What can go wrong?
To understand why these habits are so important, we first

need to understand what can go wrong. The short answer
is that human error makes it all but impossible to manually
configure non-trivial topologies. Studies [25, 19] report that
up to 50% of network outages are due to human configura-
tion errors.

Imagine we know exactly what needs to be configured on a
single node.1 Let’s assume that one configuration step (e.g.
configuring IP addresses, routing tables, software setup) can
be made without an error with a probability of 90% and that
it is independent and identically distributed (i.i.d.)2. If there
are five separate steps, then there is only a 59% chance that
this single node will be configured correctly (.95 = 0.59) and
only a 35% chance if there are 10 steps. The probability of
success decreases exponentially as we increase the complex-
ity of the setup. Manually configuring a trivial topology of
even 3 or 5 nodes in this way can be very challenging.

If we automate all 5 or 10 steps with a single script, then
we have a 90% chance of successfully configuring a single
node as there is only one step a human has to do (i.e. execute
the script). Likewise there is a 72% chance of bringing up a
3 node topology successfully (.93 = 0.72) on the first try.

However if we automate the execution of the script (in
GENI this is called an install script) and we also systemat-
ically describe the configuration of the whole topology (in
GENI these are resource specifications or RSpecs), we mini-
mize our chance to make an error by having to execute only
one manual step.

In summary, automation is key for reducing the chance of
human error and makes it possible to bring up non-trivial
topologies which would be all but impossible to bring up
manually.

4.2 Good Habits
Fig. 2 shows how to make a series of changes to automate

an experiment. Always start with a trivial setup. An im-
portant computer programming principle that is also very
appropriate here is to change one thing at a time and then
test it so you know if the change broke your setup (see Ta-
ble 1 for examples of possible types of changes). Then, be-
cause of the high risk of human error, automate the change
and test it. Finally always save your work using a version
control system such as cvs, svn, or git so you can revert
your changes if you make a mistake later. Every part of
your experiment should be saved including software, config-
uration files, scripts, notes, collected data, analysis scripts
and results, etc.

This test-automate-test-save cycle should be applied to
both experiment deployment and data analysis. Working in
this way allows you to always know the last working config-
uration. Experienced developers and system administrators
work this way out of habit. As a result they are often able to
debug their own problems and make clear and helpful bug
reports when they can not resolve the issue themselves (see
Section 4.3). This is a skill that is well worth developing.

Note that automation does not have to be limited to sim-
ple scripts. Configuration management tools such as puppet

1If the setup is still under development the following de-
scription becomes even more grim.
2For simplicity, we assume each step to be i.i.d. and ap-
proximate the probability of successful configuration with
Pr[success of one step]number of steps

and chef are widely used to automate the configuration and
administration of large systems; they can also be used to cre-
ate repeatable experiments as shown in [17] which uses chef
to do so on Amazon’s Web Services. Moreover, tools specific
to testbeds have been developed; for example, OMF-F [29]
is a tool for deploying networking experiments in federated
domains, while LabWiki [18] and GUSH [6] are specifically
designed to automate the configuration and orchestration of
experiments in specific testbeds. The reader is encouraged
to research and find the specific tools that would help in au-
tomating the deployed experiment on their chosen testbed.

4.2.1 Applying Good Habits to the Case Study
The case study (see Table 2 and Section 5.1.1) illustrates

some important lessons:

1. Image snapshots make life easier but like any artifact
you must know the steps to reproduce it. The router
nodes run an OS image that is just a default Ubuntu
image with a standard XORP package installed. The
steps for creating it are documented in [4]. However,
this installation takes approximately 40 minutes. So
instead of installing XORP on each node at boot time,
the router nodes use a custom image to substantially
decrease the time to instantiate the experiment topol-
ogy.

2. Support scalability by writing scripts in a generic, auto-
configuring way. Manually configuring OSPF on a
XORP software router involves entering at least 5 dif-
ferent pieces of information for each node. For a simple
4-node setup there are 20 entries that must be config-
ured correctly which is time consuming and challeng-
ing to get correct. Instead, the OSPF configuration
script determines IP addresses of interfaces and other
needed parameters on the fly (by running ifconfig) so
a single generic OSPF configuration script can be used
for each router node without requiring any manual per
node configuration.

4.3 Resolving Problems
Despite their best efforts and even if an experimenter fol-

lows the best practices described in this paper, something
will inevitably go wrong due to bugs, accidental misconfigu-
ration, or scheduled/unscheduled maintenances. There are
generally two kinds of problems: those under your control
and those not under your control. Make a good faith effort
to address issues under your own control first which will re-
solve your problem quickest, but also do not be afraid to ask
for help.

