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Abstract This paper presents a block-layered decoder archi-
tecture and efficient design techniques for quasi-cyclic nonbi-
nary low-density parity-check (QC-NB-LDPC) codes. Based
on a Min-Max decoding algorithm, an efficient block-layered
decoder architecture for QC-NB-LDPC codes is proposed for
fast decoder convergence. Further, a novel two-way merging
Min-Max algorithm, which significantly reduces decoding la-
tency, is proposed for check node processing. The NB-LDPC
decoder using the proposed algorithm can provide a consider-
ably higher throughput rate than that using a conventional Min-
Max algorithm. The proposed (225, 165) NB-LDPC decoder
over GF(24) is synthesized using a 90-nm CMOS process. It
can operate at a clock rate of 400 MHz and achieve a data
processing rate of 24.6 Mbps under 10 decoding iterations.

Keywords Nonbinary . Low-density parity-check (LDPC)
codes . Min-Max decoding . Two-way merging . Block-
layered . VLSI

1 Introduction

Since Shannon first introduced the noisy channel coding theo-
rem in 1948, progress on error correcting codes has been
gradually approaching the Shannon limit. Within this trend,
low-density parity check (LDPC) codes, originally discovered
by Gallager in the early 1960s [1], have received a lot of
attention over the last two decades. Their powerful error cor-
recting capabilities have been validated, which has led to their

inclusion in various standards as a channel coding scheme.
Nonbinary LDPC (NB-LDPC) codes constructed over finite
fields GF(q) (q>2) were recently proposed by Davey and
MacKay [2]. Binary LDPC (B-LDPC) codes with a very large
code length tend to approach the Shannon limit; on the other
hand, NB-LDPC codes can improve their error correcting
capability by increasing q for moderate code lengths.

Recently, NB-LDPC codes [3–12] have attracted a tremen-
dous amount of research interest owing to their excellent error
correction capabilities. However, the significant improvement
in error correction capabilities introduces a penalty of high
decoding complexity. The belief propagation (BP) algorithm
for B-LDPC codes can be extended for NB-LDPC codes [2,
3]. In addition, the BP algorithm can be efficiently imple-
mented using a fast Fourier transform (FFT) in the probability
domain [4, 5]. The computational complexity of these algo-
rithms is dominated by O(q2) and O(q log2 q) for each check
node process. While probability domain algorithms are opti-
mal, a large number of additions and multiplications can lead
to an exponential increase in hardware complexity. Several
decoding schemes have been proposed to deal with this prob-
lem. The channel probability can be changed using log-
likelihood ratios (LLRs). A log-domain decoding algorithm
called log-BP, also called a log sum-product algorithm (SPA),
was presented byWymeersch et al. [6]. This log-BP algorithm
has been shown to be equivalent to the original BP algorithm,
and the log-BP decoding scheme has advantages in terms of
both decoding complexity and numerical robustness.

Research has been conducted on an efficient decoder archi-
tecture design for NB-LDPC codes. Spagnol et al. [7] proposed
a mixed domain decoder architecture, which requires FFT
computation, for decoding NB-LDPC codes. This architecture
complicates product operation, which increases decoder com-
plexity. Generally, sub-optimal decoding algorithms have been
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considered for implementing practical NB-LDPC decoder
architectures. They can provide reduced hardware complexity
using an approximated version of check node processing.
Following this trend, the extended Min-Sum (EMS) [8, 9]
and Min-Max algorithms [10] have been a subject of great
interest for very-large scale integration (VLSI) implementation.
Both of these algorithms use LLR values to decode channel
messages, and as a result, complicated multiplications are
replaced by additions in the log-domain. The EMS algorithm,
which is an extended version of the Min-Sum (MS) algorithm
for B-LDPC codes, was further developed by Voicila et al. [11],
who proposed a truncated value of nm<q–1 to maintain the
reliability of each message. Only a limited number of nm values
are used the check node. Thus, the proposed scheme provides a
significant reduction in the number of memory elements [12].
The BCJR algorithm computation scheme for turbo decoding
is geared to the Min-Max algorithm, which is similar to the
butterfly algorithm proposed by Muller et al. [13]. Sayin [10]
exchanged the sum operation in the EMS algorithm with a max
operation for check node processing. This provides advantages
for VLSI implementation, because a max operation can easily
be implemented using a comparator instead of a sum operation.
For this reason, some NB-LDPC decoder architectures based
on the Min-Max algorithm were proposed [14–17].
Although the past few years have shown a significant
growth in research on NB-LDPC codes and decoding algo-
rithms, there have been very few publications on NB-LDPC
decoder implementations.

In this paper, an efficient block-layered decoder architec-
ture for quasi-cyclic NB-LDPC (QC-NB-LDPC) codes is
presented. A novel two-way merging Min-Max algorithm,
which significantly reduces the decoding latency, is pro-
posed for check node processing. Non-overlapped rows can
be grouped in NB-LDPC codes, facilitating a hardware-
friendly, block-layered decoding scheme, which provides
fast decoder convergence. A new check node unit (CNU)
architecture using a two-way merging Min-Max algorithm is
then proposed to improve throughput.

