A Shared Memory Architecture for
Paralle] Cyclic Reference Counting

Rafael D. Lins

Dept. de Informatica - Universidade Federal de Pernambuco - Recife - Brazil
Computing Laboratory - The University of Kent - Canterbury - England.

Introduction

In late 1950°s a whole number of applications in computer science started to make use of
complex data structures which were unable to be allocated and de-allocated by using a
stack discipline. These complex applications, such as early list based theorem provers and
programming languages like LISP, made intensive use of space and needed either implicit or
explicit run-time memory maunagement. The two most simple algorithms used for memory
management are mark-scan and reference counting.

The mark-scan garbage collection algorithm works in two phases. If a machine runs
out of space. the computation process is suspended and the garbage collection algorithm is
called. First. the algorithm traverses all the data structures (or cells) in use putting a mark
in each cell visited. Then the scan process takes place collecting all unmarked cells in a free-
list. When the mark-scan process has finished. computation is resumed. The amount of time
taken for garbage collection by the mark-scan algorithm is proportional to the size of the heap
(the work space where cells are allocated). The copying algorithm is a modified version of the
mark-scan algorithm which appeared with the advent of virtual memory operating systems.
In this algorithm the heap is divided in two halves. The algorithm copies cells from one half
to the other during collection. Its time complexity is proportional to the size of the graph in
use. Mark-scan and copying algorithms generally traverse all the reachable data structures
during garbage collection, which makes them unsuitable for real-time or large-virtual-memory
applications.

In reference counting, each data structure or cell has an additional field which counts the
number of references to it, i.e. the number of pointers to it. During computation, alterations
to the data structure imply changes to the connectivity of the graph and, consequently,
re-adjustment of the value of the count of the cells involved. Reference counting has the
ma jor advantage of being performed in small steps interleaved with computation, while other
algorithms imply suspending computation for much longer. The disadvantage of the trivial
algorithm for reference counting is the inability to reclaim cyclic structures. To solve this
problem, a mixture of mark-scan and reference counting has already been used in the past.
We refer to [2] for a detailed analysis of these algorithms.

In 1975 Steele [10] proposed what was possibly the first algorithm for parallel garbage
collection. 1In his architecture two processors share the same memory space. One of the
processors is responsible for graph manipulation while the other performs garbage collection.
In this algorithm mark-scan and computation occur simultaneously.

Another parallel mark-scan algorithm is presented in [3], and was considered by Ben-
Ari “one of the most difficult concurrent programs ever studied” [1]. This algorithm was

252

implemented in hardware/software in the Intel iAPX-432 computer and iMAX operating
system [9]. Kung and Song developed an improved mark-scan algorithm [6) based on the
algorithm by Dijkstra et al. Based on the same algorithm Ben-Ari gave [1] several parallel
mark-scan algorithms with a much simpler proof of correctness then the ones presented in
(6, 3).

All the algorithms mentioned above for parallel mark-scan seem to spend a lot of time
colouring non-garbage cells and scanning the whole heap. As an alternative to mark-scan
algorithms Wise proposed a on-board reference count architecture [11] and Hughes developed
an algorithm for distributed reference counting [5]. In this paper we present a shared memory
architecture for parallel cyclic reference counting.

1 Standard Reference Counting

In reference counting, each data structure or cell has an additional field which counts the
number of references to it, i.e. the number of pointers to it. During computation, alterations
to the data structure imply changes to the connectivity of the graph and, consequently, re-
adjustment of the value of the count of the cells involved. We assume that cells are of constant
fixed size.

Free cells are linked in a structure called a free-list. For a matter of convenience all cells
in the free-list will have their reference count set to one. A cell B is connected 1o a cell A
(A — B) if and only if there is a pointer (A, B). A cell B is transitively connected to a cell A
(A = B) if and only if there is a chain of pointers from A to B. The initial points of graphs
to which all cells in use are transitivelv connected are called roots. For the sake of simplicity
and without any loss of generality we will assume that there is only one root in the graph.

There are three operations on the graph:

1. New which selects a cell from the free-list and links it to the graph.

New (R) = select U from free_list
make pointer <R,U>

make pointer <R,U> fills one of the fields of cell R with a pointer to T'. For the sake
of simplicity of notation we will not especify in which field of a cell this filling takes
place.