This is a time when knowing your last working configura-
tion (see Section 4.2) will pay off. Your last working config-
uration gives you the information needed to both find your
own solution to the problem and failing that to make a good
bug report. Armed with the knowledge of what changed,
you can search for a solution to your problem by consulting
online documentation.

If you can not solve your own problem, an especially help-
ful form of bug report is to provide the last working con-
figuration and explain the change that breaks it.3 In this

3An even better form of bug report is to reduce the con-
figuration to the smallest one that works and the smallest
change that breaks it.
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Figure 2: The test-automate-test-save cycle.

Table 1: Possible Changes to be Made When Building an Experiment

Type of Changes Description

Software Installation Install standard software and packages.

Develop Application Develop an application running on a node for the experiment.

Configuration Configure the software or nodes.

Number of Nodes and Links Scale up the experiment.

Geolocation of Nodes Build distributed experiments.

Orchestration Orchestrate the experimental procedure. Vary parameter values.

Instrument Measure what happens during the experiment.

case, the cause is often identified and resolved quickly. Bug
reports that simply state “this complicated setup does not
work” can take days of iterating back and forth to merely
identify the issue. This is because as shown in Section 4.1,
there can be dozens or hundreds of things that could be
wrong. Debugging requires eliminating those, often with no
context or access to the experiment.

Once you are ready to file a bug report and ask the com-
munity for help you should first identify the appropriate
mailing list. For example, questions about using a spe-
cific software package should be directed to mailing lists for
that package while problems with deployment on a specific
testbed should be addressed to the operators of the testbed.

A good bug report should include the following informa-
tion:

• What you did. This is a good place to describe the
“last known working configuration” and the “change
that breaks it”.

• What you expected to happen. What does “working”
look like?

• What actually happened. What does “broken” look
like? (Include error messages and screenshots where
applicable.)

• Be sure to include the resources and tools you used.
For example, in GENI we always ask experimenters
for: the name of their experiment, the geographical
location of the resources, the file containing their ex-
periment description, the way they access the testbed,
and the tool they are using.

For all of the items be as specific and as thorough as possi-
ble. The authors of this paper have never seen a bug report
with “too much” information.

5. BUILD SCALABLE EXPERIMENTS
Instead of running a complete experiment on a testbed in

one shot, it is better to systematically design and build up
your experiment to ensure that each step is correct using
the same techniques you would use to write software or con-
figure and manage a system. In this section, we illustrate a
recommended generic procedure for systematic experiment
design. Following these steps (shown in Fig. 3) will allow
you to create repeatable experiments which will scale up to
a meaningful size.

5.1 Start small (and scale up later)
A small experimental setup is helpful for testing applica-

tions, automation, and debugging errors. For any kind of
experiment, always start by building a trivial setup. If ev-
erything works as desired with the small setup, then scale
larger.

Fig. 4 shows examples of four different trivial topologies
for different types of experiments. Note that in each of these
cases you only need to automate at most two distinct types
of nodes. That is, all of the nodes of the same type can be
configured using a single image and the same scripts as long
as those scripts are written in a generic way so that things
like IP addresses and interface names are determined on the
fly as described in Section 4.2.1.

In general, when selecting a trivial topology, select at least
one node of each different type used in the experiment and
create a simple topology among these nodes. Only repeat
node types where necessary. If the experiment is eventually
going to be deployed in a geographically distributed way,
start with all the nodes in one location.

Using this trivial topology, test everything required for
your original experimental design, including the four items
shown in Figure 3:
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Figure 3: Procedures for Building Experiments

Figure 4: Examples of Trivial Setups. A simple
client-server architecture only requires two nodes.
Studying routing invariably involves multiple nodes.
The three router topology shown in the figure could
be used as the starting point in an experiment
meant to study IP routing since two of the nodes
are not neighbors and will not be able to communi-
cate unless IP routing is configured properly. The
Open Virtual Switch (OVS) topology would be use-
ful for doing some initial tests of an OpenFlow con-
troller. Finally the master-worker topology repre-
sents a trivial Hadoop setup.

• Install Software. Different types of nodes, may require
different operating systems and different software.

• Build Applications. Sometimes you will need to write
your own applications for the experiment.

For example, many GENI experimenters implement
new OpenFlow controllers to support new proposed
algorithms and functionality.

• Configuration. Whether using standard software or a
newly designed application, you need to configure the
nodes properly.