The remainder of this paper is organized as follows. In
Section 2, the research background of NB-LDPC codes is
briefly introduced. Code construction methods and a brief
review of a block-layered decoding algorithm for NB-LDPC
codes are presented in Section 3. Section 4 presents the two-
way merging Min-Max algorithm and the corresponding
NB-LDPC decoder architecture. Specifically, the develop-
ment of an efficient block-layered decoder architecture and
the two-way merging Min-Max algorithm for a CNU is
described in detail. Hardware cost estimation and throughput
comparisons with other related NB-LDPC decoder designs
are presented in Section 5. Finally, some conclusions are
given in Section 6.

2 Research Background of NB-LDPC Codes
and Architectures

The NB-LDPC code, where parity check matrixH is defined
over GF(q), is a subset of LDPC codes. Non-zero elements of
H are mapped to the GF elements. NB-LDPC codes typically
show a superior performance compared to existing channel
code schemes [18–20]. Various precedence studies have
analyzed the performance of NB-LDPC codes. For exam-
ple, Zhou et al. [18, 19] proposed some algebraic con-
struction methods for NB-LDPC codes and showed a
performance comparison with Reed-Solomon (RS) codes.
Their comparison shows that the constructed QC-NB-
LDPC codes significantly outperform corresponding RS
codes. A fading channel was considered in simulations
for one of the studies [19]. Peng and Chen [20] investi-
gated the application of NB-LDPC codes to multiple-input
multiple-output (MIMO) channels. The results showed
that an NB-LDPC coded system achieves superior perfor-
mance compared to B-LDPC coded systems. Therefore,
NB-LDPC codes have great potential to replace the chan-
nel coding scheme for mobile wireless communication and
storage systems.

Another application of NB-LDPC codes is in the field
of optical communications. In fact, higher rate optical
transport systems require a powerful forward error correc-
tion (FEC) scheme because FECs are considered the most
cost-effective solution to improve the optical signal-to-
noise ratio (OSNR) deficit. For this reason, NB-LDPC
codes were investigated for a next generation FEC scheme
by Arabaci et al. [21]., where the studies demonstrated
that high-rate regular QC-NB-LDPC codes are very suit-
able for optical communications [22]. As mentioned above,
many studies have shown an interest in NB-LDPC codes and
their applications.

Very few NB-LDPC decoder architectures have been
reported thus far. Lin et al. [14] and Zhang and Cai [16]
proposed decoder architectures using the selective Min-Max
algorithm. Although the selective Min-Max algorithm can
reduce the computational complexity by almost half, it may
require a more complicated control logic and non-fixed
memory elements. Lin et al. [14] presented a direct
selection algorithm to find an appropriate LLR value
when a K-bit LLR is given. In addition, the NB-LDPC
decoder architecture was briefly described based on the
selection algorithm.

Zhang and Cai [16] presented an efficient partially paral-
lel NB-LDPC decoder architecture, based on the Min-Max
algorithm, for QC-NB-LDPC codes. When the check node
degree is not small, the proposed architecture by Zhang and
Cai can achieve higher efficiency using an overlapped
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method for check node processing [16]. Overlapped sched-
uling is used among the different layers to further speed up
the decoding process. A path construction scheme–based
NB-LDPC decoder architecture was also presented by
Zhang and Cai [17]. That proposed scheme significantly
reduces the computation complexity and eliminates the
memory requirement for storing intermediate messages gen-
erated from the forward and backward processes. The stan-
dard Min-Max-based NB-LDPC decoder architecture was
originally discussed by Lin et al. [15]. The authors provided
an improved decoding algorithm to remove the GF multi-
plications at the elementary step for Min-Max decoding. As a
result, efficient CNU and variable node unit (VNU) archi-
tectures were presented. Recently, a configurable decoder
architecture was presented by Chen et al. [23]. This
proposed decoder supports both regular and irregular
codes, and as a result, a single decoder can be used to
decode any code of a given GF size. An efficient layered
decoding architecture was also proposed by Ueng et al.
[24]. Instead of a switching network, a barrel-shifter-
based permutation network that can control the permuta-
tion related to multiplications over the GF is used. In
addition, detailed full-chip implementation results using a
90-nm CMOS technology were provided.

As mentioned above, a lot of effort has been spent in the
design of efficient decoding algorithms and architectures for
NB-LDPC codes. However, only a few NB-LDPC decoder
architectures have been proposed owing to the inherently large
complexity of NB-LDPC decoding algorithms. Therefore, a
study on hardware-friendly decoding algorithms and efficient
decoder architectures for NB-LDPC codes is currently
needed.

3 NB-LDPC Code and Decoding Algorithm

3.1 Code Generation of NB-LDPC Code

The algebraic properties of regular NB-LDPC codes gener-
ated using their binary images were presented by Poulliat
et al. [25]. Most NB-LDPC codes are constructed by taking a
known binary LDPC code and replacing its non-zero ele-
ments with randomly generated GF elements.