2. Copy copies information between cells and increments the reference count of the cell we
made a new reference to. Algorithmically we have,

Copy (R, <5,T>) = make pointer <R,T>
increment RC(T)

3. Delete which deletes a pointer to the graph and proceeds the necessary re-adjustments
as follows:

253

Delete <R,S> = remove <R,S>
if RC (S) = 1 then
for T in Sons (S) do
Delete <5,T>
link_to_free-list (S)
else
decrement RC (S)

remove <R,S> performs the actual deletion of the pointer to § in one of the information
fields of cell R. To keep our notation simple fields will not be especified. Sons (S) is
the bag of all the cells T such that there is a pointer <§,T>.

As we mentioned before, standard reference counting is not able to recycle cyclic structures.
Later on in this paper we will present another algorithm which overcomes this drawback.

2 A Shared Memory Architecture

In this section we propose a shared memory architecture to implement the algorithm above.
Our idea is to have two processors say P and P;. which will perform graph rewriting and
garbage collection simultaneously.

Both processors share the same memory area, the working space which is organised as a
heap of cells. In case of simultaneous access from both processors to a given cell semaphores
are used such as to guarantee that processor Py will have priority over processor P;. There is
also another shared data structure: the Delete-queue, which is organised as a FIFO. Processor
P, is only allowed to push data onto the Delete-queue. Conversely, processor P, is only
allowed to dequeue data from the Delete-queue. Processor P; has two registers called top-
free-list, which stores a pointer to the top cell in the free-list, and top-del-queue, which stores
a pointer to the top of the Delete-queue. Processor P has two registers called bot-free-list,
which stores a pointer to the last cell in the free-list, and bot-del-queue, which stores a pointer
to the bottom of the Delete-queue.

heap)
P i
! root Sree-list !
L top-del-queue m [\-bot-del-queue
top-free-list 4 {F/}} ﬁr- bot-free-list
L]

Delele-queuc /

254

For the sake of simplicity we ignore the syncronization that must be done when P; attempts
to remove a node from an empty free-list or P, tries to get a reference from an empty
Delete-queue. These situations should happen infrequently and any convenient syncronisation
primitive can be used.

‘We now split the algorithm above between these two processors.

2.1 Processor P, Instruction Set

Processor P, will be in charge of rewritings of the graph. Its instruction set comprises three
basic operations: New, Copy, and Del.

New tests if there are free cells on the free-list. If not empty it reads the information in
register top-free-list and links it to the graph. New also gets the address of the new top of
the free-list and saves it in register top-free-list. These operations are described as,

New (R) = if top-free-list not nil then
make pointer <R,top-free-list>
top-free-list := “top-free-list

where ~A means the information stored in A.

Copy copies information between cells. No special care is needed in order to keep the correct
management of the data structures. If processor P; wants to copy some information, i.e. to
make a pointer to a cell then this cell must be transitively connected to root. Copy increments
the reference count of T'. Algorithmically we have,

Copy (R, <S,T>) = make pointer <R,T>
increment RC(T)

Del deletes pointers in the graph, it pushes a reference to a cell onto the top of the Delete-
queue. (Processor P, will perform the remaining operations for the effective re-adjustment
of the graph.) Thus,

Del (<R,S») = remove <R,S>
“top_del-queue := S
increment top_del-queue

2.2 Processor P, Instruction Set

Processor P, is the processor in charge of the deletion of pointers and feeding free cells onto
the free-list. The main routine in P, is called Delete a routine which will run forever as the
kernel of the operating system of processor P;.