For example, for a routing experiment, it is important
to configure each software router correctly for a partic-
ular routing protocol (e.g. OSPF), and test whether
the routing software is working properly on each node.
For a Hadoop experiment, you need to configure the
master node and worker node and test the communi-
cation between the master and workers.

• Orchestrate/Instrument. In order to tell what hap-
pened in your experiment, you need to instrument your
experiment so that you can measure what happened.
In addition, you need to orchestrate the experimental
procedure.

The two habits from Section 4.2 (change one thing at a
time; save your work) apply to each category above. Most
of the heavy lifting of implementing your experiment is done
building this small topology. If you automate the scripts in
a scalable way, then adding more nodes is merely a matter
of instantiating more instances of the same type of nodes.

When you test your trivial setup, be sure to validate the
correctness of the behavior of your code and your experiment
by doing some things where you know the outcome. For
example, be sure to include both negative as well as positive
tests. Most people will use ping to test for connectivity
between their nodes (a positive test). However, a classic
mistake to make on a testbed with a separate control plane
is to accidentally use the control plane for connectivity. A
reasonable test would be to break a link in the data plane
and test that traffic actually stops flowing (a negative test).
In general, the idea is to test and debug the behavior of your
code and setup with 3 nodes before you try it with 10 or 100
nodes. Small topologies are tractable to debug and when you
scale you will be more confident that the problem has to do
with the number of nodes and not something fundamental
to your code.

Once you have a working small topology, the next step
is to scale up the experiment to include more nodes and
links using the good habits described previously. Each new
topology should be tested and saved before moving onto a
new one.

Once your topology is of the necessary size, you can also
start to vary parameters required for your experiment.

5.1.1 Systematically Creating the Case Study
Table 2 summarizes how the case study was developed on

GENI following the best practices and good habits outlined
in this paper.

The case study starts small by defining and testing the two
types of nodes needed to construct the minimum reasonable
topology. This maximizes reuse of code and makes it easy
to scale.

The two needed node types are: router nodes and hosts

to act as end points.
Create and test router node type. The router nodes
are all configured using a single OS image and the same
set of scripts. In particular, router nodes are xen virtual
machines running the following:

1. XORP OS image. Snapshot of a plain Ubuntu image
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Table 2: Case Study: OSPF convergence time during network events.

Steps Tools and Techniques Used

1. Create and test router node type

Convert a generic virtual machine into a software
router by installing chosen routing software (XORP).

Install software router. Installation of XORP
takes approximately 40 minutes. To prevent having
to install XORP on each node, took an image snap-
shot. In subsequent steps the software router nodes
are a xen VM with this XORP image installed.
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Automate experiment on a trivial scale. Reserve
software router nodes in a simple topology, configure
routers (manually at first and then automated), and

instrument experiment (manually first then automated).

Reserve smallest reasonable topology. In this
case, two virtual routers which are not directly con-
nected allows testing of OSPF functionality; two in-
terfaces per node allows testing of OSPF configura-
tion.

Configure OSPF. First, manually configure OSPF
routing in this trivial setup to determine how it is
done. Second, write scripts to automate OSPF con-
figuration on routers in any topology and to start the
routing software.

Track routing table updates. On each node,
periodically capture the routing table and compare
the current routing table with the previous snapshot.
Output is a csv file for each node where each row is a
UNIX timestamp followed by a 0 or 1 depending on
whether there was a routing table change.

2. Create and test host node type
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Add endpoints (hosts) to topology.

Run end-to-end traffic and validate experi-
ment setup. Use iperf and ping to send traffic end-
to-end. Fail individual software routers or links and
measure how long it takes for the route updates to
propagate throughout the network. Validate traffic
flow by checking that pings and iperf traffic flow be-
fore and after node and link failures.

3. Scale number of nodes and geographic diversity
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Each gray background denotes a different location.

First, scale up one dimension at a time.

• Scale up number of nodes in one geographic lo-
cation.

• Scale up number of geographic locations.

Second, scale up both number of nodes and
number of geographic locations.

4. Analyze results and perform repeated runs
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Calculate convergence time for each run.

Repeat.
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with XORP installed from a package.

2. OSPF auto-configuration scripts. Shell and awk scripts
take the output of ifconfig and generate the XORP

OSPF configuration.

3. Script to record changes to the node’s routing table. A
shell script polls the routing table and compares each
version to the previous, recording a timestamp and
whether there is a change in a csv file.

Create and test host node type. The hosts are simply
VMs running a default image to allow the sending of end-
to-end pings and iperf traffic. So host nodes are xen virtual
machines running:

1. A standard Ubuntu image

2. ping comes by default on the image and iperf was
installed using a package manager.