To generate good-quality NB-LDPC codes, some struc-
tured construction methods were proposed by Zhou et al.
[19, 26]. In 2008, they presented two new algebraic construc-
tion methods based on array-dispersions of matrices over
nonbinary subgroups [26]. The base matrix of both the RS
and row-column (RC)–constrained codes can be extended
using an array dispersion technique. One class of array dis-
persion–based NB-LDPC codes exhibits very good perfor-
mance. RC-constrained arrays [26] are used to generate our
selected (225, 165) NB-LDPC code over GF(24), which pro-
vides a greatly reduced hardware complexity compared to an
NB-LDPC code over GF(25). The property of an RC-
constraint is a constraint on the rows and columns of the H-
matrix. The detailed construction process was described in
2008 [26]. The property of an RC-constraint is a constraint on
the rows and columns of the H-matrix. Using the method
proposed in 2008 [26], a 15×15 H(1) matrix is generated. Set
column weight γ=4 and row weight ρ=5; the 4×5 sub-array
H(1)(4, 15) is then a 60×225 matrix over GF(24).

The generated H(1)(4,15) matrix is extended using an α-
multiplied circulant permutation matrix (CPM). Figure 1(a)
and (b) show the H-matrix of the selected (225, 165) NB-
LDPC code over GF(24) and an α-multiplied CPM for α3,

(a)

(b)

Figure 1 a H-matrix for a (225,
165) NB-LDPC code over
GF(24) with code rate 0.733. b
Example of α-multiplied CPM
for α3.
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respectively. The selected (225, 165) NB-LDPC code has a
constant row weight, dc=14, and a two-column weight, dv=3
or 4.

3.2 Block-layered Decoding Algorithm

In layered LDPC decoding, if non-overlapped k-rows can be
grouped into subsets, each column of these subsets has a
weight of at most 1. The known advantage of the layered
decoding is its reduced computation complexity, as well as a
faster decoding convergence [24, 28]. This layered decoding
scheme has been commonly used to implement B-LDPC
decoders [29–31].

Figure 2 shows the dataflow of the layered NB-LDPC
decoding. The initialization of the decoder is achieved using
soft values from the channel LLRs in the bit update block, and
the decoder starts updating messages with the initial channel
message γ(f)n(a) and the variable node message β(f)

m,n(a),
where m is the check node degree and n is the variable node
degree. The check node message αm,n(a) is used to compute
the check node update, and as a result, β(f+1)

m,n(a) is stored in
memory. At the same time, the updated posterior messages are
computed by adding β(f+1)

m,n(a) and αm,n(a).
Then γ′n(a) is passed through the normalization block,

and finally γ(f+1)
n(a) is used to compute the bit update block

again. If the NB-LDPC code has a CPM-based H-matrix, the
block layers can easily be applied to implement the NB-
LDPC decoder. In the (225, 165) NB-LDPC code, each of
the 15 rows can be divided into four subsets, as the CPM is
defined over GF(24).

The proposed block-layered decoding algorithm is given
as follows:

Let GF(q)={0, α0, α1, · · ·, αq-2} be GFs with q elements.
Let sn be the most-likely symbol of cn; set Ln has q–1
elements including one zero value element. The zero value
elements can be an LLR for the most-likely symbol, while
the others are all positive. A q–1 LLR vector is used for the
initialization step. For check node processing, Min-Max
decoding is applied. Min-Max decoding is performed using
well-known forward-backward metrics. When the variable
to check node computation is performed in Step 3, a normal-
ization step is necessary to maintain computational stability.
These steps are continued until the number of iterations
reaches Imax, or until the parity check is ok.

3.3 Bit Error Rate Performance

When a practical hardware implementation is considered,
quantization becomes an important issue that needs to be
solved [27]. If a large bit-size for the decoder is used, not

β

β

γ

γ

α

γ
Figure 2 Dataflow of block-layered NB-LDPC decoding.
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only will decoder performance improve, its hardware com-
plexity will also increase. For this reason, finding the best
trade-off between decoding performance and hardware com-
plexity is a very important issue for the Min-Max algorithm.

To find the optimal bit-size, we tried different kinds of
quantization schemes to find the best trade-off between the
decoding performance and hardware complexity of the (225,
165) NB-LDPC code. The notation (q, f) is used to represent
the quantization bit-size of the LLR values, in which q bits
and f bits are the total bit size and the bit size of the fractional
part, respectively.

The bit error rates (BERs) under different quantization
methods and decoding algorithms are shown in Figs. 3 and 4.
The simulation was performed over an additive white
Gaussian noise (AWGN) channel with binary phase-shift-
keying modulation. Figures 3 and 4 show the BER perfor-
mance of both (5, 2) and (6, 2) input LLRs, respectively (i.e.
a 2-bit fraction part is included for the input LLR). In addi-
tion, the number of maximum iterations is limited to 25.
First, optimal FFT-BP and sub-optimal Min-Max decoding
are performed to observe the maximum performance. For a
floating-point simulation, Min-Max decoding degrades per-
formance by about 0.1-dB compared to FFT-BP decoding.
For 5-bit input LLR, the quantization level for the inner bits
of the decoder is changed from 6-bit to 8-bit. As we can see
in Fig. 3, 5-bit input LLR and decoder inner bit size (8, 2)
show performance loss of 0.1 dB compared to floating point
Min-Max decoding due to the quantization effect. When 6-
bit input LLR and decoder inner bit size (8, 2) is applied, it
can be seen that the proposed (8, 2) quantization fixed-point
Min-Max scheme can achieve a similar error performance
compared to the floating point FFT-BP scheme, and error
performance of the proposed scheme is close to that of
floating-point Min-Max decoding. Thus, the simulation
results show that the optimum quantization scheme is 6-bit
(6, 2) for input LLR and 8-bit (8, 2) for the inner bit size of
the decoder.