Delete = if Delete-queue not empty then
S := bot_del-queue
increment bot_del-queue
Rec_del (S)

else
call Delete

255

If the Delete-queue is not empty Delete calls Rec_del, as follows

Rec_del (S) = if RC (5) = 1 then
for T in Sons (S) do
Rec_del (T)
link_to_free-list (S)
else
decrement RC (S)

The linking of a cell to the free-list is performed by the operations:

link_to_free-list (S) = ~S := bot-free-list
bot-free-list := S

3 The Local Mark-Scan Algorithm

Reference [8] presents a simple algorithm for cyclic reference counting. The general idea of
that algorithm is to perform a local mark-scan whenever a pointer to a shared structure is
deleted. The algorithm works in three phases. In the first phase we scan the graph below
the deleted pointer, rearranging counts due to internal references and marking the nodes as
possible garbage. In phase two, the sub-graph is re-scanned and any cells to which there are
external references are remarked as ordinary cells, and their counts reset. All other nodes
are marked as garbage. Finally, in phase three all garbage cells are collected and returned to
the free-list.

In addition to the information of number of references to a cell, there is an extra field
which keeps the colour of the cell. Three colours are used: green, red and blue. Colours are
used to control the status of cells. As initial condition one has all cells painted green and
every cell except root is on the free-list. Green is the stable colour of cells. Red and blue are
transient colours which indicate that we are not sure of whether these cells are needed or not.

To make the architecture proposed above work with this new algorithm we change the
instructions set of processor P, keeping processor P, unchanged. Rec_del the routine recur-

sively invoked by Delete whenever a pointer is removed now performs the following opera-
tions:

Rec_del (S) = if RC (S) = 1 then
for T in Sons (S) do
Rec_del (T)
link_to_free-list (S)

else
decrement RC (S)
mark_red (S)
scan (S)

collect_blue (S)

mark_red paints the transitive closure of § red and decrements the counts of these cells, as
follows:

256

mark_red (S) = if colour (S) is green then
set colour (S) := red
for T in Sons (S) do
decrement RC (T)
mark_red (T)

scan searches for external pointers to the subgraph under inspection. If found the transitive
closure of these cells will be painted green.

scan (S) = if colour (S) is red then
if RC (S) > 0 then
scan_green (S)
else
set colour (S) := blue
for T in Sons (S) deo
scan (T)

scan_green paints green all the subgraph below its calling point and increases the reference
count of the cells visited, to take into account the internal pointers within the subgraph
(which had been set to zero by mark_red).

scan_green (S) = set colour (S) := green
for T in Sons (S) do
increment RC (T)
if colour (T) is not green then
scan_green (T)

collect_blue recovers all the blue cells in the subgraph below its calling point (garbage)
and links them to the free-list.

collect_blue (S) = if colour (S) is blue then
for T in Sons (S) do
collect_blue (T)
remove <S,T>
set RC (8) := 1
set colour (S) := green
link_to_free_list (S)

4 The Lazy Mark-Scan Algorithm

An important optimisation of the algorithm above is introduced in reference [7]. In this
new algorithm the mark-scan phase is performed lazily, i.e. whenever the free-list is empty.
The lazy algorithm uses a stack as an extra control structure to avoid performing the local
mark-scan every time we delete a pointer to a cell with multiple references. A reference to

257

these cells is placed on the control stack. We paint these cells black.
In order to introduce this optimisation of our architecture we will introduce a control stack
to processor P, and modify its instruction set. Delete operations are performed as follows:

Delete = if Delete-queue not empty then
S := bot-del-queue
decrement bot-del-gqueue
Rec_del (S)
aelse
if control_stack not empty then
scan_stack
else
call Delete

If the Delete-queue is not empty Delete calls Rec_del, as follows

Rec_del (S) = if RC (S) = 1 then
for T in Sons (S) do
Rec_del (T)
link_to_free-list (S)
else
decrement RC (S)
if colour (S) not black then
set colour (S) := black
top_of_control_stack := S

Processor P; only analyses-the control stack when the Delete-queue is empty. Now let us
explain how the control stack is used in [7]. We pop the cell from the top of the control stack
and test its colour. If it remains black this means that we are still not sure if we have deleted
the last pointer to a cycle. (Note that a cell painted black and pushed onto the control stack
may be sent to the free-list by another call to delete. From the free-list it may be recycled
while it still has a reference from the control stack.) If the cell from the top of the stack is
black then we perform a local mark-scan.

scan_stack = 5 := top_of_control_stack
pop_control_stack
if colour (S) is black then
mark_red(S)
scan(S)
collect_blue(S)
else
if control_stack not empty then
scan_stack

mark_red is modified to allow black cells as well.

