
A Shared Memory Architecture for
Parallel Cyclic Reference Counting

Rafael D. Lins

Dept. de Informática - Universidade Federal de Pernambuco - Recife - Brazil
Computing Laboratory - The Univcrsity of Kcnt - Canterbury - England.

Introduction

In late 1950's a whole number of applications in computer science started to make use of
complex dala structures which werc unable to be allocated and de-allocated by using a
stack discipliue. These complex applications, such as early list based theorem provers and
programming lauguages like LISP, made intensive use of space and needed either implicit or
explicit run-time mernory rnauagernent. Thc two most sirnplc algorithms used for mcmory
management are mark-scau and rcference counting.

ThC> mark-scan garbagC> collection algorithm works in two phases.]f a machine runs
out of space. thc computation process is suspended and the garbage collection algorithm is
called. First. the algorithm traverses all the data structures (or cells) in use putting a mark
in each ccll visited. Then the scan process takes place collecting all unmarked cells in a frc(­
list. When thP mark·scan process h as finished. computation is resumed. The arnount of time
taken for garbagc collection by the mark-scan algorithm is proportional to the size of t he heap
(lhe work space where cells are allocatcd). The copying. algorithm is a modified version o f th<'
mark-scan algorithm which appeared with the advent of virtual memory operating systerns.
In this algorithm lhe heap is dividcd in two halves. The algorithm copies cells from one ha.lf
to the other during collection. Its time complcxity is proportional to the size of the graph in
use. Mark-scan and copying algorithms generally traverse alJ the reachable data structures
during garbage collection, which makes thern unsuitable for real- time or large-virtual-memory
applications.

ln reference counting. each data structure or cell h as an additional field which counts the
number of referenccs to it. i.e. thc number of pointers to it . During computation, alterations
lo the data structurc imply changcs to thC> conncctivity of lhe graph and, consequently,
re-adjustrnent of til<' valuc of the cou nt of thc cells involvcd. Refercucc counting has thc
major advantagc of bcing performed in srnall stcps interleaved with computation, while othcr
algorithms imply suspcnding computation for much longer. The disadvantage of the trivial
algorithm for rcferencc counting is thc inability to rcclaim cyclic structures. To solve this
problem, a mixture of mark-scau aud refercnce counting has already bcen used in the past .
We refer to [2) for a detailed analysis of these algorithms.

In 1975 Steele IJO) proposed what was possibly the first algorithm for parallel garbage
collection . In his architectur<' two processors share thc samc memory spacc. One of the
processors is responsiblc for graph manipulation while the other performs garbage collection.
In tltis algorithm mark-scan and computation occur simultaneously.

Another parallel mark-scan algorith m is prescnted in [3). and was considered by Bcn·
Ari •·onc of th<' most difficuh concurrcnt programs cvcr studied" [1). This algorithm was

252

implemented in hardware/software in the Intel iAPX-432 computer and iMAX operating
system [9). Kung and Song developed an improved mark-scan algoritpm [6) based on the
algorithm by Dijkstra et al. Based on the same algorithm Ben-Ari gave [1) severa] parallel
mark-scan algorithms with a much simpler proof of correctness then tlte ones presented in
[G, 3).

Ali the algorithms mentioned above for parallel mark-scan seem to spend a lot of time
colouring non-garbage cells and scanniug the whole heap. As an alternative to mark-scan
algorithms Wise proposed a on-board reference count architecture [li) and Hughes dcveloped
an algorithm for distributed reference counting [5). In this paper we present a shared rnemory
architecture for parallel cyclic reference counting.

1 Standard Reference Counting

In reference counting, each data structu re or cell has an additional field which counts thc
number of references to it, i.c. the number of pointers to it. During computation, altcrations
to the data strurture imply changes to the connectivity of thc graph and, conscquently, re­
adjustmcnt of the value o f the count o f the cclls involved. Wc assume that cells are o f constanl
fixed size.

Frce cells are linkcd in a structurc callcd a free-list. For a mattcr of convenience ali cells
in the frec-list wiiJ have their refcrencc count set to one. A cell B is connected to a cell A
(A _. B) if and only i f there is a pointer (A, B) . A cell B is transitiuely connected to a cell A
(A ...:. B) if and only if there is a chain of pointers from A to B. Thc initial points of graphs
to which all cells in use are transitively connected are called roots. For the sake of simplicit~·

and without any loss of generality we will assume that there is only one root in the graph.
There are thrce opcrations on the graph:

1. Nev which selects a cell from the free-list and links it to the graph.

Nev (R) = select U from free_list
make pointer <R,U>

make pointer <R,U> fills one of the ficld s of cell R with a pointcr to T. For thc sake
of simplicity of notation wc will not espccify in which ficld of a cell this filling takes
placc.