4 Proposed Block-layered NB-LDPCDecoder Architecture

In this section, we present an efficient block-layered decoder
architecture using the two-way merging Min-Max algorithm.
This two-way merging Min-Max algorithm is proposed to
reduce latency during forward-backward computations.

4.1 MMC and MMB Architectures

During check node processing, the min-max computations
occur during the forward, backward, and merging steps.
Equations (1) through (3) describe the elementary min-max
computation steps; (1) is the forward metric, (2) is the back-
ward metric, and (3) is the merging step, in which the
forward and backward metrics process Fi(a)i=1 to d-1 and
Bi(a)i=2 to d, respectively, where d is the check node degree.

Fi að Þ ¼ min
a0; a00∈GF qð Þ
a0 þ hm;nia

00 ¼ a

max Fi−1 a0ð Þ;αm;ni a
00ð Þ� �� � ð1Þ

Bi að Þ ¼ min
a0; a00∈GF qð Þ
a0 þ hm;nia

″ ¼ a

max Biþ1 a0ð Þ;αm;ni a
00ð Þ� �� � ð2Þ

βm;ni að Þ ¼ min
a0; a00∈GF qð Þ
a0 þ a00 ¼ −hm;nia

max Fi−1 a0ð Þ;Biþ1 a00ð Þð Þð Þ ð3Þ

Actually, the min-max computation finds the minimum
value among the appropriate maximum values. Figure 5(a)
shows the proposed min-max computation (MMC) architec-
ture. The LLRs, La[0],· · ·, La[q–1] and Lb[0],· · ·, Lb[q–1], are
fed to the MMC in parallel. Each La and Lb value is 8-bit, as
determined through the quantization simulation. The output
values Lout[0], · · ·, Lout[q–1] are computed in parallel.
Figure 5(b) shows the min-max block (MMB) architecture,
which performs one CPM computation in the H-matrix. The

Figure 3 BERs of a (225, 165) NB-LDPC code over GF(24) under 5-bit
input LLR.

Figure 4 BERs of a (225, 165) NB-LDPC code over GF(24) under 6-bit
input LLR.
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MMB architecture consists of 15 MMC blocks, where hm,n
defines a different S/N scheduling for each block.

Since our selected (225, 165) NB-LDPC code was de-
fined over GF(24), all input and output vectors include 16
LLRs. The switch network (S/N) in the MMC must provide
appropriate connections corresponding to hm,n. The S/N
scheme is defined by Eqs. (4) and (5) for the forward-
backward metrics and the merging step, respectively.

a0 þ hm;na
00 ¼ a : for the forward−backward metrics ð4Þ

a0 þ a00 ¼ −hm;na : for the merging step ð5Þ
Symbols a, a′, and a″ are the corresponding GF(q) symbols.

Using Eqs. (4) and (5), we can find all possible combinations of
a′ – a″. Suppose that f(0), f(α0), ···, f(α14) are computed when
hm,n is α5. The two unknown symbols a and hm,n are then
defined, allowing us to determine all combinations by substi-
tuting the GF symbols into a′ and a″. For example, when
computing f(α0), Eq. (4) can be rewritten as Eq. (6).

a0 þ α5a00 ¼ α0 ð6Þ
In Eq. (6), every corresponding symbol for a″ can be

found by increasing a′ in order. As a result, a total of 15

pairs, 0 – α11, α0 – α14, α1 – 0, α2 – α0, · · ·, α14– α2, are
possible. Figure 6 shows an example of all possible a′ – a″
combinations when hm,n is α

5.

4.2 Two-way Merging CNPU Architecture

The conventional Min-Max algorithm is performed using
forward-backward metrics and a merging step [10]. As shown
in Eqs. (1) – (3), both the forward-backward metrics and
merging step are computed sequentially. That is, the merging
step is started after the forward-backward metrics are execut-
ed. Thus, 2dc cycles are usually required to finish the min-max
computation for each layer, creating a long latency for the
decoder. Although an overlapped check node processing
scheme was proposed by Zhang and Cai [16], it still requires
2dc cycles with three CNUs to finish one block layer (i.e., one
cycle is the computation time of the MMC). The conventional
min-max decoding architecture generally requires three CNUs
for the forward, backward, and merging steps.

If one more CNU is added for the merging step, the merging
computation can be divided into right-merging and left-merging
computations, which are referred to as a two-way merging step.
In a two-way merging scheme for check node processing, the
right and left-merging computations for the same check node are

Figure 5 a MMC, and (b)
MMB architectures.