258

mark_red (S) = if colour (S) is green or black then
set colour (S) := red
for T in Sons (S) do
decrement RC (T)
mark_red (T)

the other routines invoked in this section which are not redefined are left as presented in the
last section.

5 Proof of Correctness

A formal proof of the correcteness of parallel algorithms is, in general, not simple [3, 4]. We
will give an informal proof of the correctness of the architectures we proposed for parallel
reference counting,.

The three architectures presented above are based on simple algorithms, It is general
knowledge the correctness of the uniprocessor version of standard reference counting, as well
as its inability to reclaim cyclic structures. An informal proof of the correctness of the cyclic
reference count with local mark-scan algorithm appears in the original paper [8]. The lazy
algorithm [7] is an optimisation of the local mark-scan one which can be easily proved correct.
Therefore, our major concern is to analyse the interaction between the two processors for each
of the architectures presented.

5.1 Standard Reference Counting

In the standard reference counting architecture above there are two interfaces between pro-
cessors: the free-list and the Delete-queue. In general, there is no direct interaction between
processors P; and P,. If cells are claimed by processor Py and the free-list is empty P; must
wait for P, to recycle cells. Conversely, if the Delete-queue is empty, processor P, waits for
processor P) to push information onto the Delete-queue. This relationship between proces-
sors is producer/consumer coupling; this form of syncronisation can be achieved without any
need for mutual exclusion.

If the two processors try to access the same cell, let’s say P; is copying a pointer to a
cell and tries to increment its reference count while P, is in the process of decrementing this
same count, then semaphores are used such as processor P, to perform its operation first.

5.2 Cyclic Reference Counting

The only difference between the architecture for parallel cyclic reference counting above and
the standard reference count one is that we perform a local mark-scan whenever one deletes
a pointer which has the possibility of isolating a cycle.

Altough this new architecture keeps the same interfaces of the standard reference count
one new aspect must be analysed. The mark-scan phase of processor P, may occur simul-
taneously with rewritings of processor P;. In case both processors try to access a given cell
processor P; will have priority over processor P, as in the case of standard reference counting.
The only piece of information in a cell both processors may try to modify simultaneously is

259

the reference count of a given cell. Observe that the colour information of cells is irrelevant
to processor Py. Two points need to be stressed:

o One always makes a connection before breaking a previous one, i.e. one does copy
before delete. One does not discard a pointer to a cell and try to copy the same pointer
afterwards.

e All cells P, may copy a pointer to are transitively connected to root, i.e. are accessible
from root.

The points above imply that if processor P, is mark-scanning a subgraph and processor P
makes a copy to one of the cells in the same subgraph this new pointer to the subgraph is
not the only connection between this subgraph and root. The only effect this copy may have
is to abbreviate the mark-scan phase of processor P, by finding this new external reference
before the old ones. We can conclude that we have the correct interaction between processors
Py and P,

The lazy mark-scan architecture for processor P, presents the same external behaviour
as the local one, if observed from processor Py and vice-versa.

6 Efficiency

Comparing the efficiency between our algorithm and the ones based on mark-scan presented
in references [10, 3, 6, 1] is not a simple task. We will give some empirical reasons why we
think our approach is better than the previous ones.

According to Ben-Ari [1] the inefficiency of parallel mark-scan algorithms lies in spending
a lot of time colouring non-garbage cells. He proposes an algorithm which can minimise this
drawback if the application contains large data structures that are modified only occasionally.
In our lazy algorithm the mark-scan is local and takes place only as a last resort.

In our opinion, the greater the dependency between the processors the less efficient is the
algorithm and the more complex its proof of correctness. The distribution of the mark-scan
phase brings problems to the mark-scan based algorithms as the one known as Woodger’s
scenario. In the algorithm presented in reference [3] the mutator (the equivalent to our
processor Py) also performs part of the marking phase by colouring cells. If the mutator
makes a long pause between the linking and colouring phases the collector may claim the
whole subgraph below the cell just linked as garbage. Ben-Ari’s solution [1] for this problem
consists of making the mutator paint the cell first and then link it to the graph. The collector
now visits each node at least twice. In our architecture the instruction set of processor P is
extremely simple and the local mark-scan phase is performed by processor P, only. So colour
change is done by P, only. ‘

The larger the working area of each processor the higher the probability of simultaneous
access to a cell. In practice only one processor will access a cell at a time. (In our case proces-
sor P has priority over P;.) In mark-scan based algorithms the work space of processor P; is
the whole heap, instead of a subgraph as in our case, this may cause additional inefficiency,
as one processor may need to wait for the other to finish its operations before having access
to the same cell.