Scale up number of nodes and geographic diversity.
An arbitrary number of these two types of nodes can be
put together in arbitrary topologies and the experiment still
works.

In order to scale up the topology, the second author of
the paper created a custom script called scaleup which was
written using (and is now distributed with) the geni-lib

library [8]. scaleup parses a configuration file containing
a description of the above node types and a terse descrip-
tion of a desired topology (e.g. ring, grid, etc) and outputs
the appropriate GENI resource specification (RSpec). These
RSpecs (i.e. topologies) can be reserved with any GENI re-
source reservation tool: omni, GENI Portal, etc.

Moreover scaleup supports scaling the size of a topology
by allowing the experimenter to easily generate large topolo-
gies at a single location or generate topologies that are ge-
ographically diverse. The case study utilizes this capability
to scale in three different ways: increasing the number of
nodes at a single location, expanding to a geographically
distributed setup, and a hybrid of the previous two options.
Analyze results and perform repeated runs. The CSV
output from the routing table comparison script on each
router node can be graphed using LabWiki, a GENI in-
strumentation and measurement tool, or using the graphing
program of your choice.

5.2 Sharing An Experiment
Once you are able to repeat your own experiment, you

should have most of the artifacts needed to share your ex-
periment with others. To enable others to repeat your ex-
periment you need to provide access to at least:

• All experiment artifacts including: images, topol-
ogy, installation, orchestration and analysis scripts,
data (where possible), and analysis results. You should
include documentation about how to access/use these
artifacts. Whenever possible use standard file formats
(e.g. share your data as a csv file versus the Excel pro-
prietary format) and open source tools. Include the
versions of the software used/needed to repeat your
experiment.

• Document how to repeat the experiment. Two
ways of doing that are: (i) a README or writeup
explaining how to repeat the experiment, (ii) a video
of running the experiment.

Have a friendly colleague try repeating your experiment
using just the items listed above. Revise your documenta-
tion as necessary.

Sound scientific research requires that all the above ar-
tifacts are made publicly available to the community for
verifying, reproducing, corroborating, and extending the ob-
tained results. There are multiple public forums to do this;
some popular ways are through publicly available webservers
and wikis, or through publicly available repositories like
github [5] and bitbucket [3]. Testbeds also have forums for
publishing experiments like apt [1], a new tool that enables
publishing of experiments based on Emulab or GENI.

5.2.1 Sharing the Case Study
The case study is documented in [4] which includes a git

repository containing the individual steps to create each ex-
periment artifact shown in Table 2 as well as the actual
artifacts and the final multi-site topology.

6. BIBLIOGRAPHY AND RELATED WORK
The problem of repeatability and reproducibility in exper-

imentation has always concerned the scientific community.
This problem is even more challenging in computation and
networking research [20, 23, 32, 33]. Community testbeds [9,
28, 7, 34, 31] alleviate some of the repeatability problems by
providing researchers with a common testing ground. Al-
though these testbeds provide a collaborative environment
to advance computer science research, they themselves pose
new challenges in their use. Researchers have looked into
how to enhance testbeds [26, 11, 12] with tools in order to
make them easier to use and provide a more complete in-
frastructure for experimentation. Some tools, like GUSH [6]
and OMF [29, 30] are focused on enabling the automation
of testbed experiments, while others facilitate the transition
from simulation to experimentation [15, 7] as a means to en-
able more researchers to use experimentation as a validation
method.

To the best of our knowledge there is no work that pro-
vides advice on how to overcome basic challenges in using
public testbeds and this is the gap that we envision this pa-
per to fill. The reader is encouraged to also turn to the mul-
titude of resources that provide advice about how to system-
atically design their experiments and build a rigorous exper-
imentation process. Lilja’s book [21] gives an introduction
to performance analysis, while Jain’s book [16] (especially
Section 2.2) is a very good resource that provides detailed
methodologies. Vern Paxson [27] also provides strategies for
collecting sound Internet measurements.

7. CONCLUSION
Community testbeds have been widely deployed over the

past decade and their usage for experimental validation in
computing and networking research has increased dramati-
cally. Although they solve many problems and facilitate re-
peatability, they themselves present unique challenges to an
uninitiated user. By helping numerous experimenters to de-
ploy their experiment in GENI, and by having deployed sev-
eral setups ourselves we have made notice of common pitfalls
and developed a methodology about designing and building
repeatable experiments that scale and can be shared with
others.

In this paper we present this methodology and describe
best practices about deploying an experiment in a commu-
nity testbed, along with a simple case study that showcases
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how following these guidelines can help in reducing deploy-
ment effort and time.
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