2. Copy copies information betwecn cclls and incremcnts the referencc count of thc cell we
made a new rcfcrcnce to. Algorithmically we have,

Copy (R, <S,T>) = make pointer <R,T>
increment RC(T)

3. Delete which delctes a pointer to the graph and proceeds thc necessary rc-adjustments
as follows:

253

Delate <R,S> remove <R,S>
if RC (S) = 1 then

else

for T in Sons (S) do
Delate <S, T>

link_to_free-list (S)

decrement RC (S)

remove <R, S> performs the actual delelion of the poin ter to S in onc of the information
fields of cell R. To keep our notation simple fields will not be especified. Sons (S) is
the bag of ali the cells T such that there is a pointer <S, T>.

As we mentioned before, standard reference counling is not able to recycle cyclic structures.
Later on in this paper we will present auother algorithm whkh overcomes this drawback.

2 A Shared Memory Architecture

In this section we propose a sharcd memory architecture to implement t he algorilhm above.
Our idea is to have two processors say P1 and P2 , which will perform graph rewriting and
garbage collection simultaneously.

Bolh processors share the same memory area, the working space which is organised as a
heap of cells. In case of simultaneous access from both processors lo a given cell semaphores
are used such as to guarantee that processar P1 will have priority over processar P2. Tbere is
also another shared data structure: the Delete-qucuc, which is organised as a FIFO. Processar
P1 is onJy allowed to push data onto the Delete-queue. Conversely, processar P2 is only
allowed to dequeue data from the Delete-queue. Processar P 1 has two rcgisters called top­
free-list, which stores a pointer to the top cell in the free-list. and top-dcl-queue, which stores
a pointer to the top of the Delete-queue. Processar P2 has two registers called bot-free-list,
which slores a pointer to the last cell in the frce-list. and bot-del-queue, which stores a pointer
to the bottom of the Delete-queue.

free-list

,..VJ. {

'W v ·)
254

For the sakc of simplicity we ignore the syncronization that must be done when P1 attempts
to remove a nodc from an empty free-list or P2 tries to get a refere_nce from an empty
Delete-queue. These situations should happcn infrequently and any convenient syncronisation
primitiva can bc uscd.

We now split the algorithm above between these two processors.

2.1 Processor P1 lnstruction Set

Processar P1 will be in charge of rewritings of thc graph. lts instruction set comprises three
basic operations: New, Copy, and Del.

New tcsts if therc are free cells on thc free-list. lf not empty it rcads thc information in
rcgister top-frce-list and links it to thc graph. New also gets tbe address of the ncw top of
the free-list and savcs it in registcr top-free-list. These operations are described as,

Nev (R) = if top-free-list not nil then
make pointer <R,top-free-list>
top-free-list := -top-free-list

where -A means the information storcd in A.

Copy copies information between cells. No special care is needed in arder to keep the correct
management of the data structures. If processar P1 wants to copy some information, i.e. to
make a pointer to a cell then this cell must bc transitively connected to root. Copy increments
the reference count of T. AlgorithmicaUy we have,

Copy (R, <S,T>) = make pointer <R,T>
increment RC(T)

Del deletes pointers in the graph, it pushes a reference to a. cell onto the top of the Delete­
queue. (Processar P2 will perform the rcmaining operations for the effective re-a.djustment
of the graph.) Thus,

Del (<R,S>) = remove <R,S>
-top_del-queue := S
increment top_del-queue

2.2 Processor P2 Instruction Set

Processar P2 is the processar in charge of the deletion of pointers and feerung free cells onto
the free-list . The main routine in P2 is caUed Delete a routine which will run forever as the
kernel of the operating system of processar P2 .