214 J Sign Process Syst (2015) 78:209–222



independent, and can be carried out in parallel. The proposed
two-waymergingMin-Max algorithm provides reduced latency
compared to that of a conventional Min-Max algorithm.
However, a two-way merging min-max computation requires
four CNUs for the forward-backward and two-way merging
computations. The two-way merging Min-Max algorithm is
described as follows:

An example of the two-way merging min-max computation
procedure is shown in Fig. 7. Since the value of dc is 14 in the
proposed (225, 165) NB-LDPC decoder, F1 through F13 for
the forward metrics and B14 through B2 for the backward
metrics are computed sequentially at each cycle. The left-
merging and right-merging are started right after the F7 and
B8 computations are finished (i.e., in the middle of the forward
and backward processes). That is, M7 can be calculated using
(F6, B8), and M8 can be calculated using (F7, B9). Because
k=7 and j=8 in the two-way merging Min-Max algorithm,
two-way merging step pairs M7–M8, M6–M9, •••, M2–M13
can be computed simultaneously. The numbers provided in the
small boxes in Fig. 7 indicate the processing order during the
forward-backward and merging steps.

Figure 8 shows the scheduling for the two-way merging
check node processing for each block layer. The forward and
backward metrics are computed during dc – 1 cycles. During
the two-way merging process, the right and left-merging
processes are started in the middle of the forward and back-
ward processes. Thus, (dc/2) – 1 cycles are needed to process
both the right- and left-merging metrics. Since the forward-
backward metrics and merging step are completed at the
same time, a total of dc – 1 cycles are taken to complete
one block layer check node process. As a result, the two-way
merging Min-Max algorithm provides reduced latency com-
pared to the conventional Min-Max algorithm.

The CNU architecture consists of one S/N and one MMB,
as shown in Fig. 9(a) and (b). However, the CNU architec-
ture for the forward and backward metrics is slightly differ-
ent from that of the merging step. As shown in Fig. 9(a), the
forward and backward metrics are computed sequentially
(i.e., Fi-1 and Bi+1 are fed to Fi and Bi, respectively). Thus,
the CNU architectures for the forward and backward metrics
have feedback loops and D flip-flops at the end of the output
ports. As shown in Fig. 9(b), the CNU architecture for the
merging step accepts two input vectors, and the output values
are fed to the shift-registers. All input and output ports are
128-bit, as each port consists of 16 8-bit LLRs.

The S/N for the CNUs provides dynamic wiring to the
MMB architecture. Since the MMB architecture processes

Fig. 6 Example of switch
network scheduling for hm,n=α

5.
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one block column, re-ordering is required for the input ports.
When the forward metrics are computed for the first block
layer, the current outputs are always used for the next input.
As each output is obtained from the MMCs in the MMB,
appropriate input ports should be assigned during every
computation cycle.

Since the proposed MMB architecture can process one
block layer at a time, the S/N for the CNUs should provide an
appropriate dynamic network for the forward-backward met-
rics and the left-right merging computation for every cycle.
For the forward computation procedure, the S/N scheduling
for the first block layer is shown in Fig. 10. As defined in the
H-matrix, the processing order of the first layer is
α14→α13→α7→ · · ·→α7→α13. The second layer is
α0→α14→α8→ · · ·→α8→α14. Finally, the processing or-
der of the fifteenth layer can be defined as
α13→α12→α6→ · · ·→α6→α12. Note that an all-zero ma-
trix is ignored during this processing order.

The output of MMC_14 (i.e., corresponding to α14), which
is included in the MMB for the forward metrics, is fed to the
input of MMC_13 (α13) at the first cycle. At the second

computation cycle, the output ofMMC_13 (i.e., corresponding
to α13) is fed to MMC_7 (α7) as an input. The rest of the
computational procedures for the third, fourth, ···, and fifteenth
layers are shown in Fig. 10. In the same way, the S/N sched-
uling for the backward metrics can be defined based on the
corresponding hm,n.

Figure 11 shows the proposed check node processing unit
(CNPU) architecture, which employs the two-way merging
Min-Max algorithm. A total of four CNUs (i.e., two CNUs for
the forward-backward metrics and two CNUs for the two-way
merging step) are used to implement the proposed CNPU
architecture. At every cycle, the proposed CNPU accepts
two input vectors, A0 to A14 and B0 to B14. First, the forward
and backward metrics are processed during dc–1 cycles, and
the computation results, (F1, F2, ···, F13) and (B14, B13, ···,
B2), are then generated consecutively. During the forward and
backward computations, the first seven results, (F1–F7) and
(B14–B8), are stored in F_MEM and B_MEM, respectively.
For this process, the MUX control signal in the dotted box is
kept at “1” during the first seven cycles. The control signal is
then toggled to “0”, such that the remaining outputs, (F8–F13)

Figure 7 Computation
procedure of two-way merging
Min-Max algorithm.

Figure 8 Scheduling of two-
way merging check node
processing.
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and (B7–B2), are directly fed to the CNUs for the left- and
right-merging steps. For left- and right-merging, one of the
input vectors comes from F_MEM, and the other comes from
B_MEM. The output data of the left-merging step (M7–M1)
and right-merging step (M8–M14) are stored in the shift
registers. The memory depth of F_MEM and B_MEM are
sufficient to cover (dc/2) – 1, since only half of the forward and
backward results need to be stored.