260

The advantages and simplicity of our algorithm in relation to mark-scan based ones rest
on the fact that:

o In reference counting each cell keeps in itself the measure of how much the whole graph
needs the information it stores. This also means space overhead for storing counts.

¢ The interfaces between the two processors are simple and well-defined. This also implies
extra space cost for the Delete-queue.

¢ We need two bits to store four colour information. Ben-Ari's algorithm needs only one
bit for this purpose.

In our opinion, our algorithm trades a small space overhead for greater independence between
processors which implies in time efficiency and simplicity.

Conclusions

We presented a simple shared memory architecture for parallel garbage collection. In our
opinion, this algorithm is simpler and more time efficient than shared parallel algorithms
based on mark-scan. This is still to be born out by experimental results.

Acknowledgements

I am most grateful for the comments of Prof.Peter Welch, Simon Thompson, S.Vedat Demi-
ralp, José Dias dos Santos, Rudnei da Cunha, and David Beckett on a previous version of
this paper.

This paper was written ‘during the author’s research visit to the The University of Kent
at Canterbury, sponsored jointly by the British Council and C.N.Pq. (Brazil) grants No
40.9110/88.4. and 46.0782/89.4. The author would like to express his gratitude to the
Computing Lab. of The University of Kent for having him during his visit and also to the
Departamento de Informdtica - U.F.PE. for granting his research leave.

References

[1] M.Ben-Ari. Algorithms for on-the-fly garbage collection. ACM Transactions on Pro-
gramming Languages and Systems, 6(3):333-344, July 1984,

[2] J.Cohen. Garbage collection of linked data structures. ACM Computing Surveys,
13(3):341-367, September 1981.

[3) E.W.Dijkstra, L.Lamport, A.J.Martin, C.S.Scholten & E.M.F.Steflens. On-the-fly
garbage collection: an exercise in cooperation. Communications of ACM, 21(11):966-
975, November 1978.

[4] D.Gries. An exercise in proving parallel programs correct. Communications of ACM,
20(12):921-930, December 1977.

261

[5) R.J.M.Hughes. A distributed garbage collection algorithm. In J. P. Jouannaud, edi-
tor, Functional Programming Languages and Computer Architecture, volume LNCS 201,
pages 256-272. Springer-Verlag, 1985.

[6] H.T.Kung and S.W.Song. An efficient parallel garbage collection system and its correct-

ness proof. In IEEE Symposium on Foundations of Computer Science, pages 120-131.
IEEE, 1977.

[7] R.D.Lins. Cyclic reference counting with lazy mark-scan. Technical Report 75, UKC
Computing Lab. Report, The University of Kent at Canterbury, July 1990.

[8] A.D.Martinez, R.Wachenchauzer and R.D.Lins. Cyclic reference counting with local
mark-scan. Information Processing Letters, 34:31-35, 1990.

[9] F.J.Pollack, G.W.Cox, D.W.Hammerstein, K.C.Kahn, K.K.Lai, and J.R.Rattner. Sup-
porting Ada memory management in the iAPX-432. In Proceedings of the Symposium on
Architectural Support for Programming Languages and Operating Systemns, pages 117~
131. SIGPLAN Not. (ACM) 17,4, 1982.

[10] G.L.Steele. Multiprocessing compactifying garbage collection. Communications of ACM.
18(09):495-508, September 1975.

[11] D.S.Wise. Design for a multiprocessing heap with on-board reference counting. In
J. P. Jouannaud, editor, Functional Programming Languages and Computer Architecture,
volume LNCS 201, pages 289-304. Springer-Verlag, 1985,

262