Delate = if Delete-queue not empty then
S := bot_del-queue
increment bot_del-queue
Rec_del (S)

else
call Delate

255

lf the Delete-queue is not empty Delate calls Rec_del , as follows

Rec_del (S) c if RC (S) = 1 then

else

for T in Sons (S) do
Rec_del (T)

link_to_free-list (S)

decrement RC (S)

The linking of a cell to the free-list is performed by the operations:

link_to_free-list (S) = -s := bot-free-list
bot-free-list := S

3 The Local Mark-Scan Algorithm

Reference [8] presents a simple algorithm for cyclic reference counting. The general idea of
that algorithm is to perform a local mark-scan whenever a pointer to a shared structure is
deleted. The algorithm works in three phases. In the first phase we scan the graph below
the deleted pointer, rea rranging counts due to internai references and marking the nodes as
possible garbage. In phase two, the sub-graph is re-scanned and any cells to which there are
externai references are remarked as ordinary cells, and their counts reset. Ali other nodes
are marked as garbage. Finally, in phase three ali garbage cells are collected and returned to
the free-list.

In addition to the information of number of references to a cell , there is an extra field
which keeps the colour of the cell. Three colours are used: green, red and blue. Colours are
used to control the status of cells. As initial condition one has a1l cells painted green and
every cell except root is on the f ree-list. Green is the stable colour of cells. Red and blue are
transient colours which in di cate that we are not su re of whether these cells are needed or not.

To make the architecture proposed above work with this new algorithm we change the
instructions set of processar P2 , keeping processar P1 unchanged. Rec_del the routine recur­
sively invoked by Delate whenever a pointer is removed now performs the following opera­
tions:

Rec_del (S) = if RC (S) = 1 then

else

for T in Sons (S) do
Rec_del (T)

link_to_free-list (S)

decrement RC (S)
mark_red (S)
scan (S)
collect_blue (S)

mark_red paints tbe transitive closure of S red and decrements the counts of these cells, as
follows:

256

mark_red (S) if colour (S) is green then
set colour (S) := red
for T in Sons (S) do

decrement RC (T)
mark_red (T)

scan searches for externai pointers to the subgraph under inspection. lf found the transitive
closure of these cells will be painted green.

scan (S) = if colour (S) is red then
if RC (S) > O then

scan_green (S)
else

set colour (S) . - blue
for T in Sons (S) do

scan (T)

scan_green paints green ali the s ubgraph below its calling point and increascs thc referencc
count of the cells visited, to takc into account the internai pointers within t hc subgraph
(which had been sct to zero by mark_red).

scan_green (S) = set colour (S) := green
for T in Sons (S) do

increment RC (T)
if colour (T) is not green then

scan_green (T)

collect_blue recovers ali the blue cells in the subgraph below its calling point (garbage)
and links them to the f rce-list.

collect_blue (S) = if colour (S) i s blue then
for T in Sons (S) do

collect_blue (T)
remove <S,T>

set RC (S) : = 1
set colour (S) : = green
link_to_free_list (S)

4 The Lazy Mark-Scan Algorithm

An important optimisation of the algorithm above is introd uced in referente [7]. In this
new algorithm the ma rk-scan phase is performed lazily, i.e. whenever the free-list is empty.
The lazy algorithm uses a stack as an extra contrai structur<' to avoid performing the local
mark-scan every time we delctc a pointer to a reli wi th mul t iple references. A reference to

257

these cells is placed on the control stack. We pa.int these cells black.
In order to introduce this optimisation of our architecture we will introduce a control stack
to processor P2 and modify its instruction set. Dalete operations are pérformed as follows:

Delete = if Delete-queue not empty then
S := bot-del-queue
decrement bot-del-queue
Rec_del (S)

else
if control_stack not empty then

scan_stack
else

call Delete

If the Delete-queue is not empty Delete calls Rec_del, as follows

Rec_del (S) = if RC (S) = 1 then

else

for T in Sons (S) do
Rec_del (T)

link_to_free-list (S)

decrement RC (S)
if colour (S) not black then

set colour (S) := black
top_of_control_stack := S

Processar P2 only ana.lyses ·the control stack when the Delete-queue is empty. Now let us
expla.in how the control stack is used in (7]. We pop the cell from the top of the control stack
and test its colour. lf it rema.ins black this rneans that we are still not sure if we have deleted
the last pointer to a cycle. (Note that a cell pa.inted black and pushed onto the control stack
may be sent to the free-list by another call to detete. From the free-list it may be recycled
while it still h as a referente frorn the control stack.) If the cell from the top o f the stack is
black then we perform a local mark-scan.

scan_stack = S :K top_of_control_stack
pop_control_stack
if colour (S) is black then

mark_red(S)

e'lse

scan(S)
collect_blue(S)

if control_stack not empty then
scan_stack

mark_red is modified to allow black cells as well.