4.3 Overall Decoder Architecture

The proposed block-layered NB-LDPC decoder architecture,
which employs the two-way merging Min-Max algorithm, is
shown in Fig. 12. The proposed NB-LDPC decoder architec-
ture consists of one CNPU architecture, 15 CN_MEMs, 15
VN_MEMs, 15 shift-registers, and the CNPU scheduler, etc.
The channel extrinsic messages are inputted initially into the
VN_MEMs. Because a total of 15 block columns exist,

VN_MEMs (VN_MEM 0 – VN_MEM 14) are used to store
the corresponding LLRs for each block. The shift-register
blocks are used to buffer both the addition and subtraction
operations, as well as the pipelining stage.

The CNPU accepts two data pairs, A0 to A14 and B0 to
B14, at every processing cycle. The CNPU scheduler in front
of the CNPU is used to manage the input scheduling. After
CNPU processing, the outputs of the CNPU are stored in the
CN_MEMs. At the same time, 15 parallel adders are used to
check to variable node updates. A normalization step is then
performed before writing to memory. As mentioned above,
the normalization step is essential for maintaining computa-
tional stability. Finally, the updated data are written to the
CN_MEMs; the decoder continuously runs until either the
parity check is completed or the number of iterations reaches
a pre-determined maximum number.

A total of 15 CN_MEMs and 15 VN_MEMs are used to
store the check-to-variable and variable-to-check processing

Figure 9 a CNU architecture
for the forward and backward
metrics. b CNU architecture for
the merging step.

Figure 10 Switch network (S/
N) scheduling for the first block
layer.
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data, respectively. The size of the elementary memory for
each CN_MEM and VN_MEM bank is 16×8-bit, where the

memory depth is 16, since each memory block has to store all
LLRs corresponding to GF(24).

Figure 11 Proposed two-way merging CNPU architecture.

Figure 12 Proposed block-layered (225, 165) NB-LDPC decoder architecture.
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5 Implementation Results and Comparisons

5.1 Implementation Results

The proposed block-layered (225, 165) NB-LDPC decoder
using the two-way merging Min-Max algorithm was mod-
eled in Verilog HDL and then simulated to verify function-
ality using a test pattern generated from a C simulator. After
complete verification of its design functionality, the NB-
LDPC decoder was synthesized using the appropriate time
and area constraints. Both the simulation and synthesis steps
were carried out using the SYNOPSYS design tool and a
TSMC 90-nm CMOS standard cell library optimized for a
1.0 V supply voltage. The logic synthesis and the static
timing analysis were performed with the typical_1.0V_25C
PVT (process/voltage/temperature) corner. The synthesis re-
sult also includes the gate count of memories. The block-
layered decoding method was used to improve the speed of
convergence and memory requirements. For quantization, a
(6, 2) input LLR and (8, 2) quantization scheme for an inner
bit size were adopted. Figure 3 shows the BER performance
for both floating and fixed-point simulation. The perfor-
mance loss due to the quantization effect is less than 0.07 dB.

The synthesis results of the proposed (225, 165) NB-
LDPC decoder architecture are shown in Table 1. The pro-
posed NB-LDPC decoder architecture consists of one CNPU
architecture, 15 CN_MEMs, 15 VN_MEMs, 15 shift-
registers, and the CNPU scheduler etc., in which the CNPU
architecture has almost 473 K gates, and the other compo-
nent block has 97 K gates. The total number of gates for the
proposed NB-LDPC decoder architecture is almost 570 K
gates, which includes the estimated memory area (gate
count) of 79 K-bits memory. The single CNPU architecture
has one B_MEM bank and one F_MEM bank, in which one
memory bank size is 128×7×14=12,544 bits. Thus, a total
of 12,544 bits×2=25,088 bits are used for two memory
banks. The total bit size of 15 VN_MEMs is 26,880 bits.
Also, 15 CN_MEMs have the same 26,880 bits. As a result,
25,088+26,880+26,880=78,848 bits of memory are used
for the proposed NB-LDPC decoder architecture. The gate
count of memories has been estimated from (79 K-bits
SRAM core area/NAND gate area) using a 90 nm CMOS
library. From the pre-layout simulation, the proposed NB-
LDPC decoder architecture can operate at a clock rate of
400 MHz and has a data processing rate of 24.6 Mbps.

5.2 Comparison with Other NB-LDPC Decoders

Lin et al. [15] defined (620, 310) NB-LDPC codes over
GF(25). The normalized code size for a B-LDPC code is
(3100, 1550). This NB-LDPC decoder is implemented using
a 0.18-μm CMOS process; the occupied gate counts are
14.9 M and the throughput is 60 Mbps at a clock rate of

200MHz. The applied decoding scheme for CNP is based on
the standard Min-Max algorithm. A partially parallel QC-
NB-LDPC decoder architecture based on the Min-Max al-
gorithm was proposed by Zhang and Cai [16]. A (744, 653)
NB-LDPC code was also defined over GF(25). They pro-
posed an efficient CNU architecture and the overlapped
scheme for check node processing. From the synthesis
results, the clock rate was found to reach 106 MHz with a
throughput of 9.3 Mbps, targeted on a Vertex-2 Pro FPGA
device. In a separate paper [17], Zhang and Cai presented an
(837, 726) QC-NB-LDPC decoder over GF(25) using the
selective-input Min-Max algorithm. They proposed a path
construction algorithm for reducing the check node process-
ing scheme. Ueng et al. [24] presented a (620, 310) NB-
LDPC decoder architecture over GF(25) based on the
selective-input layered Min-Max algorithm. They proposed
a barrel-shifter-based permutation network and a minimum
value filter in order to increase throughput.