258

mark_red (S) if colour (S) is green or black then
set colour (S) := red
for T in Sons (S) do

decrement RC (T)
mark_red (T)

the other routines invoked in this section which are not redefincd are lcft as presented in the
last section.

5 Proof of Correctness

A formal proof of thc correcteness of parallel algorithms is, in general, not simple [3, 4). We
will give an informal proof of the corrcctness of the architcctures we proposed for parallel
reference counting.

Thc thrce architecturcs prescnted above are bascd on simple algorithms. It is general
knowledge the correctness of the uniprocessor version of standard rcfcrence counting, as well
as its inability to rec.laim cyclic structures. An informal proof of the correctness of thc cyclic
referenct' count with local mark-scan algorithm appcars in th <' original papcr [8). Thc lazy
algorithm [7) is an optimisation of the local mark-scan one which can bc easily proved correct .
Therefore, our major concern is to analyse the interaction betwccn the two proccssors for cach
of the architectures presented.

5.1 Standard Reference Counting

In the standard reference counting architecturc above thcrc are two interfaces between pro­
cessors: the free-list and the Delete-queue. In general, thcre is no dircct intcraction between
processors P1 and P2. If cells are claimed by processor P1 and the free-Jist is empty P1 rnust
wait for P2 to rccycle cells. Conversely. if the Delcte-queue is empty, processor P2 waits for
processar P1 to push information onto the Delete-queue. This relationship between proces­
sors is producer/consumer coupling; this form of syncronisation can be achieved without any
need for mutual exclusion.

lf the two processors try to access the same cell, let 's say P1 is copying a pointer to a
cell and tries to increment its reference count while P2 is in the process of decrementing this
same count, then semaphores are used such as processar P1 to perform its operation first.

5 .2 Cyclic Reference Counting

The only difference between the a rchitecture for parallel cyclic reference counting above and
the standard rcference count one is that we perform a local mark-scan whenever one detetes
a pointer which h as the possibility of isolatiug a cyclc.

Altough this new architecture keeps the same interfaces of the standard rcference count
one new aspect must be analysed. The mark-scan phasc of processor P2 may occur simul­
taneously with rewritings of processar P1• In ca..~e both proccssors try to acccss a given cell
processor P1 will have priority ovcr processor P2 as in lhe case of standard reference counting.
The only piece of information in a cell both processors may try to modify simultaneously is

259

the refcrence count of a given cell. Observe that the colour information of cells is irrelevant
to processar P 1 • Two points need to be stressed :

• One always makes a connection before breaking a previous one, i.e. one does copy
before delete. One does not discard a pointcr to a cell and lry to copy lhe same pointer
afterwards.

• All cells P1 may copy a pointer to are t ransitivcly connectcd to root, i.e. are acccssible
from root.

Thc points above imply that if processar P2 is mark-scanning a subgraph and processar P,
makes a copy to one of thc cclls in thc same subgraph this new pointer to the subgraph is
not the only connection between this subgraph and rool. The only effect this copy may have
is to abbreviate the mark-scan phase of processar P2 , by finding this new externai referente
before the old ones. We can conclude that we h ave lhe correct interaction between processors
P, and P2 .

The lazy mark-scan archilecture for processar P2 presents the same externai behaviour
as the local one, if observed from processar P1 and vice-versa.

6 Efficiency

Comparing lhe effi ciency between ou r algorithm and lhe ones based on mark-scan prcscnted
in references po, 3, 6, 1) is not a simple t ask. We will givc some cmpirical rcasons why we
think our approach is better than the previous ones.

According to Ben-Ari !IJ the inefficiency of parallel mark-scan algorithms lies in spending
a lot of time colouring non-garbage cells. He proposes an algorithm which can minimise this
drawback i f the application contains large data structures that are modificd only occasionally.
In our lazy algorithm thc mark-scan is local and takes place only as a last rcsort.

In our opinion, thc grcatcr thc dcpcndcncy bctween thc proccssors thc less efficient is the
algorithm and the more complex its proof of correctness. T he distribution of the mark-scan
phase brings problems to the mark-scan bascd algorithms as the one known as Woodger's
scenario. In the algorithm presented in referente [3) thc muta tor (the equivalent to ou r
processar P1) also pcrforms part of the marking phase by colouring cells. If the mutator
makes a long pause between thc linking and colouring phases the collcctor may claim the
whole subgraph below thc ccll just linked as garbage. Ben-Ari 's solution [1) for this problem
consists of making the mutator paint the cell first and thcn link it to the graph. The collector
now visits each node at least twice. In our a rchitecture the instruction set of processar P 1 is
extremely simple and the local mark-scan phase is performed by processar P2 only. So colour
change is done by P2 only. ·

The larger thc working arca of each processar the higher thc probability of simultaneous
access to a cell. In practice only one processar will access a cell at a time. (In ou r case proccs­
sor P1 has priority over P2 .) In mark-scan based algorithms thc work space of processar P2 is
the whole heap, instead of a subgraph as in our case, this may cause additional inefficiency.
as one processar may need to wait for the other to finish its opcrations before having access
to the same cell.

260

The advantages and simplicity of our algorithm in rclation to mark-scan bascd ones rest
on lhe fact that:

• In referencc counting cach ccll keeps in itsclf lhe measure of how much lhe whole graph
needs the information it storcs. This also means spacc overhead for storing counts.

• The interfaces between the two processors are simplc and well-defi ned. This also implics
extra space cost for the Dclcte-qucuc.

• We need two bits to store four colour information. Ben-Ari's algorithm needs only one
bit for this purpose.

In our opinion, ou r algorithm t rades a small space overhcad for greatcr indcpendence between
processors which implies in time efficiency and simplicity.

Conclusions

We presented a simple shared memory architecturc for parallel garbage collection. In our
opinion, this algorithm is simpler aud more time efficicnt than shared parallel algorithms
based on mark-scan. T his is still to be born out by experimental results.

Acknow ledgements

Iam most grateful for the comments of Prof.Peter Welch, Simon Thompson, S.Vedat Demi.
ralp , José Dias dos Santos, Rudnei da Cunha, and David Beckctt on a previous version of
this paper.

This paper was written ·during lhe author's research visil to lhe The University of Kent
at Canterbury, sponsored jointly by ih e British Council and C.N .Pq. (Brazil) grants No
40.9110/88.4. and 46.0782/89.4. Thc au thor would like lo express his gratit ude t o the
Computing Lab. of Thc University of Kcnt for having him during bis visi t and also to t he
Departamento de Informática· U.F.PE. fo r granting his research leave.

References

[I) M.Ben-Ari. Algorithms for on-the-fly garbage collection . ACM Transactions on Pro­
gramming Languages and Systems, 6(3):333- 344, July 1984 .

[2) J .Cohen. Garbage collcction of linked data structures. A CM Computing Surveys,
13(3):341- 367, Septcmbcr 1981.

[3] E.W.Dijkstra. L.Lamport, A.J.Martin, C.S.Scholten & E.M.F.Stelfens. On-the- fly
garbage collection: an exercise in cooperation. Communications of A CM. 21(11):966-
975, November 1978.

[4) D.Gries. An exerci se in proving parallel programs correct. Communications o f A CM,
20(12):921- 930. Dcccmber 1977.

26 1

(5) R.J .M.Hughes. A distributed garbage collection algorithm. ln J . P. Jouannaud, edi·
tor, Functional Progromming Languages and Computer Architecture, volume LNCS 201 ,
pages 256- 272. Springer-Verlag, 1985.

[6] H.T.Kung and S.W.Song. An efficicnt parallel garbagc collection system and its correct·
ness proof. ln IEEE Symposium on Foundations of Computer Scicnce, pages 120- 131.
IEEE, 197i.

[7] R.D.Lins. Cyclic reference counting with lazy mark-scan. Technical Report 75, UKC
Computing Lab. Report, The University of Kent at Canterbury, July 1990.

[8) A.D.Martinez, R.Wachenchauzer and R.D.Lins. Cyclic referente counting wit h local
mark-scan. lnformation Processing Letters, 34:31 - 35, 1990.

[9) F.J.Pollack, G.W.Cox. D.W.Hammerstein, K.C.Kahn, K.K.Lai , and J.R.Rattner. Sup­
porting A da mcmory management in the iAPX-432. ln Proceedings o f Lhe Symposium on
Architectura/ Support for Progromming Languages and Operating Systems, pages 117-
131. SlCPLAN Not. (ACM) 17,4, 1982.

[10] C.L.Steele. Multiproccssing compacti fying garbage collcction. Communications of ACM.
18(09):495- 508, September 1975.

[11) D.S.Wisc. Design for a multiprocessing heap with on-board refercnce counting. ln
J. P. Jouannaud, editor, Functional Progmmming Languagcs and Compu ter A rchitecture,
volume LNCS 201, pages 289- 304. Springcr-Yerlag. 1985.

262