Table 1 compares the proposed decoder with these earlier
NB-LDPC decoders, where efficiency is defined by the
throughput-to-gate-count ratio (Mbps/M gates). The through-
put rate is related to check node degree and codeword size, as
a larger codeword can transmit more bits at once. Since the
Min-Max algorithm is operated sequentially, a larger check
node causes a longer latency of the NB-LDPC decoder.
Although the proposed NB-LDPC decoder shows a higher
clock rate, a lower throughput rate was reported owing to a
small codeword size and higher check node degree. However,
it can be seen that the proposed decoder has a very low
hardware complexity owing to GF(24), and it can provide
much better efficiency than the decoders presented by Lin
et al. [15], Zhang and Cai [17], and Ueng et al. [24].

5.3 Normalized Performance Comparison

NB-LDPC codes have not been selected as an FEC standard
for any applications and, as shown in Table 1, the existing
NB-LDPC decoders use different code sizes, Galois-fields
and quantization bits. Thus it is very difficult to compare
with previous decoders. The (620, 310) NB-LDPC decoder
over GF(25) was proposed by Lin et al. [15] and Ueng et al.
[24]. For a fair comparison of the proposed decoder archi-
tecture with those proposals, a normalized comparison of
these designs was accomplished through an architecture-
level analysis. For the (620, 310) code over GF(25) with
dv=3 and dc=6, the hardware requirement and normalized
decoding latency of the (620, 310) NB-LDPC decoder is
listed in Table 2. According to the results in Table 2, we
can observe that, if we assume that all design conditions are
the same, the decoder architecture by Lin et al. [15] can be
implemented using a total of 310 CNUs in which one CNU
consists of several MMC blocks. Since a fully parallel struc-
ture is applied and dv=3, the normalized CNU complexity
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for the proposed two-way merging architecture should be
124×3=372. The proposed two-way merging CNPU archi-
tecture can significantly reduce the decoding latency by half,
thereby improving the throughput rate. If the two-way merg-
ing Min-Max algorithm is adopted for the (620, 310) NB-
LDPC decoder design, data throughput can be doubled com-
pared to the (620, 310) NB-LDPC decoders of Lin et al. [15]
and Ueng et al. [24]. Let us suppose that the fully parallel
check node architecture is applied for the proposed NB-
LDPC decoder architecture. The latency of the proposed
MMB is TMMB=32 cycles, which is equivalent to the latency
of the elementary computation unit (ECU) (TECU_1) by Lin
et al. [15]. Based on the proposed two-way merging Min-
Max algorithm, the normalized latency of the CNU is esti-
mated to be TCNU_C=(dc – 1) TMMB=5×32=160 cycles, and

hence, the proposed decoder takes (TCNU_C+Tc2v+Tv2c) Niter

cycles to accomplish Niter iterations. On the other hand, the
normalized latency of a CNU using the non-selective Min-
Max algorithm by Lin et al. [15] is TCNU_A=3(dc –
2)TECU_1=384 cycles, and the latency of the decoder is
(TCNU_A+Tsub+Tadd)Niter. In total, for GF(q), 2q clock cycles
are required for the C2V (Tc2v) and the V2C memory update
time (Tv2c). Thus both decoders take 64 cycles to process a
single block layer. For Ueng et al. [24], since each ECU takes
TECU_2=nm cycles to accomplish a single elementary step,
and each CNU requires 3(dc – 2) elementary steps to com-
pute C2V messages, the decoder takes TCNU_B=3(dc –
2)TECU_2 cycles to process a single layer. Thus, the total
latency of the NB-LDPC decoder can be expressed by
TCNU_B×dv×Niter.

Table 2 Normalized performance comparison for (620, 310) NB-LDPC decoder.

Non-selective Min-Max [15] Selective-input Min-Max [24] Proposed two-way Merging Min-Max

Code size (620, 310) (620, 310) (620, 310)

Galois-field GF(25) GF(25) GF(25)

(dv, dc) (3, 6) (3, 6) (3, 6)

Parallelism Fully parallel Partially parallel Fully parallel

No. of CNUs (Hardware
Complexity)

310 - 372 (normalized)

Latency of MMB (or ECU) TECU=32 TECU_2=nm TMMB=32

Normalized latency of CNU TCNU_A=3×(dc–2)×TECU_1=384 cycles TCNU_B=3×(dc–2)×TECU_2 TCNU_C=(dc–1)×TMMB=160 cycles

Total latency (with 10 iter.) (TCNU_A+Tsub+Tadd)×Niter=4,480 cycles TCNU_B×dv×Niter (TCNU_C+Tc2v+Tv2c)×Niter=2,240 cycles

Technology 180-nm CMOS 90-nm CMOS 180-nm CMOS

Clock rate (MHz) 200 260 200

Estimated throughput
(Mbps)

60 66.6 138

Table 1 Performance comparison with other NB-LDPC decoders.

[15] [16] [17] [24] Proposed

Code size (620, 310) (744, 653) (837, 726) (620, 310) (225, 165)

Code rate 0.5 0.88 0.87 0.5 0.73

Galois-field GF(25) GF(25) GF(25) GF(25) GF(24)

(dv, dc) (3, 6) (3, 24) (4, 27) (3, 6) (3, 14) or (4, 14)

Algorithm Non-selective
Min-Max

Min-Max Selective - input
Min-Max

Selective-input
Min-Max

Two-way merging
Min-Max

Normalized to B-LDPC (3100, 1550) (3720, 3265) (4185, 3630) (3100, 1550) (900, 660)

Quantization bits 7 – 5 7 8

Technology 180-nm CMOS Virtex-2 FPGA N/A 90-nm CMOS 90-nm CMOS

Clock rate (MHz) 200 106 150 260 400

No. of iterations 10 15 15 10 10

Memories (K-bits) – 935 452 405 79

Gate count (NAND) 14.9 M N/A 1.60 M 2.14 M 570 K

Throughput (Mbps) 60 9.3 10 66.6 24.6

Efficiency (Mbps/M gates) 8.84 – 6.25 31.12 43.15
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As shown in Table 2, if we assume that both maximum
iterations (Niter) and clock rate are fixed at 10 times and
200 MHz, respectively, the proposed NB-LDPC decoder
based on the two-way merging Min-Max algorithm takes
(160+32+32)×10=2,240 cycles. The throughput rate of
the proposed decoder can be calculated as follows:

Throughput ¼ f clk � Nc � log2qð Þ � R

TCNU C þ Tc2v þ Tv2cð Þ � Niter
ð7Þ

where fclk is the clock rate, Nc is the codeword size, R is the
code rate, Tc2v is the C2V memory update time, Tv2c is the
V2C memory update time, and Niter is the maximum number
of iterations, respectively. As a result, the estimated through-
put of the proposed decoder using the two-way merging Min-
Max algorithm is 138 Mbps, while that of the previous de-
coder using the non-selective Min-Max algorithm [15] is 60
Mbps using 180-nm CMOS technology. For Ueng et al. [24],
since there is no information for the latency of the ECU, it is
difficult to estimate the normalized latency of the CNU and
the total latency. However, they gave the clock rate and
throughput as 260 MHz and 66.6 Mbps, respectively, using
90-nm CMOS technology. Thus, it is clear that our proposed
decoder can provide a much higher throughput than the
decoders presented by Lin et al. [15] and Ueng et al. [24] for
the same code and number of iterations.

While overlapped scheduling can achieve higher efficiency
when the check node degree dv is not small, the proposed two-
way merging Min-Max algorithm can provide reduced laten-
cy. TheH-matrix of the (744, 653) NB-LDPC code has dv=24
and dc=3. For the (744, 653) NB-LDPC decoder from Zhang
and Cai [16], 42,464 cycles are required with 15 iterations.
Similarly, the decoding latency of the proposed decoder is
estimated at 36,000 clock cycles (i.e., TCNU=736 clocks, and
as a result, the total latency is (736+32+32)×3×15=36,000-
cycles).Almost 15%of the clock cycles are saved by applying
the proposed two-way merging Min-Max algorithm. In other
words, applying this algorithm to implement the NB-LDPC
decoder clearly improves the decoding throughput. In addition,
the observed single layer processingcycle of theCNUarchitec-
ture fromUeng et al. [24] is 3 (dc – 2) nm, which is equivalent to
the standard min-max processing cycle for Lin et al. [14]. The
two-way merging CNPU architecture has a latency of (dc – 1)
TMMB cycles, which is a significant reduction. Thus, using the
proposedtwo-waymergingMin-Maxalgorithm,theNB-LDPC
decoder can improve throughput significantly. As observed
fromthecomparisonresults,ourproposeddecoderoutperforms
previousNB-LDPCdecoders.

6 Conclusion

This paper presents a novel block-layered NB-LDPC decoder
architecture and an efficient design technique based on the

two-way merging Min-Max algorithm. To determine the ap-
propriate bit size for the NB-LDPC decoder, a fixed-point
simulation with various finite precision levels was performed.
A hardware-friendly block-layered decoding algorithm was
applied for fast decoder convergence. In addition, a novel two-
way merging Min-Max algorithm for check node processing
was proposed to provide a much higher throughput rate com-
pared to existing Min-Max algorithms. The proposed two-
way merging Min-Max algorithm and decoder architecture
shows a significant reduction in decoding latency. A (255,
165) NB-LDPC decoder over GF(24) was designed to dem-
onstrate the efficiency of the proposed architecture. The pro-
posed decoder can be a powerful FEC scheme for next-
generation communication systems and memory systems.
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